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CHAPTER 1

General Introduction & Outline of the
thesis



Psychological stress

We all know the feeling of being overwhelmed, pressured by certain situations or unable to manage
too many responsibilities. However, when it comes to stress research, it can be surprisingly difficult
to pinpoint what exactly “stress” is, mainly due to the ambiguities and connotations around the
term. The World Health Organization, WHO (2023) has defined stress as “a state of worry or mental
tension caused by a difficult situation”. Although everybody experiences stress, the way people
respond to it may vary significantly.

In many countries, stress is considered a major public health concern. In the United Kingdom, the
Mental Health Foundation's research (2018) has found that 74% of UK adults have experienced
stress at some point in their lives. The most commonly reported sources of stress were health
concerns about a loved one, financial pressure, and work-related issues. In the United States,
according to the Stress in America survey conducted by the American Psychological Association
(2020), 78% of adults reported having experienced stress-related symptoms (with coronavirus
pandemic being a significant source of stress). These symptoms included physical and emotional
manifestations ranging from irritability and fatigue to changes in appetite and headaches.

Stress can affect specific populations differently. For example, students and young adults may
experience stress related to career uncertainties and pressure to succeed (Foundation, 2018).
Women may face higher levels of stress about their body image compared to men (Foundation,
2018). Individuals from marginalized communities may experience stress due to discrimination and
inequality (Duru et al., 2012; Merkin et al., 2009). The diverse causes and consequences of stress
highlight the challenges around stress research but also emphasize the importance of unraveling
this complex construct by investigating both its underlying (molecular) as well as observed
(cognitive/ behavioral) effects.

Acute and chronic stress

Stress can be seen as a double-edged sword. From an evolutionary perspective, it is an adaptive
response. It helps us avoiding harm or pain but also prepare for an important meeting or
presentation. On the flip side, if experienced extensively and/or repeatedly, it can be impairing,
especially when it reaches a level that starts interfering with the ability to effectively perform our
daily tasks. Stress is often divided into acute and chronic stress. Although strongly correlated,
neurobiological and psychological mechanisms differ for acute and chronic stress (see below).
Therefore, investigating their effects can yield important insights about their distinct as well as
complimentary functions.

Acute stress has a short-term duration (minutes to hours) and arises from immediate threats or
challenges, triggering a rapid reaction known as the "fight-or-flight" response. The fight-or-flight
response is characterized by the release of hormones and catecholamines such as cortisol -
through activation of the Hypothalamus-Pituitary-Adrenal (HPA) axis- and adrenaline -through
activation of the Sympathetic-Adreno-Medullar (SAM) axis, producing well-orchestrated
physiological changes, such as increased heart rate and blood pressure (Cohen et al., 2007;

10



McEwen, 2007). While acute stress can have positive effects in moderation (e.g., improved
memory performance (Sandi, 2013)), excessive or intense acute stress can contribute to physical
and psychological problems. For example, augmented levels of acute stress may result in anxiety,
sleep disturbances, and digestive issues (Cohen et al., 2007). In addition, via elevation of
associated hormones and catecholamines, acute stress can impact a wide range of cognitive
abilities (McManus et al., 2022; Olver et al., 2015; Roozendaal et al., 2009; Smeets et al., 2006).

On the other hand, chronic stress, as the name implies, refers to stress exposure over an extended
period of time usually lasting for weeks, months, or even years. Chronic stress results from
persistent exposure to stressors such as work pressure, chronic marital difficulties, and even global
crises, such as inflation and the COVID-19 pandemic. The prolonged activation of stress response
can lead to allostatic load (cumulative strain that challenges our body to maintain homeostasis)
resulting in altered endocrine regulation and physiological changes, such as dysregulated pro-
inflammatory effects which can impair both neural and peripheral circuits (Brosschot et al., 2005;
McEwen, 2007; Seeman et al., 2001). These cumulative and long-lasting effects of stress on
various systems highlight its deleterious impact on both physical and mental health (Lupien et al.,
2018; Lupien et al., 2009).

Stress as a transdiagnostic risk factor

As mentioned above, both acute and chronic stress trigger a whole-body biobehavioral response,
which is associated with a wide range of adverse health effects, for example, gastrointestinal
issues, cardiovascular diseases, diabetes, and autoimmune disorders (Cohen et al., 2007; Han et
al., 2012; Lupien et al., 1998; Yaribeygi et al., 2017). In addition to increasing the risk of somatic
and physical ailments, psychiatric disorders may also develop due to (repeated) stress exposure.

Specifically, stressful events are among the most important risk factors for mental health problems
(Monroe et al., 2006). Compelling evidence has linked exposure to stress with increased risk for
development of depression and anxiety (Hammen, 2005; Lupien et al., 2009; Pégo et al., 2010;
Plieger et al., 2015; Revollo et al., 2011; Yang et al., 2015). Approximately 25% of people who
experience major stressful events develop depression (Praag et al., 2004). In addition, increased
levels of stress predict the clinical course of major depression, including duration, symptom
exacerbation, treatment resistance, and recurrences (Hammen, 2005; Mazure, 1998). The
relationship between psychological stress and anxiety seems intuitive due to their high degree of
conceptual overlap (Daviu et al., 2019; Pfaff, 2002). People exposed to chronic stress are more
likely to develop anxiety disorders later in life, and similar to depression, stress plays an important
role in the onset and clinical course of anxiety disorders (Faravelli et al., 2012; Hammen et al.,
2009; Konstantopoulou et al., 2020; Syed & Nemeroff, 2017).

From a transdiagnostic risk factor to transdiagnostic impairments

Stress, and activation of the fight-or-flight response, exert powerful effects on a number of cognitive
and affective processes that are essential in everyday life, including motivation (e.g., willingness
to pursue desirable outcomes), learning, decision-making, emotion regulation and memory
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(Goschke, 2014; Hollon et al., 2015). Disturbances in these processes have been linked to various
mental disorders (Kring & Barch, 2014) and associated with poor quality of life and functional
outcomes (Llewellyn et al., 2008; Salamone et al., 2015).

For instance, exposure to stress is known to result in motivational impairments. Motivation can be
seen as a dynamic process during which individuals consciously or subconsciously weigh the cost
(i.e., cognitive, or physical effort) and benefits (i.e., rewards) associated with a particular goal or
action (Sidarus et al., 2019). These subjective value computations — that is, integration of costs
and benefits associated with obtaining their goal — subsequently inform a given individual’s
decision to perform or withhold an action, with decisions with positive subjective value (that is,
when benefits outweigh the costs) being more likely to be followed by action (Pessiglione et al.,
2018). However, motivation does not only involve cognitive “cost-benefit” computations, it also
involves the ability to learn from the outcomes of our actions. That is, previous knowledge and
experiences shape the expectations we have about the costs and benefits of subsequent actions.
For example, previously achieved positive outcomes are more likely to increase the motivation to
pursue similar goals/actions in the future (Niv, 2009).

Past research suggests that these aspects of motivation - i.e., value computation and instrumental
learning - may be impaired in many stress-related disorders, including psychotic disorders,
depression, anxiety (Salamone et al., 2015; Salamone et al., 2016). Two key features of impaired
motivation observed in these disorders, anhedonia (i.e., the inability to experience or pursue
pleasurable activities) and avolition (i.e., a reduction in the ability to initiate and maintain goal-
directed behavior) have been consistently linked to abnormal reward-seeking behavior and altered
effort-expenditure respectively (Bonnelle et al., 2015; Der-Avakian & Markou, 2012). However, still
little is known about the precise mechanisms through which acute and chronic stress may impact
cost-benefit learning and decision-making. Exploring how acute and chronic stress influence and
shape these cognitive processes could shed new light on the adaptive and maladaptive effects of
stress on motivation.

Previous work has relied on well-validated experimental paradigms to quantify changes in
motivation and, more generally, goal-directed behavior by assessing the willingness to perform
effortful actions (e.g., investing grip force) in exchange for rewards (e.g., money) (Pessiglione et
al., 2018). However, the observed behavior recorded from these tasks (e.g., number of offers
accepted) may be rather aspecific. Different cognitive mechanisms may influence behavioral
readouts (e.g., choice preference might be attributed to decreased sensitivity to rewards and/or
increased sensitivity to effort). More specific insights, however, can be gained by applying state-
of-the-art techniques, such as cognitive computational models (Blohm et al., 2020). That is, we
can apply mathematical algorithms, in which specific learning or choice-related processes are
formalized to behavioral data to understand the latent cognitive processes that participants rely on
to complete the task (Wilson & Collins, 2019). The resulting parameters obtained from these
algorithms inform us how and to which degree participants relied on particular learning and/or
decision-making skills to complete the task. In some parts of this thesis, we will use the above-
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described cost-benefit tasks in combination with computational models of learning and decision-
making to improve understanding of stress-related alterations in motivation.

As mentioned above, the impact of stress on cognitive processes does not only involve changes
in motivation: it involves changes in a wide constellation of cognitive skills including (working)
memory, sustained attention, vigilance, recognition, and motor planning (Etkin et al., 2022;
McTeague et al., 2016). Such impairments in cognitive functioning can be observed in a wide range
of neuropsychiatric disorders. For instance, a study conducted by Caspi et al. (2014) found that
higher score on the general psychopathology (p) factor predicted lower performance on these
neurocognitive measurements and worse lifespan IQ. Cognitive functions are also known to be
modulated by stress (Marin et al., 2011). Accumulating evidence suggest that chronic exposure to
stress can impact hippocampal volume and memory performance (Bremner & Narayan, 1998;
Gianaros et al., 2007). Preclinical and clinical data indicate that susceptibility to stress can be a
risk factor for the development of Alzheimer’s disease (AD) (Briones et al., 2012; Wilson et al.,
2005), and increased secretion of cortisol has been observed in individuals with AD and Mild
Cognitive Impairment (MCI) compared to normal elderly (Marin et al., 2011).

Interestingly, multiple neurochemical systems (e.g., neurotransmitters, such as dopamine and
noradrenaline) and molecular pathways (e.g., inflammatory, and oxidative stress mediated
pathways) have been implicated in the etiology and progression of stress-related disorders as well
as associated impairments with a significant overlap between them. Manipulation of neurochemical
systems, either via the use of drug challenges or therapeutic agents to explore these systems, can
serve as invaluable tools in clinical research. The use of psychopharmacology in combination with
behavioral/cognitive approaches can provide holistic insights into the transdiagnostic mechanisms
that may underly (stress-related) central nervous system disorders.

Aim and outline of the thesis

The current thesis aims to investigate mechanisms underlying cognitive functioning in relation to
multidimensional facets of stress. Research initiatives such as the transdiagnostic Research
Domain Criteria (RDoC) framework of the National Institute of Mental Health (NIMH) aim to
understand mental health and illness in terms of varying degrees of dysfunction moving towards a
dimensional conceptualization of psychopathology (Insel et al., 2010). Different methods can be
utilized to investigate such multidimensional constructs using various units of analysis that range
from molecular to behavioral, and self-report assessments (Insel et al., 2010). In agreement with
RDoC'’s conceptualization (see Figure1), the current thesis attempted to incorporate key constructs
of this framework including the Negative Valence System (NVS) -acute and chronic stress-, the
Positive Valence System (PVS) -reinforcement learning, reward, and effort valuation-, Cognitive
System -memory- in order to evaluate parts of their complex interactions. In addition, we utilized
different units of analysis including top-down processes, for instance, behavior influenced by one’s
goals, expectations, and prior knowledge, but also bottom-up processes investigating, for example,
neurotransmitters that are influenced by stress and can affect cognition. More specifically:
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Figure 1 | Graphic description of RDoC’s framework. Adapted from Morris et al. (2022).

In chapter 2, we aim to investigate whether acute stress changes how humans learn about costs
(i.e., physical effort) and benefits (i.e., reward) and we employ computational modeling to
investigate latent cognitive mechanisms by which acute stress might affect cost-benefit
reinforcement learning. We also use pupillometry and physiological measures to link strategies
employed during cost and benefit learning with changes in neuromodulatory systems.

In chapter 3, we conducted an online study using a similar cost and benefit reinforcement learning
task and investigated how interindividual differences linked to transdiagnostic symptoms and risk
factors for psychopathology (i.e., perceived chronic stress, anhedonia, impulsivity, energy) are
associated with alterations in learning about the costs and benefits of actions.
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Chapter 4 aims to investigate the roles of dopamine and noradrenaline - neurotransmitters that
have been strongly associated with stress and motivation - in a cost and benefit decision-making,
placebo-controlled pharmacology study. Haloperidol was used to manipulate dopamine, primarily
D2 receptors, while propranolol was used to manipulate the action of noradrenaline at B receptors.

In Chapter 5, we used network analyses to unravel complex relationships between COVID-19
related stressors and emotional states during the initial phase of the COVID-19 pandemic.

Lastly, as mentioned above, there is ample evidence that indicate a link between stress with the
development of cognitive impairments, dementia, and even AD. Chapter 6, presents preclinical
and clinical research findings on curcumin, a natural compound, as a potential cognitive enhancer
for use in healthy aging and AD.

Chapter 7 contains the general discussion, in which the main findings, conclusions,
methodological considerations, and future directions are presented.
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Abstract

Humans are continuously exposed to stressful challenges in everyday life. Such stressful events
trigger a complex physiological reaction — the fight-or-flight response — that can hamper flexible
decision-making and learning. Inspired by key neural and peripheral characteristics of the fight-or-
flight response, here, we ask whether acute stress changes how humans learn about costs and
benefits. For this reason, healthy adults were randomly exposed to an acute stress (age
mean=23.48, 21/40 female) or no-stress control (age mean=23.80, 22/40 female) condition, after
which they completed a reinforcement learning task in which they minimize cost (physical effort)
and maximize benefits (monetary rewards). During the task pupillometry data were collected. A
computational model of cost-benefit reinforcement learning was employed to investigate the effect
of acute stress on cost and benefit learning and decision-making. Acute stress improved learning
to maximize rewards relative to minimizing physical effort (Condition-by-Trial Type interaction:
F(1,78)=6.53, p=0.01, n?c= 0.04; reward > effort in stress condition: #(39)=5.40, p<0.01).
Computational modeling revealed that asymmetric learning could be explained by changes in the
learning rates of reward value and action cost [condition-by-learning rate (aR, aE) interaction:
F(1,78)= 6.42, p=0.01, n?s= 0.03; aE>aR in control condition: #(39)=-4.75, p<0.001]. This process
was associated with distinct alterations in pupil size fluctuations. Data and scripts are available
(https://osf.io/lydv2a/). Here we demonstrate that acute stress is associated with asymmetric
learning about reward value versus action cost, thereby providing new insights into learning
strategies under acute stress, which, depending on the context, may be maladaptive or beneficial.
Our pupillometry and physiological results tentatively link asymmetric cost and benefit learning to
stress-related changes in catecholamine activity.

Keywords: acute stress, reinforcement learning, computational modeling, costs and bene-
fits, reward, effort
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Introduction

Stress is ubiquitous in everyday life. From recurrent, brief events (a work meeting, a public talk) to
maijor life events (pandemic, financial crisis, armed combat), humans are continuously exposed to
challenges in their daily environment. The combined psychological and physiological cascade of
events triggered by such stressors, termed the fight-or-flight (or acute stress) response, serves an
allostatic role that enables organisms to adequately respond to environmental demands (de Kloet,
Joéls, & Holsboer, 2005). Although beneficial for survival, this allostatic process comes at a cost:
stress-induced redistributions of neural resources - e.g., towards vigilance or threat - may hamper
the deployment of strategies that support adaptive and optimal decision-making (Joéls et al.,
2006).

Optimal decisions essentially depend on the ability to rapidly learn from the positive and negative
outcomes of previous actions, also known as reinforcement learning (Niv, 2009). Considerable
evidence suggests that acute stress modulates aspects of reinforcement learning (Berghorst et al.,
2013; Carvalheiro et al., 2020; Lighthall et al., 2013; Petzold et al., 2010; Raio et al., 2017), likely
driven by changes in reward sensitivity and the signaling of reward prediction errors (RPEs)
(Berghorst et al., 2013; Carvalheiro et al., 2020). Within the context of reinforcement learning,
RPEs - the mismatch between actual and expected outcomes - are used to flexibly adjust behavior
(Niv, 2009) and are putatively signaled by midbrain dopamine neurons (Bayer & Glimcher, 2005).

Intuitive as it is, the notion that the impact of acute stress on decisions primarily involves changes
in how reward value influences action may be oversimplified. Decisions are not only motivated by
appetitive properties; they equally depend on the - cognitive (e.g., mental effort) or physical (e.g.,
energy) - costs associated with actions (Pessiglione et al., 2017; Schmidt et al., 2012).
Expectations about action costs are also updated according to a prediction error rule (Skvortsova
et al., 2017; Skvortsova, Palminteri, & Pessiglione, 2014) (henceforth “effort” prediction errors;
EPEs). In cost-benefit decisions, the aversive value of action cost is typically subtracted from the
reward value to compute a “net”, or subjective decision value (i.e., effort-discounted reward value).
Notably, stress exposure impairs cost-benefit decisions in rodents (Friedman et al., 2017; Shafiei
et al.,, 2012). Moreover, in a reinforcement learning context, acute stress blocks the flexible
updating of aversive value (Raio et al., 2017), an inherent property of costly actions.

Despite computational similarities, distinct neural correlates of RPEs (e.g., striatal subdivisions,
ventromedial prefrontal cortex [vmPFC]) and EPEs (e.g., parietal cortex, insula, dorsomedial PFC)
can be observed in cost-benefit reinforcement learning paradigms (Skvortsova et al., 2014).
Moreover, the ascending dopaminergic (e.g., RPEs, action cost) (Schultz, Dayan, & Montague,
1997; Skvortsova et al., 2017), noradrenergic (e.g., energizing behavior) (Pessiglione et al., 2017;
Varazzani et al., 2015) and serotonergic (e.g., vigor, aversive value) (Meyniel et al., 2016)
neuromodulatory systems may encode dissociable aspects of goal-directed actions that involve
costs and benefits. These observations are noteworthy because acute stress triggers a large-scale
reorganization of brain networks that includes alterations in the firing mode of midbrain
dopaminergic and noradrenergic neurons (Arnsten, 2015; Hermans et al., 2014); which additionally

23



encode reward value, action cost and energy expenditure (Varazzani et al., 2015). Thus,
catecholaminergic mechanisms recruited by the fight-or-flight response may differentially impact
cost and benefit reinforcement learning.

Although the central effects of the fight-or-flight response trigger a shift in cognitive strategies, its
peripheral counterpart mobilizes the energy (i.e., adrenaline-mediated glucose (de Kloet et al.,
2005; Russell & Lightman, 2019)) required to exert effortful actions aimed at persevering
homeostasis. This could indicate that learning policies regarding physical costs may be especially
susceptible to stress: both via changes in computational (neural) learning mechanisms, and
peripheral autonomic mechanisms that control the amount of energy resources that can be
directed towards effortful actions. Indeed, preliminary evidence suggests that acute stress alters
the willingness to exert physical effort for rewards (Bryce & Floresco, 2016) and reward-associated
cues in a Pavlovian-instrumental transfer context (Pool et al., 2015).

The impact of acute stress on instrumental learning involving cost-benefit decisions has not been
investigated to date. In light of the above observations, we speculate that the use of
computationally frugal heuristics, in concert with increased energy availability during acute stress
will asymmetrically prioritize reward (maximization) learning over physical effort (minimization)
learning.

Methods

Participants

A total of 100 adult participants were recruited via paper and online advertisements. All participants
were screened for a DSM-5 psychiatric and/or neurological disorder, substance use, endocrine
and/or vascular disorder, abnormal BMI (>40 or <18), smoking and drinking (>10 cigarettes/units
per week), psychotropic medication use (lifetime) and hormonal contraceptive use (current; female
participants only). All participants completed the ~2-hour experiment between 12:00h and 18:00h
to minimize diurnal cortisol fluctuations (Bailey & Heitkemper, 2001). Participants were instructed
to refrain from alcohol (starting the evening before the day of the experiment), smoking, food,
caffeine intake, strenuous physical activity and brushing their teeth (all >2 hr prior to experiment),
which was verified verbally at the start of the session. Four participants were excluded due to an
equipment failure (n=4). Three participants quit during stress induction (n=2) or task procedures
(n=1). Because chance-level performance on reinforcement learning tasks might indicate a
successful manipulation, a lack of motivation, or a failure to comprehend the task instructions,
participants that performed at or below chance level (0.5) on both RL and/or both EL pairs near
the end of the experiment (final 10 presentations) were excluded (n=13; 6 acute stress, 7 no-stress
control), bringing the final sample to 80 participants. Including these participants did not alter our
key finding that acute stress was associated with asymmetric cost versus benefit learning (see
Supplemental Results, “Task performance analyses including chance-level performers”).
Pupillometry and neuroendocrine data were not processed further for these participants. G*Power
calculations suggested that in order to detect an effect of n? p = 0.04 (n? G ~ 0.03) with 95% power
in a mixed ANOVA (2x2, alpha = 0.05), we would need 40 participants in each group (N = 80). All
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participants completed the BIS (behavioral inhibition system)/BAS (behavioral activation system)
scale before the stress induction (Gray, 1982). No-stress and acute stress subjects did not differ
in BIS/BAS subscales, namely: BIS [{(77.50)=1.29, p=0.20], which measures motivation to avoid
aversive outcomes; BAS Reward Responsiveness [{(71.92)=0.34, p=0.74], BAS Drive
[t(77.82)=0.26, p=0.79], and BAS Fun Seeking {(72.80)=-0.54, p=0.59], which measure reward
sensitivity, motivation to approach goals and motivation for novel reinforcers, respectively. The
study was approved by the ethics committee of the Faculty of Psychology and Neuroscience,
Maastricht University (ERCPN-197_03_08_2018) and carried out in accordance with the
Declaration of Helsinki. Participants were remunerated in gift vouchers or research participation
credits.

Acute stress induction

The MAST is a validated stress-induction paradigm combining both psychological and
physiological stressors, and robustly increases neuroendocrine, physiological, and subjective
indices of acute stress (Smeets et al., 2012). During a 5-min preparation phase, participants were
informed about the upcoming task via oral and visually displayed instructions, followed by a 10-
min stress-induction phase consisting of alternating blocks of cold-water immersion (non-dominant
hand; 2°C) and backward counting in steps of 17 (while receiving negative evaluative feedback
from an experimenter), with a (non-recording) camera continuously directed at the participant’s
face, which was displayed to the participant on a second monitor. During the MAST no-stress
control condition, participants immerse their hand in lukewarm water (36°C) and perform simple
mental arithmetic, e.g., counting from 1 to 25 without receiving feedback or fake camera
recordings.

Neuroendocrine, physiological, and subjective stress measurements

Salivary cortisol (SCORT) and alpha-amylase (sAA) were collected to measure stress-induced
increases in hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes
activity, respectively (Dickerson & Kemeny, 2004; Nater et al., 2005). Saliva samples were
obtained using synthetic Salivette® devices (Sarstedt, Etten-Leur, the Netherlands) during 3-min
sampling periods at 6 time points. A baseline sample was collected 10 min prior to the MAST
(baseline: t1 = t-10) and five samples post-MAST (t2= t+o0, t3= t+10, t4= ti20, ts= t+30, t6= t+40). SAA
assessments were obtained only for ti-t4, due to the rapid decay of sAA post-stress induction
(Nater et al., 2005). For all participants, t2 marked the starting point for the reward value
maximization/action cost minimization task. Samples were stored at -20°C immediately after the
completion of each session. SCORT and sAA levels were determined using the luminescence
immune assay kit (IBL, Hamburg, Germany) and kinetic reaction assay (Salimetrics, Penn State,
PA, USA), respectively.

