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Dedicated to Professor Ichiro Enoki on the occasion of his retirement

Abstract. We formulate and establish a generalization of Kollár’s injectivity
theorem for adjoint bundles twisted by suitable multiplier ideal sheaves. As
applications, we generalize Kollár’s torsion-freeness, Kollár’s vanishing theo-
rem, and a generic vanishing theorem for pseudo-effective line bundles. Our
approach is not Hodge theoretic but analytic, which enables us to treat sin-

gular Hermitian metrics with nonalgebraic singularities. For the proof of the
main injectivity theorem, we use L2-harmonic forms on noncompact Kähler
manifolds. For applications, we prove a Bertini-type theorem on the restriction
of multiplier ideal sheaves to general members of free linear systems.
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1. Introduction

The Kodaira vanishing theorem [Kod] is one of the most celebrated results in
complex geometry, and it has been generalized to several significant results; for
example, the Kawamata–Viehweg vanishing theorem, the Nadel vanishing theo-
rem, Kollár’s injectivity theorem (see [F9, Chapter 3]). Kodaira’s original proof
is based on the theory of harmonic (differential) forms, and has currently been
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developed to two approaches from different perspectives: One is the Hodge theo-
retic approach, which is algebro-geometric theory based on Hodge structures and
spectral sequences. The other is the transcendental approach, which is an ana-
lytic theory focusing on harmonic forms and L2-methods for ∂-equations. These
approaches have been nourishing each other in the last decades.

As is well known, the Kawamata–Viehweg vanishing theorem plays a crucial role
in the theory of minimal models for higher-dimensional complex algebraic varieties
with only mild singularities. Now some generalizations of Kollár’s injectivity the-
orem allow us to extend the framework of the minimal model program to highly
singular varieties (see [A1], [A2], [EV], [F1], [F2], [F3], [F6], [F7], [F8], [F9], [F10],
[F12], [F13], [F14]). The reader can find various vanishing theorems and their
applications in the minimal model program in [F9, Chapters 3 and 6]. Kollár’s
original injectivity theorem, which is one of the most important generalizations of
the Kodaira vanishing theorem, was first established by using the Hodge theory (see
[Kol1]). The following theorem, which is a special case of [F9, Theorem 3.16.2], is
obtained from the theory of mixed Hodge structures on cohomology with compact
support.

Theorem 1.1 (Injectivity theorem for log canonical pairs). Let D be a simple
normal crossing divisor on a smooth projective variety X and F be a semiample
line bundle on X. Let s be a nonzero global section of a positive multiple F⊗m such
that the zero locus s−1(0) contains no log canonical centers of the log canonical pair
(X,D). Then the map

×s : Hi(X,KX ⊗D ⊗ F ) → Hi(X,KX ⊗D ⊗ F⊗m+1)

induced by ⊗s is injective for every i. Here KX denotes the canonical bundle of X.

The Hodge theoretic approach for Theorem 1.1 is algebro-geometric. For the
proof, we first take a suitable resolution of singularities, and then take a cyclic
cover. After that, we apply the E1-degeneration of a Hodge to de Rham type
spectral sequence coming from the theory of mixed Hodge structures on cohomology
with compact support. In this proof, we do not directly use analytic arguments;
on the contrary, we have no analytic proof for Theorem 1.1. This indicates that
a precise relation between the Hodge theoretic approach and the transcendental
method is not clear yet and is still mysterious. There is room for further research
from the analytic viewpoint. In this paper, we pursue the transcendental approach
for vanishing theorems instead of the Hodge theoretic approach.

A transcendental approach for Kollár’s important work (see [Kol1]) was first
given by Enoki, which improves Kollár’s original injectivity theorem to semipositive
line bundles on compact Kähler manifolds as an easy application of the theory of
harmonic forms. After Enoki’s work, several authors obtained some generalizations
of Kollár’s injectivity theorem from the analytic viewpoint, based on the theory of
L2-harmonic forms (see, for example, [En], [Ta], [O3], [F4], [F5], [MaS1], [MaS2],
and [MaS4]). Based on the same philosophy, it is natural to expect Theorem 1.1
to hold in the complex analytic setting. However, as we mentioned above, there
is no analytic proof for Theorem 1.1. Difficulties lie in that the usual L2-method
does not work for log canonical singularities, and that no transcendental methods
are corresponding to the theory of mixed Hodge structures (see [MaS8,No, LRW]
for some approaches). The transcendental method often provides some powerful
tools not only in complex geometry but also in algebraic geometry. Therefore it
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is of interest to study various vanishing theorems and related topics by using the
transcendental method.

In this paper, by developing the transcendental approach for vanishing theo-
rems, we prove Kollár’s injectivity, vanishing, torsion-free theorems, and a generic
vanishing theorem for KX ⊗ F ⊗ J (h), where KX is the canonical bundle of X,
F is a pseudo-effective line bundle on X, and J (h) is the multiplier ideal sheaf
associated with a singular Hermitian metric h. More precisely, this paper contains
three main contributions: The first contribution is to prove a generalization of
Kollár’s injectivity theorem for adjoint bundles twisted by suitable multiplier ideal
sheaves (Theorem A). The second contribution is to establish a Bertini-type the-
orem on the restriction of multiplier ideal sheaves (Theorem 1.10). Theorem 1.10
provides a useful tool and enables us to use the inductive argument on dimension.
The third contribution is to deduce various results related to vanishing theorems
as applications of Theorem 1.10 and Theorem A (Theorems B, C, D, E, and F).
Since we adopt the transcendental method, we can formulate all the results for
singular Hermitian metrics and (quasi-)plurisubharmonic functions with arbitrary
singularities. This is one of the main advantages of our approach in this paper.
The Hodge theoretic approach explained before does not work for singular Her-
mitian metrics with nonalgebraic singularities. Furthermore, we sometimes have
to deal with singular Hermitian metrics with nonalgebraic singularities for several
important applications in birational geometry even when we consider problems in
algebraic geometry (see, for example, [Si], [Pa], [DHP], [GM], and [LP]). Therefore,
it is worth formulating and proving various results for singular Hermitian metrics
with arbitrary singularities although they are much more complicated than singular
Hermitian metrics with only algebraic singularities.

1.1. Main results. Here, we explain the main results of this paper (Theorems A,
B, C, D, E, F, and Theorem 1.10). Theorem A and Theorem 1.10 play important
roles in this paper, and other results follow from Theorem A and Theorem 1.10 (see
Proposition 1.9). We first recall the definition of pseudo-effective line bundles on
compact complex manifolds.

Definition 1.2 (Pseudo-effective line bundles). Let F be a holomorphic line bundle
on a compact complex manifold X. We say that F is pseudo-effective if there exists
a singular Hermitian metric h on F with

√
−1Θh(F ) ≥ 0. When X is projective,

it is well known that F is pseudo-effective if and only if F is pseudo-effective in the
usual sense, that is, F⊗m ⊗ H is big for any ample line bundle H on X and any
positive integer m.

The first result is an Enoki-type injectivity theorem.

Theorem A (Enoki-type injectivity). Let F be a holomorphic line bundle on a
compact Kähler manifold X and let h be a singular Hermitian metric on F . Let M
be a holomorphic line bundle on X and let hM be a smooth Hermitian metric on
M . Assume that

√
−1ΘhM

(M) ≥ 0 and
√
−1(Θh(F )− tΘhM

(M)) ≥ 0

for some t > 0. Let s be a nonzero global section of M . Then the map

×s : Hi(X,KX ⊗ F ⊗ J (h)) → Hi(X,KX ⊗ F ⊗ J (h)⊗M)

induced by ⊗s is injective for every i, where KX is the canonical bundle of X and
J (h) is the multiplier ideal sheaf of h.
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Remark 1.3. Let L be a semipositive line bundle on X, that is, it admits a smooth
Hermitian metric with semipositive curvature. Let F = L⊗m and M = L⊗k for
positive integers m and k. Then we obtain Enoki’s original injectivity theorem (see
[En, Theorem 0.2]) from Theorem A.

In the case of M = F , Theorem A has been proved in [MaS4] under the as-
sumption supX |s|h < ∞. This assumption is a natural condition to guarantee that
the multiplication map ×s is well-defined. However, for our applications in this
paper, we need to formulate Theorem A for a different (M,hM ) from (F, h). This
formulation, which may look slightly artificial, is quite powerful and can produce
applications, but raises a new difficulty in the proof: the set of points x ∈ X with
ν(h, x) > 0 is not necessarily contained in a proper Zariski closed set, although
such a situation was excluded in [MaS4] thanks to the assumption supX |s|h < ∞,
where ν(h, x) denotes the Lelong number of the local weight of h at x. Compared
to [MaS4], Theorem A is novel in the technique to overcome this difficulty (see
Section 5 for the technical details), and further, it will be generalized to certain
noncompact manifolds along with other techniques (see [MaS5]). Note that Theo-
rem A can be seen as a generalization not only of Enoki’s injectivity theorem but
also of the Nadel vanishing theorem. In Section 4, we will explain how to reduce
Demailly’s original formulation of the Nadel vanishing theorem (see Theorem 1.4
below) to Theorem A for the reader’s convenience.

Theorem 1.4 (Nadel vanishing theorem due to Demailly: [D2, Theorem 4.5]).
Let V be a smooth projective variety equipped with a Kähler form ω. Let L be a
holomorphic line bundle on V and let hL be a singular Hermitian metric on L such
that

√
−1ΘhL

(L) ≥ εω for some ε > 0. Then

Hi(V,KV ⊗ L⊗ J (hL)) = 0

for every i > 0, where KV is the canonical bundle of V and J (hL) is the multiplier
ideal sheaf of hL.

A semiample line bundle is always semipositive. Thus, as a direct consequence
of Theorem A, we obtain Theorem B, which is a generalization of Kollár’s original
injectivity theorem (see [Kol1]).

Theorem B (Kollár-type injectivity). Let F be a holomorphic line bundle on a
compact Kähler manifold X and let h be a singular Hermitian metric on F such
that

√
−1Θh(F ) ≥ 0. Let N1 and N2 be semiample line bundles on X and let s be

a nonzero global section of N2. Assume that N⊗a
1 � N⊗b

2 for some positive integers
a and b. Then the map

×s : Hi(X,KX ⊗ F ⊗ J (h)⊗N1) → Hi(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N2)

induced by ⊗s is injective for every i, where KX is the canonical bundle of X and
J (h) is the multiplier ideal sheaf of h.

Remark 1.5.
(1) Let X be a smooth projective variety and (F, h) be a trivial Hermitian line

bundle. Then we obtain Kollár’s original injectivity theorem (see [Kol1, Theorem
2.2]) from Theorem B.
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(2) For the proof of Theorem B, we may assume that b = 1, that is, N2 � N⊗a
1

by replacing s with sb. We note that the composition

Hi(X,KX ⊗ F ⊗ J (h)⊗N1)
×s−→ Hi(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N2)

×sb−1

−→ Hi(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N⊗b
2 )

is the map ×sb induced by ⊗sb.

Theorem C is a generalization of Kollár’s torsion-free theorem and Theorem D
is a generalization of Kollár’s vanishing theorem (see [Kol1, Theorem 2.1]).

Theorem C (Kollár-type torsion-freeness). Let f : X → Y be a surjective mor-
phism from a compact Kähler manifold X onto a projective variety Y . Let F be a
holomorphic line bundle on X and let h be a singular Hermitian metric on F such
that

√
−1Θh(F ) ≥ 0. Then

Rif∗(KX ⊗ F ⊗ J (h))

is torsion-free for every i, where KX is the canonical bundle of X and J (h) is the
multiplier ideal sheaf of h.

Theorem D (Kollár-type vanishing theorem). Let f : X → Y be a surjective mor-
phism from a compact Kähler manifold X onto a projective variety Y . Let F be a
holomorphic line bundle on X and let h be a singular Hermitian metric on F such
that

√
−1Θh(F ) ≥ 0. Let N be a holomorphic line bundle on X. We assume that

there exist positive integers a and b and an ample line bundle H on Y such that
N⊗a � f∗H⊗b. Then we obtain that

Hi(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)) = 0

for every i > 0 and j, where KX is the canonical bundle of X and J (h) is the
multiplier ideal sheaf of h.

Remark 1.6.
(1) If X is a smooth projective variety and (F, h) is trivial, then Theorem C

is nothing but Kollár’s torsion-free theorem. Furthermore, if N � f∗H, that is,
a = b = 1, then Theorem D is the Kollár vanishing theorem. For the details, see
[Kol1, Theorem 2.1].

(2) There exists a clever proof of Kollár’s torsion-freeness by the theory of vari-
ations of Hodge structure (see [Ar]).