Systolic blood pressure (SBP) and heart rate (HR), indices of autonomic nervous system (ANS)
arousal, were assessed at t1 and t2 using an OMRON M4-| blood pressure monitor (OMRON
Healthcare Europe B.V., Hoofddorp, The Netherlands). Subjective affect ratings were assessed at
t1and tz2using the 20-item Positive and Negative Affect Scale (PANAS) (Watson, Clark, & Tellegen,
1988).
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Experiment design

Immediately post-MAST, and within the confines of the acute stress response (Hermans et al.,
2014), all participants completed a ~ 40-minute probabilistic cost-benefit reinforcement learning
paradigm, adapted from Skvortsova et al. (Skvortsova et al., 2017; Skvortsova et al., 2014), in
which they learned to select stimuli with high reward value (€0.20) and avoid stimuli with high
action cost (exerting grip force above a pre-calibrated individual threshold of 50% maximum
voluntary contraction for 3000ms).

On each of 120 trials, participants chose between two paired distinct black-and-white images
(stimuli) that were probabilistically associated with both the receipt of a monetary reward and
exertion of physical effort. In total, four distinct image pairs were presented, 30 presentations each.
For 2/4 pairs, participants could regularly acquire rewards by selecting one (optimal) stimulus over
the (suboptimal) other (henceforth, “reward learning”/RL pairs), while the probability of having to
exert effort was identical for both stimuli. For the other two pairs, choices of one stimulus were
more frequently followed by the avoidance of effort (“effort learning”/EL pairs), while the probability
of reward was kept constant between both. For all pairs, the probability of the stimulus property
that was kept constant (reward/effort) was set to a 33.3% chance of positive outcome upon
selection (reward/ effort avoidance) and 66.6% chance of negative outcome (no reward/effort).

To assess whether acute stress effects on reward maximization (RL pairs) and effort cost
minimization (EL pairs) learning were potentially mediated by task difficulty, we employed different
difficulty levels for each RL and EL pair. That is, for one RL and one EL (“easy”) pair, a choice for
the optimal stimulus was followed by a positive outcome in 83% (vs 17% negative outcome) of all
trials (83% negative/17% positive outcome for suboptimal stimulus); for the other RL and EL
(“hard”) pair a choice for the optimal stimulus was followed by a positive outcome in 70% (vs 30%
negative outcome) of all trials (and 70% negative/30% positive outcome) for the suboptimal
stimulus. This approach allowed us to disentangle whether acute stress primarily impacted domain
specific (RL vs EL) or general (easy vs hard) reinforcement learning.

For every participant, stimuli were randomly assigned to pairs, optimal/suboptimal stimulus
orientation was balanced (50% of all optimal stimulus presentations occurred on the left-hand side)
and misleading outcomes (e.g., negative outcomes for optimal stimuli) were equally spaced out
across the thirty presentations (and balanced for left/right side). Trial presentation order was
pseudo-randomized such that |) a given pair would never be presented more than twice in a row
and Il) the gap between two presentations of a given pair was never greater than four trials. After
the learning task, a surprise test phase followed, during which no feedback was delivered upon
choice (Hernaus et al., 2018). All participants received standard verbal instructions pre-MAST and
completed a 16-trial practice round before starting. Participants were not informed about stimulus-
outcome contingencies. They were only advised to accrue as much money as possible and avoid
exerting unnecessary effort, as they would not be able to skip any trial events.
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A more detailed overview of the paradigm is provided in Figure 1 and the Supplemental Methods
(“Reward maximization versus action cost minimization reinforcement learning task”).

| Fixation cross (500 + 200 ms) |

ﬂFixation cross (500 + 200 ms) |
RL EL
Optimal l Suboptimal

""""""""" ~Choice confirmation
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Figure 1 | Reward maximization/action cost minimization reinforcement learning task.

Visual depiction of the learning phase. Participants were presented with four distinct stimulus pairs, and all stimuli
were associated with a predetermined chance of a €0.20 monetary reward (versus no reward) and a chance of
having to exert physical effort (grip force) using a dynamometer (versus no grip force required). Both panels: all
120 trials (30 presentations per pair) started with a fixation cross, followed by the presentation of a stimulus pair,
upon which a self-timed choice was necessary. Following choice confirmation (tone immediately upon button
press), stimuli remained on-screen for 2000ms, upon which action cost (effort) outcomes and reward outcomes
were presented sequentially. An example of RL trials is presented on the left and an example of EL trials is
presented on the right. Percentages in blue and red refer to outcomes for the Easy RL/EL and Hard RL/EL pair,
respectively.

Computational modeling of cost and benefit reinforcement learning

To uncover latent mechanisms by which acute stress affects cost-benefit reinforcement learning,
we turned to cognitive computational modeling. In total, six candidate models were tested
(Supplemental Methods, “Computational cost-benefit reinforcement learning model: model
space”). The models contained between three and six free parameters, including learning rates for
reward (aR) and effort (aE), parameters that assign weight to the prediction error, and thus capture
learning speed, an inverse temperature parameter (B) to assess choice stochasticity, a linear
discounting parameter (y) to assess how the presence of action cost impacts reward valuation,
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and reward/effort weights (Wr, WE) to assess sensitivity to reward value and/or action cost (all
bounds [0, 1]).

Best-fitting parameters were identified using fmincon in MATLAB v.2019B (Mathworks, Natick, MA,
USA). Bayesian Model Selection using Akaike’s Information Criterion (AIC) (deLeeuw, 1992)
suggested that 2LR_y was the most likely model (exceedance probability: pxp, ¢ = 0.99;
expectation of the posterior: p(rly)= 0.70), which contains four free parameters: two separate
learning rates that weigh the importance of RPEs and EPEs (aR, aE), an action cost discounting
parameter (y), and an inverse temperature parameter (B). In this model trial-by-trial expectations
of participants were updated according to Egs. 1A and 1B:

Qru(s, a) = Qre-1)(S, a) + aR*RPE.1)(s, a) (1A)
Qew(s, a) = Qee1)(s, a) + aE*EPE.1)(s, a) (1B)
Here, Qre-1)(s, @) and Qew-1)(s, a) represent the expected reward value and action cost at trial ¢-17,
where s reflects the given pair and a refers to the more abstract action of selecting a stimulus,

aR and aE represent the reward and effort learning rates, and lastly, RPEt1)s, a) and EPE-1ys, a)
reflect the reward and effort prediction errors calculated as shown in Egs. 2A and 2B.

RPE( = rey — Qro(s, a) (2A)

EPEwy = ew— Qew(s, a) (2B)

Here, r) and e represent the reward and effort outcome for the chosen stimulus at trial {. Qrg(s,
a) and Qe(s, a) represent the expected reward value and action cost (i.e., effort) for the chosen
stimulus at trial t. For each choice option, a subjective decision value was calculated according to
the following equation (Eq. 3):

Qu(s, a) = Qruy(s, a) - Y*Qep(s, a) 3)

This equation weighs costs against benefits (represented by the difference between the expected
reward [Qre(s, a)] and action cost value [Qew(s, a)] at trial (f), and takes into account the
observation that humans tend to discount or prioritize certain types of information in their decisions
(y) (Apps et al., 2015; Inzlicht et al., 2018). Based on previous work using a similar task design

(Skvortsova et al., 2017; Skvortsova et al., 2014), here we only considered linear discounting (y).

Model fit was obtained via the log likelihood, which was updated trial-wise by the log of the
probability of the observed choice, calculated via a softmax rule (Eq. 4):

pr(s, a) = exp(Qu(s, a)) / sum(exp(B*Qu(s))) (4)
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Here, pr is the probability of selecting an action, B is the inverse temperature parameter that
captures choice stochasticity, Qu(s, a) is the net value of the chosen option and Q(s) represents
the net values of both stimuli in the pair.

To demonstrate the effect of changes in parameter values on choice preferences within the 2LR_y
architecture, we simulated choices from 50 artificial agents (averaged across 10 repetitions)
performing the reward maximization/action cost minimization reinforcement learning task using a
range of parameter values. As expected, greater values of aR and aE impacted the speed of RL
and EL choice preferences, while low values of y lead to asymmetric choice preferences through
discounting of action cost, and lower values of B lead to non-selective increases in random
sampling (Figure 2).

=3
o
" I
.
T

Accuracy

)
i‘
1
13

Trial
Parameter value [ .01/.1 =] .33/5 .66/10 .99/20

Figure 2 | Model demonstrations of the winning model.

To demonstrate how different parameter values within the 2LR_y architecture impact choice preferences for the
optimal stimulus (“accuracy”), aR, aE, and y were set to 0.01/0.33/0.66/0.99, while B, a non-linear parameter, was
set to 0.1/5/10/20. Parameter effects were always demonstrated for a single parameter (columns), while all other
parameter values were kept constant (aR and aE=0.25, y=1, B=25). Greater values of aR and oE selectively
increase the speed with which the agent develops a preference for the optimal RL and EL stimulus, respectively.
Lower values of y produce an asymmetric decision-making policy that emphasizes reward value over action cost,
leading to better performance on RL versus EL trials, while greater values of y correct this asymmetric choice bias.
Finally, greater 8 values lead to more deterministic sampling of optimal stimuli. Colored lines represent mean + SD.

Data simulation, model recovery and hierarchical model fitting were performed to validate the
model. Further information on the details of model fitting, model selection, and validation can be
found in the Supplemental Methods (“Computational cost-benefit reinforcement learning model:
Model Fitting, Selection, and Simulations”).
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Pupillometry

Fluctuations in pupil diameter were continuously measured using an SR-Research Eyelink 1000
Tower Mount infrared eye tracker while participants performed the reward maximization/action cost
minimization reinforcement learning task (1000Hz sampling rate, except for three participants,
whose data were obtained at 500Hz). Participants placed their head on an adjustable chin rest and
against a forehead bar to minimize motion. Eye-tracker (9-point) calibration was performed at the
start of the paradigm, and subsequently every 10 min. Stimulus luminance was matched using the
SHINE toolbox (Willenbockel et al., 2010) in MATLAB (v. 2014B; The MathWorks, Inc., Natick,
Massachusetts, United States). Due to the COVID-19 pandemic, pupillometry data were not
collected for the final eight participants. Three participants, moreover, failed the quality control for
eye-tracking data (2 no-stress control/1 acute stress) leaving a final sample of 69 participants with
eye-tracking data (34 no-stress control/35 acute stress).

Eye-tracking data were pre-processed using an open-source pre-processing toolbox (Kret & Sjak-
Shie, 2019) according to previous work (Jackson & Sirois, 2009). For each subject, blinks, and
other invalid samples, due to dilation speed, deviation from the trend line, and extreme values (Kret
& Sjak-Shie, 2019) were removed and the remaining data were interpolated, smoothed (4Hz low-
pass filter, fourth-order Butterworth filter) (Jackson & Sirois, 2009), z-scored (epoch-wise for
choice, effort outcome and reward outcome; see below) and down-sampled to 50Hz (i.e., 20ms).
Bins with fewer than 80% valid samples were removed (Lawson et al., 2020). For analyses, we
considered three epochs of interest: choice (-1500ms pre-choice - 1500ms post-choice), effort
outcome (0 - 1000ms post-outcome), and reward outcome (0 - 2000ms post-outcome). We
reduced the duration of the effort outcome epoch to 1000ms to minimize force exertion-related
effects on pupil size. Recent work has shown that prediction errors are encoded by pupil size
fluctuations within this timeframe (Lawson et al., 2020). Given that we observed large grip force-
associated effects on the pupillometry signal (see Supplemental Figure 3 middle row, for a
comparison between effort and effort avoidance trials), we limited effort outcome analyses in the
main text to effort avoidance trials, although we also report analyses involving all effort outcome
trials in Supplemental Figure 3.

Statistical analyses

Statistical analyses were conducted using R, version 3.6.2 (Team, 2020). Acute stress
measurements were analyzed using mixed ANOVAs involving Condition (between-factor: no-
stress control, acute stress induction) and Time (within-factor: 2 pre/post-MAST or 6 levels for
sCORT).

For the learning task, an accuracy score was calculated dividing the number of optimal choices by
the total trial amount (n=30 per pair). Mixed ANOVAs involving Condition, Trial Type (RL, EL) and
Difficulty (Easy, Hard pairs) were carried out. For analyses involving Time effects, accuracy scores
were averaged per bin of ten presentations (presentation 1-10, 11-20, and 21-30). Win-stay
(repeating a choice following a positive outcome) and lose-shift (choosing the other stimulus
following a loss) rates were also calculated for RL (yes/no reward outcomes) and EL trials (yes/no
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effort outcomes) (den Ouden et al., 2013). Model parameter differences were investigated using
Condition-by Learning Rate (aR, aE) mixed ANOVAs and independent samples t-tests.

Post hoc analyses for all ANOVAs were conducted using independent sample (Condition), paired-
samples (Time, Trial Type, Win-stay), and one-sample (#0.5) t-tests. Greenhouse—Geisser-
corrected statistics were reported when sphericity assumptions were violated. We report statistical
significance as p<0.05 (two-sided). In case of statistically significant results, generalized eta
square (ges; n’c) was reported.

With respect to pupillometry, we conducted both standard and model-derived analyses. We
investigated group differences in pupil size during choice, effort, and reward outcome stages, for
every bin of interest. In model-derived analyses, we used GLMs to regress computational
parameters from the winning (2LR_ y) model (Lawson et al., 2020) onto pupil size, for every
participant, epoch, and bin (see Supplemental Methods, “Pupillometry”). In group-level
comparisons using t-tests, we compared the resulting beta weights |) against zero (for the two
conditions separately) to investigate when the pupil encoded computational processes, and Il)
between groups, to assess stress-induced changes in associations between pupil size and
computational processes.

We conducted permutation tests at the bin- and cluster-level (2000 permutations, apermute=0.05) to
control the false-positive rate. All correlations were performed using Spearman’s p correlations.
When assessing correlations between acute stress measures and pupil encoding of predictions
errors permutation tests were used.

Results

Acute stress manipulation

We first ascertained whether the acute stress manipulation was successful. Acute stress and no-
stress control groups did not differ on physiological, subjective stress, or neuroendocrine
measurements pre-MAST (all p-values>0.05). We observed significant Condition-by-Time
interactions for subjective stress ratings [PANAS negative: F(1,78)=52.66, p<0.01, n?c=0.10;
PANAS positive: F(1,78)=9.82 p<0.01, n?:=0.02] and physiological measures [systolic blood
pressure (SBP): F(1,78)=15.50, p<0.01, n?c= 0.04; heart rate: F(1,78)=6.83, p=0.01, nc= 0.02].
Simple main effect analyses revealed that only the acute stress group exhibited pre-to-post
increases in negative affect [control pre-post: #(39)=4.21, p<0.01; stress pre-post: #39)=-6.17,
p<0.01; control-stress post-MAST: #(55.1)=-5.78, p<0.01], and greater pre-to-post decreases in
positive affect [control pre-post: {(39)=4.09, p<0.01; stress pre-post: {(39)=6.45, p<0.01; control-
stress post-MAST: #(72.8)=2.53, p=0.01]. Similarly, only the acute stress group exhibited stress-
induced increases in SBP [control pre-post: #39)=1.60, p=0.12; stress pre-post: {(39)=-3.66,
p<0.01; control-stress post-MAST: #69.1)=-3.27, p<0.01] and heart rate [control pre-post:
#(39)=1.21, p=0.23; stress pre-post: {(39)=-2.78, p=0.01; control-stress post-MAST: (76.9)=-3.14,
p<0.01] (Figure 3A-D).
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A Condition-by-Time interaction was found for salivary cortisol (sCORT) responses
[F(5,390)=18.05, p<0.01, n?c= 0.04] with the acute stress group displaying greater sCORT levels
10 min post-MAST and onwards (all p-values<0.01). We additionally observed a main effect of
Condition on sCORT area-under-the-curve with respect to increase: (AUCI) (Pruessner,
Kirschbaum, Meinlschmid, & Hellhammer, 2003) [{(56.32)=-5.28, p<0.01] and salivary alpha-
amylase (sAA) AUCI [{(67.45)=-2.50, p=0.02; after excluding one extreme outlier from the control
group], suggesting greater sCORT and sAA levels in response to acute stress (Figure 3E-G).
These results confirm that the MAST robustly induced stress on all levels of inquiry. No systematic
gender effects on stress parameters were observed (see Supplemental results, “Gender
analyses”).
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Figure 3 | Neuroendocrine, physiological, and subjective stress ratings.

PANAS negative (A) and positive (B) subscale sum scores, systolic blood pressure (mmHg: millimeters of mercury;
C) and heart rate (bpm: beats per minute; D) are displayed for no-stress control (blue) and acute stress (red) groups
separately for pre (light blue/red) and post (dark blue/red) MAST time points. SCORT responses for both conditions
across the 6 timepoints are displayed in panel E (“t.00” represents the first post-MAST measurement, and the start
of the reward maximization/action cost reinforcement learning paradigm; “t.1o” represent a baseline sample). Panel
F and G show AUCi for sCORT (nmol/l: nanomoles per liter) and sAA (U/mL: Units per milliliter) responses for both
MAST conditions. Significant differences are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001). In the
upper panel, the top line denotes a significant Condition-by-Time interaction; lower lines represent simple main
effects of Condition or Time.

Participants use reinforcement learning to optimize decisions

Initially, we investigated whether participants in both conditions exhibited evidence of learning to
optimize actions. This was confirmed by a main effect of Time on two distinct trial types: RL trials,
selecting the stimulus more frequently associated with a reward [control: F(2,78)=10.16, p<0.01,
n?c= 0.06; stress: F(2,78)=20.44, p<0.01, ns=0.17] and EL trials, selecting the stimulus more
frequently associated with avoidance of physical energy expenditure [control: F(2,78)=12.35,
p<0.01, n?c= 0.07; stress: F(2,78)=9.76, p<0.01, n?c= 0.05] (see Supplemental Figure 4).
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Asymmetric cost-benefit reinforcement learning during acute stress

After having observed evidence for reward (maximization) and action cost (minimization) learning,
we tested our key assumption; that acute stress would induce a reprioritization in learning to
maximize reward value versus learning to minimize action cost. Crucially, we observed a significant
Condition-by-Trial Type interaction [F(1,78)=6.53, p=0.01, n?c= 0.04] (Figure 4A) with pairwise
comparisons indicating that the acute stress group performed significantly better on RL than EL
trials [{(39)=5.40, p<0.01], while the control group performed similarly on both trial types
[t(39)=1.01, p=0.32]. Simple main effects of Condition on RL [{(65.9)= -1.75, p=0.09] and EL
[t(77.5)=1.80, p=0.08] performance showed numerical trends for group differences that failed to
reach significance (although see Supplemental Results, “Task performance analyses including
chance-level performers”).

We found no Condition-by-Trial Type-by-Difficulty [F(1,78)=1.05, p=0.31] or Condition-by-Difficulty
interactions [F(1,78)=0.36, p=0.55; Supplemental Figure 7], confirming that asymmetric cost vs
benefit learning in the acute stress group did not reflect a more general impairment in learning
about more difficult stimulus-response associations.

When we investigated the use of win-stay and lose-shift strategies (den Ouden et al., 2013), we
observed a significant Condition-by-Win/stay[F(1,78)=5.20, p=0.03, n?c= 0.02], but not a significant
Condition-by-Lose/shift interaction [F(1,78)=0.05, p=0.82, n?s= 0.00]. Post hoc comparisons
revealed that participants in the acute stress condition were more likely to win-stay for rewards (RL
trials) than for avoidance of action cost (EL trials) [t(39)=-4.91, p<0.01], while no-stress controls
exhibited similar win-stay rates on both trials [{(39)=-1.68, p=0.10]. Separate Condition (main
effect) analyses failed to reach significance [WS_reward: #71.9)= -0.37, p=1.00; WS_effort:
(76.6)=2.03, p=0.09] (Figure 4B).

Altogether, the behavioral results indicate that acute stress leads to a reinforcement learning
strategy that favors learning to maximize reward value over minimization of action cost, potentially
due to changes in sensitivity to positive (reward delivery) versus negative (avoidance of effort)
reinforcement. In analyses using surprise test phase data, the acute stress group again exhibited
a reward maximization-over-action cost minimization choice strategy, although here the Condition-
by-Trial Type interaction was not significant (p=0.29; see Supplemental Results, “Asymmetric cost-
benefit reinforcement learning biases actions in acute stress subjects”).
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Figure 4 | Acute stress leads to improved benefit versus cost learning.

Panel A: Average accuracy (choices of the optimal stimulus) for RL and EL trials, for each condition separately.
Panel B: Win-stay rates (choices following a positive outcome) for RL and EL trials, for each condition separately.
Means + SD, individual data points, distribution and frequency of the data are displayed. The top lines indicate
significant interactions. Significant differences are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p <0.001).

Acute stress selectively reduces the difference between reward and action cost learning
rates

Comparing parameters of the winning model (2LR_y) between conditions, we observed a
significant Condition-by-Learning Rate (aR, oE) interaction [F(1,78)= 6.42, p= 0.01, n?c= 0.03],
with greater EPE relative to RPE learning rates in no-stress control participants [{(39)= -4.75, p<
0.01], while learning rates in the acute stress group did not significantly differ [t(39)= -1.61, p=
0.12]. No between-group differences in aR and aE or in the other parameters (y, ) were observed
(all p-values>0.05) (Figure 5). Parameters obtained following hierarchical fitting recovered the
same pattern of the results, and additionally revealed that the no-stress relative to the acute stress
group displayed greater values of aE (Supplemental Results, “Hierarchical model fit”).

Paradoxically, symmetric reward value and action cost learning rates in the presence of lower
values of y will lead to more efficient RL compared to EL. This is because lower values of y bias
decisions towards reward value (via greater discounting of action cost) and similar absolute values
of aR/aE will not counteract this bias. Asymmetric learning rates (aE>aR) in combination with lower
values of y, however, will lead to more symmetric performance on RL and EL trials via more
efficient updating of action cost versus reward expectations. This interpretation is supported by our
demonstration of model parameters and post hoc simulations (Figure 2 and Supplemental 1B
respectively), as well as the observation that lower values of y (i.e., greater action cost discounting)
were associated with greater learning rate asymmetry (aE>aR; more efficient EL) in no-stress
controls [p(38)= -0.40, p= 0.04], who displayed similar RL and EL performance. These results
demonstrate that, in a context where all decisions involve a potential cost and benefit, acute stress
selectively reduces the difference between EPE and RPE learning rates, while leaving action cost
discounting and choice stochasticity unaffected. The direction of the change in learning rates (i.e.,
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greater similarity) implies a stress-induced failure to modulate learning rates in the service of
overcoming an asymmetric choice bias that emphasizes reward value.
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Figure 5 | Acute stress reduces the difference between reward and effort prediction error learning rates.
Free parameters (aR, aE, y, B) of the winning 2LR_ y model for both groups. Black lines denote means + SD, dots
represent individual data points, and the violin-like shape denotes distribution and frequency of the data. *: p <
0.05, **: p < 0.01, ***: p < 0.001.