(3) In [MaS6], the second author obtained a natural analytic generalization of
Kollár’s vanishing theorem, which corresponds to the case where h is a smooth
Hermitian metric and contains Ohsawa’s vanishing theorem (see [O2]) as a special
case.

(4) In [F15], the first author proved a vanishing theorem containing both Theo-
rem 1.4 and Theorem D as special cases, which is called the vanishing theorem of
Kollár–Nadel type.

By combining Theorem D with the Castelnuovo–Mumford regularity, we can
easily obtain Corollary 1.7, which is a complete generalization of [Hö, Lemma 3.35
and Remark 3.36]. The proof of [Hö, Lemma 3.35] depends on a generalization of
the Ohsawa–Takegoshi L2 extension theorem. We note that Höring claims the weak
positivity of f∗(KX/Y ⊗ F ) under some extra assumptions by using [Hö, Lemma
3.35]. For the details, see [Hö, 3.H Multiplier ideals].
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Corollary 1.7. Let f : X → Y be a surjective morphism from a compact Kähler
manifold X onto a projective variety Y . Let F be a holomorphic line bundle on X
and let h be a singular Hermitian metric on F such that

√
−1Θh(F ) ≥ 0. Let H

be an ample and globally generated line bundle on Y . Then

Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m

is globally generated for every i ≥ 0 and m ≥ dimY +1, where KX is the canonical
bundle of X and J (h) is the multiplier ideal sheaf of h.

As a direct consequence of Theorem D, we obtain Theorem E. See Definition
1.8 for the definition of GV-sheaves in the sense of Pareschi and Popa and see
[Sc, Theorem 25.5 and Definition 26.3] for the details of GV-sheaves.

Theorem E (GV-sheaves). Let f : X → A be a morphism from a compact Kähler
manifold X to an Abelian variety A. Let F be a holomorphic line bundle on X and
let h be a singular Hermitian metric on F such that

√
−1Θh(F ) ≥ 0. Then

Rif∗(KX ⊗ F ⊗ J (h))

is a GV-sheaf for every i, where KX is the canonical bundle of X and J (h) is the
multiplier ideal sheaf of h.

Definition 1.8 (GV-sheaves in the sense of Pareschi and Popa: [PP]). Let A be
an Abelian variety. A coherent sheaf F on A is said to be a GV-sheaf if

codimPic0(A){L ∈ Pic0(A) |Hi(A,F ⊗ L) 	= 0} ≥ i

for every i.

The final one is a generalization of the generic vanishing theorem (see [GL], [Ha],
[PP]). The formulation of Theorem F is closer to [Ha] and [PP] than to the original
generic vanishing theorem by Green and Lazarsfeld in [GL].

Theorem F (Generic vanishing theorem). Let f : X → A be a morphism from a
compact Kähler manifold X to an Abelian variety A. Let F be a holomorphic line
bundle on X and let h be a singular Hermitian metric on F such that

√
−1Θh(F ) ≥

0. Then

codimPic0(A){L ∈ Pic0(A) |Hi(X,KX ⊗ F ⊗ J (h)⊗ f∗L) 	= 0}
≥ i− (dimX − dim f(X))

for every i ≥ 0, where KX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf of h.

The main results explained above are closely related to each other. The following
proposition, which is also one of the main contributions in this paper, shows several
relations among them. From Proposition 1.9, we see that it is sufficient to prove
Theorem A. The proof of Proposition 1.9 will be given in Section 4.

Proposition 1.9. We have the following relations among the above theorems.

(i) Theorem A implies Theorem B.
(ii) Theorem B is equivalent to Theorem C and Theorem D.
(iii) Theorem D implies Theorem E.
(iv) Theorem C and Theorem E imply Theorem F.
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A key ingredient of Proposition 1.9 is the following theorem, which can be seen
as a Bertini-type theorem on the restriction of multiplier ideal sheaves to general
members of free linear systems. Theorem 1.10 enables us to use the inductive
argument on dimension. We remark that G in Theorem 1.10 is not always an
intersection of countably many Zariski open sets (see Example 3.10). The proof of
Theorem 1.10, which is quite technical, will be given in Section 3

Theorem 1.10 (Density of good divisors: Theorem 3.6). Let X be a compact
complex manifold, let Λ be a free linear system on X with dimΛ ≥ 1, and let ϕ be
a quasi-plurisubharmonic function on X. We put

G := {H ∈ Λ |H is smooth and J (ϕ|H) = J (ϕ)|H}.

Then G is dense in Λ in the classical topology, that is, the Euclidean topology.

Although the above formulation is sufficient for our applications, it is of inde-
pendent interest to find a more precise formulation. The following problem, posed
by Sébastien Boucksom, is reasonable from the viewpoint of Berndtsson’s complex
Prekopa theorem (see [Be]).

Problem 1.11. In Theorem 1.10, is the complement Λ \ G a pluripolar subset of
Λ?

All the results explained above hold even if we replace KX with KX ⊗E, where
E is any Nakano semipositive vector bundle on X. We will explain Theorem 1.12
in Section 6.

Theorem 1.12 (Twists by Nakano semipositive vector bundles). Let E be a Nakano
semipositive vector bundle on a compact Kähler manifold X. Then Theorems A,
B, C, D, E, F, Theorem 1.4, Corollary 1.7, and Proposition 1.9 hold even when
KX is replaced with KX ⊗ E.

In this paper, we assume that all the varieties and manifolds are compact and
connected for simplicity. We summarize the contents of this paper. In Section 2,
we recall some basic definitions and collect several preliminary lemmas. Section 3
is devoted to the proof of Theorem 1.10. Theorem 1.10 plays a crucial role in the
proof of Proposition 1.9. In Section 4, we prove Proposition 1.9 and Corollary 1.7,
and explain how to reduce Theorem 1.4 to Theorem A. By these results, we see
that all we have to do is to establish Theorem A. In Section 5, we give a detailed
proof of Theorem A. In the final section: Section 6, we explain how to modify the
arguments used before for the proof of Theorem 1.12.

After the authors put a preprint version of this paper on arXiv, some further
generalizations of Theorem A have been studied in [MaS5], [CDM], [ZZ], and a
relative version of Theorem 1.10 has been established in [F16]. See [Ta], [F5],
[MaS5], [CDM], [F16] for some injectivity, torsion-free, and vanishing theorems for
noncompact manifolds.

2. Preliminaries

We briefly review the definition of singular Hermitian metrics, (quasi-)plurisub-
harmonic functions, and Nadel’s multiplier ideal sheaves. See [D3] for the details.
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Definition 2.1 (Singular Hermitian metrics and curvatures). Let F be a holomor-
phic line bundle on a complex manifold X. A singular Hermitian metric on F is a
metric h which is given in every trivialization θ : F |Ω � Ω× C by

|ξ|h = |θ(ξ)|e−ϕ on Ω,

where ξ is a section of F on Ω and ϕ ∈ L1
loc(Ω) is an arbitrary function. Here

L1
loc(Ω) is the space of locally integrable functions on Ω. We usually call ϕ the

weight function of the metric with respect to the trivialization θ. The curvature of
a singular Hermitian metric h is defined by

√
−1Θh(F ) := 2

√
−1∂∂ϕ,

where ϕ is a weight function and
√
−1∂∂ϕ is taken in the sense of currents. It is

easy to see that the right-hand side does not depend on the choice of trivializations.

The notion of multiplier ideal sheaves introduced by Nadel plays an important
role in the recent developments of complex geometry and algebraic geometry.

Definition 2.2 ((Quasi-)plurisubharmonic functions and multiplier ideal sheaves).
A function u : Ω → [−∞,∞) defined on an open set Ω ⊂ Cn is said to be plurisub-
harmonic if

• u is upper semicontinuous, and
• for every complex line L ⊂ Cn, the restriction u|Ω∩L to L is subharmonic
on Ω ∩ L, that is, for every a ∈ Ω and ξ ∈ Cn satisfying |ξ| < d(a,Ωc), the
function u satisfies the mean inequality

u(a) ≤ 1

2π

∫ 2π

0

u(a+ eiθξ) dθ.

Let X be a complex manifold. A function ϕ : X → [−∞,∞) is said to be
plurisubharmonic on X if there exists an open cover {Ui}i∈I of X such that ϕ|Ui

is
plurisubharmonic on Ui (⊂ Cn) for every i. We can easily see that this definition
is independent of the choice of open covers. A quasi-plurisubharmonic function is a
function ϕ which is locally equal to the sum of a plurisubharmonic function and of a
smooth function. If ϕ is a quasi-plurisubharmonic function on a complex manifold
X, then the multiplier ideal sheaf J (ϕ) ⊂ OX is defined by

Γ(U,J (ϕ)) := {f ∈ OX(U) | |f |2e−2ϕ ∈ L1
loc(U)}

for every open set U ⊂ X. Then it is known that J (ϕ) is a coherent ideal sheaf (see,
for example, [D3, (5.7) Lemma]). Let S be a complex submanifold of X. Then the
restriction J (ϕ)|S of the multiplier ideal sheaf J (ϕ) to S is defined by the image
of J (ϕ) under the natural surjective morphism OX → OS , that is,

J (ϕ)|S = J (ϕ)/J (ϕ) ∩ IS ,

where IS is the defining ideal sheaf of S on X. We note that the restriction J (ϕ)|S
does not always coincide with J (ϕ)⊗OS = J (ϕ)/J (ϕ) · IS .

We have already used J (h) in theorems in Section 1.

Definition 2.3. Let F be a holomorphic line bundle on a complex manifold X and
let h be a singular Hermitian metric on F . We assume

√
−1Θh(F ) ≥ γ for some

smooth (1, 1)-form γ on X. We fix a smooth Hermitian metric h∞ on F . Then

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



INJECTIVITY THEOREM FOR PSEUDO-EFFECTIVE LINE BUNDLES 857

we can write h = h∞e−2ψ for some ψ ∈ L1
loc(X). Then ψ coincides with a quasi-

plurisubharmonic function ϕ on X almost everywhere. We define the multiplier
ideal sheaf J (h) of h by J (h) := J (ϕ).

We close this section with the following lemmas, which will be used in the proof
of Theorem A in Section 5.

Lemma 2.4 ([O1, Proposition 1.1]). Let ω and ω̃ be positive (1, 1)-forms on an n-
dimensional complex manifold with ω̃ ≥ ω. If u is an (n, q)-form, then |u|2ω̃ dVω̃ ≤
|u|2ω dVω. Furthermore, if u is an (n, 0)-form, then |u|2ω̃ dVω̃ = |u|2ω dVω. Here
|u|ω (resp. |u|ω̃) is the pointwise norm of u with respect to ω (resp. ω̃) and dVω

(resp. dVω̃) is the volume form defined by dVω := ωn/n! (resp. dVω̃ := ω̃n/n!).

Proof. This lemma follows from simple computations. Thus, we omit the proof. �

Lemma 2.5. Let ϕ : H1 → H2 be a bounded operator (continuous linear map)
between Hilbert spaces H1,H2. If {wk}∞k=1 weakly converges to w in H1, then
{ϕ(wk)}∞k=1 weakly converges to ϕ(w).

Proof. By taking the adjoint operator ϕ∗, for every v ∈ H2, we have

〈〈ϕ(wk), v〉〉H2
= 〈〈wk, ϕ

∗(v)〉〉H1
→ 〈〈w,ϕ∗(v)〉〉H1

= 〈〈ϕ(w), v〉〉H2
.

This completes the proof. �

Lemma 2.6. Let L be a closed subspace in a Hilbert space H. Then L is closed
with respect to the weak topology of H, that is, if a sequence {wk}∞k=1 in L weakly
converges to w, then the weak limit w belongs to L.

Proof. By the orthogonal decomposition, there exists a closed subspace M such
that L = M⊥. Then it follows that w ∈ M⊥ = L since 0 = 〈〈wk, v〉〉H → 〈〈w, v〉〉H
for any v ∈ M . �

3. Restriction lemma

This section is devoted to the proof of Theorem 1.10 (see Theorem 3.6), which will
play a crucial role in the proof of Proposition 1.9. The following lemma is a direct
consequence of the Ohsawa–Takegoshi L2 extension theorem (see [OT, Theorem]).

Lemma 3.1. Let X be a complex manifold and let ϕ be a quasi-plurisubharmonic
function on X. We consider a filtration

Fk ⊂ Fk−1 ⊂ · · · ⊂ F1 ⊂ F0 := X,

where Fi is a smooth hypersurface of Fi−1 for every i. Then we obtain that

J (ϕ|Fk
) ⊂ J (ϕ|Fk−1

)|Fk
⊂ · · · ⊂ J (ϕ|F1

)|Fk
⊂ J (ϕ)|Fk

.