Pupil size fluctuations track asymmetric cost-benefit reinforcement learning during acute
stress

We employed pupillometry to understand whether task-relevant computational processes may be
encoded by fluctuations in pupil dilation, which are thought to be controlled by ascending midbrain
modulatory systems that play a role in value-based decision-making and the acute stress
response.

We observed no main effect of Condition on pupil size fluctuations during choice, effort outcome,
and reward outcome epochs, suggesting that acute stress was not associated with more general
changes in pupil size (all bin-level p>0.05; Figure 6, A. Standard analyses; Supplemental Figure 3
for all effort trials; also see Supplemental Figure 2 for non-z-transformed pupil responses to task
events).

Next, we conducted model-derived pupillometry analyses (Lawson et al., 2020). These analyses
revealed effects of Condition on pupil encoding of subjective decision value, EPEs and RPEs
(Figure 6, B: Model-derived analyses) in a manner commensurate with task performance results.
Immediately prior to the stimulus choice, acute stress reduced pupil encoding of subjective
decision value (pupil size-subjective decision value association control>stress; stress n.s.,
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control>0). Briefly following presentation of effort avoidance outcomes, groups exhibited different
pupil size-EPE associations, with no-stress controls showing a non-significant numerically positive
pupil size-action cost prediction error association (control>stress, both groups n.s. different from
0). When using all effort outcome trials, we were unable to uncover group differences in pupil
encoding of EPEs, due to prominent grip force-related effects on pupil size (Supplemental Figure
3). Finally, during reward outcomes, acute stress participants exhibited greater positive
associations between pupil size and RPEs compared to no-stress controls (stress>control,
stress>0, control n.s.). The average pupil size-RPE slope for bins in which no-stress control and
acute stress participants differed (Figure 6B), correlated significantly with stress-induced changes
in SBP [pstress(38)= -0.41, p(permutation)=0.02] and PANAS negative affect changes [pstress(38)= -
0.46, p(permutation)=0.01] in the stress group. Off note, in computational modeling analyses, aR
was also correlated with SBP [0ar_stress (38) =-0.36, p(permutation)=0.03], and aR-aE difference
was correlated with PANAS negative affect changes pauditt_stress (38) =-0.35, p(permutation)=0.03]
in the stress group, suggesting that moderately stressed individuals drove the learning asymmetry.

Group differences in pupil encoding of subjective decision value, EPEs, and RPEs imply that the
ascending neuromodulatory systems may have facilitated a stress-induced shift in asymmetric cost

versus benefit learning.
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Figure 6 | Model-derived analysis reveals altered pupil encoding of prediction errors and decision value
during acute stress.

A. Standard analyses of pupil size during choice, effort outcome, and reward outcome phase revealed no main
effect of Condition (no-stress control, acute stress). B. Model-derived analyses revealed a stress-induced shift in
pupil encoding of subjective decision value (left), action cost prediction errors (middle) and reward prediction errors
(right). Black line indicates significant main effect of Condition; blue and red line indicate significance against zero
for no-stress control and acute stress groups, respectively (cluster and bin level apermute<0.05, 2000 permutations).
Group differences in pupil encoding of action cost and reward prediction errors were observed at similar times (note
the x-axis differences for effort outcome and reward outcome epochs).
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Discussion

Stress-induced alterations in adaptive decision-making are commonly studied using paradigms
that isolate positive and negative reinforcement, such as the receipt of a reward or avoidance of a
loss. However, it remains poorly understood how acute stress affects the complex process that
entails learning about costs and benefits, a critical feature of everyday decisions. In this study,
participants completed a paradigm in which all stimulus choices contained a potential cost (exerting
physical effort) and a financial benefit (€0.20). Acute stress induced a shift in reinforcement
learning strategies that improved maximization of monetary rewards relative to minimization of
energy expenditure.

Relative improvements in reward versus action cost learning align well with previous reports of
enhanced reward learning during acute stress (Byrne, Cornwall, & Worthy, 2019; Lighthall et al.,
2013; Petzold et al., 2010), although such effects may depend on stressor timing (Joéls et al.,
2006), type (Carvalheiro et al., 2020), and/or sample characteristics (Evans & Hampson, 2015).
While reports on action cost learning during acute stress are scarce, acute stress impairs cost-
benefit decisions in rodents via changes in physical effort sensitivity, a process mediated by
corticotropin-releasing factor and dopamine (Bryce & Floresco, 2016). Our win-stay/lose-shift
analyses indicate that asymmetric cost-benefit learning can result from increased sensitivity to
monetary gains versus avoidance of costly deterrents.

How might maximization of reward value take precedence over minimization of action cost? Acute
stress leads to a redistribution of finite cognitive resources (Hermans et al., 2014): this process
limits availability of computationally intensive strategies, including working memory (Qin et al.,
2009) and goal-directed instrumental actions (Lars Schwabe & Wolf, 2011). Assuming that acute
stress does not merely increase random responding - which we verified via the choice stochasticity
model parameter - a computationally cheap heuristic in our task should present itself as better
learning for one modality over the other. Increased energy availability (Hermans et al., 2014),
insensitivity to aversive stimuli (Timmers et al., 2018), and impaired aversive value updating (Raio
et al., 2017) under stress may have reduced the ability — or urgency — to dedicate cognitive
resources to strategies that minimize action cost. Importantly, effort expenditure can increase the
perceived value of rewards (Inzlicht, Shenhav, & Olivola, 2018). Thus, frequent expenditure of
physical effort may increase the perceived value of rewards, and ftilt learning towards the
maximization of reward value.

Whether this interpretation generalizes to the domain of cognitive efforts is currently unclear.
Bogdanov et al. (2021) recently showed that acute stress reduced the willingness to exert cognitive
effort, which may be explained by divergent neural versus peripheral effects of stress or could even
point to redistribution of resources towards bodily processes. These seemingly divergent results
for cognitive and physical effort under stress may align with the reticular-activating hypofrontality
model. This model proposes the existence of opponent cognitive and procedural systems, the latter
dominating the former during physically-demanding tasks (Dietrich & Audiffren, 2011) — a process
that acute stress may further facilitate. Moreover, studies evaluating prolonged physical activity
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have reported reduced activity in brain areas associated with mental effort (although physical
activity intensity is important (Schmit et al., 2015)), and reduced attention towards physical activity
resulting in attenuated feelings of fatigue (Radel, Brisswalter, & Perrey, 2017). Formal comparisons
of physical and cognitive effort under stress (or their trade-off) could provide valuable insights.

Using computational modeling (Skvortsova et al., 2017; Skvortsova et al., 2014), we confirmed
that biased cost-benefit learning can arise when inappropriate (i.e., similar) importance is afforded
to signals that convey information about reward value (RPEs) and action cost (EPEs). Humans
presumably display instinctive biases, such as more efficient learning from better-than-expected
(vs worse-than-expected) outcomes (Lefebvre et al., 2017) and asymmetric “Go”/approach (vs
“No-Go”/avoidance) learning (Guitart-Masip et al., 2012), the latter being a bias modulated by
acute stress (de Berker et al., 2016). From this perspective, no-stress controls, who assigned
greater importance to EPEs than RPEs, may have used a computationally costly learning strategy
that provides counterweight to decisions that are biased towards maximizing reward value
(captured by the discounting parameter y). Paradoxically, when decisions are by default tilted
towards reward value, similar reward and action cost learning rates will facilitate reward learning
but hamper action cost learning. Reduced learning rate asymmetry in the presence of action cost
discounting may, therefore, represent a computational heuristic that is employed when cognitively
demanding learning strategies are unavailable and the policy towards energy expenditure is more
liberal, such as during acute stress.

Importantly, stress-induced changes in task performance may crucially depend on catecholamine
release in neural circuits that support motivation and learning. Dopamine’s actions at basal ganglia
D1 and D2 mediate approach and avoidance learning (Frank, Seeberger, & Reilly, 2004), and
acute stress improves associative learning by augmenting reward-evoked dopamine bursts in
selective striatal subdivisions (Stelly et al., 2020). Dopamine’s enhancement via L-DOPA
administration, moreover, improves reward but not action cost learning (Skvortsova et al., 2017).
To the degree that pupillometry can be considered a proxy measure of neuromodulatory activity,
these findings are consilient with greater encoding of RPEs by pupil size fluctuations during acute
stress. Negative correlations between SBP and PANAS negative affect with RPE-pupil size slopes
(and aR) suggest that primarily moderately stressed participants displayed a preference for
maximizing reward value, consistent with an inverted U-shape relationship between cognitive
performance and DA transmission, which is modulated by stress (Baik, 2020). Noradrenaline,
however, mobilizes available energy to complete effortful actions and locus coeruleus neurons
track energy expenditure (Varazzani et al., 2015). Stress-induced sAA concentrations, increased
heart rate, and group differences in the association between pupil size fluctuations and EPEs all
point to involvement of the noradrenaline system. Thus, model-derived pupillometry and stress-
induction results hint at stress-sensitive dopaminergic and noradrenergic mechanisms that may
regulate cost-benefit learning, which could be explored in future work.

The results presented here may improve understanding of stress-related psychopathology. While
asymmetric cost-benefit learning during acute stress may be beneficial to reach a desired goal
state (e.g., safety) despite high action cost, such strategies could also be maladaptive. For
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example, stress exposure can lead to drug or smoking relapse (Schwabe, Dickinson, & Wolf,
2011), a context in which reward value and action cost may be misaligned. Cost-benefit
reinforcement learning may provide a useful framework to test hypotheses regarding stress-related
impairments in learning and decision-making.

Some study limitations need to be acknowledged. First, pupil dilation associated with effort
expenditure greatly reduced our power to detect robust associations between EPE encoding and
pupil size fluctuations. Future studies should, therefore, consider greater temporal delays between
effort outcome and expenditure phases. Second, while our computational model could recover
overall task performance patterns, group differences were subtle and dependent on other (non-
learning) parameters, highlighting the importance of interindividual differences in model
parameters. Third, although between-group differences on separate trial types failed to reach
significance, it is important to note that in the presence of costs and benefits for all choices on
every trial, participants might adopt a task-general learning policy, which is reflected in the
difference between performance on reward maximization and action cost minimization trials.
Lastly, collection of sex hormones and additional psychometric (character/trait-like) data would
have facilitated identification of additional moderators of the observed stress-induced performance
changes.

Conclusion

To summarize, we present evidence of asymmetric effects of acute stress on cost versus benefit
reinforcement learning during acute stress, which computational analyses explain as a failure to
assign appropriate importance to RPEs versus EPEs, and our model-derived pupillometry
tentatively link to activity of ascending midbrain neuromodulatory systems. These results highlight
how learning under acute stress can be tilted in favor of acquiring rewarding things and away from
the avoidance of physically costly things.
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Supplemental Information

Supplemental Methods

Reward maximization versus action cost minimization reinforcement learning task

Upon completion of the MAST (stress/ no stress condition), all participants completed a
probabilistic stimulus selection paradigm during which they learned to select stimuli with high
reward value (20 Eurocents) and avoid stimuli with high action cost (exerting force above a pre-
calibrated individual threshold for a duration of 3000 ms). The paradigm was designed in PsychoPy
v3.0.0b11 (Peirce et al., 2019) and presented on a 24" monitor (ilyama ProLite b2483HSU).
Physical effort (in mV/kgf) was registered using a hand-held dynamometer in combination with a
transducer amplifier (DA100C) and data acquisition system (MP160; all manufactured by BIOPAC
Systems, Inc). Individual effort thresholds used throughout the task were obtained by calculating
50% of each participant's maximal voluntary contraction (MVC) (Le Heron et al., 2018) reached
over three calibration trials by squeezing the dynamometer with the dominant hand.

During the task at trial onset, a fixation cross flanked by two images was presented; participants
chose one image by pressing the V/B button for the left/right option, respectively. A 440Hz/600 Hz
tone for left/right choice (200 ms) was presented to confirm the participant's choice. Next, a
thermometer with the command “SQUEEZE” or “DON'T SQUEEZE” was displayed. If participants
were required to exert effort, they were instructed to squeeze the dynamometer until the mercury
level reached the top. The mercury bar only moved if participants exerted above-threshold levels
of force and stopped moving if exerted force fell below. The cumulative above-threshold time was
3000 ms. If no effort production was required, an animation of a rising mercury bar was displayed
(3000 ms). Finally, a screen was presented showing either a €0.20 coin or a crossed-out coin,
indicating no reward (3000 ms).

The task contingencies described in the manuscript were based on extensive pilot tests to identify
a reinforcement schedule that would enable us to detect stress-induced improvements and
decreases in task performance. We selected task contingencies based on pilot sessions involving
a no-stress control condition and chose a reinforcement schedule associated with non-ceiling/floor
performance on RL and EL trials. The selection of these contingencies was also chosen to make
it challenging for the participants to adopt a pair-specific policy towards reward maximization and
action cost minimization, since this would require the agent to track reward and effort outcomes
for 8 unique stimuli. This is noteworthy, since a pair-specific learning or decision-making policy can
be a useful strategy in more common instrumental learning paradigm in which all choices are
associated with a single outcome (e.g., separate gain-seeking or loss-avoidance pairs) — in this
context, experiencing a single gain, or loss, provides information about the trial type. In contrast,
within our paradigm architecture, and to the degree that they do not rely on working memory,
participants would typically weigh costs against benefits when making their decision. As such,
(stress-induced) alterations in the influence of reward value and action cost on choices can be
investigated by comparing accuracy on RL versus EL pairs, since this measure would be indicative
of the more general policy towards reward maximization versus action cost minimization.
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Following the learning phase, participants completed a surprise test phase, similar to previous
work (Hernaus et al., 2019; Hernaus, Gold, Waltz, & Frank, 2018). This phase consisted of 64 trials
in which participants were presented with the original four, as well as six novel, stimulus
combinations. Participants were asked to choose the stimulus with the highest reward value or the
lowest action cost - depending on a coin or thermometer image presented in the middle of the
screen - and received no choice feedback. This allowed us to assess acquired choice tendencies,
as well as generalizability of this information to novel situations. The four original pairs were
presented four times (total n = 16), during which we only asked participants to discriminate on the
basis on the reward value (for RL) or action cost (for EL). For novel stimulus combinations, we only
presented stimuli that differed in reward value/action cost if reward value discrimination/action cost
discrimination was assessed (total n = 48: n = 4 presentations for the 6 combinations).

Prior to performing the actual task, participants completed a practice phase. A 60% accuracy
performance threshold on both trial types was used to confirm that participants understood the
general task procedure. The practice round was repeated if participants failed to reach 60%
accuracy. To prevent learning, we used deterministic stimulus-outcome probabilities and different
stimuli.

Computational cost-benefit reinforcement learning model: model space

In an attempt to uncover latent mechanisms by which acute stress affects reward maximization
and/or action cost minimization, we turned to computational modeling. We employed a modified
reinforcement learning framework based on Rescorla and Wagner (Rescorla, 1972), and used in
Skvortsova et al. (Skvortsova et al., 2017; Skvortsova et al., 2014) to investigate whether acute
stress impacted learning about sensitivity to, and/or discounting of reward value and action cost.
We first describe the model space.

Various reinforcement learning models assume that choice preferences of an agent are updated
via the prediction error, i.e., the mismatch between outcome and expectation (Egs. 1A, 1B) and
the critical quantity that drives learning (Rescorla, 1972):

RPEw =ry — Qro(s, a) (1A)

EPEw = en — Qew(s, a) (1B)

Here, Qr((s, a) and Qe(s, a) represent the expected reward value and action cost (i.e., effort),
where s reflects the given pair and a refers to the more abstract action of selecting a stimulus, r¢)
and e represent the reward and effort outcome for the chosen stimulus at trial £. RPE«) and EPE(y),
thus, represent the RPE and EPE at trial t, respectively.

In order to allow for the possibility that humans do not calculate the prediction error against the
actual outcome but, rather, what the outcome “feels” like (Huys, Pizzagalli, Bogdan, & Dayan,
2013), we considered a scenario in which reward and effort outcomes are first multiplied by a free
parameter that captures the weight that reward and effort outcomes receive (“Wr” and WE” in Egs.
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2A and 2B). As the value of these parameters approaches 1, reward is increasingly valued more
positively, and effort more negatively. These parameters, therefore, control the maximum size of
the prediction error.

RPEw = (rv*Wr) — Qr(s, a) (2A)

EPEw = (ey*WE) — Qew(s, a) (2B)

In various formulations of reinforcement learning, such as Q-learning (Watkins & Dayan, 1992)
and the actor-critic framework (Niv, 2009; Rescorla, 1972), the degree to which prediction errors
update choice preferences is represented by a, the learning rate (Eq. 3A), which determines how
current prediction errors update choice preferences on the subsequent trial. High values of a allow
for rapid updating of choice preferences, while a low a implies that choice preferences are updated
at a slower pace and are thus co-determined by outcomes further into the past.

Qr(s, a) = Qre-1)(S, @) + aR*RPEw1(s, a) (3A)

Qew(s, a) = Qee-1)(S, @) + aE*EPE.1)(s, a) (3B)

Extensive evidence suggests that organisms use different learning systems for different types of
information, including reward value and action cost (Palminteri & Pessiglione, 2017; Skvortsova et
al., 2017; Skvortsova et al., 2014) (Egs. 3A/B). Thus, the use of separate learning rates for RPEs
and EPEs allows for asymmetrical learning about these types of information.

While the learning rate controls the speed at which choice preferences are updated, learning rate
(nor reward/effort weight) alone does not explain how learned estimates of reward value and action
cost may compete at the decision stage (i.e., when participants choose between two stimuli).
Agents weigh costs against benefits to calculate a subjective decision value (Pessiglione, Vinckier,
Bouret, Daunizeau, & Le Bouc, 2017; Skvortsova et al., 2017), which is used to guide choices (Eq.
4).

Qu(s, a) = Qry(s, a) - Qep(s, a) 4)

In its simplest form, Q, the subjective decision value of a stimulus is represented by the difference
between the expected reward and action cost value at trial t (Eq. 4) (Skvortsova et al., 2014).
However, this particular operationalization of subjective value does not take into account the
observation that humans tend to discount or prioritize certain types of information in their decisions
(Apps, Grima, Manohar, & Husain, 2015; Inzlicht, Shenhav, & Olivola, 2018). We, therefore,
allowed for variation in the calculation of subjective decision value via action cost discounting (Eq.
5). While discounting rates can be linear or hyperbolic (Hartmann, Hager, Tobler, & Kaiser, 2013),
here we only considered linear discounting in light of previous work using a similar task design
(Skvortsova et al., 2017; Skvortsova et al., 2014). As the value of y approaches zero, action cost
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discounted increases leading the agent to ignore action cost/only utilize reward value to make a
decision.

Qu(s, a) = Qru(s, a) - y*Qep(s, a) ()

Once the subjective decision value has been computed, the degree to which participants
deterministically sample the optimal stimulus is captured by a softmax decision function (Eq. 6).

pr(s, a) = exp(Qu(s, a)) / sum(exp(B*Qu(s))) (6)

Here, pris the probability of selecting an action, 8 is the inverse temperature parameter that among
others captures the balance between exploration and exploitation (Nassar & Frank, 2016), Qu(s,
a) is the net value of the chosen option and Q(s) represents the net values of both stimuli in the
pair.

Within the above-described model space our predictions of acute stress effects on reward
maximization and action cost minimization could, thus, be explained by changes in sensitivity to
reward value and/or action cost (Wr, WE), changes in how much weight RPEs and EPEs are
afforded (i.e., learning rates, aR, aE), and/or changes in the discounting of reward value by action
cost (y). If acute stress leads to more random responses, such effects should be captured by .

Based on our predictions and the obtained pattern of results (most notably asymmetrical RL/EL
performance in the acute stress condition), we considered six candidate models that could capture
these various scenarios: |) a model with 2 distinct learning rates for reward and effort (aR, aE)
[2LR]; 1) a model with 2 learning rates (aR, aE) and a discounting parameter (y) (2LR_ y); Ill) a
model with 2 learning rates (aR, aE), a reward weight (WRr) and an effort weight parameter (We)
(2LR_WRr_WE), IV) a model with a single learning rate (a), reward weight (Wr), effort weight (We),
and a discounting (y) parameter (LR_ Wr__WEe_ y); V) a model with 2 learning rates (aR, aE), a
reward weight (Wr), and a discounting (y) parameter (2LR_W-r_y); VI) a model with 2 learning
rates (aR, oE), a reward weight (Wr), effort weight (We) and discounting (y) parameter (2LR_ Wr_
WE_Y).

All models contained a B parameter. Consistent with previous work (Skvortsova et al., 2017;
Skvortsova et al., 2014), reward and action cost outcomes were set to [0,1 for no/yes reward] and
[-1,0 for nolyes effort avoidance], respectively.

Computational cost-benefit reinforcement learning model: Model Fitting, Selection, and
Simulations

Bayesian Model Selection (BMS; spm_BMS function in SPM12,
http://www fil.ion.ucl.ac.uk/spm/software/spm12/) using the AIC as a fit statistic that penalizes for
the number of model parameters (Myung, Tang, & Pitt, 2009), suggested that the 2LR_y model
was the most likely model, as indicated by the protected exceedance probability (pxp, ¢ = 0.99)
(Rigoux, Stephan, Friston, & Daunizeau, 2014) and expectation of the posterior [p(rly) = 0.70]
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(Supplemental Figure 1A for p(rly) of all candidate models). We note that 2LR_y remained the
most likely model when we considered additional models with greater redundancy and/or lesser
biological plausibility (e.g., models with all combinations of reward value/action cost discounting
and weight parameters).

In post hoc simulations, i.e., generating participant choices using the obtained parameters, we
observed moderate-to-high correlations between simulated and empirical RL/EL for the acute
stress and no-stress control group [PRL_control = 0.55, p < 0.01; prL_stress = 0.84, p < 0.01; PEL_control
= 0.56, p < 0.01; peL_stress = 0.77, p < 0.01; see Supplemental Figure 7], although the canonical
performance difference in RL versus EL accuracy was not selective to the acute stress group
[tcontro1(39) = -6.72, p < 0.01; fstress(39) = -6.01, p < 0.01]. However, after we fixed 8 and y to group-
level averages to better demonstrate the effect of group differences in the learning rate parameters,
we recovered a small but significant simulated difference in RL versus EL performance for the
acute stress group [#(39) = 2.27, p = 0.03], which was not predicted in the no-stress control group
[t(39) = 0.91, p = 0.37] (Condition-by-Trial Type interaction: [F(1,78) = 0.77, p = 0.38, n?c = 0.01];
Supplemental Figure 1B for empirical versus simulated data, averaged across 100 repetitions per
subject).

Importantly, even if a given model is the most likely one based on model fitting and post hoc
simulation results from the entire sample, there is still the possibility that different models can better
explain task performance in the no-stress control and acute stress condition. When repeating BMS
for each condition separately, 2LR_y was the most likely model in the no-stress control group [¢ =
0.99, p(rly) = 0.83], while for acute stress subjects 2LR_y was not convincingly the most likely
model [¢ = .47, p(rly) = 0.46]. Here, the 2LR model (containing aR, aE, and B parameters) was
equally likely to be the optimal model [¢ = 0.53, p(rly) = 0.47]. Post-hoc simulations from the 2LR
model also correlated with actual data, both for no-stress control [or. = 0.65, p < 0.01; peL =
0.60, p < 0.01] and acute stress participants [prL = 0.81, p < 0.01; peL = 0.75, p < 0.01].