Proof. This immediately follows from the Ohsawa–Takegoshi L2 extension theorem.
�

The following lemma is a key ingredient of the proof of Theorem 1.10 (see The-
orem 3.6).
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Lemma 3.2. Let X and ϕ be as in Theorem 1.10. Let Hi be a Cartier divisor on
X for 1 ≤ i ≤ k. We assume the following condition:

♠ The divisor
∑k

i=1 Hi is a simple normal crossing divisor on X. Moreover,
for every 1 ≤ i1 < i2 < · · · < il ≤ k and any P ∈ Hi1 ∩Hi2 ∩ · · · ∩Hil , the
set {fi1 , fi2 , · · · , fil} is a regular sequence for OX,P /J (ϕ)P , where fi is a
(local) defining equation of Hi for every i.

Furthermore, we assume that J (ϕ|Fk
) = J (ϕ)|Fk

holds, where Fi := H1 ∩ H2 ∩
· · · ∩Hi for 1 ≤ i ≤ k. Then for every j, the equality J (ϕ|Fj

) = J (ϕ)|Fj
holds on

a neighborhood of Fk in Fj.

Before we prove Lemma 3.2, we make some remarks to help the reader under-
stand condition ♠.

Remark 3.3.
(1) Let (A,m) be a local ring and let M be a finitely generated (nonzero) A-

module. Let {x1, . . . , xr} be a sequence of elements of m. We put M0 = M and
Mi = M/x1M + · · ·+ xiM . Then {x1, . . . , xr} is said to be a regular sequence for
M if ×xi+1 : Mi → Mi is injective for every 0 ≤ i ≤ r − 1.

(2) Condition ♠ in Lemma 3.2 does not depend on the order of {H1, H2, · · · , Hk}
(see, for example, [MaH, Theorem 16.3] and [AK, Chapter III, Corollary (3.5)]).

(3) Let F be a coherent analytic sheaf on a compact complex manifold X. Then
there exists a finite family {Yi}i∈I of irreducible analytic subsets of X such that

AssOX,x
(Fx) = {px,1, . . . , px,r(x)},

where px,1, . . . , px,r(x) are prime ideals of OX,x associated to the irreducible com-
ponents of the germs x ∈ Yi (see, for example [Man, (I.6) Lemma]). Note that Yi

is called an analytic subset associated with F . In this paper, we simply say that
Yi is an associated prime of F if there is no risk of confusion. Then condition ♠ is
equivalent to the following condition:

• The divisor
∑k

i=1 Hi is a simple normal crossing divisor on X. Moreover,
for every 1 ≤ i1 < i2 < · · · < il−1 < il ≤ k, the divisor Hil contains no
associated primes of OX/J (ϕ) and OHi1

∩···∩Hil−1
/J (ϕ)|Hi1

∩···∩Hil−1
.

(4) (3.1) below may be helpful to understand condition ♠. We put Hi1···im :=
Hi1 ∩ · · · ∩ Him for every 1 ≤ i1 < · · · < im ≤ k. Then we can inductively check
that

0 → J (ϕ)|Hi1···il−1
⊗OHi1···il−1

(−Hil) → J (ϕ)|Hi1···il−1
→ J (ϕ)|Hi1···il

→ 0

is exact and that

0 →
(
OHi1···il−1

/J (ϕ)|Hi1···il−1

)
⊗OHi1···il−1

(−Hil)

→ OHi1···il−1
/J (ϕ)|Hi1···il−1

→ OHi1···il
/J (ϕ)|Hi1···il

→ 0
(3.1)

is also exact (see (3.3) and (3.4) in the proof of Lemma 3.2).
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Proof of Lemma 3.2. By condition♠, the morphism γ in the following commutative
diagram is injective.

(3.2) 0

��

0

��
0 �� J (ϕ)⊗OX(−H1)

��

α �� J (ϕ)

��

�� Cokerα ��

β

��

0

0 �� OX(−H1)

��

�� OX

��

�� OH1
�� 0

(OX/J (ϕ))⊗OX(−H1)
γ ��

��

OX/J (ϕ)

��
0 0.

Therefore β is also injective. This implies that Cokerα = J (ϕ)|H1
by definition.

Thus, we obtain the following short exact sequence:

0 → J (ϕ)⊗OX(−H1) → J (ϕ) → J (ϕ)|H1
→ 0.

We also obtain the following short exact sequence:

0 → (OX/J (ϕ))⊗OX(−H1)
γ→ OX/J (ϕ) → OH1

/J (ϕ)|H1
→ 0

by the above big commutative diagram. Similarly, by condition ♠, we can induc-
tively check that

(3.3) 0 → J (ϕ)|Fi
⊗OFi

(−Hi+1) → J (ϕ)|Fi
→ J (ϕ)|Fi+1

→ 0

and

(3.4) 0 → (OFi
/J (ϕ)|Fi

)⊗OFi
(−Hi+1) → OFi

/J (ϕ)|Fi
→ OFi+1

/J (ϕ)|Fi+1
→ 0

are exact for every 1 ≤ i ≤ k − 1. For 0 ≤ i ≤ k − 1, we consider the following
commutative diagram:

0

��

0

��
0 �� J (ϕ|Fi

)⊗OFi
(−Hi+1)

ai

��

�� J (ϕ)|Fi
⊗OFi

(−Hi+1)

��

�� Coker bi ⊗OFi
(−Hi+1) ��

di

��

0

0 �� J (ϕ|Fi
)

��

bi �� J (ϕ)|Fi

��

�� Coker bi �� 0

Coker ai
ci ��

��

J (ϕ)|Fi+1

��
0 0.

The assumption J (ϕ|Fk
) = J (ϕ)|Fk

implies that J (ϕ|Fk−1
)|Fk

= J (ϕ)|Fk
holds

by J (ϕ|Fk
) ⊂ J (ϕ|Fk−1

)|Fk
⊂ · · · ⊂ J (ϕ)|Fk

in Lemma 3.1. If J (ϕ|Fi
)|Fi+1

=
J (ϕ)|Fi+1

on a neighborhood of Fk in Fi+1, then ci is surjective on a neighborhood
of Fk in Fi+1 by the definition of J (ϕ|Fi

)|Fi+1
. Then di is also surjective on a
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neighborhood of Fk in Fi by the above big commutative diagram. By Nakayama’s
lemma, Coker bi is zero on a neighborhood of Fk in Fi. This implies that J (ϕ|Fi

) =
J (ϕ)|Fi

on a neighborhood of Fk in Fi. Thus, we obtain that J (ϕ|Fi−1
)|Fi

=
J (ϕ)|Fi

on a neighborhood of Fk in Fi since we have J (ϕ|Fi
) ⊂ J (ϕ|Fi−1

)|Fi
⊂

J (ϕ)|Fi
by Lemma 3.1. By repeating this argument, we see that J (ϕ|Fj

) = J (ϕ)|Fj

on a neighborhood of Fk in Fj for every j. This is the desired property. �

Lemma 3.4. Assume that {H1, · · · , Hm} satisfies condition ♠ in Lemma 3.2. Let

Hm+1 be a smooth Cartier divisor on X such that
∑m+1

i=1 Hi is a simple normal
crossing divisor on X and that Hm+1 contains no associated primes of

OX/J (ϕ) and OHi1
∩···∩Hil

/J (ϕ)|Hi1
∩···∩Hil

for every 1 ≤ i1 < · · · < il ≤ m. Then {H1, · · · , Hm, Hm+1} also satisfies condition
♠.

Proof. This is obvious from Remark 3.3 (3). �

Lemma 3.5. Let Λ0 be a sublinear system of a free linear system Λ on X with
dimΛ0 ≥ 1. Assume that {H1, · · · , Hm} satisfies condition ♠ in Lemma 3.2. We
put

F0 := {D ∈ Λ0 | {H1, · · · , Hm, D} satisfies ♠}.
Then F0 is Zariski open in Λ0. In particular, if F0 is not empty, then it is a dense
Zariski open set of Λ0.

Moreover, we assume that there exists D0 ∈ F0 such that J (ϕ|V ) = J (ϕ)|V ,
where V is an irreducible component of H1 ∩ · · · ∩Hm ∩D0. Let D be a member of
F0 such that V is an irreducible component of H1 ∩ · · · ∩Hm ∩D. Then J (ϕ|D) =
J (ϕ)|D holds on a neighborhood of V in D.

Proof. We put

F := {D ∈ Λ | {H1, · · · , Hm, D} satisfies ♠}.

Then, by Remark 3.3 (3) and Lemma 3.4, it is easy to see that F is a dense Zariski
open set in Λ since Λ is a free linear system on X. Therefore F0 = F ∩Λ0 is Zariski
open in Λ0. By Lemma 3.2, the equality J (ϕ|D) = J (ϕ)|D holds on a neighborhood
of V in D if D ∈ F0 and V is an irreducible component of H1 ∩ · · · ∩ Hm ∩ D.
We note that we do not need the compactness of X in the proof of Lemma 3.2.
Therefore, we can shrink X and assume that V = H1 ∩ · · · ∩Hm ∩D in the above
argument. �

The following theorem (see Theorem 1.10) is one of the key results of this paper.

Theorem 3.6 (Density of good divisors: Theorem 1.10). Let X be a compact
complex manifold, let Λ be a free linear system on X with dimΛ ≥ 1, and let ϕ be
a quasi-plurisubharmonic function on X. We put

G := {H ∈ Λ |H is smooth and J (ϕ|H) = J (ϕ)|H}.

Then G is dense in Λ in the classical topology.

Proof. We may assume that ϕ 	≡ −∞. Throughout this proof, we put f := ΦΛ :
X → Y := f(X) ⊂ PN . Note that N = dimΛ. We divide the proof into four steps.
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Step 0 (Idea of the proof). In this step, we will explain an idea of the proof.
A general member H of Λ is smooth by Bertini’s theorem, and it always satisfies

that J (ϕ|H) ⊂ J (ϕ)|H by Lemma 3.1. Hence, the problem is to check that the
opposite inclusion holds for any member of a dense subset in Λ.

If dimΛ = 1, that is, Λ is a pencil, then a member H of Λ is a fiber of the
morphism f = ΦΛ : X → P1 at a point P ∈ P1. By Fubini’s theorem, we have
J (ϕ|f−1(P )) ⊃ J (ϕ)|f−1(P ) for almost all P ∈ P1. This is the desired statement
when dimΛ = 1. In general, we have H1 ∩ H2 	= ∅ for two general members H1

and H2 of Λ. For this reason, we choose H1 and H2 suitably (see Step 2 and Step
3), take the blow-up Z → X along H1 ∩H2, and reduce the problem to the pencil
case (see Step 4).

Step 1. In this step, we will prove the theorem when dimY = 1.
Let ψ0, . . . , ψN be a basis of H0(PN ,OPN (1)). We put

Y = {(y, [a0 : · · · : aN ]) ∈ Y × PN | a0ψ0(y) + · · ·+ aNψN (y) = 0} ⊂ Y × PN

and consider the following commutative diagram:

X

˜f

��

� � �� X × PN

��

�� X

f

��
Y � � ��

π
���

��
��

��
��

Y × PN

p2

��

�� Y

PN ,

where X ↪→ X ×PN → X is the base change of Y ↪→ Y ×PN → Y by f : X → Y ,
p2 is the second projection, and π = p2|Y . We can easily see that there exists a

nonempty Zariski open set U of PN such that π and f̃ are étale and smooth over U ,
respectively. We note that Λ = f∗|OPN (1)| by construction. Let H be a member of
Λ corresponding to a point of U . Then H is smooth and J (ϕ|H) ⊂ J (ϕ)|H holds by

Lemma 3.1. On the other hand, by applying Fubini’s theorem to (π◦ f̃)−1(U) → U ,
the opposite inclusion J (ϕ)|H ⊂ J (ϕ|H) holds for almost all H ∈ Λ. This means
that G is dense in Λ in the classical topology.

Step 2. In this step, we will prove the following preparatory lemma.

Lemma 3.7. Let D1 and D2 be two members of Λ such that {D1, D2} satisfies
condition ♠ in Lemma 3.2. Let P0 be the pencil spanned by D1 and D2. Then,
for almost all D ∈ P0, the member D is smooth, {D} satisfies condition ♠, and
J (ϕ|D) = J (ϕ)|D holds outside D1 ∩D2.

Proof of Lemma 3.7. Let Ai be a hyperplane in PN such that Di = f∗Ai, and
pr: PN ��� P1 be the linear projection from the subspace A1∩A2

∼= PN−2. Then the
meromorphic map X ��� P1 associated with P0 is the composition of f : X → PN

and pr: PN ��� P1. Since the blow-up of PN along A1 ∩A2 gives an elimination of
the indeterminacy locus of pr : PN ��� P1, the blow-up p : Z → X along D1 ∩ D2
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satisfies the following commutative diagram:

Z
p ��

q ���
��

��
��

X

���
�
�

f=ΦΛ �� PN

pr���
�
�
�

P1.