Similar to the 2LR_ y model, the 2LR model seemingly also explained stress-induced changes in
cost-benefit reinforcement learning via changes in learning rates; in the 2LR model, the acute
stress group exhibited greater values of aR versus aE [{(39) = 2.65, p = 0.01], while no-stress
control subjects did not [t(39) =. 0.69, p = 0.50] (Condition-by-Learning Rate interaction: [F(1,78)
=2.88, p = 0.09, n?c = 0.01]. The difference in learning rates between 2LR_y (where aR and aE
are similar for the acute stress group, see Results) and 2LR (where aR > oE for the acute stress
group) can be explained by the absence of discounting parameter y: 2LR is a special case of
2LR_y, where y = 1, and thus asymmetric effects of acute stress on reward value maximization
and action cost minimization can only be explained by dissimilarity in learning rates.

Although the effects of acute stress on reward value and action cost learning rates are opposite in
2LR_ y versus 2LR architectures, these results bolster our confidence in the overall model space,
as well as the interpretation that acute stress primarily impacts reward value and action cost
learning rates, and not discounting. The observations that I) 2LR_ y fit better in the entire group of
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participants, IlI) 2LR is fully contained within the 2LR_ y model, and Ill) 2LR_ y displayed good
recoverability (see below) motivated our choice to focus on the 2LR_y model.

In model recoverability analyses i.e., re-fitting the simulated data from the model to all candidate
models (Wilson & Collins, 2019), BMS confirmed that the simulated 2LR_y data (that is,
simulations without fixed parameters) were most likely to be generated from 2LR_y [¢ = 0.99, p(rly)
=0.71].

To assess the stability of 2LR_y parameters, we repeated model fitting using a Bayesian
hierarchical model fitting approach consisting of two steps, as described previously (Daw, 2011;
Frey, Frank, & McCabe, 2019). In the first step, we fit the 2LR_y model to trial-wise choices to
obtain subject-specific parameters; in a second step, we again fit the model to trial-wise choices,
but this time we used the group-level average and covariance matrix of every parameter as priors,
thereby shrinking the parameter search space. Motivated by recent work showing that group-
specific priors, compared to a single prior for the entire sample, can better account for between-
group differences in task performance, as well as improve parameter robustness and recoverability
(Valton, Wise, & Robinson, 2020), we used separate mean and covariance matrices for the acute
stress and no-stress control groups.

Highly similar parameter estimates were obtained after hierarchical fitting (for parameter estimates
after Bayesian hierarchical model fitting; see Supplemental Figure 9). Similar to post hoc
simulations using parameters from the non-hierarchically fit 2LR_y model, we observed moderate-
to-high correlations between empirical and simulated data using parameters obtained from the
hierarchically fit model [OrL control = 0.65, p < 0.01; PRL_stress = 0.84, p < 0.01; PEL control =
0.37, p =0.02; peL_stress = 0.78, p < 0.01; see Supplemental Figure 9]. All in all, these results confirm
parameter stability within the 2LR_y architecture.

In light of model fitting results, post-hoc simulations, model and parameter recoverability analyses,

we used parameters and trial-by-trial predictions of the non-hierarchically fit 2LR_ y model in the
main analyses.
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Supplemental Figure 1 | Model selection and post hoc simulations of the winning model.

Panel A: Expectation of the posterior for all candidate models. Panel B: Post-hoc simulations after fixing B and y
to group-level averages. Colored lines represent mean + SD. Dashed lines denote chance level (0.5). *: p < 0.05,
**:p<0.01, ***: p<0.001.
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Pupillometry
Raw (here: preprocessed, non-baseline-corrected, non-z-scored) pupillometry data are visualized
in Supplemental Figure 2.
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Supplemental Figure 2 | Pupil dilation track on raw data.

Top: Raw pupillometry data for effort/no effort outcomes for effort learning trials. Bottom: Raw pupillometry data
for reward/no reward outcomes for reward learning trials. To clearly visualize the effect of yes/no reward outcomes,
we include only reward learning trials in which no effort was required.

With regards to model-derived analysis, for the choice phase we regressed trial-wise measures of
pupil size against trial-wise estimates of the subjective decision value (i.e., effort-discounted
reward value) of the chosen stimulus. For the effort and reward outcome phase, trial-wise EPEs
and RPEs were the primary predictors of interest, respectively. Trial number (1-120) and presented
images/pair (RL_easy, RL_hard, EL_easy, EL hard) served as additional predictors of interest for
all models. Additional epoch-specific variables of interest were included for the choice (optimal
choice yes/no), effort (action cost of chosen stimulus, effort avoidance yes/no), and reward (reward
value of chosen stimulus, reward yes/no) outcome phase. Similar results were obtained when
repeating the analyses with more elaborate GLMs (e.g., the addition of yes/no most likely outcome
based on reward/effort outcome probabilities [“surprise”] and reward/action cost for EL/RL trials).
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Supplemental Figure 3 | Pupillometry analyses using all effort outcome trials.

Left: Standard analyses of pupil size using all effort outcome trials. Middle: Pupil size differences during effort/effort
avoidance outcomes in the entire sample; force exertion was associated with large effects on pupil size and were
therefore excluded from analyses. Right: Model-derived action cost prediction error analyses using all effort
outcome trial.
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Supplemental Results

Participants use reinforcement learning to optimize decisions

First, we explored whether participants exhibited evidence of reinforcement learning to optimize
actions, which in this paradigm should be reflected by an increased tendency to select stimuli with
high reward value and avoid stimuli with high action cost as a function of increasing number of
stimulus pair presentations (i.e., “time”).
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Supplemental Figure 4 | Evidence of reward and action cost reinforcement learning.

Optimal stimulus choices (“accuracy”) on reward learning (RL) and effort learning (EL) (rows) trials for both
conditions (columns). Trials were binned into groups of 10 presentations. Participants performed significantly better
than chance level (0.5) in all bins. Means * SD. Significant differences are denoted by asterisks (*: p < 0.05, **: p
< 0.01, ***: p < 0.001).
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Task performance analyses including chance-level performers

Repeating key task performance analyses including participants that performed at chance level (<
0.5, total n = 93), we were still able to recover a Condition-by-Trial Type performance in the model
of accuracy [F(1,91) = 7.30, p = 0.04, n?s = 0.04], with the acute stress group displaying better RL
vs EL performance [t(46) = 5.83, p < 0.01], while no-stress controls performed similarly on both
trial types [t(45) = 1.24, p = 0.22]. Participants in the acute stress group outperformed participants
in the no-stress control group on RL [{(91) = 2.04, p = 0.04], but no simple main effects of Condition
were observed for EL [{(91) = -1.67, p = 0.1].

Gender analyses

We performed a series of additional mixed ANOVAs and t-tests to analyze potential gender
differences in psychological and physiological measures (PANAS negative, PANAS positive, SBP,
heart rate, sSCORT_AUCI, sAA_ AUCI) as well in the dependent variables (accuracy and Win/stay
rate).

SBP and heart rate showed no significant Gender-by-Condition-by-Time, Gender-by-Condition nor
Gender-by-Time interactions (all p-values>0.05). PANAS negative subscale analyses revealed
significant Gender-by-Condition-by-Time [F(1, 76) = 7.03, p = 0.01, n?%s = 0.01] and Gender-by-
Time [F(1, 76) = 5.95, p = 0.02, n?s = 0.01] interactions, but a non-significant Gender-by-Condition
interaction [F(1, 76) = 3.47, p = 0.07, n“c = 0.04]. Post- hoc comparisons indicated a significant
difference in the stress condition post-MAST [#(37.7) = -2.26, p = 0.03] with females scoring higher
than males on PANAS negative subscale. In addition, PANAS positive subscale showed a
significant Gender-by-Condition-by-Time [F(1, 76) = 5.67, p = 0.02, n?s = 0.01] but no Gender-by-
Condition nor Gender-by-Time interactions (all p-values>0.05). Post-hoc analyses revealed no
gender differences (all p-values > 0.05). No significant gender differences were observed for
sAA_AUCiI [{(32.4) = -0.52, p = 0.61]. However, there was a marginally significant difference after
stress induction in sCORT_AUCi [{(34.5) = 2.07, p = 0.05] with males having higher cortisol levels
than females.

Lastly, with regards to task performance variables, overall accuracy, and Win/stay rates, we
observed no Gender-by-Condition-by-Trial Type, Gender-by-Condition, nor Gender-by -Trial Type
interactions (all p-values > 0.05).

Overall, these analyses provided no systematic evidence for gender on stress-induction or task
performance measures.

Asymmetric cost-benefit reinforcement learning biases actions in acute stress subjects

During a surprise 64-trial test phase (Hernaus et al., 2018), we asked participants to discriminate
original and novel combinations of stimuli on the basis of reward value or action cost without
receiving feedback (n = 16 trials for original combinations; n=48 for novel combinations). The
surprise test phase allowed us to assess learned choice tendencies without having to arbitrarily
choose a given number of final learning phase trials, during which participants may still learn. This
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approach also allowed us to assess the degree to which learned tendencies would carry over to
novel contexts.

First, both groups chose the optimal (most rewarding/effort avoiding) stimulus on surprise test
phase trials involving the original four pairs [one-sample t-test against chance; controlrL: {(39) =
8.73, p < 0.001; controleL: #(39) = 3.72, p = 0.02; stressri: {(39) = 13.54, p < 0.01; stressev: #(39) =
4.47, p < 0.001], confirming that both groups had developed a preference for the optimal stimulus.

Although we observed no Condition-by-Trial type (reward value, action cost discrimination)
interaction or main effects of Condition for novel stimulus combinations [F(1,78) = 1.10, p = 0.30,
n?c=0.01; stress vs controls reward value discrimination: £(75.9) = 0.15, p = 0.88; stress vs controls
action cost discrimination: #78) = 1.77, p = 0.08], pairwise comparisons revealed that the acute
stress group performed better on reward discrimination compared to action cost discrimination
trials [t(39) = -2.23, p = 0.03], while no-stress controls performed similarly on both trial types [{(39)
= -0.87, p = 0.39]. These results provide some evidence that a reward maximization-over-action
cost minimization reinforcement learning policy might bias future actions in novel contexts
(Supplemental Figure 5). Although, in the absence of interaction this result should be interpreted
with caution.
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Supplemental Figure 5 | Surprise test phase performance.

The acute stress group performed better on reward than action cost discrimination trials. Means + SD, individual
data points, distribution and density of the data are displayed. Significant differences are depicted with asterisks (*:
p <0.05, **: p<0.01, **: p<0.001).
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Hierarchical model fit

Given that we used separate priors for the two groups, we report the Bayesian analogue of a t-test
and mixed-ANOVA (Kruschke, 2014) - a more robust test of group differences - for posterior
parameters obtained from the hierarchically fit model (for reference, we also report these analyses
for the non-hierarchical data).

Using posterior parameters we recovered the key Condition-by-Learning Rate interaction (95%
HDI for Bayesian mixed ANOVA =-0.41 to -0.13, mean = -0.27; non-hierarchical data: 95% highest
density interval (HDI) for Bayesian mixed ANOVA = -0.41 to -0.02, mean = -0.22). Acute stress
and no-stress control subjects differed from each other on oE (95% HDI = 0.08 to 0.3, mean =
0.18) but not aR (95% HDI = -0.19 to 0.01, mean = -0.09) (Supplemental Figure 6). Similar to the
non-hierarchically fit parameters, acute stress and control subjects did not differ on posterior
estimates of y (95% HDI = -0.09 to 0.14, mean = 0.02) and B (95% HDI = -0.03 to 0.2, mean =
0.09).

A B C
DiffQuadTrend A1B1vA2B1 A1B1vA2B1
mean = -0,269 mean = -0.0872 ~ mean=0.183
100%: <0 < 0% 959% c0 4.1 0% <0 < 100%
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Supplemental Figure 6 | Bayesian estimation analysis to evaluate group differences in posterior parameter
distributions.

Panel A. Bayesian estimation (mixed-ANOVA) using posterior parameters (following hierarchical fitting) revealed
evidence for a credible Condition-by-Learning Rate interaction. The observed mean difference from zero that falls
outside the 95% HDI suggests that the difference between oE and aR was greater in no-stress controls compared
to acute stress subjects. Panel B. Both groups did not differ in the magnitude of aR, as indicated by a 95% HDI
that included 0. Panel C. Acute stress compared to no-stress control subjects exhibited a lower value of aE, as
indicated by a 95% HDI that falls well above zero.

55



Supplemental Figures
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Supplemental Figure 7 | Acute stress does not affect difficulty learning.

Easy and hard pairs collapsed across RL/EL trials depicted for each condition separately. While all participants
sampled the optimal choices more frequently for Easy vs Hard pairs, no significant Condition-by-Difficulty
interaction or between-group differences were observed. Means + SD, individual data points, distribution and
density of the data are displayed. Significant differences are denoted with asterisks (*: p < 0.05, **: p < 0.01, **: p
<0.001).
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Supplemental Figure 8 | Correlations between empirical and simulated 2LR_y choices.

Actual and post hoc simulated choices for RL and EL (rows) were moderately to highly correlated, both for no-
stress control and acute stress subjects (columns). Simulations were averaged across 10 repetitions per subject.
Solid and shaded lines represent mean * Clgsy,. Dots represent individual data points. Horizontal dashed lines
indicate chance level (0.5).
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Supplemental Figure 9 | Parameter estimates after Bayesian hierarchical model fitting.
Hierarchical model fitting reproduced the overall pattern of parameter estimates (Figure 5 for comparison).
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Supplemental Figure 10 | Correlations between empirical and simulated 2LR_y choices after Bayesian

hierarchical model fitting.

Correlations between actual and post hoc simulated choices for RL and EL (rows) for no-stress control and acute
stress subjects (columns). Simulations were averaged across 10 repetitions per subject. Solid and shaded lines
represent mean * Clgse. Dots represent individual data points. Horizontal dashed lines indicate chance level (0.5).
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Abstract

Many psychiatric conditions have been linked with deficits in cost-benefit reinforcement learning.
However, previous results have been mixed, partly due to significant symptom heterogeneity within
distinct psychiatric conditions and symptom overlap between them, making it difficult to disentangle
whether alterations in cost-benefit reinforcement learning are condition- or symptom-specific.
Here, we investigate whether transdiagnostic (sub)clinical symptoms and risk factors for
psychopathology are associated with reinforcement learning and cost-benefit integration. For this
reason, we use an online cost-benefit reinforcement learning task in combination with self-rated
measures of common transdiagnostic factors (chronic stress, anhedonia, impulsivity,
energy/fatigue) in 360 subjects (18-46 years old) with(out) a diagnosis of a psychiatric condition.
Increased chronic stress and impulsivity were associated with poorer reinforcement learning,
independent of whether participants were learning to minimize costs (physical effort) or maximize
benefits (monetary rewards). These associations were selectively driven by a reduction in learning
from positive and negative reinforcement, not punishment. The use of mobile phone (compared to
laptop/PC) was also associated with lower performance accuracy. Data and scripts are available
(https://osf.io/lw3mvq/). Our work emphasizes the importance of chronic stress and impulsivity as
potential drivers of altered motivation and goal-directed behavior beyond diagnostic labels, in
addition to methodological challenges associated with data collection via online platforms.

Keywords: reinforcement learning, cost-benefit, chronic stress, impulsivity, transdiagnostic factors
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Introduction

Humans are required to act within a complex and dynamic environment on a daily basis. Within
this environment, individuals must often learn to make appropriate actions, that maximize benefits
(e.g., rewards), and minimize costs (e.g., effort or punishment). This ability to optimize our behavior
based on the outcomes of previous actions, and to use this knowledge to guide future decisions,
is known as reinforcement leaning (Lee et al., 2012; Niv, 2009).

Reinforcement learning is a key construct within the Positive Valence System (PVS) domain of the
Research Domain Criteria (RDoC) project, a well-established transdiagnostic approach to
psychiatric conditions (Cuthbert, 2014; Insel et al., 2010; Kozak & Cuthbert, 2016). The PVS
focuses on reward-seeking behavior and has been strongly linked to motivational impairments
(Qlino, 2016). Aberrant use of reinforcement learning to guide actions that maximize benefits and
minimize costs, and impairments in integrating (learned) costs and benefits into a net value
(Pessiglione et al., 2017; Pizzagalli et al., 2005; Treadway et al., 2009), are considered to be
among the key mechanisms that drive motivational dysfunction and impaired goal-directed
behavior across a wide range of psychopathological conditions (Pessiglione et al., 2017; Zald &
Treadway, 2017).

For instance, previous work has demonstrated that individuals with depression exhibit impairments
in reinforcement learning, blunted sensitivity to rewards, and increased aversion to exerting effort
(Cléry-Melin et al., 2011; Geugies et al., 2019; Huys et al., 2013; Pizzagalli et al., 2008; Reinen et
al.,, 2021; Treadway et al., 2012). A similar pattern has been reported in individuals with
schizophrenia (Barch et al., 2014; Gold et al., 2013; Hernaus et al., 2018; Reddy et al., 2015),
although the underlying mechanisms of such deficits are hypothesized to differ compared to those
in mood disorders (e.g., cognitive control deficits versus reduced reward responsivity) (Barch et
al., 2016; Culbreth et al., 2018). In addition, individuals with drug addiction show increased reward
sensitivity (Dawe & Loxton, 2004) and impaired learning from negative outcomes (Myers et al.,
2017), while attention deficit hyperactivity disorder (ADHD) has been associated with deficits in
reward learning (Parvaz et al., 2018; Thoma et al., 2015) but not reduced effort aversion (Mies et
al., 2018). Combined, these results suggest that a wide range of psychopathological conditions
characterized by altered motivational states may be associated with distinct changes in
reinforcement learning and cost-benefit integration.

Importantly, the majority of previous work has relied on case-control designs, in which individuals
with a diagnosis of a psychiatric disorder are contrasted against healthy volunteers (i.e., those
without such a diagnosis). Even though “cases” may share the same diagnostic label, it is well
known that significant heterogeneity (e.g., in terms of symptom severity and profile) exists within
these groups (Brolsma et al., 2022), which may at least partly account for inconsistencies or
contradicting results between studies (Berwian et al., 2020; Chen & Takahashi, 2017; Leyton &
Vezina, 2013; Luman et al., 2005; McCarthy et al., 2016).
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Fewer studies have investigated how transdiagnostic measurements of psychopathology and
associated risk factors are accompanied by deficits in motivation and goal-directed behavior in the
general population, independent of diagnostic status and label. These measures play an important
role in the RDoC framework of psychopathology (Krueger & Eaton, 2015), suggesting that finding
links between particular clinical features and cognitive/behavioral constructs could pave the way
for future revisions of the current diagnostic system (Insel et al., 2010).

In terms of risk factors, it is well known that stress and stressful life events increase the risk for
psychopathology in a transdiagnostic fashion (Harkness et al., 2014; Lynch et al., 2021; Sinha,
2008). Many studies have found evidence that chronic stress impacts PVS-associated behavior
either directly, or as a mediator (Olino, 2016). Particularly, exposure to both acute and chronic
stress has been associated with abnormal reward-seeking (Polter & Kauer, 2014; Schwabe et al.,
2011; Vidal-Ribas et al., 2019) and effort expenditure (Bogdanov et al., 2021; Voulgaropoulou et
al., 2022; Yang et al., 2014).

In terms of psychopathology, impulsivity or disruptive impulse control are thought to be
transdiagnostic impairments linked to psychopathology characterized by externalizing problems
(Freis et al., 2022). In online studies, compulsivity and impulsivity have been shown to be
associated with deficits in goal-directed control (Gillan et al., 2016) and increased random
exploration strategies (Dubois & Hauser, 2022) in the general population. In addition, anhedonia
and low energy (fatigue) are constructs highly linked with PVS (Medeiros et al., 2020) and have
been associated with disrupted reward learning and effort valuation respectively (Huys et al., 2013;
Miiller et al., 2021).

In the current study, we aimed to explore which transdiagnostic measures of impaired motivation
and goal-directed behavior were associated with distinct aspects of reinforcement learning and
cost (physical effort) — benefit (monetary reward) integration in a sample that spanned several
diagnostic spectra as well as non-clinical individuals. Based on the above considerations, we
selected constructs with strong a priori links to a transdiagnostic risk of psychopathology (i.e.,
chronic stress, anhedonia, energy/fatigue, impulsivity). We collected self-reported ratings of these
measures, in combination with a simplified version of a previously-validated cost-benefit
reinforcement learning task (Voulgaropoulou et al., 2022) using the (digital) Gorilla platform (Anwyl-
Irvine et al.,, 2020) to collect a sample size that was well-powered to detect (differential)
associations between self-report measures and task performance. Guided by previous work, we
hypothesized the presence of associations between self-rated measures of psychopathology and
distinct aspects of reinforcement learning and cost-benefit integration. Specifically, we expected
lower energy/greater fatigue to be associated with a greater emphasis on learning to minimize
costs (Mdller et al., 2021), chronic stress and anhedonia to be primarily associated with reduced
learning about rewards (Huys et al., 2013; Ironside et al., 2018), while impulsivity may be
associated with a more general deficit in reinforcement learning (i.e., independent of outcome)
(Caceres & San Martin, 2017; Peck & Madden, 2021).
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Methods

The study was performed according to the Declaration of Helsinki and was granted ethical approval
by the ethics committee of the Faculty of Psychology and Neuroscience of Maastricht University
(ERCPN-220_38_03_2020). Informed consent was provided by every participant prior to the start
of the experiment.

Participants

In total, 483 adults, 18-45 years of age, participated in this study between 24/04/2020 and
02/09/2020. Recruitment strategies were focused on young adults and students with targeted
advertisements via Sona, mailing lists, and Facebook student and social groups. The only inclusion
criteria were sufficient understanding of the English language and availability of a laptop, PC, or
smartphone. Due to the emphasis on latent transdiagnostic factors, participants were not excluded
based on a psychiatric/psychological disorder. However, after excluding participants based on a
number of performance criteria (catch items n=20, task performance n=103; discussed below), the
final sample consisted of 360 participants (age: M = 24.31; SD = 4.27). Power analyses conducted
in G*Power (Faul et al., 2009) indicated that a sample of 351 participants would yield a power of
95% to detect an effect of Cohen's 2~ 0.07 (n? G ~ 0.04) in a linear multiple regression analysis (9
predictors, a= 0.05). All participants completed the ~30 min web-based study session hosted on
the online platform Gorilla Experiment Builder (www.gorilla.sc) (Anwyl-Irvine et al., 2020). At the
end of the session, they were reimbursed in the form of gift vouchers (5 euro), research
participation credits (equivalent of 0.5 hours) or they could choose to donate their earnings to
Doctors Without Borders.

Self-report questionnaires

During the session, participants filled out several demographic questions and a set of four self-
rated questionnaires based on the constructs highlighted in the introduction, including the
Perceived Stress Scale (Cohen et al., 1983), Snaith—Hamilton Pleasure Scale (Snaith, 1993),
Vitality Scale (Bostic et al., 2000), and Abbreviated Impulsiveness Scale (Coutlee et al., 2014),
which captured the transdiagnostic constructs/risk factors discussed in the introduction. Socio-
demographic information including age, gender, diagnosis of a DSM-5 psychiatric disorder by a
health care professional (lifetime) and device type used during the session (smartphone, PC or
laptop) were additionally collected. To ensure that all participants paid attention during the session,
we included four catch items, one at each self-rated questionnaire (e.g., “If you are paying attention
to these questions, select "agree" as your answer”; four in total). Participants that responded
inaccurately to one or more of these catch items were excluded (n=20). To minimize the possibility
of order effects, self-rated questionnaires were presented using Latin square randomization and
all possible permutations of questionnaire orders were presented equally often.