By applying Fubini’s theorem to q : Z → P1, we obtain that J (p∗ϕ|q−1(Q)) =

J (p∗ϕ)|q−1(Q) for almost allQ ∈ P1. Lemma 3.5 implies that {D} satisfies condition
♠ for almost all D ∈ P0. The desired properties follow since p is an isomorphism
outside D1 ∩D2. �

Step 3. In this step, we will find a smooth member H of Λ such that J (ϕ|H) =
J (ϕ)|H and that {H} satisfies condition ♠.

From now on, we assume that dimΛ ≥ 2 and that the statement of Theorem
3.6 holds for lower dimensional free linear systems. We put l := dimY . By Step
1, we have a smooth member H of Λ with the desired properties when l = 1.
Therefore, we may assume that l ≥ 2. We take two general hyperplanes B1 and
B2 of PN . We put D1 := f∗B1 and D2 := f∗B2. By Lemma 3.7, we can take
a hyperplane A1 of PN such that X1 := f∗A1 is smooth, {X1} satisfies condition
♠, and J (ϕ|X1

) = J (ϕ)|X1
outside D1 ∩ D2. Let Λ|X1

be the linear system on
X1 defined by f1 : X1 = X ∩ f−1(A1) → Y ∩ A1 ⊂ A1

∼= PN−1, that is, the set
of pull-backs of the hyperplanes in A1

∼= PN−1 by f1. By construction, we have
dimΛ|X1

= dimΛ− 1. Thus, we see that

{H ∈ Λ |X1 ∩H is smooth and J (ϕ|X1∩H) = J (ϕ|X1
)|X1∩H}

is dense in Λ in the classical topology by the induction hypothesis. Then we can
take general hyperplanes A2, A3, · · · , Al of P

N such that dim(A1∩· · ·∩Al∩Y ) = 0
and that f−1(Q) is smooth and

(3.5) J (ϕ|f−1(Q)) = J (ϕ|X1
)|f−1(Q)

for every Q ∈ A1 ∩ · · · ∩ Al ∩ Y by using the induction hypothesis repeatedly.
Without loss of generality, we may assume that f−1(Q) ∩ D1 ∩ D2 = ∅ for every
Q ∈ A1 ∩ · · · ∩ Al ∩ Y . Since

J (ϕ|X1
) = J (ϕ)|X1

holds outside D1 ∩D2,

(3.6) J (ϕ|X1
)|f−1(Q) = J (ϕ)|f−1(Q)

holds for every Q ∈ A1 ∩ · · · ∩ Al ∩ Y . Therefore, we have

J (ϕ|f−1(Q)) = J (ϕ|X1
)|f−1(Q) = J (ϕ)|f−1(Q)

for every Q ∈ A1 ∩ · · · ∩ Al ∩ Y by (3.5) and (3.6). We may assume that {X1 =
f∗A1, f

∗A2, · · · , f∗Al} satisfies condition ♠. We take one point P of A1∩· · ·∩Al∩Y
and fix A2, · · · , Al. By applying Lemma 3.5 to the linear system

Λ0 := {D ∈ Λ | f−1(P ) ⊂ D},

we see that

F0 := {D ∈ Λ0 | {D, f∗A2, · · · , f∗Al} satisfies ♠}
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is Zariski open in Λ0. Note that F0 is nonempty by X1 = f∗A1 ∈ F0. By the latter
conclusion of Lemma 3.5, we have:

Lemma 3.8. Let Ag be a general hyperplane of PN passing through P . We put
Xg := f∗Ag. Then J (ϕ|Xg

) = J (ϕ)|Xg
holds on a neighborhood of f−1(P ) in Xg.

Let π : X ′ → X be the blow-up along f−1(P ) and let BlP (P
N ) → PN be the blow-

up of PN at P . The induced morphism α : X ′ → BlP (P
N ) and the linear projection

γ : PN ��� PN−1 from P ∈ PN satisfy the following commutative diagram.

X ′ π ��

α

��

X

f

��
Y � �

��
BlP (P

N )

β

��

�� PN

γ���
�
�
�
�

PN−1.

We put f ′ := β ◦ α and Y ′ := f ′(X ′). By applying the induction hypothesis to
f ′ : X ′ → Y ′ ⊂ PN−1, we can take a general hyperplane A of PN−1 such that f ′∗A
is smooth and that

(3.7) J (π∗ϕ|f ′−1(A)) = J (π∗ϕ)|f ′−1(A).

Let A0 be the hyperplane of PN spanned by P and A. Then we can see that

(3.8) {f∗A2, · · · , f∗Al, H := f∗A0}
satisfies condition ♠ since A is a general hyperplane of PN−1. We see that J (ϕ|H) =
J (ϕ)|H by (3.7) and Lemma 3.8, and that {H} satisfies condition ♠ by (3.8).
Therefore this H has the desired properties.

Step 4. In this final step, we will prove that G is dense in Λ in the classical topology.
We will use the induction on dimX. If dimX = 1, then dimY = 1. Therefore,

by Step 1, we see that G is dense in Λ in the classical topology. Therefore, we
assume that dimX ≥ 2. If dimY = 1, then G is dense by Step 1. Thus, we may
assume that dimΛ ≥ dimY ≥ 2. By Step 3, we can take a smooth member H0 of
Λ such that J (ϕ|H0

) = J (ϕ)|H0
and that {H0} satisfies condition ♠. By applying

the induction hypothesis to Λ|H0
, we see that

G′ := {H ′ ∈ Λ |H0 ∩H ′ is smooth and J (ϕ|H0∩H′) = J (ϕ|H0
)|H0∩H′}

is dense in Λ in the classical topology. Since Λ is a free linear system, we know that

{H ′ ∈ Λ | {H0, H
′} satisfies ♠}

is a nonempty Zariski open set in Λ. Therefore,

G′′ := {H ′ ∈ G′ | {H0, H
′} satisfies ♠}

is also dense in Λ in the classical topology. We note that

J (ϕ|H0∩H′) = J (ϕ|H0
)|H0∩H′ = J (ϕ)|H0∩H′
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for every H ′ ∈ G′ since J (ϕ|H0
) = J (ϕ)|H0

. Therefore, we obtain that

(3.9) J (ϕ|H0∩H′) = J (ϕ|H′)|H0∩H′ = J (ϕ)|H0∩H′

for every H ′ ∈ G′′. By the latter conclusion of Lemma 3.5, (3.9) indicates that
J (ϕ|H′) = J (ϕ)|H′ on a neighborhood of H0 ∩ H ′ in H ′ for every H ′ ∈ G′′. We
consider the pencil PH′ spanned by H0 and H ′ ∈ G′′, that is, the sublinear system
of Λ spanned by H0 and H ′. Let D be a general member of PH′ . Then, by Lemma
3.5, {H0, D} satisfies ♠ and J (ϕ|D) = J (ϕ)|D holds on a neighborhood of H0∩H ′

in D. Hence, by Lemma 3.7, we say that almost all members of PH′ are contained
in G. By this observation, we obtain that G is dense in Λ in the classical topology.

Thus, we obtain the desired statement. �

The following examples show that G in Theorem 1.10 (Theorem 3.6) is not always
Zariski open in Λ, or even an intersection of countably many nonempty Zariski open
sets of Λ

Example 3.9. We put

ψ(z) :=

∞∑
k=1

2−k log

∣∣∣∣z − 1

k

∣∣∣∣
for z ∈ C. Then it is easy to see that ψ(z) is smooth for |z| ≥ 2. By using a suitable
partition of unity, we can construct a function ϕ(z) on P1 such that ϕ(z) = ψ(z)
for |z| ≤ 3 and that ϕ(z) is smooth for |z| ≥ 2 on P1. We can see that ϕ is a
quasi-plurisubharmonic function on P1. Since the Lelong number ν(ϕ, 1/n) of ϕ at
1/n is 2−n for every positive integer n, we see that J (ϕ) = OP1 by Skoda’s theorem
(see, for example, [D3, (5.6) Lemma]). Therefore J (ϕ)|P = OP for every P ∈ P1.
On the other hand, we have ϕ(1/n) = −∞ for every positive integer n. If P = 1/n
for some positive integer n, then J (ϕ|P ) = 0. Thus

G := {H ∈ |OP1(1)| | J (ϕ|H) = J (ϕ)|H}
is not a Zariski open set of |OP1(1)| (� P1).

Example 3.10. We put K := {z ∈ C | |z| ≤ 1}. Let {wn}∞n=1 be a countable dense
subset of K and let {an}∞n=1 be positive real numbers such that

∑∞
n=1 an < ∞. We

put

ψ(z) :=

∞∑
n=1

an log |z − wn|

for z ∈ C. Then we see that

• ψ is subharmonic on C and ψ 	≡ −∞,
• ψ = −∞ on an uncountable dense subset of K, and
• ψ is discontinuous almost everywhere on K.

For the details, see [Ra, Theorem 2.5.4]. By using a suitable partition of unity, we
can construct a function ϕ(z) on P1 such that ϕ(z) = ψ(z) for |z| ≤ 3 and that ϕ(z)
is smooth for |z| ≥ 2 on P1. Then we can see that ϕ is a quasi-plurisubharmonic
function on P1. In this case,

G := {H ∈ |OP1(1)| | J (ϕ|H) = J (ϕ)|H}
cannot be written as an intersection of countably many nonempty Zariski open sets
of |OP1(1)|.
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As a direct consequence of Theorem 3.6, we have:

Corollary 3.11 (Generic restriction theorem). Let X be a compact complex man-
ifold and let ϕ be a quasi-plurisubharmonic function on X. Let Λ be a free linear
system on X with dimΛ ≥ 1. We put

H := {H ∈ G |H contains no associated primes of OX/J (ϕ)},
where

G := {H ∈ Λ |H is smooth and J (ϕ|H) = J (ϕ)|H}
as in Theorem 3.6. Then H is dense in Λ in the classical topology. Moreover, the
following short sequence

(3.10) 0 → J (ϕ)⊗OX(−H) → J (ϕ) → J (ϕ|H) → 0

is exact for any member H of H.

Proof. It is easy to see that

{H ∈ Λ |H contains no associated primes of OX/J (ϕ)}
is a nonempty Zariski open set of Λ since Λ is a free linear system on X. Therefore
H is dense in Λ in the classical topology by Theorem 3.6 (see Theorem 1.10).

Let H be a member of H. Then we obtain the following commutative diagram
(see also (3.2)):

0 �� J (ϕ)⊗OX(−H)� �

��

α �� J (ϕ)� �

��

�� Cokerα� �

��

�� 0

0 �� OX(−H) �� OX
�� OH

�� 0

As in the proof of Lemma 3.2, we obtain Cokerα = J (ϕ)|H . Since H ∈ H ⊂ G,
we have J (ϕ)|H = J (ϕ|H). Therefore, we obtain the desired short exact sequence
(3.10). �

We will use Corollary 3.11 in Step 3 in the proof of Proposition 1.9 (see Section
4). We close this section with a remark on the multiplier ideal sheaves associated
with effective Q-divisors on smooth projective varieties.

Remark 3.12 (Multiplier ideal sheaves for effective Q-divisors). Let X be a smooth
projective variety and let D be an effective Q-divisor on X. Let S be a smooth
hypersurface in X. We assume that S is not contained in any component of D.
Then we obtain the following short exact sequence:

(3.11) 0 → J (X,D)⊗OX(−S) → AdjS(X,D) → J (S,D|S) → 0,

where J (X,D) (resp. J (S,D|S)) is the multiplier ideal sheaf associated with D
(resp. D|S). Note that AdjS(X,D) is the adjoint ideal of D along S (see, for
example, [L3, Theorem 3.3]). If S is in general position with respect to D, then
we can easily see that AdjS(X,D) coincides with J (X,D). Let H be a general
member of a free linear system Λ with dimΛ ≥ 1. Then we can easily see that

(3.12) J (H,D|H) = J (X,D)|H
holds by the definition of the multiplier ideal sheaves for effective Q-divisors (see,
for example, [L2, Example 9.5.9]).
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By this observation, if X is a smooth projective variety and ϕ is a quasi-
plurisubharmonic function associated with an effective Q-divisor D on X, then
G in Theorem 3.6 (see Theorem 1.10) and H in Corollary 3.11 are dense Zariski
open in Λ by (3.12). Moreover, we can easily check that (3.10) in Corollary 3.11
holds for general members H of Λ by (3.11).

4. Proof of Proposition 1.9

In this section, we prove Proposition 1.9 and explain how to reduce Corollary
1.7 and Theorem 1.4 to Theorem D and Theorem A, respectively.