Perceived stress scale (PSS)

The PSS was used to assess perceived chronic stress over the past month. The scale consists of
10 items and each item is rated on a 5-point Likert scale ranging from 0=“never” to 4="very often”
(Cohen et al., 1988). The PSS items assess the degree to which participants experience their life
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as being unpredictable, uncontrollable, and overloading. Previous research has found that chronic
stress and distress potentiates the development of internalizing problems such as anxiety and
depression (Appleyard et al., 2005; Krueger et al., 2018).

Based on their total PSS scores, participants were divided into three categories according to
corresponding guidelines (Cohen et al., 1983). Participants with total PSS scores lower than 14
and greater than 26 were allotted to the low and high perceived stress group, respectively.
Participants with scores ranging from 14-26 were allotted to the moderate perceived stress group.

Snaith—-Hamilton Pleasure Scale (SHAPS)

The SHAPS is a 14-item self-report scale with four possible responses ranging from 0= “strongly
disagree” to 4= “definitely agree”. The SHAPS is used to assess anhedonia, the inability to
experience pleasure from different activities (Snaith, 1993). Anhedonia has been proposed as a
transdiagnostic feature of several disorders including depression, psychosis, and anxiety (Conway
et al., 2019; Krueger et al., 2018).

Vitality Scale

We used the vitality scale to assess the degree to which participants felt energetic and alert. The
vitality scale comprises 7 items that range from 1= “not at all true” to 7= “very true” (Bostic et al.,
2000). The main outcome measure includes having energy available to the self. Reduced energy
or fatigue are hallmark features of generalized anxiety and major depressive disorders (Merrell,
2008).

Abbreviated Impulsiveness Scale (ABIS)

The ABIS was used to measure impulsivity. The ABIS is a 13-item scale and each item is rated on
a 4-point Likert scale ranging from 0="rarely/never” to 4="almost always/always” (Coutlee et al.,
2014). ABIS data from 90 participants were missing as this questionnaire was not included in the
initial (pilot) round of data collection (see below). Main outcome measures include attentional,
motor, and non-planning impulsiveness, and these were summed to a total score (i.e., the sum of
all items) (note: both subscale and total scores were used in separate analyses, discussed below).
Lack of impulse control has been excessively linked with vulnerability to disorders such as ADHD,
drug abuse, antisocial personality disorder (Beauchaine et al., 2017; Krueger et al., 2018).

Reinforcement Learning Task

To assess the degree to which deficits in reinforcement learning (about the costs and benefits of
actions) and cost-benefit integration were associated with the transdiagnostic self-report measures
discussed above, we used a probabilistic reinforcement learning task adapted from previous work
(Voulgaropoulou et al., 2022). Because of the online nature of the study, a simplified version was
utilized to avoid difficulties in comprehending the task. All participants were instructed that the aim
of the task was to maximize their earnings (monetary rewards) and avoid a physically effortful
action (finger tapping), and that they should treat these goals as being of equal importance.
Participants were, moreover, instructed to complete the task on their smartphone (touch screen)
or laptop using a touch pad. Participants could also make use of a mouse, although use of this
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device was explicitly discouraged in the instructions phase. The task consisted of three phases: a
practice phase, a learning phase, and a surprise test phase.

At the start of the practice phase, participants were first asked to rapidly tap 30 times on a virtual
button as fast as possible to familiarize themselves with the finger tapping procedure of the task,
which was repeated twice. Thirty button presses had to be completed for the task to progress.
Afterwards, all participants completed a stepwise interactive introductory phase followed by a
practice trial.

After the practice phase, participants moved to the learning phase. Here, they were presented with
two stimulus pairs, each consisting of 2 unique fruit images, and with each pair indicating a specific
trial type, i.e., a reward learning (RL) trial, or effort learning (EL) trial. Thus, a pair of stimuli was
uniquely associated with RL or EL trials. On RL trials, choices of the “optimal” stimulus frequently
led to the receipt of €0.10 reward (80% of all choices lead to receipt of a €0.10 monetary reward;
20% no money), while choosing the “suboptimal” stimulus rarely led to a monetary reward (20% of
all choices lead to receipt of a €0.10 monetary reward; 80% no money). However, independent of
choice, participants always had to exert effort (i.e., 30 virtual button presses completed via finger
tapping). On EL trials, participants could frequently avoid having to exert effort (80% of all choices
lead to avoidance of 30 virtual button presses; exert effort on 20%), while choosing the suboptimal
stimulus rarely led to avoidance of effort (20% of all choices lead to avoidance of 30 virtual button
presses; exert effort on 80%). Independent of choice, EL trials never lead to receipt of a monetary
reward. Figure 1 provides a graphical overview of an RL and EL trial. These two trial types,
therefore, independently assessed the degree to which participants were able to maximize rewards
and minimize effort. Tapping speed (reaction time [RT] in milliseconds [ms]) served as an
assessment of interindividual differences in tapping speed during the actual task, which was
averaged across all trials. Previous research has shown large interindividual differences in tapping
speed (Ohmann et al., 2020), and we therefore included this measurement as a covariate in our
statistical models.

Participants completed three blocks of 10 RL trials and 10 EL trials (i.e., 30 presentations of RL/EL
trial types in total, total trial number = 60) in each session. Trial types were never repeated more
than twice in a row, misleading outcomes (e.g., no reward for optimal RL stimulus) were equally
dispersed across the three trial blocks, and the position of the optimal/suboptimal stimuli was
counterbalanced. To ensure that stimuli (i.e., fruit images) were not consistently coupled to the
same trial type (i.e., RL, EL), two playlists were created in which the same set of stimulus pairs
were coupled with different trial types. For every participant, one playlist was randomly selected
using a 1:1 ratio.

The main outcome measures were accuracy scores -for each trial type separately, which we
calculated by dividing the number of optimal choices (i.e., choosing the most frequent rewarding
stimulus for RL and the most frequent effort avoiding stimulus for EL) by the total trial amount per
pair (n=30). In addition, an overall accuracy score was calculated by dividing the number of optimal
choices by the total trial amount (n=60). To investigate time-related (i.e., learning) effects, accuracy
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scores were averaged per bin of ten trials (e.g., bin1: trial 1-10, bin 2: trial 11-20, and bin 3: trial
21-30). Win-stay (repeating a choice after receiving positive feedback) and lose-shift (choosing the
other stimulus after receiving negative feedback) rates were also calculated for both RL and EL
trials (den Ouden et al., 2013). Participants that performed at or below chance level (0.5) on both
RL and EL pairs on every time bin were excluded from further analyses (n=103) (Voulgaropoulou
et al.,, 2022), as low accuracy scores may reflected lack of attention to the task, difficulty
comprehending task instructions, or lack of interest in engaging with the task, possibly due to the
online nature of the experiment (also see Discussion).

Upon completion of the learning phase, a surprise test phase followed to explicitly evaluate
knowledge acquired from the learning phase (Hernaus et al., 2018; Voulgaropoulou et al., 2022).
This phase comprised 20 trials during which the original stimulus pairs (4 presentations) as well
as new stimulus combinations (16 presentations) were displayed. For new stimulus combinations,
images from all pairs were mixed across trials. Specifically, pairs of 1) optimal RL and EL images,
2) optimal RL images and suboptimal EL images, 3) optimal EL images and suboptimal RL images,
and 4) suboptimal RL and EL images were presented (four times each). Contrary to the learning
phase, participants did not receive feedback after choosing a stimulus. This phase of the task
investigated the ability of participants to integrate (learned) cost and benefits into a net value.
Overall accuracy score (i.e., choosing the stimulus with the highest net value) was calculated by
dividing the number of optimal choices by the total trial amount (n=20).
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Figure 1 | Reinforcement learning task.

A schematic illustration of the cost-benefit reinforcement learning task. Top/bottom row shows an example of an
RL/EL trial. At the beginning of each trial two images were presented on the screen. Participants choose one in a
self-paced manner by selecting the right or left option. During the next phase (i.e., the effort outcome phase),
participants either saw an unpressed button with the command: “Start working! (Click the button 30 times)”’, or a
pressed button with the command “No work required” (2000ms). During the final phase (i.e., reward outcome
phase), a screen showing a money bag, or a crossed-out money bag was presented with the caption “You earned
10 cents” or “No reward this time”, respectively (2000ms).

Statistical analyses

Statistical analyses were conducted using R, version 3.6.2 (Team, 2020). Descriptive statistics
were used to describe demographic characteristics of the final sample. A series of multiple linear
regression models were performed to evaluate which of the variables of interest, including (a)
perceived stress, (b) impulsivity, (c) vitality, (d) anhedonia, (e) device type (PC/touch pad,
PC/mouse, smartphone/ touchscreen), (f) trial type (RL, EL), (g) psychiatric diagnoses and/or their
interaction would predict accuracy, win-stay (WS), and lose-shift rates (LS) (dependent variables).
In all analyses we adjusted for potential confounders including gender, age, and tapping speed.
To evaluate differences among PSS subgroups (low, moderate, high) on accuracy, we used pre-
determined cut-off values as described above. In cases of categorical variables with more than 2
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levels, we first evaluated the significance of the overall predictor (e.g., device type, PSS subgroups,
diagnoses) conducting F-tests before adding them to the model. When interactions with pair (RL,
EL) or bin (trial 1-10, 11-20, 21-30) were not observed, we evaluated main effects. Adjusted R?,
beta coefficients and 95% Cls (for z-scored predictors) are reported for each model.

Results

Sample characteristics

Demographic variables of the final sample are reported in Table 1. The majority of the sample were
females (77.78 %) and most participants were 18-24 (60.28%) or 25-31 (32.78%) years of age.

Using pre-defined PSS cut-offs, we observed that a majority of 66.11% reported moderate levels
of perceived stress, followed by individuals with low levels of perceived stress (19.17%) and high
levels of perceived stress (14.72%).

Most participants in the final sample did not self-report report a psychiatric diagnosis (78.89%),
although a considerable percentage indicated having been diagnosed with either depression
(10.28%) or an anxiety disorder (6.39%) by a mental health professional. In line with task
instructions, all but 12 participants used their dominant hand to complete the task.

A visualization of the distribution of self-rated questionnaire scores, that is ABIS (M = 15.84; SD =
5.20), vitality scale (M = 28.82; SD = 8.05), SHAPS (M = 22.14; SD = 5.49), and PSS (M = 19.14;
SD = 7.25) is available in Supplemental Figure 1. Importantly, participants who self-reported a
diagnosis of depression endorsed significantly higher SHAPS and PSS scores compared to
participants who reported no diagnosis (lifetime) [SHAPS: #(353)=3.54, p<0.01; PSS: #(353)=3.45,
p<0.01]. Participants who reported having been diagnosed with an anxiety disorder exhibited the
same trend on the PSS, although this failed to reach significance (£(353)=2.72, p=0.09).

Finally, as expected, most participants completed the task using a touch pad on a PC/laptop, or

smartphone touchscreen (46.11% and 45% respectively). The remaining small percentage of
participants (8.89%) disregarded the advice to not use the mouse to complete the session.

72



Table 1 | Sample characteristics.

Variables N Percent (%)

Gender

Female 280 77.78

Male 79 21.94

Other 1 0.28
“Age T
18-24 217 60.28

25-31 118 32.78

32-38 24 6.67

39-46 1 0.27
PSSscore’
Low 69 19.17

Moderate 238 66.11

High 53 14.72
‘Diagnoses
ADHD? 7 1.94

Anxiety 23 6.39

Autism 2 0.56

Depression 37 10.28

No diagnosis 284 78.89

Other 6 1.67

Substance abuse 1 0.27
‘Device U
Laptop/PC (touchpad) 166 46.11

Laptop/PC (mouse) 32 8.89

Mobile phone (touch screen 162 45.00
"Handedness oo
Right 314 87.22

Left 37 10.28

Ambidextrous 9 2.50

1 Perceived Stress Scale score
2 Attention Deficit Hyperactivity Disorder

Participants improved performance over time using reinforcement learning

First, we verified that participants learned to select the optimal stimulus over time. Confirming this
expectation, we observed a main effect of time (i.e., time bins) on both RL [F(2,359)=83.17, p<0.01,
n?c= 0.07] and EL trials [F(2,359)=43.08, p<0.01, n?sc= 0.04] (see Figure 2), suggesting that
participants learned to select stimuli frequently associated with rewards and the avoidance of effort.
As suggested by the absence of a bin x trial type interaction [F(1, 359)=1.51, p=0.22, n?c= 0.00],
participants did not learn to more quickly select the optimal RL versus EL stimulus. However, we
did observe a main effect of trial type [F(1, 359)=15.21, p<0.001, nc= 0.02] (see Figure 2)
suggesting that participants, on average, selected the optimal RL stimulus (M=0.73, SD=0.19)
slightly more frequently than the optimal EL stimulus (M=0.69, SD=0.22).
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Figure 2 | Employment of reward and effort-cost reinforcement learning over time.

Average accuracy (optimal stimulus choice) on RL (blue) and EL (pink) trials. Trials were grouped into bins of 10
presentations. Participants improved in accuracy on both RL and EL trials over the course of time (bin1, bin2 and
bin3). On average, however, they selected the optimal stimulus more often on RL compared to EL trials. Data are
presented as means + SD. Significant differences are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

Limited collinearity between self-report questionnaires

After confirming that participants used feedback to optimize performance on both trial types, we
evaluated potential collinearity among self-report questionnaires. We found low to moderate
correlations among all questionnaires (see Supplemental Figure 2). In addition, we used the
generalized variance inflation factor (GVIF) to more thoroughly check for potential collinearity
among all measurements (Fox & Monette, 1992). The rule of GVIF < 5 was applied, indicating that
there was no substantial collinearity among measurements (see Supplemental Table 1). We also
investigated how average RTs (tapping speed) were associated with accuracy and questionnaire
scores. These analyses revealed no-to-low correlations between these variables (see
Supplemental Results).

Perceived chronic stress, impulsivity and device type are associated with instrumental
learning about costs and benefits

To evaluate whether transdiagnostic factors would (differentially) be associated with measures of
cost and benefit learning, we assessed which self-reported ratings predicted performance
accuracy during the learning phase. First, to examine if alterations in learning about the costs and
benefits of actions may constitute separate pathways that contribute to motivational impairments,
we investigated potential interactions between trial type (RL, EL) and self-reported chronic stress,
impulsivity, vitality, and anhedonia ratings using the following model: accuracy ~ PSS + ABIS +
vitality + SHAPS + device + age + gender + tapping speed + trial type + trial type*PSS + trial
type*ABIS + trial type*vitality + trial type*SHAPS. The overall regression was statistically significant
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[F (14,521) = 3.69, p < 0.001, R? adj = 0.07], although no trial type -by- self-report rating interaction
was observed (all p-values > 0.05). These results indicate that RL and EL were not differently
associated with any of the self-report questionnaire scores.

Because significant interactions with trial type interaction were not observed, we repeated the
regression excluding these terms (i.e., accuracy ~ PSS + ABIS + vitality + SHAPS + device + age
+ gender + tapping speed). The overall regression model remained statistically significant [F (10,
258) = 3.01, p = 0.001, R? adj = 0.07]. Importantly, chronic stress (=-0.21, 95% Cl= [-0.35 — -
0.06], t=-2.75, p<0.01), impulsivity (3=-0.15, 95% Cl=[-0.27 —-0.03], t=-2.42, p=0.02), and device
type - with laptop/PC touchpad > smartphone ( =0.36, 95% CI=[0.10 — 0.63], t=2.70, p<0.01) and
laptop/PC mouse > smartphone (B =0.52, 95% Cl= [0.09 — 0.95], t=2.39, p=0.02); see
supplemental Figure 3 and Supplemental Information) - were associated with poorer overall
performance accuracy. No other variables were significantly associated with overall task accuracy
(all p-values > 0.05). Results remained the same when running separate models for each factor,
i.e., chronic stress (f=-0.16, 95% Cl= [-0.27 — -0.06], t=-3.07, p=0.002) and impulsivity (3=-0.14,
95% Cl= [-0.26 — -0.02], t=-2.21, p=0.028) were negatively associated with overall performance
accuracy. In addition, we seperately evaluated the three ABIS sub-scales (attentional, motor, and
non-planning impulsiveness) finding that attentional (8 =-0.13, 95% Cl= [-0.25 — -0.01], {=-2.15,
p=0.03) and motor (B =-0.17, 95% CI= [-0.28 — -0.05], =-2.6, p=0.01) but not non-planning (8
=0.001, 95% CI= [-0.12 — 0.12], =0.11, p=0.91) implusiveness were associated with reduced
performance accuracy. After excluding individuals with a self-reported diagnosis of a psychiatric
disorder, chronic stress was the only significant predictor of overall performance accuracy in the
model (see Supplement).

Since chronic stress was a significant predictor in the model, we additionally compared overall
performance accuracy between low, medium, and high stress groups by repeating the regression
specified above using PSS cut-off groups (low, medium, high; see section 2.2.1) instead of
continuous scores. Participants in the low chronic stress group exhibited significantly better overall
performance accuracy compared to participants in the high chronic stress group (8 =0.66, 95%
Cl=[0.20 — 1.13], t=2.77, p<0.01). Similarly, participants in the moderate chronic stress group
performed significantly better than high chronic stress participants (8 =0.38, 95% Cl=[0.02 —0.73],
t=2.05, p=0.04), while there was no significant difference between moderate and low chronic stress
groups (B =0.28, 95% Cl=[-0.61 — 0.04], t=1.72, p=0.09) (see Figure 3).
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Figure 3 | High chronic stress leads to lower overall accuracy in the task.

Participants with high levels of perceived stress showed reduced overall performance accuracy compared to
participants with low and moderate levels of perceived chronic stress. Means + SD, individual data points,
distribution and frequency of the data are displayed. Significant differences are denoted by asterisks (*: p < 0.05,
**:p<0.01, **: p<0.001).

We additionally assessed whether self-reported psychiatric diagnoses were associated with overall
performance accuracy by adding it as an independent variable in the model specified in the
previous paragraph. ADHD, Autism, substance abuse and “other” diagnoses were removed from
the sample due to the very low number of observations (<10), leaving mood and anxiety disorders
as the only self-reported diagnostic categories. However, diagnosis was not a significant predictor
in the model [F(2, 254)=2.84, p=0.06] (see Figure 4 for accuracy based on diagnosis), and
diagnosis-by-trial type interactions were also not observed (see Supplement).

Overall, these results indicate that chronic stress, impulsivity, and device type (laptop/PC touchpad
or mouse > smartphone touchscreen) were significantly associated with lower performance
accuracy, independent of trialtype (i.e., reward or effort avoidance), while self-reported diagnosis
was not a significant predictor of task performance, although these results should be considered
exploratory due to the low number of observations.
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Figure 4 | Overall accuracy based on psychiatric diagnoses.

No group differences were observed in overall performance accuracy based on self-report psychiatric diagnoses
by a mental health professional. ADHD, Autism and “Other” (after the vertical line) were not considered in the
analyses. “Other” diagnoses include anorexia n=3, borderline personality n=2 and highly sensitive person
n=1.Means % SD, individual data points, distribution, and frequency of the data are displayed.

Chronic stress and device type are associated with win-stay and lose-shift strategies

To obtain insights into specific mechanisms by which transdiagnostic factors may impact
reinforcement learning, we investigated associations with win-stay (choosing a stimulus again
following the receipt of money -for RL- or avoidance of effort -for EL-, i.e., a measure that
represents learning from positive/negative reinforcement) and lose-shift (choosing the other
stimulus following no reward -for RL- or following effort -for EL-, i.e., a measure that represents
learning from negative/positive punishment).

First, we checked for potential interactions between win-stay/lose-shift rates (WS/LS), as defined
in section 2.3 and self-reported chronic stress, impulsivity, vitality, and anhedonia ratings using the
following model: rate (i.e., the rate of WS/LS) ~ PSS + ABIS + vitality + SHAPS + device + age +
gender + tapping speed + WS/LS *PSS + WS/LS *ABIS + WS/LS *vitality + WS/LS *SHAPS.
WSI/LS served as a categorical variable in this model. The overall regression was statistically
significant [F (15, 524) = 39.37, p < 0.001, R? adj = 0.52]. Importantly, we observed a strategy [win-
stay vs. lose-shift] -by- chronic stress (8=-0.27, 95% CI= [-0.41 — -0.12], {=-3.55, p<0.01) and a
strategy -by- impulsivity (8 =-0.13, 95% CI= [-0.26 — -0.01], t=-2.2, p=0.03) interaction. To better
understand the WS/LS interaction with questionnaire ratings we conducted follow-up, stratified,
analyses in which win-stay and lose-shift rates were used as dependent variables in separate
analyses. We observed that win-stay rates were significantly associated with chronic stress (lower)
(B =-0.19, 95% Cl=[-0.34 — -0.04], t=-2.52, p=0.01), impulsivity (lower) (8 =-0.13, 95% Cl=[-0.25
—-0.01], t=-2.22, p=0.03), and device type - with laptop/PC touchpad > smartphone (3 =0.37, 95%
CI=1[0.11 - 0.64], t=2.87, p<0.01) and with laptop/PC mouse > smartphone (3 =0.55, 95% Cl=
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[0.12 - 0.98], t=2.53, p=0.01). After excluding participants with psychiatric diagnoses only chronic
stress remained significantly associated with win-stay rates (see Supplement). Lose-shift rates,
however, were not associated with chronic stress (8 =0.12, 95% CI=[-0.03 — 0.27], t=1.63, p=0.1)
and impulsivity (8 =0.08, 95% CI=[-0.04 — 0.21], t=1.31, p=0.19). Only device type was significantly
associated with lose-shift rates with laptop/PC touchpad < smartphone (f =-0.31, 95% CI=[-0.57
—-0.04], t=-2.25, p=0.03) and laptop/PC mouse < smartphone (8 =-0.58, 95% Cl=[-1.01 —-0.14],
t=-2.63, p=0.01). When excluding participants with a psychiatric diagnosis the overall regression
model was not significant (see Supplement).

Chronic stress is associated with performance accuracy in the surprise test phase

We repeated the same statistical model using overall accuracy during the surprise test phase,
during which participants were asked to choose stimuli that they preferred the most. Thus, in this
phase of the experiment, participants were asked to choose a stimulus based on a comparison on
net value (reward — effort cost) for each stimulus. Although the overall regression model was not
statistically significant [F (10, 258) = 1.63, p = 0.09, R? adj = 0.02], the specific association with
chronic stress (B =-0.23, 95% CIl= [-0.38 — -0.08], =-3.02, p=0.003) was significantly associated
with fewer choices of stimuli with (objectively) the highest net value.