Proof of Proposition 1.9. Our proof of Proposition 1.9 consists of the following six
steps:

Step 1 (Theorem A =⇒ Theorem B). Since N1 is semiample, we can take a smooth

Hermitian metric h1 on N1 such that
√
−1Θh1

(N1) ≥ 0. We put h2 := h
b/a
1 . Then

√
−1(Θhh1

(F ⊗N1)− tΘh2
(N2)) ≥ 0

for 0 < t � 1. It follows that J (hh1) = J (h) since h1 is smooth. Therefore, by
Theorem A, we obtain the injectivity in Theorem B.

Step 2 (Theorem B =⇒ Theorem C). We assume that Rif∗(KX ⊗ F ⊗ J (h))
has a torsion subsheaf. Then we can find a very ample line bundle H on Y and
0 	= t ∈ H0(Y,H) such that

α : Rif∗(KX ⊗ F ⊗ J (h)) → Rif∗(KX ⊗ F ⊗ J (h))⊗H

induced by ⊗t is not injective. We take a sufficiently large positive integer m such
that Kerα ⊗ H⊗m is generated by global sections. Then we have H0(Y,Kerα ⊗
H⊗m) 	= 0. Without loss of generality, by making m sufficiently large, we may
further assume that

(4.1) Hp(Y,Rqf∗(KX ⊗ F ⊗ J (h))⊗H⊗m) = 0

and

(4.2) Hp(Y,Rqf∗(KX ⊗ F ⊗ J (h))⊗H⊗m+1) = 0

for every p > 0 and q by the Serre vanishing theorem. By construction,

H0(Y,Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m) → H0(Y,Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m+1)

(4.3)

induced by α is not injective. Thus, by (4.1), (4.2), and (4.3), we see that

Hi(X,KX ⊗ F ⊗ J (h)⊗ f∗H⊗m) → Hi(X,KX ⊗ F ⊗ J (h)⊗ f∗H⊗m+1)

induced by⊗f∗t is not injective. This contradicts Theorem B. ThereforeRif∗(KX⊗
F ⊗ J (h)) is torsion-free.

Step 3 (Theorem B =⇒ Theorem D). We use the induction on dimY . If dimY = 0,
then the statement is obvious. We take a sufficiently large positive integer m and a
general divisor B ∈ |H⊗m| such thatD := f−1(B) is smooth, contains no associated
primes of OX/J (h), and satisfies J (h|D) = J (h)|D by Theorem 3.6 (see Theorem
1.10) and Corollary 3.11. By the Serre vanishing theorem, we may further assume
that

(4.4) Hi(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m) = 0
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for every i > 0 and j. By Corollary 3.11 and adjunction, we have the following
short exact sequence:

0 → KX ⊗ F ⊗ J (h)⊗N → KX ⊗ F ⊗ J (h)⊗N ⊗ f∗H⊗m

→ KD ⊗ F |D ⊗ J (h|D)⊗N |D → 0.
(4.5)

SinceB is a general member of |H⊗m|, we may assume thatB contains no associated
primes of Rjf∗(KX ⊗ F ⊗ J (h)⊗N) for every j. Hence, by (4.5), we can obtain

0 → Rjf∗(KX ⊗ F ⊗ J (h)⊗N) → Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m

→ Rjf∗(KD ⊗ F |D ⊗ J (h|D)⊗N |D) → 0

for every j. By using the long exact sequence and the induction on dimY , we
obtain

Hi(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)) = Hi(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m)

for every i ≥ 2 and j. Thus we have

(4.6) Hi(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)) = 0

for every i ≥ 2 and j by (4.4). By Leray’s spectral sequence, (4.4), and (4.6), we
have the following commutative diagram:

H1(Y,Sj)

α

��

� � �� Hj+1(X,KX ⊗ F ⊗ J (h)⊗N)� �

β

��
H1(Y,Sj ⊗H⊗m) �

� �� Hj+1(X,KX ⊗ F ⊗ J (h)⊗N ⊗ f∗H⊗m)

for every j, where Sj stands for Rjf∗(KX ⊗F ⊗J (h)⊗N). Since β is injective by
Theorem B, we obtain that α is also injective. By (4.4), we have

H1(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m) = 0

for every j. Therefore, we have H1(Y,Rjf∗(KX ⊗F ⊗J (h)⊗N)) = 0 for every j.
Thus, we obtain the desired vanishing theorem in Theorem D.

Step 4 (Theorems C and D =⇒ Theorem B). By replacing s and N2 with s⊗m and
N⊗m

2 for some positive integer m (see also Remark 1.5), we may assume that N2

is globally generated. We consider

f := Φ|N2| : X → Y.

Then N2 � f∗H for some ample line bundle H on Y and s = f∗t for some t ∈
H0(Y,H). We take a smooth Hermitian metric h1 on N1 such that

√
−1Θh1

(N1) ≥
0. Then

√
−1Θhh1

(F ⊗ N1) ≥ 0 and J (hh1) = J (h). By Theorem C, we obtain
that

Rif∗(KX ⊗ F ⊗ J (h)⊗N1)

is torsion-free for every i. Therefore, the map

Rif∗(KX ⊗ F ⊗ J (h)⊗N1) → Rif∗(KX ⊗ F ⊗ J (h)⊗N1)⊗H

induced by ⊗t is injective for every i. By N2 � f∗H, we see that

H0(Y,Rif∗(KX ⊗ F ⊗ J (h)⊗N1)) → H0(Y,Rif∗(KX ⊗ F ⊗ J (h)⊗N1 ⊗N2))

(4.7)
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induced by ⊗t is injective for every i. By Theorem D, (4.7) implies that

Hi(X,KX ⊗ F ⊗ J (h)⊗N1) → Hi(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N2)

induced by ⊗s is injective for every i.

Step 5 (Theorem D =⇒ Theorem E). The following lemma implies that Rjf∗(KX⊗
F ⊗ J (h)) is a GV-sheaf by [Sc, Theorem 25.5] (see also [Ha] and [PP]). For sim-
plicity, we put Fj := Rjf∗(KX ⊗ F ⊗ J (h)) for every j.

Lemma 4.1. For every finite étale morphism p : B → A of Abelian varieties and
every ample line bundle H on B, we have

(4.8) Hi(B,H ⊗ p∗Fj) = 0

for every i > 0 and j.

Proof of Lemma 4.1. We put Z := B ×A X. Then we have the following commu-
tative diagram:

(4.9) Z
q ��

g

��

X

f

��
B p

�� A

By construction, q is also finite and étale. Therefore, we have q∗KX = KZ and
q∗J (h) = J (q∗h). By the flat base change theorem,

p∗Rjf∗(KX ⊗ F ⊗ J (h)) � Rjg∗(KZ ⊗ q∗F ⊗ J (q∗h)).

By Theorem D, we obtain the desired vanishing (4.8). �
Step 6 (Theorems C and E =⇒ Theorem F). By Theorem C, we have Fj :=
Rjf∗(KX ⊗ F ⊗ J (h)) = 0 for j > dimX − dim f(X). We consider the following
spectral sequence:

Epq
2 = Hp(A,Fq ⊗ L) ⇒ Hp+q(X,KX ⊗ F ⊗ J (h)⊗ f∗L)

for every L ∈ Pic0(A). Note that Fj is a GV-sheaf for every j and that Fj = 0 for
j > dimX − dim f(X). Then we obtain

codimPic0(A){L ∈ Pic0(A) |Hi(X,KX ⊗ F ⊗ J (h)⊗ f∗L) 	= 0}
≥ i− (dimX − dim f(X))

for every i ≥ 0.

We completed the proof of Proposition 1.9. �
We prove Corollary 1.7 as an application of Theorem D.

Proof of Corollary 1.7 (Theorem D =⇒ Corollary 1.7). By Theorem D, we have

Hp(Y,Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m−p) = 0

for every p ≥ 1, i ≥ 0, and m ≥ dimY + 1. Thus, the Castelnuovo–Mumford
regularity (see [L1, Section 1.8]) implies that Rif∗(KX ⊗ F ⊗ J (h)) ⊗ H⊗m is
globally generated for every i ≥ 0 and m ≥ dimY + 1. �

We close this section with a proof of Theorem 1.4 based on Theorem A for the
reader’s convenience.
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Proof of Theorem 1.4 (Theorem A =⇒ Theorem 1.4). Let A be an ample line bun-
dle on V . Then there exists a sufficiently large positive integer m such that A⊗m

is very ample and that Hi(V,KV ⊗ L ⊗ J (hL) ⊗ A⊗m) = 0 for every i > 0
by the Serre vanishing theorem. We can take a smooth Hermitian metric hA

on A such that
√
−1ΘhA

(A) is a smooth positive (1, 1)-form on V . Therefore,
we have

√
−1Θhm

A
(A⊗m) ≥ 0. By the condition

√
−1ΘhL

(L) ≥ εω, we see that√
−1(ΘhL

(L) − tΘhm
A
(A⊗m)) ≥ 0 for some 0 < t � 1. We take a nonzero global

section s of A⊗m. By Theorem A, we see that

×s : Hi(V,KV ⊗ L⊗ J (hL)) → Hi(V,KV ⊗ L⊗ J (hL)⊗A⊗m)

is injective for every i. Thus, we obtain that Hi(V,KV ⊗L⊗J (hL)) = 0 for every
i > 0. �

5. Proof of Theorem A

In this section, we will give the proof of Theorem A.

Theorem 5.1 (Theorem A). Let F (resp. M) be a line bundle on a compact Kähler
manifold X with a singular Hermitian metric h (resp. a smooth Hermitian metric
hM ) satisfying

√
−1ΘhM

(M) ≥ 0 and
√
−1Θh(F )− b

√
−1ΘhM

(M) ≥ 0 for some b > 0.

Then for a (nonzero) section s ∈ H0(X,M), the multiplication map induced by ⊗s

×s : Hq(X,KX ⊗ F ⊗ J (h))
⊗s−−−−−→ Hq(X,KX ⊗ F ⊗ J (h)⊗M)

is injective for every q. Here KX is the canonical bundle of X and J (h) is the
multiplier ideal sheaf of h.

Proof of Theorem 5.1 (Theorem A). The proof can be divided into four steps.

Step 1. Throughout the proof, we fix a Kähler form ω on X. For a given singular
Hermitian metric h on F , by applying [DPS, Theorem 2.3] to the weight of h, we
obtain a family of singular Hermitian metrics {hε}1	ε>0 on F with the following
properties:

(a) hε is smooth on Yε := X \ Zε, where Zε is a proper closed analytic subset
on X.

(b) hε′ ≤ hε′′ ≤ h holds on X when ε′ > ε′′ > 0.
(c) J (h) = J (hε) on X.
(d)

√
−1Θhε

(F ) ≥ b
√
−1ΘhM

(M)− εω on X.

Here property (d) is obtained from the assumption
√
−1Θh(F ) ≥ b

√
−1ΘhM

(M).
The main difficulty of the proof is that Zε may essentially depend on ε, compared

to [MaS4] in which Zε is independent of ε. To overcome this difficulty, we consider
suitable complete Kähler forms {ωε,δ}δ>0 on Yε such that ωε,δ converges to ω as
δ → 0. To construct such complete Kähler forms, we first take a complete Kähler
form ωε on Yε with the following properties:

• ωε is a complete Kähler form on Yε.
• ωε ≥ ω on Yε.
• ωε =

√
−1∂∂Ψε for some bounded function Ψε on a neighborhood of every

p ∈ X.
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See [F4, Section 3] for the construction of ωε. For the Kähler form ωε,δ on Yε

defined to be

ωε,δ := ω + δωε for ε and δ with 0 < δ � ε,

it is easy to see the following properties hold:

(A) ωε,δ is a complete Kähler form on Yε = X \ Zε for every δ > 0.
(B) ωε,δ ≥ ω on Yε for every δ > 0.
(C) Ψ + δΨε is a bounded local potential function of ωε,δ and converges to Ψ

as δ → 0.

Here Ψ is a local potential function of ω. The first property enables us to consider
harmonic forms on the noncompact Yε, and the third property enables us to con-
struct the de Rham–Weil isomorphism from the ∂-cohomology on Yε to the Čech
cohomology on X.

Remark 5.2. In the proof of Theorem 5.1, we actually consider only a countable
sequence {εk}∞k=1 (resp. {δ�}∞�=1) conversing to zero since we need to apply Cantor’s
diagonal argument, but we often use the notation ε (resp. δ) for simplicity.

For the proof, it is sufficient to show that an arbitrary cohomology class η ∈
Hq(X,KX ⊗F ⊗J (h)) satisfying sη = 0 ∈ Hq(X,KX ⊗F ⊗J (h)⊗M) is actually
zero. We represent the cohomology class η ∈ Hq(X,KX ⊗F ⊗J (h)) by a ∂-closed
F -valued (n, q)-form u with ‖u‖h,ω < ∞ by using the standard de Rham–Weil
isomorphism

Hq(X,KX ⊗ F ⊗ J (h)) ∼=
Ker ∂ : Ln,q

(2) (F )h,ω → Ln,q+1
(2) (F )h,ω

Im ∂ : Ln,q−1
(2) (F )h,ω → Ln,q

(2) (F )h,ω
.

Here ∂ is the densely defined closed operator defined by the usual ∂-operator and
Ln,q
(2) (F )h,ω is the L2-space of F -valued (n, q)-forms on X with respect to the L2-

norm ‖ • ‖h,ω defined by

‖ • ‖2h,ω :=

∫
X

| • |2h,ω dVω,

where dVω := ωn/n! and n := dimX. Our purpose is to prove that u is ∂-exact
(namely, u ∈ Im ∂ ⊂ Ln,q

(2) (F )h,ω) under the assumption that the cohomology class

of su is zero in Hq(X,KX ⊗ F ⊗ J (h)⊗M).
From now on, we mainly consider the L2-space Ln,q

(2) (Yε, F )hε,ωε,δ
of F -valued

(n, q)-forms on Yε (not X) with respect to hε and ωε,δ (not h and ω). For simplicity
we put

Ln,q
(2) (F )ε,δ := Ln,q

(2) (Yε, F )hε,ωε,δ
and ‖ • ‖ε,δ := ‖ • ‖hε,ωε,δ

.

The following inequality plays an important role in the proof:

‖u‖ε,δ ≤ ‖u‖h,ωε,δ
≤ ‖u‖h,ω < ∞.(5.1)

In particular, the norm ‖u‖ε,δ is uniformly bounded since the right-hand side is
independent of ε, δ. The first inequality follows from property (b) of hε, and
the second inequality follows from Lemma 2.4 and property (B) of ωε,δ. Strictly
speaking, the left-hand side should be ‖u|Yε

‖ε,δ, but we often omit the symbol of
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restriction. Now we have the following orthogonal decomposition (for example see
[MaS4, Proposition 5.8]):

Ln,q
(2) (F )ε,δ = Im ∂ ⊕Hn,q

ε,δ (F ) ⊕ Im ∂
∗
ε,δ.

Here ∂
∗
ε,δ is (the maximal extension of) the formal adjoint of the ∂-operator and

Hn,q
ε,δ (F ) is the set of harmonic F -valued (n, q)-forms on Yε, namely

Hn,q
ε,δ (F ) := {w ∈ Ln,q

(2) (F )ε,δ | ∂w = 0 and ∂
∗
ε,δw = 0}.

Remark 5.3. The formal adjoint coincides with the Hilbert space adjoint since ωε,δ

is complete for δ > 0 (see, for example, [D4, (3.2) Theorem in Chapter VIII]). The
∂-operator also depends on hε and ωε,δ in the sense that the domain and range of

the closed operator ∂ depend on them, but we abbreviate ∂ε,δ to ∂.

The F -valued (n, q)-form u (representing η) belongs to Ln,q
(2) (F )ε,δ by (5.1), and

thus u can be decomposed as follows:

u = ∂wε,δ + uε,δ for some wε,δ ∈ Dom ∂ ⊂ Ln,q−1
(2) (F )ε,δ and uε,δ ∈ Hn,q

ε,δ (F ).

(5.2)

Note that the orthogonal projection of u to Im ∂
∗
ε,δ must be zero since u is ∂-closed.

Step 2. The purpose of this step is to prove Proposition 5.7, which reduces the proof
to the study of the asymptotic behavior of the norm of suε,δ. When we consider a
suitable limit of uε,δ in the following proposition, we need to carefully choose the
L2-space since the L2-space Ln,q

(2) (F )ε,δ depends on ε and δ. We remark that {ε}ε>0

and {δ}δ>0 denote countable sequences converging to zero (see Remark 5.2). Let
{δ0}δ0>0 denote another countable sequence converging to zero.

Proposition 5.4. There exist a subsequence {δν}∞ν=1 of {δ}δ>0 and αε∈Ln,q
(2) (F )hε,ω

with the following properties:

• For any ε, δ0 > 0, as δν tends to 0,

uε,δν converges to αε with respect to the weak L2-topology in Ln,q
(2) (F )ε,δ0 .

• For any ε > 0,

‖αε‖hε,ω ≤ lim
δ0→0

‖αε‖ε,δ0 ≤ lim
δν→0

‖uε,δν‖ε,δν ≤ ‖u‖h,ω.

Remark 5.5. The weak limit αε does not depend on δ0, and the subsequence {δν}∞ν=1

does not depend on ε and δ0.

Proof of Proposition 5.4. For given ε, δ0 > 0, by taking a sufficiently small δ with
0 < δ < δ0, we have

‖uε,δ‖ε,δ0 ≤ ‖uε,δ‖ε,δ ≤ ‖u‖ε,δ ≤ ‖u‖h,ω.(5.3)

The first inequality follows from ωε,δ ≤ ωε,δ0 and Lemma 2.4, the second inequality
follows since uε,δ is the orthogonal projection of u with respect to ε, δ, and the
last inequality follows from (5.1). Since the right-hand side is independent of δ,
the family {uε,δ}δ>0 is uniformly bounded in Ln,q

(2) (F )ε,δ0 . Therefore, there exists

a subsequence {δν}∞ν=1 of {δ}δ>0 such that uε,δν converges to αε,δ0 with respect
to the weak L2-topology in Ln,q

(2) (F )ε,δ0 This subsequence {δν}∞ν=1 may depend on
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ε, δ0, but we can choose a subsequence independent of them by applying Cantor’s
diagonal argument.

Now we show that αε,δ0 does not depend on δ0. For arbitrary δ′0, δ
′′
0 with 0 <

δ′0 ≤ δ′′0 , the natural inclusion Ln,q
(2) (F )ε,δ′0 → Ln,q

(2) (F )ε,δ′′0 is a bounded operator

(continuous linear map) by ‖ • ‖ε,δ′′0 ≤ ‖ • ‖ε,δ′0 , and thus uε,δν weakly converges

to αε,δ′0
in not only Ln,q

(2) (F )ε,δ′0 but also Ln,q
(2) (F )ε,δ′′0 by Lemma 2.5. Therefore, it

follows that αε,δ′0
= αε,δ′′0

since the weak limit is unique.
Finally, we consider the norm of αε. It is easy to see that

‖αε‖ε,δ0 ≤ lim
δν→0

‖uε,δν‖ε,δ0 ≤ lim
δν→0

‖uε,δν‖ε,δν ≤ ‖u‖h,ω.

The first inequality follows since the norm is lower semicontinuous with respect to
the weak convergence, the second inequality follows from ωε,δ0 ≥ ωε,δν , and the last
inequality follows from (5.3). Fatou’s lemma yields

‖αε‖2hε,ω =

∫
Yε

|αε|2hε,ω dVω ≤ lim
δ0→0

∫
Yε

|αε|2hε,ωε,δ0
dVωε,δ0

= lim
δ0→0

‖αε‖2ε,δ0 .

These inequalities lead to the desired estimate in the proposition. �
For simplicity, we use the same notation {uε,δ}δ>0 for the subsequence {uε,δν}∞ν=1

in Proposition 5.4. We fix ε0 > 0 and consider the weak limit of αε in the fixed
L2-space Ln,q

(2) (F )hε0
,ω. For a sufficiently small ε > 0, we have

‖αε‖hε0
,ω ≤ ‖αε‖hε,ω ≤ ‖u‖h,ω

by property (b) and Proposition 5.4. By taking a subsequence of {αε}ε>0, we may
assume that αε weakly converges to some α in Ln,q

(2) (F )hε0
,ω.

Proposition 5.6. If the weak limit α is zero in Ln,q
(2) (F )hε0

,ω, then the cohomology

class η is zero in Hq(X,KX ⊗ F ⊗ J (h)).

Proof of Proposition 5.6. For every δ with 0 < δ ≤ δ0, we can easily check

u− uε,δ ∈ Im ∂ in Ln,q
(2) (F )ε,δ ⊂ Im ∂ in Ln,q

(2) (F )ε,δ0

from the construction of uε,δ. As δ → 0, we obtain

u− αε ∈ Im ∂ in Ln,q
(2) (F )ε,δ0

by Lemma 2.6 and Proposition 5.4. We remark that Im ∂ is a closed subspace (see
[MaS4, Proposition 5.8]). On the other hand, we have the following commutative
diagram:

Ker ∂ in Ln,q
(2) (F )ε,δ0

q1 �� Ker ∂

Im ∂
of Ln,q

(2) (F )ε,δ0
∼=
f1

�� Ȟq(X,KX ⊗ F ⊗ J (h))

Ker ∂ in Ln,q
(2) (F )hε,ω

j1

��

j2 �� Ker ∂ in Ln,q
(2) (F )hε0

,ω
q2 �� Ker ∂

Im ∂
of Ln,q

(2) (F )hε0
,ω.

∼= f2

��

Here j1, j2 are the natural inclusions, q1, q2 are the natural quotient maps, and
f1, f2 are the de Rham–Weil isomorphisms (see [MaS4, Proposition 5.5] for the
construction). Strictly speaking, f1 is an isomorphism to Ȟq(X,KX ⊗F ⊗J (hε)),
but which coincides with Ȟq(X,KX ⊗ F ⊗ J (h)) by property (c). To check that
j2 is well-defined, we have to see that ∂w = 0 on Yε0 if ∂w = 0 on Yε. By the
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L2-integrability and [D4, (7.3) Lemma, Chapter VIII], the equality ∂w = 0 can be
extended from Yε toX (in particular Yε0). The key point here is the L2-integrability
with respect to ω (not ωε,δ).

Since j2(u − αε) weakly converges to j2(u − α) and the ∂-cohomology is finite
dimensional, we obtain

lim
ε→0

q2(u− αε) = q2(u− α) = q2(u)

by Lemma 2.5 and the assumption α = 0. On the other hand, it follows that
q1(u − αε) = 0 from the first half argument. Hence, we have q2(u) = 0, that is,
u ∈ Im ∂ ⊂ Ln,q

(2) (F )hε0
,ω. From q2(u) = 0, we can prove the conclusion, that is,

u ∈ Im ∂ ⊂ Ln,q
(2) (F )h,ω. Indeed, we can obtain q3(u) = 0 (which leads to the

conclusion) by the following commutative diagram:

Ker ∂ in Ln,q
(2) (F )hε0

,ω
q2 �� Ker ∂

Im ∂
of Ln,q

(2) (F )hε0
,ω

∼=
f2

�� Ȟq(X,KX ⊗ F ⊗ J (hε0))

Ker ∂ in Ln,q
(2) (F )h,ω

��

q3 �� Ker ∂

Im ∂
of Ln,q

(2) (F )h,ω
∼=
f3

�� Ȟq(X,KX ⊗ F ⊗ J (h)).

�

At the end of this step, we prove Proposition 5.7.

Proposition 5.7. If we have

lim
ε→0

lim
δ→0

‖suε,δ‖hεhM ,ωε,δ
= 0,

then the weak limit α is zero. In particular, the cohomology class η is zero by
Proposition 5.6.

Proof of Proposition 5.7. In the proof, we compare the norm of uε,δ with the norm
of suε,δ. For this purpose, we define Y k

ε0
to be

Y k
ε0

:= {y ∈ Yε0 | |s|hM
> 1/k at y}

for k � 0. Note the subset Y k
ε0 is an open set in Yε0 . It follows that the restriction

αε|Y k
ε0

also weakly converges to α|Y k
ε0

in Ln,q
(2) (Y

k
ε0 , F )hε0

,ω since the restriction map

Ln,q
(2) (F )hε0

,ω → Ln,q
(2) (Y

k
ε0 , F )hε0

,ω is a bounded operator and αε weakly converges

to α in Ln,q
(2) (F )hε0

,ω. Since the norm is lower semicontinuous with respect to the

weak convergence, we obtain the estimate for the L2-norm on Y k
ε0

‖α‖Y k
ε0

,hε0
,ω ≤ lim

ε→0
‖αε‖Y k

ε0
,hε0

,ω ≤ lim
ε→0

‖αε‖Y k
ε0

,hε,ω

by property (b). By the same argument, the restriction uε,δ|Y k
ε0

weakly converges

to αε|Y k
ε0

in Ln,q
(2) (Y

k
ε0 , F )ε,δ0 , and thus we obtain

‖αε‖Y k
ε0

,ε,δ0 ≤ lim
δ→0

‖uε,δ‖Y k
ε0

,ε,δ0 ≤ lim
δ→0

‖uε,δ‖Y k
ε0

,ε,δ

by Lemma 2.4. As δ0 → 0 in the above inequality, we have

‖αε‖Y k
ε0

,hε,ω ≤ lim
δ0→0

‖αε‖Y k
ε0

,ε,δ0 ≤ lim
δ→0

‖uε,δ‖Y k
ε0

,ε,δ
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by Fatou’s lemma (see the argument in Proposition 5.4). These inequalities yield

‖α‖Y k
ε0

,hε0
,ω ≤ lim

ε→0
lim
δ→0

‖uε,δ‖Y k
ε0

,ε,δ.