Discussion

In this study we investigated whether transdiagnostic ratings of psychopathology and associated
risk factors (i.e., chronic stress, anhedonia, energy, impulsivity) were (uniquely) associated with
alterations in reinforcement learning and cost-benefit integration; cognitive mechanisms that have
been frequently implicated in motivational dysfunction and disrupted goal-directed behavior. We
opted to not rely on diagnostic boundaries that may, at least partly, account for previously-reported
inconsistent findings. Contrary to expectations, we found no evidence for our hypothesis that
different self-ratings of psychopathology were associated with distinct changes in reinforcement
learning and cost-benefit integration. Instead, we observed that elevated levels of chronic stress
and impulsivity were associated with a more general reduction in reinforcement learning (i.e.,
independent of whether participants were learning to maximize gains or minimize effort), that was
linked to a reduced ability to learn from reinforcement.

Specifically, we observed that self-report measures of perceived chronic stress were a significant
predictor of performance accuracy in almost every model, with higher chronic stress being
associated with decreased performance accuracy (i.e., decreased selection of stimuli associated
with frequent rewards and/or effort avoidance). This finding aligns with previous research showing
that stress-related disorders are characterized by reduced reward sensitivity and a reduced
influence of previous outcomes on subsequent actions/decisions (Ironside et al., 2018; Olino,
2016; Vidal-Ribas et al., 2019).

Of note, this study was conducted during the first wave of COVID-19 pandemic, a stressful life

event, which may explain the relatively high perceived stress reports in the sample (Pashazadeh
Kan et al., 2021; Salari et al., 2020). Past research has shown that stressful life events reduce
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reward responsiveness (Berenbaum & Connelly, 1993). Thus, these findings add to emerging
evidence that chronic stress (potentially due to negative life events) is linked to impaired sensitivity
to reinforcers.

Indeed, in analyses investigating whether participants primarily learned from positive/negative
reinforcement (here, defined as “win-stay”) or positive/negative punishment (here, defined as “lose-
shift”), we observed that chronic stress was specifically associated with reduced win-stay rather
than lose-shift rates, suggesting that prolonged exposure to stress may specifically blunt learning
from positive outcomes. Taken together, these observations hint towards a differential role for
chronic stress in learning from reinforcement versus punishment, as opposed to a valence-specific
effect (i.e., reward versus effort). Lastly, results from the surprise test phase provide preliminary
evidence that participants under chronic stress might have difficulties integrating the costs and
benefits of actions into a net value.

Overall, in the current study, higher levels of perceived chronic stress were associated with
reduced overall task accuracy and sensitivity to (positive/negative) reinforcers. In contrast,
accumulating evidence indicate that acute stress (i.e., via acute stress-induction) can increase
reward sensitivity, decrease sensitivity to effort, or lead to reduced use of negative feedback.
(Mather & Lighthall 2012; Lighthall et al 2013; Petzold, Plessow et al 2010; Raio, Konova & Otto
2020, Voulgaropoulou et al., 2021). Interestingly, previous work has suggested that acute and
longer-term (e.g., chronic) stress might exert different effects on sensitivity to and learning from
rewarding outcomes. For example, acute stress has been hypothesized to temporarily increase
reward sensitivity, while chronic stress is assumed to result in blunted reward sensitivity, which
may be associated with stress-associated psychopathology such as anhedonia (Baik, 2020; Barch
et al., 2016). In addition, differences in brain activation have been observed when processing
rewards under acute and chronic stress (Vidal-Ribas et al., 2019). Thus, stressor duration, as well
as different ways of assessing stress (e.g., self-administered questionnaires versus acute stress
induced in lab settings) can offer important complementary perspectives on the association
between stress and instrumental learning and/or decision-making.

In addition to chronic stress, increased impulsivity was also a predictor of reduced overall accuracy
in most models. Analyses of win-stay/lose-shift rates, as operationalized above, indicated that
impulsivity was associated with reduced sensitivity to both positive and negative reinforcement.
Our findings align with previous work that has found low impulsivity to be positively correlated with
learning to maximize rewards and minimize losses (Caceres & San Martin, 2017). Moreover,
studies in individuals without a psychiatric diagnosis, as well as in individuals whose impulsivity
warrants clinical attention, have found impulsivity to be associated with deficits in learning for
rewards and punishments as well as difficulties in adapting to new stimulus-reward contingencies
(i.e., reversal learning) (Berlin et al., 2004; Franken et al., 2008).

Interestingly, and contrary to our expectations, both chronic stress and impulsivity were associated
with the same pattern of performance; that is, reduced learning to maximize monetary rewards and
minimize physical effort as well as reduced learning from positive and negative reinforcers.
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Previous work that has employed cognitive computational modeling has investigated whether such
performance changes are driven by the same latent cognitive mechanisms. For example, past
research has indicated that chronic stress can selectively affect learning rates (Wise & Dolan,
2020), whereas impulsivity is associated with increases in random exploration (Dubois & Hauser,
2022). Thus, despite differences in the way learning was quantified (i.e., task accuracy, win-stay,
learning rates obtained from computational cognitive models) chronic stress and impulsivity seem
to be negatively associated with instrumental learning, potentially due to different underlying
cognitive mechanisms. It would be interesting for future research to evaluate the precise
mechanisms by which different transdiagnostic characteristics impact reinforcement learning and
decision-making.

In contrast to chronic stress and impulsivity, however, neither anhedonia nor energy/fatigue were
associated with task accuracy, which is surprising given that past research has found associations
with impaired reinforcement learning, motivation to exert effort, and cost-benefit integration (Huys
et al., 2013; Miiller et al., 2021; Waltz & Gold, 2016). The lack of consistent findings may be
attributable to a number of factors. Firstly, the Hierarchical Taxonomy of Psychopathology
(HITOP), which hierarchically summarizes transdiagnostic dimensions (Krueger et al., 2018),
describes distress and impulsivity as high-order factors, whereas anhedonia and (low) energy are
viewed as lower-order components (Krueger et al., 2018). In addition, converging evidence across
species highlights that chronic stress can precipitate anhedonia and low energy/fatigue, which may
explain why these factors were not correlated with overall task accuracy in the general population
(Pizzagalli, 2014; Stanton et al., 2019).

Secondly, there is increasing evidence that more established findings in clinical samples without
comorbidities are weaker, or not observable, in more naturalistic patient samples. For example,
enhanced learning from negative feedback (Rodriguez-Thompson et al., 2020) or reduced neural
responses to reward (Brolsma et al., 2021), which have often been linked to depression specifically
and mood disorders more generally, does not seem to be present in more naturalistic samples that
experience anhedonia and/or avolition. In addition, previous findings in individuals with
schizophrenia have shown that anhedonia and avolition severity were not linked to a reduction in
learning from positive outcomes (Dowd et al., 2016). These observations warrant an increased
focus on higher-order psychopathology factors, such as distress and impulsivity, and more
naturalistic (or, non-patient) samples.

Interestingly, we also found device type to be an important predictor of task performance. Use of
a smartphone was negatively associated with task performance compared to use of a PC/laptop
(touchpad or mouse). This reduction in accuracy may be related to the fact that participants are
more prone to errors or find it harder to comprehend instructions when using a smaller screen size
(Kim & Kim, 2012). Alternatively, they may have trouble concentrating on task performance when
using their mobile phones (which can be used in any setting) instead of their PC/laptop. Even
though past research suggests that screen size does not affect learning outcomes per se, users
have indicated that they prefer to access learning materials through their laptops compared to
smartphones (Karam, 2015). These findings underscore the importance of strictly monitoring
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device use and encouraging use of a single device to avoid potential interference with task
performance.

To sum up, the aim of the study was to investigate whether certain transdiagnostic constructs were
associated with independent PVS mechanisms in a reinforcement learning and cost-benefit
integration task. We observed that chronic stress and impulsivity were the most consistent
predictors of overall performance accuracy due to a selective reduction in learning from
reinforcement, suggestive of impaired goal-directed behavior.

Strengths and limitations

One advantage of this study is that we aimed to uncover cognitive mechanisms specifically
associated with transdiagnostic measurements of (sub)clinical psychopathology, as opposed to
potentially more heterogeneous diagnostic labels. In addition, we used an a priori selection of self-
rated measurements previously linked to impaired motivation and goal-directed behavior. Third,
we used a task design that has the potential to differentiate/assess various PVS constructs within
a single task experience. Finally, we conducted our study during the first wave of the COVID-19
pandemic, an ongoing life stressor that may have led to sufficient variability in chronic stress ratings
over the past month.

Yet, due to the online nature of the study, some limitations should also be acknowledged. First,
the sample was self-selected, resulting in unequal distributions across several measurements,
such as gender and age. Moreover, the use of self-administered questionnaires that rely on
personal interpretations is often accompanied by potential biases (Althubaiti, 2016). For example,
participants self-reported the presence of a psychiatric/psychological diagnosis made by a health
care professional, which may have led to misclassification biases (e.g., not reporting a diagnosis,
using incorrect terminology). Nevertheless, in an attempt to minimize potential recall bias, instead
of using retrospective assessments for events occurred far into the past, we either used
questionnaires with short recall period (PSS, vitality scale, SHAPS) or without the temporal
component (ABIS). It should be noted, however, that these subjective measures might lead to
different results compared to lab-based measures (Gard et al., 2007). In addition, although we
used a simplified task design to avoid difficulties in comprehending task procedures, and
extensively piloted this design prior to study launch, we nevertheless excluded a substantial group
of participants based on stringent a priori-selected performance criteria. Such exclusions may be
prevented with a more extensive practice session, recruitment on dedicated online crowdsourcing
platforms (e.g., MTurk, Prolific), or actively encouraging the use of a laptop or PC. A final limitation
of the study is that we did not include measurements of more latent dimensional transdiagnostic
symptoms (Conway et al., 2012) and did not explicitly recruit for variation in outcome measures.
Future research evaluating additional transdiagnostic factors or with additionally variability in self-
report measures may be able to identify specific subgroups that exhibit distinct patterns of impaired
task performance, which may offer a more stringent test of our hypotheses.
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Conclusion

To conclude, in this online study, we observed that increased levels of perceived chronic stress
and impulsivity were associated with a reduced ability to learn from (positive and negative)
reinforcement during a reinforcement learning and cost-benefit integration task. Our work
emphasizes the importance of chronic stress and impulsivity as potential drivers of altered
motivation and goal-directed behavior, as well as various methodological challenges associated
with data collection via online platforms.
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Supplemental Figure 1 | Distribution of individual and averaged items from the questionnaires (ABIS, vitality,
SHAPS, PSS), age and tapping speed. White lines on PSS distribution denote the different cut-off groups (low,
medium, high).
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Supplemental Table 1 | Generalized variance inflation factor (GVIF).

GVIF Df GVIFA(1/(2*Df)
PSS 1.56 1 1.25
ABIS 1.11 1 1.05
Vitality 1.61 1 1.27
SHAPS 1.43 1 1.19
Device 1.31 2 1.07
Age 1.16 1 1.07
Gender 1.24 2 1.06
Tapping speed 1.19 1 1.09

Note: Both GVIF and GVIFA(1/(2*Df) are indices of collinearity. The standard rules of thumb were applied, namely
GVIF < 5 and GVIFA(1/(2*Df) < 2 suggesting no substantial collinearity among measurements.
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Supplemental Results

Tapping speed shows no-to-low correlation with accuracy and self-report scores

We investigated how average RTs are associated with task accuracy and questionnaire scores,
which revealed low correlations. Moreover, even at uncorrected p-value thresholds, most
correlations, with the exception of vitality x tapping speed (r=0.12, p= 0.03) were not statistically
significant (ABIS/tapping speed: r = -0.02, p= 0.75; SHAPS/tapping speed:r= -0.07, p= 0.17;
PSS/tapping speed, r = 0.11, p= 0.06; overall accuracy/tapping speed, r=0.06, p= 0.1).

The use of mobile touchscreen leads to reduced overall accuracy

Since device was also a significant predictor in most models, we additionally assessed group
differences in task performance based on the device used during the task using the following
model: accuracy ~ PSS + ABIS + vitality + SHAPS + device + age + gender + tapping speed. The
overall regression model was statistically significant [F (10, 258) = 3.01, p<0.01, R?adj = 0.07]. We
found a main effect of device on average performance accuracy in the learning phase [F(2,
357)=5.00, p<0.01]. Particularly, we observed that participants using PC/laptop (touchpad)
performed significantly better than participants using mobile (touchscreen) (8 =0.36, 95% CI=[0.10
— 0.63], t=2.70, p<0.01). Moreover, participants who used PC/laptop (mouse) performed better
compared to participants who used mobile (touchscreen) (8 =0.52, 95% Cl=[0.09 — 0.95], t=2.39,
p=0.02) (see Supplemental Figure 3).

Cumulative stress is associated with task performance after excluding participants with a
self-reported diagnosis of a psychiatric disorder

We repeated the regression specified in the main text of this manuscript (i.e., overall accuracy ~
PSS + ABIS + vitality + SHAPS + device + age + gender + tapping speed) after excluding
participants who self-reported that they had been diagnosed with a psychiatric diagnosis by a
professional. The overall regression was statistically significant [F (10, 199) = 2.27, p = 0.02, R?
adj = 0.06]. Moreover, cumulative stress was a significant predictor of overall performance
accuracy (B =-0.21, 95% CI=[-0.37 — -0.04], =-2.48, p=0.01), whereas device type (smartphone)
failed to reach significance (3 =-0.48, 95% CI=[-0.98 — 0.02], t=-1.91, p=0.06). No other predictors
were associated with overall performance accuracy (all p-values > 0.05).

Performance on distinct trial types based on psychiatric/ psychological diagnoses

We evaluated a potential diagnosis-by-trial type interaction using the following model: accuracy ~
PSS + ABIS + vitality + SHAPS + device + age + gender + clicks + diagnosis * trial type. Substance
abuse was removed from the statistical analysis since there was only one observation. The overall
regression was statistically significant [F (20, 513) = 3.1, p < 0.001, R? adj = 0.73]. There was no
diagnosis-by-trial type interaction F (5, 354) = 0.49, p = 0.78] (see Figure 4 for RL/EL accuracy
based on diagnosis). Also in this model, cumulative stress (B =-0.16, 95% Cl= [-0.26 — -0.05], t=-
2.96, p<0.01), impulsivity (8 =-0.13, 95% CI= [-0.21 — -0.04], t=-2.50, p=0.01) and device type
(mobile phone) (B =-0.44, 95% CI=[-0.75 — -0.13], =-2.99, p<0.01) were significant predictors of
overall task performance.
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Cumulative stress is associated with win-stay rates after excluding participants with a
psychiatric diagnosis

For win-stay rates, the fitted regression model was: WS rate ~ PSS + ABIS + vitality + SHAPS+
device + age + gender +clicks. The overall regression was statistically significant [F (10, 200) =
2.13, p=0 .02, R?%adj =0.05]. Specifically, PSS (8 =-0.20, 95% Cl=[-0.36 —-0.03], t= -2.30, p=0.02),
was significantly associated with win-stay rate.

Regarding lose-shift rates, the fitted regression model was: LS rate ~ PSS + ABIS + vitality +

SHAPS + device + age + gender +clicks. The overall regression was not significant [F (10, 200) =
1.75, p=0.07, R2adj = 0.03].
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Abstract

Dopamine’s (DA) and noradrenaline’s (NA) involvement in motivation have been extensively
studied in animals. To date, however, the distinct and interacting contributions of DA and NA on
cost-benefit decision-making have not been compared in humans. Thus, the aim of this study was
to explore how DA and NA contribute to two proxy-measures of motivation in humans (i.e., explicit
cost-benefit computations and implicit motor vigor). For this reason, healthy volunteers aged 18-
35 were assigned to a single dose of placebo (n=45), propranolol (n=48; 40mg; B-norepinephrine
receptor antagonist) or haloperidol (n=46; 2mg; dopamine D2 receptor antagonist) according to a
randomized double-blind placebo-controlled design. 150 minutes post-administration, they
completed a cost-benefit decision-making task, in which they could earn rewards (0.01-0.15
Euro’s) in exchange for physical effort (from 40-100% pre-calibrated maximum grip force). We
found that low-dose haloperidol may temporarily increase response vigor (B=-0.02, 95% CI=[-0.04
— -0.00], t=-2.32, p=0.02, compared to placebo) at the cost of reduced acceptance over time
[t(81.9)=-2.83, phom=0.01, compared to placebo; t(81.8)=-3.46, pnhom=0.003, compared to
propranolol]. In addition, we found that propranolol might increase effort sensitivity [t(68.4)=-2.83,
phoim=0.02; compared to haloperidol]. These results provide insights into the role of DA and NA in
(motor) motivation, the dysregulation of which is implicated in many neuropsychiatric conditions
characterized by motivational deficits.

Keywords: dopamine (DA), noradrenaline (NA), haloperidol, propranolol, cost-benefit decision-
making, motivation
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Introduction

A fundamental aspect of everyday decision-making involves the evaluation of costs and benefits of
future actions. The decision to execute or withhold an action depends on a trade-off between
maximizing expected benefits (e.g., a reward) versus minimization of the costs (e.g., physical or
cognitive effort) required to obtain these benefits (Pessiglione et al., 2017). Existing work suggests that
humans and other non-human animals combine benefits and costs into a net value (i.e., reward value
discounted by effort cost, i.e., benefit - cost = net value), which represents whether a particular action
is “worth it” (Cléry-Melin et al., 2011; Schmidt et al., 2012). A failure to adaptively use reward value and
effort cost, and integration of the two into a net value, is associated with the development of negative
symptoms such as motivational deficits, reduction in pleasure, anergia, and a more general lack of
goal-directed behavior. Such symptoms can be observed across a wide range of psychiatric and
neurological disorders (Mueller et al., 2018; Pessiglione et al., 2018; Salamone et al., 2016) and can
profoundly impact patients' quality of life (Barone et al., 2009; Pessiglione et al., 2018).

To better understand how negative symptoms may develop, a mechanistic understanding of the
neurobiological underpinnings of cost-benefit evaluation is of substantial importance. Accumulating
evidence has implicated both dopamine (DA) (Pessiglione et al., 2018) and noradrenaline (NA)
(Salamone & Correa, 2012) as key neuromodulators in processes associated with cost-benefit
evaluation, such as reward sensitivity (e.g., behavior motivated by rewarding/appetitive stimuli), effort
expenditure (e.g., spending energy or time on obtaining a reward) and motivation (e.g. overcoming a
cost to obtain a reward).

On a neural level, DA, a neurotransmitter whose projections originate in the midbrain -most prominently
the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) — is commonly associated
with reward processing and motivation (Bouret & Richmond, 2015; Daniel & Pollmann, 2014; Salamone
& Correa, 2012). Abnormalities within its circuits are thought to contribute to reward sensitivity deficits
(Muhammed et al., 2016; Schultz, 2007). Indeed, pharmacological agents that modulate DA function,
such as levodopa, used for treatment of Parkinson’ Disease (PD) and DA subtype receptor 2/3 (D2/3)
antagonists such as amisulpride used for treatment of psychosis, alter how people learn to maximize
reward, and learning from positive outcomes (Admon et al., 2017; T. T.-J. Chong et al., 2015; Guitart-
Masip et al., 2014; Muhammed et al., 2016). Past research on PD patients suggests that alongside the
well-documented role of DA in “explicit” reward-seeking behavior (i.e., cost-benefit computations), it
may also play a crucial role in implicit forms of motivation such as “motor motivation” or, vigor (i.e.,
intensity of motor movements) (Mazzoni et al., 2007). In contrast to reward sensitivity, effort expenditure
has not only been associated with DA activity, but also with NA signaling. NA, a neurotransmitter that
is produced in the locus coeruleus (LC) and adrenal medulla, is thought to play a major role in regulating
arousal status (Aston-Jones & Cohen, 2005; T. T.-J. Chong et al., 2015; Glenberg & Gallese, 2012;
Sarter et al., 2006; Yacubian et al., 2007) and the energization of behavior (i.e. supporting liberation of
energy/resources necessary to perform effortful actions) (Jahn et al., 2018; Varazzani et al., 2015).

Preclinical research has attempted to dissect the unique contributions of DA and NA in cost and benefit
computations. For example, abundant studies in rodents and non-human primates support the well-
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established idea that DA neurons encode the expected value of future rewards (Hamid et al., 2016).
Particularly, greater firing of DA neurons is observed with larger reward magnitudes (Roesch et al.,
2007; Philippe N Tobler et al., 2005), whereas reduced DA responses reflect delay or uncertainty of
future rewards (Fiorillo et al., 2003; Kobayashi & Schultz, 2008). Importantly, mounting evidence also
implicates DA in motor or physical effort cost and particularly, with strength magnitude, vigor, or velocity
(speed/reaction time) of responses that are aimed at acquiring rewards (Barter et al., 2015; da Silva et
al., 2018; Hughes et al., 2020; Niv et al., 2007; Puryear et al., 2010). On the other hand, increased NA
activity seems to be associated with the energization of behavior and effort production at time of
executing actions (Borderies et al., 2019b; Varazzani et al., 2015), while a reduction in available NA
has been shown to lead to a reduction in completing effortful actions (Jahn et al., 2018). Thus, in animal
models, DA (explicit cost-benefit computations, vigor) and NA (executing effortful actions) are thought
to contribute somewhat uniquely to cost-benefit computations. However, human studies investigating
the role of NA and effort expenditure are surprisingly sparse.

While these promising preclinical findings suggest an important role for DA and NA in motivation
(Ranjbar-Slamloo & Fazlali, 2020), overall, they have not been successful in parsing each system’s
contribution, in part due to lack of direct comparisons. In the current study, we aimed to investigate, for
the first time, how DA and NA each play a role in cost-benefit evaluation in healthy humans. To these
aims, we used a validated cost-benefit decision-making paradigm to assess explicit cost-benefit
valuation and integration, as well as vigor at time of executing effortful actions, in combination with
pharmacological challenges of the DA and NA system. More specifically, we used a low single-dose of
propranolol to block NA, which is primarily used to treat hypertension by blocking B-adrenergic
receptors (Srinivasan, 2019). Past research has shown that modulating +- and B2- adrenergic
receptors is linked with energy expenditure (Hoeks et al., 2003). We also used a low single-dose of
haloperidol, which mainly exerts its antipsychotic effects by competitively blocking DA D2 receptors
(Davis, 2007), that have been suggested to impact reward processing and motivational drive
(Pessiglione et al., 2006; Reuter et al., 2005; Tremblay et al., 2011).

In accordance with previous work, we expected a single dose of haloperidol to reduce willingness to
acquire rewards in exchange for effort relative to placebo and propranolol, thus reduce reward
sensitivity and/or affect net value computations. Moreover, we expect propranolol to increase the weight
of effort on choices (i.e., increase effort sensitivity) compared to placebo and haloperidol. We
additionally explored the effect of both agents on response vigor, an implicit form of motivation,
hypothesizing that both agents, via the mechanisms mentioned above, might exert a negative effect on
invigorating responses compared to placebo.

Methods

The study was approved by the medical-ethical review committee of Maastricht University
(NL74735.068.2) and conducted in accordance with the Declaration of Helsinki. Financial
compensation was granted for participation. Participants were instructed that they would receive a flat
fee of 70 euros. In addition, participants were informed that they could win up to 30 euros depending
on their task performance (amount for 2 computerized tasks; here one of them is discussed). These
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instructions were given to motivate participants to perform well and stay focused throughout the task.
In reality, all participants received 100 euros (70+30 euros) in total at the end of the testing session.

Participants

A total of 168 male and female healthy participants, 18-35 years old, were recruited via (online)
advertisements. All participants completed two screening procedures, once before scheduling the
session in order to determine major exclusion criteria via an anonymous online link and once on site
prior to the start of the testing session using a detailed medical questionnaire. The former determined
exclusion criteria, such as age, psychiatric/neurological disorder, substance abuse or dependence,
diabetes, use of blood-pressure medication (lifetime), medication use in the past 3 weeks, pregnancy/
nursing (female participants only), abnormal BMI (>40 or <18). During the second screening all answers
given during the online screening were checked again. Additionally, questions regarding medical history
were asked including presence of cardiovascular disease, obstructive respiratory disease, chronic renal
failure, hyperthyroidism, heart arrythmias (lifetime) as well as use of certain medication and antibiotics
that could interact with the pharmacological agents used in the experiment e.g., blood-pressure
medication, lopinavir/ritonavir (Kaletra), pentamidine (Pentacarinat), clarithromycin (Biaxin),
moxiflocacin (Avelox). During a standard medical screening, participants body mass index (BMI: >40
or <18), vital signs (blood pressure/ pulse rate), and pregnancy status (urine sample, female
participants only) were assessed. Detection of a medical condition or contra-indication for haloperidol
(hypersensitivity to phenothiazines) or propranolol (abnormal blood pressure, i.e., diastolic< 60mmHg;
systolic< 90mmHg) prior to testing led to the exclusion of participants. Moreover, all participants were
instructed to refrain from alcohol and food intake (24 and 3 hours prior to the experiment respectively),
which was verbally verified during the physical screening. In total, 12 participants were excluded before
the start of data collection (3 due to abnormal BMI, 1 due to respiratory disease, 8 participants did not
reschedule following COVID-19 related reasons). Additionally, 6 participants cancelled their
appointment without providing any reason.

Design

The study was conducted according to a randomized double-blind placebo-controlled three-armed
parallel-group (between-subjects) design. Participants were randomly allocated to one of three groups
(n = 50 per group). One group received a single dose of propranolol (40 mg; temporarily reduces NA
function via non-selective blockade of B-adrenergic receptors), one group received a single dose of
haloperidol (2mg; temporarily reduces DA transmission by preferentially binding to D2 receptors), and
the third group received placebo (an inactive substance). Previous studies have shown that stimulating
B-receptors increases energy expenditure (Hoeks et al., 2003), while inhibiting NA transmission
decreases effort processing and effort production (Borderies et al., 2019a; Varazzani et al., 2015). On
the other hand, mounting evidence suggests that haloperidol, as well as other antipsychotics that exhibit
high affinity D2 receptor antagonism impact reward processing and are associated with reduced
motivational drive (Pessiglione et al., 2006; Reuter et al., 2005; Tremblay et al., 2011) (for detailed drug
and dose justification see Supplemental Methods). It should be noted, however, that it is possible for
dopaminergic antagonists, including haloperidol, to act in an opposite way and enhance DA
concentration by increasing extracellular levels of DA (Devoto et al., 2003; Frank & O'Reilly, 2006;
Kuroki et al., 1999). The order of drug administration was randomized using block randomization to
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ensure balanced sample size across groups. For drug administration, we used a “double dummy”
procedure to ensure successful double blinding. Specifically, participants in the haloperidol group
received two tablets of haloperidol 1mg. Participants in the placebo group received two placebo tablets,
while participants in the propranolol group received 1 tablet of propranolol 40mg and 1 tablet of placebo.
All participants received each tablet (which was identical and thus non-discriminable in terms of size,
appearance, and structure) in a separate and non-transparent container.

Questionnaires

During the session, participants filled out several questions pertaining to demographic information, such
as age, gender, and education. They also completed four baseline questionnaires/tasks, including the
Sensitivity to Punishment and Sensitivity to Reward Questionnaire - Revised and Clarified (SPSRQ-
RC) (Conner et al., 2018), the Snaith—Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995), the
Abbreviated Impulsiveness Scale (ABIS) (Coutlee et al., 2014) and the digit-span task (Mefferd et al.,
1966). In addition, the Bond & Lader Visual Analog Scale (BL-VAS) (Bond & Lader, 1974) was
completed at baseline and repeated several times during the session (see below). All questionnaires,
except the digit span, were digitized using the Experience Management Software Platform — Qualtrics.

The SPSRQ-RC, a 20-item self-rated scale with answers ranging from 1="very untrue” to 5="very true”,
was used to assess trait-like sensitivity to reward and punishment at baseline (Conner et al., 2018).

The SHAPS is a 14-item self-report scale rated on a 4-point Likert scale ranging from 0 = “strongly
disagree” to 4 = “definitely agree”. SHAPS was used to assess baseline anhedonia/ hedonic tone
(Snaith et al., 1995).

The Abbreviated Impulsiveness Scale (ABIS) assessed trait-like impulsiveness and inattentiveness at
baseline (Coutlee et al., 2014). ABIS is a 13-item scale with four possible responses ranging from 0 =
“rarely/never” to 4 = “almost always/always”. Subscales include attentional, motor, and non-planning
impulsiveness.

The digit-span task, a brief neuropsychological working memory task in which participants have to
remember digit sequences, served as a measure of baseline working memory (Mefferd et al., 1966). It
consists of two parts, the forward (normal order; up to 9 digits) and the backward (reverse order; up to
8 digits) part. The sum score of both parts constitutes the total score of the task.

The Bond & Lader Visual Analog Scale (BL-VAS), a 16-item self-report scale rated on a 100-point scale
was used to assess momentary mood states and side-effects (Bond & Lader, 1974). The scale was
completed 3 times during the session (before drug intake, 120 and 180 min after drug intake). Individual
responses were combined to create three dimensions, namely alertness, contentedness, and calmness
(Bond & Lader, 1974).
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Decision-making task

After completion of the baseline questionnaires, all participants completed a computerized task
designed in PsychoPy v3.0.0b11 (Peirce et al., 2019). Before the task, each participant’'s maximum
voluntary contraction (MVC) was calibrated using a hand-held dynamometer with the dominant hand
(Biopac systems, TSD21B-MRI). Participants were asked to exert their maximum grip strength over
three consecutive trials. The average score of the above-median force of the 3 trials served as the
MVC. Before calculating the above-median average we first removed any extreme values (>2*standard
deviation). This approach resulted in an estimated MVC value that participants could sustain over a
number of seconds and for multiple trials, since the task described below is a forced choice task.

During the main cost-benefit decision-making task, participants were presented with a high striker
game, adapted from Chong et al (2015) (see Figure 1). On each ftrial (i.e., offer), participants were
presented with a pre-determined amount of reward (i.e., 1, 5, 10, or 15 eurocents, indicated on a
banner) combined with a level of physical effort (i.e., exerting 40%, 60%, 80 %, 100% of their MVC for
1.5 consecutive seconds, with the required force level represented as the red level of the high striker).
Next, participants decided to accept or reject the offer, in a self-paced manner, using the corresponding
keyboard buttons (V to accept and B to reject). They were instructed to accept an offer if they judged
that the reward was worth the effort and reject it if they deemed the reward/effort combination was not
worth it.

If the offer was accepted, participants had 5 seconds to squeeze the dynamometer until they reached
the target bar and hold for 1.5 seconds to acquire the presented rewards. As soon as they reached the
threshold, the red bar (indicating required MVC) turned green and upon successful completion of the
trial a high-pitched tone was played, followed by the presentation of the reward amount. However, in
case participants failed to exert the necessary amount of effort (intensity and/or duration), a low-
frequency tone was played. Finally, if the offer was rejected, participants were asked to wait. To prevent
potential time benefits that one would obtain from rejecting offers, the waiting period was kept identical
to the trial events (i.e., 5 s). All trials were followed by a 1.5 s feedback phase, during which participants
received information about performance (in case of successful completion: “You won X cents!”; in case
of a failed trial: “Failed!”; in case of rejected trial: “Offer rejected.”) and current total earnings.
Participants were familiarized with structure of the task and experienced different effort and reward
levels during a 4-trial practice phase that took place prior to the main task.

Participants were presented with 80 trials in total. Importantly, sixteen unique combinations of
reward/effort level were repeated five times (i.e., five blocks), and during each block the order offer was
randomly determined. To standardize the accumulation of fatigue effects, participants experienced a
forced break between each block, and they could choose to resume in a self-paced manner whenever
they were ready to continue. Participants also completed two questions at three distinct points that
asked about fatigue (“Do you feel tired?” (Webster et al., 2003)) and hand discomfort participants were
feeling at that moment (‘Choose a number that best describes the pain in your hand.” (Katz & Melzack,
1999)) on respectively a 4- and 5- point Likert scale (i.e., 0 = Not at all - 3 = Very much; and 0 = No
pain - 4 = Strong pain).
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As primary outcome measure, we calculated an offer acceptance rate, defined as the number of
accepted trials in proportion to all (i.e., 80) trials (Bonnelle et al., 2015; Klein-Fligge et al., 2016; Le
Heron et al., 2018). As an additional, implicit, measure of motivation we also investigated participants’
overexertion (i.e., MVC overshoot relative to MVC threshold) during offer completion, which reflects
response vigor. To calculate response vigor, we used data from successful trials and extracted values
lasting for 1.5 seconds - the amount of time that participants had to stay above threshold. Subsequently,
we calculated the average exerted effort (above-threshold for 1.5 secs) and subtracted it from the
required effort level. Since consistently and highly elevated values of overexertion could indicate
potential problems in calibration procedures instead of drug effects (e.g., participants did not follow the
instruction to squeeze as hard as possible), we, first, used the interquartile rule to identify outliers.
Eleven outliers were identified (5 placebo, 4 haloperidol, 2 propranolol) resulting in a final sample of
139 participants (n=45 placebo, n=46 haloperidol, n=48 propranolol).

Reward:1,5,__ | ‘ - - =
10, 15 cents -

e m
' Decision phase

Effort : 40, 60, (self-paced)
80, 100% MVC
Success Fail Reject
¥ N \
FEERCAIEN®RY  Response phase

(5 seconds)

You won 5-cents! . R Roi Ao Feedback phase
Total: 5.20 euro Total: 5.20 euro Total: 5.20 euro [ESESELEEULD)

Figure 1 | Schematic overview of the cost-benefit task.
Prizes (rewards) were displayed by the banner number above the high striker (1, 5, 10, 15 eurocents) and the associated
effort levels were displayed by the height of the red bar on the high striker (40, 60, 80, 100 % MVC). On each trial,
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participants, decided whether they were willing to exert the indicated effort for the specified reward, if they deemed a
particular combination was worth the effort. In case they accepted the offer (by pressing the V button), they had to
squeeze a dynamometer until they reached the red bar -and hold for 1.5 seconds-, in this case the red bar turned green
followed by a high tone. Nevertheless, if they failed to reach the bar for the required amount of time, the bar remained
red followed by a deep tone. In case they rejected the offer (by pressing the B button), they had to wait for 5 seconds
before moving to the next trial. At the end of each trial, participants were given feedback on their total earnings.

Study Procedure

Study participation entailed one session that lasted approximately 4 hours. After passing the medical
screening, participants orally received the drug or placebo in tablets. All participants received two
tablets according to a ‘double dummy” design to ensure identical administration procedures for all
drugs. As part of the safety protocol and in order to confirm the physiological effects of propranolol,
blood pressure and heart rate were assessed at 6 timepoints (baseline, 30 min, 60 min, 90 min, 120
min, 190 min). A physician was always on site in case of an emergency. Mood states/discomfort were
also monitored at 3 time-points using the VAS scale (see above). Immediately after drug administration,
participants completed a set of baseline questionnaires (demographics, SPSRQ-RC, SHAPS, ABIS,
VAS) and performed the digit span task. Thereafter, calibration of MVC and familiarization with the task
followed. Forty-five minutes post drug administration a standard meal was provided (a granola bar and
a yoghurt snack) to increase drug’s bioavailability and a 2-hour break followed (approximate time
maximum -tmax- for both drugs). After the break, participants performed the cost-befit decision-making
task, which lasted around 20 minutes. At the end of the test day participants were asked to indicate
which drug they think they received and were compensated for their time.

Statistical Analyses

All analyses were carried out using R version 3.6.2 (Team, 2013). A series of analyses of variance
(ANOVAs) or x? (for categorical variables) was used to compare demographic characteristics and
baseline measures between groups. In case of repeated measurements (e.g., VAS, vital signs) we
used mixed ANOVAs with time as within-factor and group (placebo/haloperidol/propranolol) as
between-factor.

To assess our primary hypotheses, i.e., whether DA and NA have effects on task factors (e.g. reward,
effort, time) that influence acceptance rates, a generalized linear model (GLM) was conducted using
the glm function from the Ime4 package (Bates et al., 2015). Specifically, we use to a two-step
procedure to estimate the effects of haloperidol/propranolol for each task factor (Hernaus et al., 2019).
First, for every person, the effect of each variable was quantified in a logistic regression where reward,
effort cost and block (time) served as independent continuous variables and offer acceptance as
dependent variable (coded as binary variable, 0/1). The resulting slopes (i.e., the betas for the
independent variables) were compared between groups using an ANOVA (condition as independent,
slopes/beta as the dependent variable) (Hernaus et al., 2019; Le Heron et al., 2018; Pfister et al., 2013)
as well as against 0 using one-sample t-tests. Statistical significance as p < 0.05 (two-sided) is reported
using Holm—Bonferroni correction, where applicable.
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To assess our second hypothesis that DA and NA may affect response vigor, overexertion of
participants (average overexertion during 1.5 secs — force threshold) was evaluated with a multilevel
linear mixed-effects model (LMM) using the Imer function from the Ime4 package (Bates et al., 2015).
This model allowed us to assess how vigorously participants squeezed the hand-grip device using
group (3 dummy variables), effort (and their interaction) and block (time) as predictors (fixed effects),
while accounting for their random-effects within each participant (i.e., participants, block, and effort as
random effects).

Results

Demographics, self-report, and physiological measures

Groups did not differ in demographic variables, or self-report measures of trait approach/inhibition
motivation, impulsivity and working memory (see Table 1). They also did not differ on baseline ratings
of repeated-measures items, such as pain [F(2,136)=1.08; p=1], fatigue [F(2,136)=0.16; p=1] and the
VAS [F(2,136)=1.93; p=0.3] at t+. Only 38% of participants correctly guessed which medication they
were administered (which we asked at the end of the testing session using a three-option multiple
choice question), suggesting successful blinding. Absence of a significant VAS-by-time interaction on
all three dimensions (alertness, contentedness, and calmness; all p-values>0.05) revealed no
significant drug effects on mood states over time. Measures on vital signs indicate that, as expected,
propranolol successfully lowered blood pressure and heart rate (see Supplemental Results) via its 3
adrenoreceptor-blocking effects (Molinoff, 1984).

Table 1 | Sample characteristics.

PLACEBO HALOPERIDOL PROPRANOLOL ANALYSIS
(n=45) (n=46) (n=48) F/x? (P-VALUE)

MEAN (+ SD) MEAN (+ SD) MEAN (+ SD)

Demographic Variables

Sex(M/F) 34/11 33/13 35/13 X?=2.09 (.72)
Age 22.47 (3.1) 23.09 (3.4) 22.9(3.3) F=0.46 (.63)
Education(L/M/H)' 7/18/20 417125 4/15/28 X?=9.64 (.65)
"Baseline Measures T

ABIS attention 2.08 (0.41) 1.96 (0.39) 2.11 (0.55) F=1.39 (.25)
ABIS motor 2.1(0.52) 1.99 (0.54) 2.1(0.53) F=0.7 (.50)
ABIS non-planning 2.31(0.62) 2.02 (0.49) 2.21 (0.65) F=2.85 (.06)
SHAPS 7.22 (2.31) 7.43 (1.49) 6.96 (1.35) F=0.87(.42)
SPSRQ reward 27.2 (6.32) 29.20 (6.30) 28.65 (6.02) F=1.25 (.29)
SPSRQ punishment 26.73 (6.3) 28.67 (7.29) 29.98 (7.89) F=0.85 (.43)
Digit Span 16.84 (3.6) 17.28 (3.66) 17.4 (4) F=0.28 (.76)

Note: 'Educational Degree adapted from The Dutch standard Classification of Education (Statistiek, 2023)
Abbreviations: ABIS, Abbreviated Impulsiveness Scale; SHAPS, Snaith—Hamilton Pleasure Scale; SPSRQ, Sensitivity
to Punishment and Sensitivity to Reward Questionnaire; SD, standard deviation; M/F, Male/Female; L/M/H,
Low/Middle/High
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Effects of reward, effort, but not time affect choices to work in exchange for reward

We first investigated if participants were able to complete the accepted offers. Although the given effort
levels were challenging (as observed by increasing levels of fatigue over time in the entire sample: t1
vs t3; [{(138)= -3.71; p<0.001]), they were easily achievable and participants succeeded at executing
them on M=98% (SD =0.13) of trials at all effort levels. To further assess whether our task design
worked as intended, we evaluated main effects (i.e., in the entire sample) of reward (levels), effort
(levels) and block (levels) on the probability of accepting an offer (1=choose to exert effort for given
reward, O=refuse offer and wait). We used a 2-step regression model (Pfister et al., 2013), in which we
first quantified the effect of a predictor (i.e., the task variables mentioned above) on acceptance for
each individual separately, followed by a comparison (at the group level) against zero to estimate
whether the task variable significantly influenced the choice behavior in the task (also see Statistical
Analyses).

As expected, reward was significantly higher than 0 [£(93)=21.3, p<0.001], meaning that participants
were more likely to accept a given level of effort for an offer with higher reward levels. In contrast, and
as expected, effort was significantly lower than 0 [#(104)=-20.61, p<0.001], suggesting that participants
were less likely to accept to exert effort for a given level of reward at higher effort levels (see Figure 2).
It is worth mentioning that, even though participants showed effort-discounting effects, they chose to
work on many trials M=72% (SD =0.45), suggesting that the task was not optimally developed to elicit
50-50% acceptance/rejection offers although, crucially, the main aim of this manuscript was to evaluate
group differences in acceptance patterns. For visualization on how participants were discounting reward
by effort in each condition see Supplemental Figure 2. Importantly, block was not significantly different
from 0 [t(124)=-1.32, p=0.19], suggesting that there was no time-trend in acceptance when looking at
combined data from all participants (see Figure 1).
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Figure 1 | Reward and effort predict offer acceptance in opposite directions.

Individual-level betas obtained using logistic regression on acceptance for reward, effort, and block in the entire sample.
Means * SD, individual data points, and distribution of the data for each condition are displayed. Significant differences
are denoted by asterisks (*: p<0.05, **: p<0.01, ***: p<0.001).

Distinct effects of haloperidol and propranolol during the cost-benefit decision-making task
After confirming that the task worked as intended, we tested our primary hypothesis, i.e., that blockade
of DA and NA would exert distinct effects on choice behavior by, for example, modulating the impact of
reward, effort, or time on offer acceptance. Surprisingly, we did not observe a main effect of group on
reward slopes [F(2,91)= 2.37; p=0.1]. However, a significant main effect of group on effort slopes
[F(2,88)= 4.22; p=0.02] was observed. Post-hoc comparisons showed that participants on propranolol
exhibited a stronger negative effect of effort cost on acceptance rates compared to participants on
haloperidol [(68.4)=-2.83, phom=0.02]. Comparisons between propranolol and placebo [{(64.3)= -1.87,
Pproim=0.13] as well as control and haloperidol [{(62.6)= -0.1, prom=0.55] were not significant.

Interestingly, although we observed no effect of block on offer acceptance in the entire sample (see
above), we did observe a significant main effect of group on block slopes [F(2,122)=6.86; p=0.002].
Post-hoc comparisons showed that participants on haloperidol exhibited a stronger negative effect of
block (time) on offer acceptance rates compared to placebo [#(81.9)=-2.83, phom=0.01] and propranolol
[t(81.8)=-3.46, pnom=0.003]. Moreover, placebo and propranolol groups did not differ significantly
[t(79.5)=-0.51, prom=0.61] (Figure 2). To further explore the effect of block on offer acceptance, we
compared whether beta estimates were significantly different from 0 (one-sample t-fest). The placebo
[t(40)=0.37, p=0.71] and propranolol [{(40)=1.16, p=0.25] group did not differ significantly from 0,
indicating no effect of time on acceptance rate for these two groups. In contrast, the haloperidol group
[t(42)=-3.64, p<0.001] was significantly different from O indicating a negative time effect for the
haloperidol group only. All in all, these results provide some evidence for an effect of propranolol on
effort sensitivity, and an effect of haloperidol that hints towards a reduced willingness to exert effort in
exchange for reward over time.
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Figure 2 | Drug effects on offer acceptance for reward, effort, and block levels.

Individual-level betas obtained using logistic regression on acceptance for reward, effort, and block per condition. Means
+ 8D, individual data points, and distribution of the data for each condition are displayed. Significant differences are
denoted by asterisks (*: p<0.05, **: p<0.01, ***: p<0.001). The top lines indicate significant main effects.

Haloperidol increased response vigor during the cost-benefit decision-making task

Next, we tested our second hypothesis; whether our pharmacological manipulations affected response
vigor, a more implicit measure of motivation that we defined as participants’ overexertion relative to the
required effort level. Here, multilevel linear regression analyses revealed a significant condition-by-
effort interaction, with response vigor being impacted less by increasing effort demands in the
haloperidol vs placebo group (B=-0.02, 95% Cl= [-0.04 — -0.00], t=-2.32, p=0.02). The interaction was
not significant for the haloperidol vs propranolol group (B=-0.01, 95% CI= [-0.03 — 0.01], t=-1.30,
p=0.19), nor the placebo vs propranolol group (B=0.01, 95% Cl=[-0.03 — 0.01], £=-1.06, p=0.29) (Figure
3). These results suggest that only haloperidol exerted an effect on response vigor at time of offer
execution.
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Figure 3 | Response vigor for each condition at each effort level.

Line chart showing how vigorously participants squeezed the dynamometer (effort overexertion comparted to the
requested effort level). Time (x-axis) refers to the range of 0 - 1.5 secs that participants had to stay above-threshold.
Means * SD for each condition is displayed.

We next aimed to investigate if drug effects on vigor and offer acceptance were correlated. Importantly,
we found a significant positive correlation only in the haloperidol group phaloperidol(44) = 0.36, p =0.001,
suggesting that increased response vigor was associated with increased acceptance rates [Oplacebo(43)
=0.37, p =0.7; ppropranolol(46) = 0.95, p = 0.35]. Lastly, to evaluate whether increased response vigor in
the haloperidol group increased hand discomfort and fatigue, we analyzed the subjective ratings of pain
and tiredness, that were asked 3 times during the task. However, no significant condition-by-time
interactions were observed for pain [F(4, 272)=0.73; p=0.55], with equal increases between groups
over time, nor for fatigue [F(4, 272)=0.18; p=0.93], with different within-group trends over time (for
visualization see Supplemental Figure 3).

Discussion

In this study we investigated the effect of DA (using haloperidol, which primarily targets D2 receptors),
and NA (using propranolol, which non-selectively targets 8 adrenergic receptors) on a cost and benefit
decision-making task, in which participants could choose to exert physical effort in exchange for
rewards. The aim was to assess how these two neurotransmitter systems affect explicit cost and benefit
valuation, as well as response vigor when executing effortful actions. We found that both
neurotransmitter systems were involved in different aspects of cost-benefit decision-making and action
execution.