On the other hand, it follows that

‖uε,δ‖Y k
ε0

,ε,δ ≤ k‖suε,δ‖Y k
ε0

,hεhM ,ωε,δ
≤ k‖suε,δ‖hεhM ,ωε,δ

since the inequality 1/k < |s|hM
holds on Y k

ε0 . This implies that α = 0 on Y k
ε0

for an arbitrary k � 0. From
⋃

k	0

Y k
ε0 = Yε0 \ {s = 0}, we obtain the desired

conclusion. �

Step 3. The purpose of this step is to prove Proposition 5.8:

Proposition 5.8.

lim
ε→0

lim
δ→0

‖∂∗
ε,δsuε,δ‖hεhM ,ωε,δ

= 0.

Proof of Proposition 5.8. In the proof, we will often use (5.3). By applying Bochner–
Kodaira–Nakano’s identity and the density lemma to uε,δ and suε,δ (see [MaS1,
Proposition 2.8]), we obtain

0=〈〈
√
−1Θhε

(F )Λωε,δ
uε,δ, uε,δ〉〉ε,δ+‖D′∗

ε,δuε,δ‖2ε,δ,(5.4)

‖∂∗
ε,δsuε,δ‖2hεhM ,ωε,δ

=〈〈
√
−1ΘhεhM

(F ⊗M)Λωε,δ
suε,δ, suε,δ〉〉hεhM ,ωε,δ

+‖D′∗
ε,δsuε,δ‖2hεhM ,ωε,δ

,(5.5)

where D′∗
ε,δ is the adjoint operator of the (1, 0)-part of the Chern connection Dhε

.

Here we used the fact that uε,δ is harmonic and ∂(suε,δ) = s∂uε,δ = 0. Now we
have

√
−1Θhε

(F ) ≥ b
√
−1ΘhM

(M)− εω ≥ −εω ≥ −εωε,δ

by property (d) and property (B). Hence, the integrand gε,δ of the first term of
(5.4) satisfies

(5.6) −εq|uε,δ|2ε,δ ≤ gε,δ := 〈
√
−1Θhε

(F )Λωε,δ
uε,δ, uε,δ〉ε,δ.

For the precise argument, see [MaS4, Step 2 in the proof of Theorem 3.1]. Then by
(5.4), we can easily see

lim
ε→0

lim
δ→0

(∫
{gε,δ≥0}

gε,δ dVωε,δ
+ ‖D′∗

ε,δuε,δ‖2ε,δ
)

= lim
ε→0

lim
δ→0

(
−
∫
{gε,δ≤0}

gε,δ dVωε,δ

)

≤ lim
ε→0

lim
δ→0

(
εq

∫
{gε,δ≤0}

|uε,δ|2ε,δ dVωε,δ

)

≤ lim
ε→0

lim
δ→0

(
εq‖uε,δ‖2ε,δ

)
= 0.

Here we used (5.3) in the last equality.
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On the other hand, by
√
−1Θhε

(F ) ≥ b
√
−1ΘhM

(M)− εωε,δ, we have

〈〈
√
−1ΘhεhM

(F ⊗M)Λωε,δ
suε,δ, suε,δ〉〉hεhM ,ωε,δ

≤
(
1 +

1

b

) ∫
Yε

|s|2hM
gε,δ dVωε,δ

+
εq

b

∫
Yε

|s|2hM
|uε,δ|2ε,δ dVωε,δ

≤
(
1 +

1

b

)
sup
X

|s|2hM

{∫
{gε,δ≥0}

gε,δ dVωε,δ
+

εq

b
sup
X

|s|2hM
‖uε,δ‖2ε,δ

}
.

Furthermore, since D′∗
ε,δ can be expressed as D′∗

ε,δ = − ∗ ∂∗ by the Hodge star
operator ∗ with respect to ωε,δ, we have

‖D′∗
ε,δsuε,δ‖2hεhM ,ωε,δ

= ‖sD′∗
ε,δuε,δ‖2hεhM ,ωε,δ

≤ sup
X

|s|2hM
‖D′∗

ε,δuε,δ‖2ε,δ.

The right-hand side of (5.5) can be shown to converge to zero by the first half
argument and these inequalities. �

Step 4. In this step, we construct solutions vε,δ of the ∂-equation ∂vε,δ = suε,δ

with suitable L2-norm, and we finish the proof of Theorem 5.1. The proof of the
following proposition is a slight variant of that of [MaS4, Theorem 5.9].

Proposition 5.9. There exist F -valued (n, q − 1)-forms wε,δ on Yε with the fol-
lowing properties:

• ∂wε,δ = u− uε,δ.

• limδ→0 ‖wε,δ‖ε,δ can be bounded by a constant independent of ε.

Before we begin to prove Proposition 5.9, we recall the content in [MaS4, Section
5] with our notation. For a finite open cover U := {Bi}i∈I of X by sufficiently small
Stein open sets Bi, we can construct

fε,δ : Ker ∂ in Ln,q
(2) (F )ε,δ −−−→ Kerμ in Cq(U ,KX ⊗ F ⊗ J (hε))

such that fε,δ induces the de Rham–Weil isomorphism

fε,δ :
Ker ∂

Im ∂
of Ln,q

(2) (F )ε,δ
∼=−−−−−→ Kerμ

Imμ
of Cq(U ,KX ⊗ F ⊗ J (hε)).(5.7)

Here Cq(U ,KX ⊗ F ⊗ J (hε)) is the space of q-cochains calculated by U and μ is
the coboundary operator. We remark that Cq(U ,KX ⊗ F ⊗ J (hε)) is a Fréchet
space with respect to the seminorm pKi0...iq

(•) defined to be

pKi0...iq
({βi0...iq})2 :=

∫
Ki0...iq

|βi0...iq |2hε,ω dVω

for a relatively compact set Ki0...iq � Bi0...iq := Bi0 ∩· · ·∩Biq (see [MaS4, Theorem
5.3]). The construction of fε,δ is essentially the same as in the proof of [MaS4,
Proposition 5.5]. The only difference is that we use Lemma 5.12 instead of [MaS4,
Lemma 5.4] when we locally solve the ∂-equation to construct fε,δ. Lemma 5.12
will be given at the end of this step. We prove Proposition 5.9 by replacing some
constants appearing in the proof of [MaS4, Theorem 5.9] with Cε,δ appearing in
Lemma 5.12.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



876 OSAMU FUJINO AND SHIN-ICHI MATSUMURA

Proof of Proposition 5.9. We put Uε,δ := u−uε,δ ∈ Im ∂ ⊂ Ln,q
(2) (F )ε,δ. Then there

exist the F -valued (n, q − k − 1)-forms βε,δ
i0...ik

on Bi0...ik \ Zε satisfying

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂βε,δ
i0

= Uε,δ|Bi0
\Zε

,

∂{βε,δ
i0i1

} = μ{βε,δ
i0

},
∂{βε,δ

i0i1i2
} = μ{βε,δ

i0i1
},

...

∂{βε,δ
i0...iq−1

} = μ{βε,δ
i0...iq−2

},
fε,δ(Uε,δ) = μ{βε,δ

i0...iq−1
}.

Here βε,δ
i0...ik

is the solution of the above equation whose norm is minimum among all
the solutions (see the construction of fε,δ in [MaS4, Proposition 5.5]). For example,

βε,δ
i0

is the solution of ∂βε,δ
i0

= Uε,δ on Bi0 \ Zε whose norm ‖βε,δ
i0

‖ε,δ is minimum

among all the solutions. In particular ‖βε,δ
i0

‖2ε,δ ≤ Cε,δ‖Uε,δ‖2Bi0
,ε,δ ≤ Cε,δ‖Uε,δ‖2ε,δ

holds for some constant Cε,δ by Lemma 5.12, where Cε,δ is a constant such that

limδ→0 Cε,δ (is finite and) is independent of ε. Similarly, βε,δ
i0i1

is the solution of

∂βε,δ
i0i1

= (βε,δ
i1

− βε,δ
i0

) on Bi0i1 \ Zε and the norm

‖βε,δ
i0i1

‖2ε,δ :=

∫
Bi0i1

\Zε

|βε,δ
i0i1

|2ε,δ dVε,δ

is minimum among all the solutions. In particular, ‖βε,δ
i0i1

‖2ε,δ ≤ Dε,δ‖(βε,δ
i1

−βε,δ
i0

)‖2ε,δ
holds for some constant Dε,δ by Lemma 5.12. Of course Dε,δ is a constant such

that limδ→0 Dε,δ (is finite and) is independent of ε. Hence we have

‖βε,δ
i0i1

‖ε,δ ≤ D
1/2
ε,δ ‖(β

ε,δ
i1

− βε,δ
i0

)‖ε,δ ≤ 2C
1/2
ε,δ D

1/2
ε,δ ‖Uε,δ‖ε,δ ≤ 4C

1/2
ε,δ D

1/2
ε,δ ‖u‖h,ω

by (5.3). From now on, the notation Cε,δ denotes a (possibly different) constant

such that limδ→0 Cε,δ can be bounded by a constant independent of ε. By repeating
this process, we have

‖βε,δ
i0...ik

‖2ε,δ ≤ Cε,δ‖u‖2h,ω.
Moreover, by property (c), we have

αε,δ := fε,δ(Uε,δ) = μ{βε,δ
i0...iq−1

} ∈ Cq(U ,KX⊗F⊗J (hε)) = Cq(U ,KX⊗F⊗J (h)).

Claim. There exist subsequences {εk}∞k=1 and {δ�}∞�=1 with the following properties:

• αεk,δ� → αεk,0 in Cq(U ,KX ⊗ F ⊗ J (h)) as δ� → 0.
• αεk,0 → α0,0 in Cq(U ,KX ⊗ F ⊗ J (h)) as εk → 0.

Moreover, the limit α0,0 belongs to Bq(U ,KX ⊗ F ⊗ J (h)) := Imμ.

Proof of Claim. By construction, the norm ‖aε,δ‖Bi0...iq ,ε,δ
of a component aε,δ :=

αε,δ
i0...iq

of αε,δ = {αε,δ
i0...iq

} can be bounded by a constant Cε,δ. Note that aε,δ can

be regarded as a holomorphic function on Bi0...iq \Zε with bounded L2-norm since

it is a ∂-closed F -valued (n, 0)-form such that ‖aε,δ‖Bi0...iq ,ε,δ
< ∞ (see Lemma

2.4). Hence aε,δ can be extended from Bi0...iq \ Zε to Bi0...iq by the Riemann
extension theorem. The sup-norm supK |aε,δ| is uniformly bounded with respect
to δ for every K � Bi0...iq since the local sup-norm of holomorphic functions can

be bounded by the L2-norm. By Montel’s theorem, we can take a subsequence

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



INJECTIVITY THEOREM FOR PSEUDO-EFFECTIVE LINE BUNDLES 877

{δ�}∞�=1 with the first property. This subsequence may depend on ε, but we can
take {δ�}∞�=1 independent of (countably many) ε. Then the norm of the limit aε,0 is

uniformly bounded with respect to ε since limδ→0 Cε,δ can be bounded by a constant
independent of ε (see Lemma 5.12). Therefore, by applying Montel’s theorem again,
we can take a subsequence {εk}∞k=1 with the second property. We remark that the
convergence with respect to the sup-norm implies the convergence with respect to
the local L2-norm pK(•) (see [MaS4, Lemma 5.2]).

It is easy to check the latter conclusion. Indeed, it follows that αε,δ = fε,δ(Uε,δ) ∈
Imμ since Uε,δ ∈ Im ∂ ⊂ Ln,q

(2) (F )ε,δ and fε,δ induces the de Rham–Weil isomor-

phism. By [MaS4, Lemma 5.7], the subspace Imμ is closed. Therefore, we obtain
the latter conclusion. �

Now, we construct solutions γε,δ of the equation μγε,δ = αε,δ with suitable L2-
norm. For simplicity, we continue to use the same notation for the subsequences in
Claim. By the latter conclusion of the claim, there exists γ ∈ Cq−1(U ,KX ⊗ F ⊗
J (h)) such that μγ = α0,0. The coboundary operator

μ : Cq−1(U ,KX ⊗ F ⊗ J (h)) → Bq(U ,KX ⊗ F ⊗ J (h)) = Imμ

is a surjective bounded operator between Fréchet spaces (see [MaS4, Lemma 5.7]),
and thus it is an open map by the open mapping theorem. Therefore μ(ΔK) is
an open neighborhood of the limit α0,0 in Imμ, where ΔK is the open bounded
neighborhood of γ in Cq−1(U ,KX ⊗ F ⊗ J (h)) defined to be

ΔK := {β ∈ Cq−1(U ,KX ⊗ F ⊗ J (h)) | pKi0...iq−1
(β − γ) < 1}

for a family K := {Ki0...iq−1
} of relatively compact sets Ki0...iq−1

� Bi0...iq−1
. We

have αε,δ ∈ μ(ΔK) for sufficiently small ε, δ > 0 since αε,δ converges to α0,0. Since
ΔK is bounded, we can obtain γε,δ ∈ Cq−1(U ,KX ⊗ F ⊗ J (h)) such that

μγε,δ = αε,δ and pKi0...iq−1
(γε,δ)

2 ≤ CK

for some positive constant CK . The above constant CK depends on the choice of
K, γ, but does not depend on ε, δ.

By the same argument as in [MaS4, Claim 5.11 and Claim 5.13], we can obtain
F -valued (n, q−1)-forms wε,δ with the desired properties. The strategy is as follows:

The inverse map gε,δ of fε,δ is explicitly constructed by using a partition of unity
(see the proof of [MaS4, Proposition 5.5] and [MaS4, Remark 5.6]). We can easily
see that gε,δ(μγε,δ) = ∂vε,δ and gε,δ(αε,δ) = Uε,δ + ∂ṽε,δ hold for some vε,δ and ṽε,δ
by the de Rham–Weil isomorphism. In particular, we have Uε,δ = ∂(vε,δ − ṽε,δ) by
μγε,δ = αε,δ. The important point here is that we can explicitly compute vε,δ and

ṽε,δ by using the partition of unity, βε,δ
i0...ik

, and γε,δ. From this explicit expression,

we obtain the L2-estimate for vε,δ and ṽε,δ. See [MaS4, Claim 5.11 and 5.13] for
the precise argument. �

Proposition 5.10. There exist F ⊗M -valued (n, q − 1)-forms vε,δ on Yε with the
following properties:

• ∂vε,δ = suε,δ.

• limδ→0 ‖vε,δ‖hεhM ,ωε,δ
can be bounded by a constant independent of ε.

Proof of Proposition 5.10. Since the cohomology class of su is assumed to be zero
in Hq(X,KX ⊗ F ⊗ J (h) ⊗ M), there exists an F ⊗ M -valued (n, q − 1)-form v
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such that ∂v = su and ‖v‖h,ω < ∞. For wε,δ satisfying the properties in Propo-

sition 5.9, by putting vε,δ := −swε,δ + v, we have ∂vε,δ = suε,δ. Furthermore, an
easy computation yields

‖vε,δ‖hεhM ,ωε,δ
≤ ‖swε,δ‖hεhM ,ωε,δ

+ ‖v‖hεhM ,ωε,δ

≤ sup
X

|s|hM
‖wε,δ‖ε,δ + ‖v‖hεhM ,ωε,δ

.

By Lemma 2.4, property (b), and property (B), we have ‖v‖hεhM ,ωε,δ
≤ ‖v‖h,ω < ∞.

This completes the proof. �
The following proposition completes the proof of Theorem 5.1 (see Proposition

5.7).

Proposition 5.11.

lim
ε→0

lim
δ→0

‖suε,δ‖hεhM ,ωε,δ
= 0.

Proof of Proposition 5.11. For the solution vε,δ satisfying the properties in Propo-
sition 5.10, it is easy to see

lim
ε→0

lim
δ→0

‖suε,δ‖2hεhM ,ωε,δ
= lim

ε→0
lim
δ→0

〈〈∂∗
ε,δsuε,δ, vε,δ〉〉hεhM ,ωε,δ

≤ lim
ε→0

lim
δ→0

‖∂∗
ε,δsuε,δ‖hεhM ,ωε,δ

‖vε,δ‖hεhM ,ωε,δ
.

Proposition 5.8 and Proposition 5.10 assert that the right-hand side is zero. �
We close this step with the following lemma:

Lemma 5.12 (cf. [D1, 4.1Théorème]). Assume that B is a Stein open set in X
such that ωε,δ =

√
−1∂∂(Ψ + δΨε) on a neighborhood of B. Then for an arbitrary

α ∈ Ker ∂ ⊂ Ln,q
(2) (B \ Zε, F )ε,δ, there exist β ∈ Ln,q−1

(2) (B \ Zε, F )ε,δ and a positive

constant Cε,δ (independent of α) such that

• ∂β = α and ‖β‖2ε,δ ≤ Cε,δ‖α‖2ε,δ,
• lim

δ→0
Cε,δ (is finite and) is independent of ε.

Proof of Lemma 5.12. We may assume ε < 1/2 since 0 < ε � 1. For the singular
Hermitian metric Hε,δ on F defined by Hε,δ := hεe

−(Ψ+δΨε), the curvature satisfies
√
−1ΘHε,δ

(F ) =
√
−1Θhε

(F ) +
√
−1∂∂(Ψ + δΨε)

≥ −εω + ωε,δ ≥ (1− ε)ωε,δ ≥ 1

2
ωε,δ

by property (B) and
√
−1Θhε

(F ) ≥ −εω. The L2-norm ‖α‖Hε,δ,ωε,δ
with respect

to Hε,δ and ωε,δ is finite since the function Ψ + δΨε is bounded and ‖α‖ε,δ is

finite. Therefore, from the standard L2-method for the ∂-equation (for example see
[D1, 4.1Théorème]), we obtain a solution β of the ∂-equation ∂β = α with

‖β‖2Hε,δ,ωε,δ
≤ 2

q
‖α‖2Hε,δ,ωε,δ

.

Then we can easily see that

‖β‖2ε,δ ≤
2

q

supB e−(Ψ+δΨε)

infB e−(Ψ+δΨε)
‖α‖2ε,δ.

This completes the proof by property (B). �
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Remark 5.13. In Lemma 5.12, we take a solution β0 ∈ Ln,q−1
(2) (B \ Zε, F )ε,δ of the

equation ∂β = α. Then β0 is uniquely decomposed as follows:

β0 = β1 + β2 for β1 ∈ Ker ∂ and β2 ∈ (Ker ∂)⊥.

We can easily check that β2 is a unique solution of ∂β = α whose norm is the
minimum among all the solutions.

Thus we finish the proof of Theorem 5.1. �

6. Twists by Nakano semipositive vector bundles

We have already known that some results for KX can be generalized for KX⊗E,
where E is a Nakano semipositive vector bundle on X (see, for example, [Ta], [Mo],
and [Fs]). Let us recall the definition of Nakano semipositive vector bundles.

Definition 6.1 (Nakano semipositive vector bundles). Let E be a holomorphic
vector bundle on a complex manifold X. If E admits a smooth Hermitian metric hE

such that the curvature form
√
−1ΘhE

(E) defines a positive semi-definite Hermitian
form on each fiber of the vector bundle E⊗TX , where TX is the holomorphic tangent
bundle of X, then E is called a Nakano semipositive vector bundle.

Example 6.2 (Unitary flat vector bundles). Let E be a holomorphic vector bundle
on a complex manifold X. If E admits a smooth Hermitian metric hE such that
(E, hE) is flat, that is,

√
−1ΘhE

(E) = 0, then E is Nakano semipositive.

For the proof of Theorem 1.12, we need the following lemmas on Nakano semi-
positive vector bundles. However, these lemmas easily follow from the definition of
Nakano semipositive vector bundles, and thus, we omit the proof.

Lemma 6.3. Let E be a Nakano semipositive vector bundle on a complex manifold
X. Let H be a smooth divisor on X. Then E|H is a Nakano semipositive vector
bundle on H.

Lemma 6.4. Let q : Z → X be an étale morphism between complex manifolds.
Let (E, hE) be a Nakano semipositive vector bundle on X. Then (q∗E, q∗hE) is a
Nakano semipositive vector bundle on Z.

Proposition 6.5. Proposition 1.9 holds even when KX is replaced with KX ⊗ E,
where E is a Nakano semipositive vector bundle on X.

Proof. By Lemma 6.3 and Lemma 6.4, the proof of Proposition 1.9 in Section 4
works for KX ⊗ E. �

Therefore, by Proposition 6.5 and the proof of Theorem 1.4 and Corollary 1.7 in
Section 4, it is sufficient to prove the following theorem for Theorem 1.12.

Theorem 6.6 (Theorem A twisted by Nakano semipositive vector bundles). Let
E be a Nakano semipositive vector bundle on a compact Kähler manifold X. Let
F (resp. M) be a line bundle on a compact Kähler manifold X with a singular
Hermitian metric h (resp. a smooth Hermitian metric hM ) satisfying

√
−1ΘhM

(M) ≥ 0 and
√
−1Θh(F )− b

√
−1ΘhM

(M) ≥ 0 for some b > 0.

Then for a (nonzero) section s ∈ H0(X,M), the multiplication map induced by ⊗s

×s : Hq(X,KX ⊗ E ⊗ F ⊗ J (h))
⊗s−−−−−→ Hq(X,KX ⊗ E ⊗ F ⊗ J (h)⊗M)
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is injective for every q. Here KX is the canonical bundle of X and J (h) is the
multiplier ideal sheaf of h.

We will explain how to modify the proof of Theorem 5.1 for Theorem 6.6.

Proof. We replace (F, hε) with (E ⊗ F, hEhε) in the proof of Theorem 5.1, where
{hε}1	ε>0 is a family of singular Hermitian metrics on F (constructed in Step
1) and hE is a smooth Hermitian metric on E such that

√
−1ΘhE

(E) is Nakano
semipositive. Then it is easy to see that essentially the same proof as in Theorem
5.1 works for Theorem 6.6 thanks to the assumption on the curvature of E. For
the reader’s convenience, we give several remarks on the differences with the proof
of Theorem 5.1.

There is no problem when we construct hε and ωε,δ. In Step 4 in the proof
of Theorem 5.1, we used the de Rham–Weil isomorphism (see (5.7) and [MaS4,
Proposition 5.5]), which was constructed by using Lemma 5.12. Since [D1, 4.1
Théorème] (which yields Lemma 5.12) is formulated for holomorphic vector bundles,
Lemma 5.12 can be generalized to (E⊗F, hEhε). From this generalization, we can
construct the de Rham–Weil isomorphism for E ⊗ F

fε,δ :
Ker ∂

Im ∂
of Ln,q

(2) (E ⊗ F )hEhε,ωε,δ

∼=−−−−−→ Kerμ

Imμ
of Cq(U ,KX ⊗ E ⊗ F ⊗ J (hε)).

In Step 1, we used the orthogonal decomposition of Ln,q
(2) (F )ε,δ, which was ob-

tained from the fact that Im ∂ ⊂ Ln,q
(2) (F )ε,δ is closed. To obtain the same conclusion

for Ln,q
(2) (E⊗F )hEhε,ωε,δ

, it is sufficient to show that Cq(U ,KX ⊗E⊗F ⊗J (hε)) is

a Fréchet space (see [MaS4, Proposition 5.8]). We can easily check it by using the
same argument as in [MaS4, Theorem 5.3] for CrankE-valued holomorphic functions.

The argument of Step 2 works even if we consider (E ⊗ F, hEhε). In Step 3, we
need to prove (5.6), but it is easy to see

−εq|uε,δ|2hEhε,ωε,δ
≤ 〈

√
−1Θhε

(F )Λωε,δ
uε,δ, uε,δ〉hEhε,ωε,δ

≤ 〈
√
−1ΘhEhε

(E ⊗ F )Λωε,δ
uε,δ, uε,δ〉hEhε,ωε,δ

since
√
−1ΘhE

(E) is Nakano semipositive. �

When E is Nakano semipositive and is not flat, there seems to be no Hodge
theoretic approach to Theorem 6.6 even if h is smooth.
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[Mo] Christophe Mourougane, Théorèmes d’annulation générique pour les fibrés vectoriels
semi-négatifs (French, with English and French summaries), Bull. Soc. Math. France
127 (1999), no. 1, 115–133. MR1700471

[No] Junjiro Noguchi, A short analytic proof of closedness of logarithmic forms, Kodai Math.
J. 18 (1995), no. 2, 295–299, DOI 10.2996/kmj/1138043426. MR1346909

[O1] Takeo Ohsawa, On complete Kähler domains with C1-boundary, Publ. Res. Inst. Math.
Sci. 16 (1980), no. 3, 929–940, DOI 10.2977/prims/1195186937. MR602476

[O2] Takeo Ohsawa, Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math.
Sci. 20 (1984), no. 1, 21–38, DOI 10.2977/prims/1195181825. MR736089

[O3] Takeo Ohsawa, On a curvature condition that implies a cohomology injectivity theorem
of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. MR2153535
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