Counterintuitively, we observed that haloperidol increased response vigor compared to placebo. This
result suggests that a single low dose of haloperidol may have resulted in enhanced DA transmission,

rather than inhibiting its actions. Abundant evidence suggests that low doses of D2 antagonists can act
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in this manner (Devoto et al., 2003; Frank & O'Reilly, 2006; Kuroki et al., 1999). Particularly when given
acutely, a low dose of haloperidol has been suggested to augment DA levels due to stronger inhibition
of presynaptic D2 autoreceptors and relatively weak post-synaptic blocking activity (Dias et al., 2012;
Lidsky & Banerjee, 1993).

The effect of DA on action vigor aligns well with previous findings suggesting that DA, and particularly
tonic DA activity, determines the vigor (magnitude, velocity, duration) used to approach appetitive
stimuli (Barter et al., 2015; da Silva et al., 2018; Hughes et al., 2020; Niv et al., 2007; Puryear et al.,
2010). In addition, it is important to note that haloperidol, even at low doses, demonstrates high DA D2
receptor occupancy (Kapur et al., 1996), 25 times higher than D1 (Bymaster et al., 1999). Postmortem
and human studies have shown that D2 agents predominately modulate striatal relative to prefrontal
activity (Camps et al., 1989; Mehta et al., 2003). Striatal DA-mediated dysfunction is known to be
involved in many (hypo/hyper kinetic) movement disorders (e.g., PD, Huntington’s disease, Tourette
syndrome) (Gittis & Kreitzer, 2012). In fact, it has been suggested that DA projections from SNc to the
striatum may signal vigor related to speed in PD patients (Mazzoni et al., 2007) which, similar to our
study findings, suggests that striatal DA may signal an implicit form of motor motivation. In accordance
with this view, mechanistic theories about the role of DA in cognition support that stimulation of D2
receptors in striatum inhibits No-Go activity (Black et al., 1997; Frank & O'Reilly, 2006).

Surprisingly, our results do not directly link DA with reward sensitivity, as observed in many studies
(Burke et al., 2018; Negrelli et al., 2020; Pessiglione et al., 2006; Reuter et al., 2005; Roesch et al.,
2007; P. N. Tobler et al., 2005; Tremblay et al., 2011). However, the positive correlation between
response vigor and average acceptance rates together with the time effect observed in the haloperidol
group could indicate increased reward valuation and willingness to exert effort in exchange of rewards
in the beginning of the task, which might have reduced over time with increasing effort expenditure. As
such, the reduction in offer acceptance rates over time in the haloperidol group might be attributed to
effects of fatigue due to increased response vigor (Mdller & Apps, 2019). Fatigue has a gradually
increasing trend over time in the haloperidol group compared to the other groups (which show different
within-group patterns). Therefore, it is possible that a single question repeated 3 times was not able to
capture more subtle yet meaningful group differences in fatigue. As suggested by previous research,
DA might have signaled the net value of the choice, which decreased over time possibly due to fatigue
(Ang et al., 2015; Varazzani et al., 2015). However, we should highlight, that the task was designed to
minimize effects of fatigue, thus future computational modeling analyses could delineate which
underlying mechanisms may have mediated this behavior.

With regards to NA, we observed more conservative effort production during choice behavior in the
propranolol group compared to the haloperidol group, which might suggest increased sensitivity to effort
cost. This result is in agreement with research conducted in non-human primates that has shown
pharmacological blockade of NA to enhance the weight of effort on choices that involve reward-effort
trade-off, without exerting effects on reward sensitivity (Borderies et al., 2019a). In addition, another
study that measured single neuron recordings in LC, which is predominately noradrenergic, showed
that around the onset of the action LC activity was modulated by effort significantly more than SNc,
which is predominately dopaminergic (Varazzani et al., 2015).
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Overall, these results suggest that DA and NA have distinct but complementary effects in effort
processing. Based on the above, we suggest that NA may play an important role in signaling how
conservative or liberal we can be with effort production given our current energy availability (which is
also known to be NA-mediated), but then DA might take over to control the vigor of action used to
approach motivationally relevant stimuli, and thus possibly encode the net cost and benefit value of
choices. As such, DA and NA may make important contributions to value and energization-related
policies that control goal-directed behavior. Future computational modeling can provide further insight
into the cognitive mechanisms that may mediate these effects. However, the current findings already
provide a step toward understating the interacting role of these two neurotransmitters systems, which
are both targets of different pharmacological treatment options, and the dysfunction of which is involved
in several neuropsychiatric disorders characterized by motivational impairments.

Strengths, limitations, and future directions

A great advantage of the study is that it directly compared the role of DA and NA in motivated behavior
for first time in human participants using a relatively big sample size. With the aim to translate and
expand on animal research findings (Varazzani et al., 2015), we used pharmacological agents, such
as haloperidol (to preferentially target D2 receptors), propranolol (to target  adrenoreceptors), and
placebo to evaluate the distinct but complementary influence of DA and NA on a cost and benefit
decision-making task.

One limitation of the study is that haloperidol did not act as an antagonist, as originally intended, and
instead seemed to increase DA levels; a mechanism of action that has been previously reported (see
above) (Devoto et al., 2003; Frank & O'Reilly, 2006; Kuroki et al., 1999). Nevertheless, we can still draw
important information about the role of DA and NA in motor motivation. Future research using agents
with the same drug action (e.g., agonists or antagonists) would be important to validate these findings.
In addition, both haloperidol and propranolol exert pharmacological activity on a number of receptors
(Davis, 2007). Especially haloperidol acts also on a-adrenergic receptors (Ohta, 1976), therefore we
cannot rule out the possibility that haloperidol also exerted weak effects on NA. Hence, it would be
advisable for future studies to use agents that target more selectively DA or NA systems. Lastly,
propranolol targets mainly B-adrenergic receptors, and its essentially inactive in a-adrenergic receptors
(Storch & Hoeger, 2010). It would be interesting for future studies to explore whether manipulating o-
adrenergic receptors might yield different results. Despite these limitations, the findings of this study
provide further insight into the distinct but interacting role of DA and NA in cost and benefit decision-
making and we hope they will inspire future studies to delve deeper into the neurobiological
mechanisms of neurotransmitters involved in motivated behavior.
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Conclusion

In this study we used pharmacological challenges to investigate the complimentary effects of DA (using
haloperidol) and NA (using propranolol) on cost and benefit decision-making in humans. We found that
low-dose haloperidol may temporarily increase response vigor at the cost of reduced acceptance over
time, while low-dose propranolol might increase sensitivity to effort cost. Further cognitive
computational modeling can provide better insight into the precise mechanisms that may mediate these
effects. Nevertheless, these findings provide initial evidence on the effects of the two neurotransmitters
in (motor) motivation.
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Supplemental Information

Supplemental Methods

Drug Justification and Dosage Levels

Propranolol

Propranolol is a non-selective, B-adrenergic receptor antagonist and competes with
catecholamines at B1- and B2 receptors, blocking their sympathetic effects (Black et al., 1964).
Propranolol is used as a treatment for many conditions including hypertension, arrythmias, anxiety
and migraines. It is a lipid soluble drug that crosses the blood-brain barrier freely and acts both
inside and outside the central nervous system (Black et al., 1964; Cahill et al., 2000).

To our knowledge only 3 studies have tested the effect of propranolol in the context of decision-
making. The first study utilized a memory task and found that treatment with propranolol resulted
in a conservative bias during uncertain conditions (Corwin et al., 1990). The other study used a
gambling task and found that treatment resulted in decreased sensitivity to monetary loses (Rogers
et al., 2004). While the third study used also a gambling task and found that propranolol reduced
loss aversion especially in subjects with higher initial levels of loss aversion (Sokol-Hessner et al.,
2015). A dose of 40mg has previously been administered orally to block noradrenergic response
in numerous studies (Hermans et al., 2011; Kroes et al.,, 2016; Schwabe & Wolf, 2011)
demonstrating a strong safety profile.

Haloperidol

Haloperidol is a high potency typical antipsychotic (O'Carroll et al., 1999). It exerts its antipsychotic
effect through its strong antagonism to post-synaptic DA receptors (it preferentially binds to D2
receptors although it has low affinity for numerous receptors, e.g., D1), particularly in the
mesolimbic system of the brain (Dold et al., 2015).

Numerous studies have used haloperidol to exploit its mechanism of action. Studies evaluating the
effect of haloperidol in the context of decision making suggest that administration of haloperidol
decreases sensitivity to reward (Reuter et al., 2005; Tremblay et al., 2011). Interestingly, similar
patterns towards reward sensitivity have been observed between Parkinson’s disease patients and
healthy volunteers after receiving 2mg haloperidol (Pessiglione et al., 2006). Converging evidence
suggests that chronic high-dose use of haloperidol could lead to unwanted adverse events,
however acute treatment even at high doses is well-tolerated, and has a safety profile that is similar
to other antipsychotics (Chen et al., 2020; Dossenbach et al., 2008; Schrijver et al., 2016; Yoon et
al., 2013).

Supplemental Results

Vital signs

To evaluate whether propranolol successfully blocked - adrenoreceptor, we checked at the vital
signs. A condition-by-time interaction was observed for vital sign measures [systolic blood pressure
(SBP): F(10, 680)=10.01, p<0.001, n?s= 0.03; diastolic blood pressure (DBP): F(10, 680)=3.25,
p<0.001, nc= 0.02; heart rate: F(10, 68)=9.48, p<0.001, n’c= 0.03]. Simple main effect analyses
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revealed that only the propranolol group exhibited reduction in blood pressure and heart rate over
time compared to the other groups with statistical differences starting from t+60 until {+780 (the
end of the session), thus being present throughout the duration of the task (which started at ~
t+140). More analytically, for SBP: t+90 placebo vs propranolol {(86.9)= 4.13, p<0.001, t+90
haloperidol vs propranolol #91.8)= 4.31, p<0.001, t+7120 placebo vs propranolol #90.5)= 3.82,
p<0.001, t+720 haloperidol vs propranolol {(90)= 3.66, p<0.001, t+180 placebo vs propranolol
#(87.6)= 3.60, p=0.001, t+7180 haloperidol vs propranolol {(89.2)= 3.93, p<0.001. For DBP: t+90
placebo vs propranolol #89.1)= 3.05, p=0.01, t+90 haloperidol vs propranolol #78.7)= 3.07,
p=0.01, t+120 placebo vs propranolol #90.9)= 2.53, p=0.03, t+7120 haloperidol vs propranolol
{(85.4)= 3.42, p=0.003, t+180 placebo vs propranolol {(90.9)= 3.31, p=0.003, t+180 haloperidol vs
propranolol #(87.3)= 3.93, p<0.001. For heart rate: +60 placebo vs propranolol #88.5)= 4.14,
p<0.001], t+60 haloperidol vs propranolol #88.9)= 3.94, p<0.001, t+90 placebo vs propranolol
{(79.9)= 5.52, p<0.00, t+90 haloperidol vs propranolol #(82.9)= 5.65, p<0.001, t+120 placebo vs
propranolol {(81.8)= 4.14, p<0.001, t+120 haloperidol vs propranolol {(88.7)= 5.66, p<0.001, t+180
placebo vs propranolol #(86.4)= 4.49, p<0.00, {+780 haloperidol vs propranolol {(85.3)= 4.58,
p<0.001]. For comparisons between haloperidol and placebo all p-values > 0.05 (see
Supplemental Figure 1).
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Supplemental Figure 1 | Vital sign measurements.

Upper row displays systolic and diastolic blood pressure (mmHg: millimeters of mercury). Lower row displays heart
rate (bpm: beats per minute). Means + SD are displayed for each condition at each timepoint. Significant differences
are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001). Solid line denotes control vs propranolol and
dashed line denotes haloperidol vs propranolol simple main effects.
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Supplemental Figure 2 | Effort discounting during the task.

Proportion (mean) of acceptance to work per group (placebo, propranolol, haloperidol). Participants at all groups
were more likely to accept to work at higher reward and lower effort level, indicating that participants were
discounting rewards by effort.
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Supplemental Figure 3 | Subjective ratings on momentary pain and fatigue.

No significant condition-by-time interactions observed. Both hand pain and fatigue ratings increase over time in all
groups. Somewhat different trends within conditions are observed for fatigue ratings. Means + SD for each condition
at each timepoint are displayed.

119



References

Black, J. W., Crowther, A., Shanks, R., Smith, L., & Dornhorst, A. (1964). A new adrenergic: beta-receptor
antagonist. The Lancet, 283(7342), 1080-1081.

Cahill, L., Pham, C. A., & Setlow, B. (2000). Impaired memory consolidation in rats produced with B-adrenergic
blockade. Neurobiology of learning and memory, 74(3), 259-266.

Chen, Z., Chen, R., Zheng, D., Su, Y., Wen, S., Guo, H., Ye, Z., Deng, Y., Liu, G., Zuo, L., Wei, X., & Hou, Y.
(2020, 2020/05/01/). Efficacy and safety of haloperidol for delirium prevention in adult patients: An updated
meta-analysis with trial sequential analysis of randomized controlled trials. Journal of Clinical Anesthesia,
61, 109623. https://doi.org/https://doi.org/10.1016/j.jclinane.2019.09.017

Corwin, J., Peselow, E., Feenan, K., Rotrosen, J., & Fieve, R. (1990). Disorders of decision in affective disease:
An effect of B-adrenergic dysfunction? Biological psychiatry, 27(8), 813-833.

Dold, M., Samara, M. T., Li, C., Tardy, M., & Leucht, S. (2015). Haloperidol versus first-generation antipsychotics
for the treatment of schizophrenia and other psychotic disorders. Cochrane Database of Systematic
Reviews(1).

Dossenbach, M., Pecenak, J., Szulc, A., Irimia, V., Anders, M., Logozar-Perkovic, D., Peciukaitiene, D., Kotler, M.,
Smulevich, A. B., West, T. M., Lowry, A. J., & Treuer, T. (2008, Dec). Long-term antipsychotic monotherapy
for schizophrenia: disease burden and comparative outcomes for patients treated with olanzapine,
quetiapine, risperidone, or haloperidol monotherapy in a pan-continental observational study. J Clin
Psychiatry, 69(12), 1901-1915.

Hermans, E. J., Van Marle, H. J., Ossewaarde, L., Henckens, M. J., Qin, S., Van Kesteren, M. T., Schoots, V. C.,
Cousijn, H., Rijpkema, M., & Oostenveld, R. (2011). Stress-related noradrenergic activity prompts large-
scale neural network reconfiguration. science, 334(6059), 1151-1153.

Kroes, M. C., Tona, K.-D., den Ouden, H. E., Vogel, S., van Wingen, G. A., & Fernandez, G. (2016). How
administration of the beta-blocker propranolol before extinction can prevent the return of fear.
Neuropsychopharmacology, 41(6), 1569-1578.

O'Carroll, R., Drysdale, E., Cahill, L., Shajahan, P., & Ebmeier, K. (1999). Memory for emotional material: a
comparison of central versus peripheral beta blockade. Journal of psychopharmacology, 13(1), 32-39.

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction
errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 1042-1045.

Reuter, J., Raedler, T., Rose, M., Hand, |., Glascher, J., & Blchel, C. (2005). Pathological gambling is linked to
reduced activation of the mesolimbic reward system. Nature neuroscience, 8(2), 147-148.

Rogers, R. D., Lancaster, M., Wakeley, J., & Bhagwagar, Z. (2004). Effects of beta-adrenoceptor blockade on
components of human decision-making. Psychopharmacology, 172(2), 157-164.

Schrijver, E. J. M., de Graaf, K., de Vries, O. J., Maier, A. B., & Nanayakkara, P. W. B. (2016). Efficacy and safety
of haloperidol for in-hospital delirium prevention and treatment: A systematic review of current evidence.
European Journal of Internal Medicine, 27, 14-23. https://doi.org/10.1016/j.€jim.2015.10.012

Schwabe, L., & Wolf, O. T. (2011). Stress-induced modulation of instrumental behavior: from goal-directed to
habitual control of action. Behavioural brain research, 219(2), 321-328.

Sokol-Hessner, P., Lackovic, S. F., Tobe, R. H., Camerer, C. F., Leventhal, B. L., & Phelps, E. A. (2015).
Determinants of propranolol’s selective effect on loss aversion. Psychological Science, 26(7), 1123-1130.

Tremblay, A. M., Desmond, R. C., Poulos, C. X., & Zack, M. (2011). Haloperidol modifies instrumental aspects of
slot machine gambling in pathological gamblers and healthy controls. Addiction biology, 16(3), 467-484.

Yoon, H. J., Park, K. M., Choi, W. J., Choi, S. H., Park, J. Y., Kim, J. J., & Seok, J. H. (2013, Sep 30). Efficacy and

safety of haloperidol versus atypical antipsychotic medications in the treatment of delirium. BMC
psychiatry, 13, 240. https://doi.org/10.1186/1471-244x-13-240

120



121






CHAPTER 5

Worries about the COVID-19 pandemic
and the dynamic regulation of
emotions in the general population: A
network analysis study

Stella D. Voulgaropoulou, Wolfgang Viechtbauer, Sjacko Sobczak,
Thérese van Amelsvoort, Dennis Hernaus
Journal of Affective Disorders Reports, 2023, 100618



Abstract

The impact of the COVID-19 pandemic on mental health has been widely reported. Yet, little
remains known about the psychological mechanisms associated with changes in mental well-being
during the currently ongoing pandemic. Here, we use a network analysis to unravel complex
relationships between COVID-19 related stressors and emotional states during the initial phase of
the COVID-19 (April 2020). Adults living in the Netherlands and Belgium (N=1145, age 16 and
older) (repeatedly) completed an online survey (approximate survey completion rate = 66.2%)
about COVID-19 (over a 5-day maximum sampling period). Partial correlations and
contemporaneous networks illustrated that worries about the impact of the COVID-19 pandemic
were primarily associated with distress and mood ratings, which were subsequently associated
with other indicators of well-being. Temporal network analysis revealed that COVID-19 worries
were selectively associated with the reciprocal interplay between high distress and low positive
mood (https://osf.io/vtdkr/). These results may point to potential mechanisms by which initial
worries about the COVID-19 pandemic might have impacted psychological well-being.

Keywords: COVID-19, distress, mood, emotional states, network analyses
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic, and its associated socioeconomic
consequences, can be considered a stressor of unprecedented, global scale. Although still
ongoing, experts have expressed concerns about the potential adverse effects of pandemic-
related stressors on well-being and mental health (Cénat et al., 2021; Leach et al., 2021). These
worries stem from various aspects related to the COVID-19 pandemic.

For instance, the implementation of nationwide lockdowns and curfews, aimed at mitigating the
spread of the virus, have profoundly disrupted social activities, thereby aggravating feelings of
loneliness (O'Sullivan et al., 2021; Tull et al., 2020). Recent evidence suggests that social isolation
and feelings of loneliness during the COVID-19 pandemic were associated with depressed mood,
heightened anxiety, and poorer sleep quality (Grey et al., 2020; Hwang et al., 2020; Meda et al.,
2021; Santini & Koyanagi, 2021): psychological changes that are commonly seen in affective and
stress-related disorders. In addition, the unpredictable course of the pandemic has caused
unbridled uncertainty (e.g., regarding the impact of the pandemic on a personal, professional, and
societal level) (Koffman et al., 2020). Even before the occurrence of COVID-19, it was known that
poor coping with uncertainty magnifies worries, anxiety, and avoidance behavior (Hunt et al., 2019;
Norr et al., 2013). Such excessive uncertainty and worrying can put a considerable strain on mental
health and well-being (Nitschke et al., 2021; Varga et al., 2021).

Past epidemics that share important similarities to the current COVID-19 pandemic in terms of
mitigation measures and uncertainty, like Ebola, SARS, and H1N1 Influenza, have been
associated with a spike in psychological distress, low mood, and emotional exhaustion (Brooks et
al., 2020). Interestingly, studies in UK adults in the initial stage of the COVID-19 outbreak also
found elevated levels of anxiety, traumatic stress, depression (Shevlin et al., 2020), and even
suicidal ideation (O'Connor et al., 2021). Similarly, studies conducted in Italy, Spain, Germany, and
China observed, among others, increased levels of distress and heightened affective symptoms
(Losada-Baltar et al., 2021; Mazza et al., 2020; Rauschenberg et al., 2021; Wang et al., 2020). Put
together, these results highlight how major health crises can be accompanied by increased distress
and altered emotional states.

Given its recency, much remains unknown about the psychological impact of COVID-19 pandemic,
for example whether such effects are more specific to emotional states, or changes in mental well-
being more generally. Network models (S. Epskamp et al., 2018) can provide important insights
into complex relationships among COVID-19 related stressors (e.g., social isolation, worries about
the virus, worries about loved ones) and more general indicators of mental well-being (e.g., low
mood, distress, loneliness). A great advantage of network analysis is that it allows investigation of
direct and indirect interactions among all variables of interest. Importantly, this approach can help
identify key variables or clusters of variables that have a strong influence on other variables within
a given network. As such, the network approach facilitates understanding of the complex
interactions that underlie (changes in) psychological variables, which may provide clues on
important variables/clusters that could serve as the target of, for example, interventions
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(S. Epskamp et al., 2018). Some initial evidence from COVID-19 network studies in the general
population suggests high interconnectivity between COVID-19 related stressors and symptoms of
anxiety and depression (Hoffart et al., 2021; Zavlis et al., 2021), pointing to a potentially important
role for altered emotional states during the COVID-19 pandemic.

Fewer studies, however, have assessed longitudinal networks. These studies are important
because they reveal how changes in emotional states unfold over time. Among the few studies
conducted, Fried et al. (2020) observed mixed emotional changes (e.g., increased depression
ratings, lower anxiety ratings) over the course of a two-week measurement window early in the
COVID-19 pandemic. On the other hand, Martin-Brufay et al. (2020) suggested that the impact of
pandemic-related stressors on emotional states was dependent on adaptation strategies using
also a two-week measurement window (i.e., negative expectations in the beginning of quarantine
lead to better adaption, while positive expectations in the beginning of quarantine lead to poorer
adaptation over time). Lastly, Zavlis et al. (2021) observed connectivity between pandemic-related
anxiety, and symptoms of generalized anxiety disorder and depression over a one-month interval.
These studies once more point to associations between pandemic-related stressors and changes
in emotional states, yet much remains inconclusive about their temporal interactions (i.e., whether
they predict each other over time).

In an attempt to contribute to and expand on these recent insights, we investigated the
psychological state of adults in the Netherlands and Belgium in the earliest phase of COVID-19
pandemic, when social isolation and uncertainty were high. Utilizing cross-sectional and (a
maximum of five) repeated measures of psychological variables associated more generally with
mental well-being (e.g., low mood, distress, energy, loneliness) and pandemic-specific variables
(i.e., worries about the virus, social distancing), in combination with network analyses, we sought
to establish the temporal dynamics of emotional states during the initial phase of the COVID-19
pandemic.

Methods

Study outline

To investigate (temporal) associations between COVID-19 related items and psychological
indicators of mental well-being during the initial phase of the COVID-19 pandemic, we conducted
an online survey among individuals living in the Netherlands and Belgium. The study was active
between 2020/03/31 and 2020/04/30, a timeframe during which both countries implemented
stringent measures to contain the spread of COVID-19 (see Figure 1 for an overview of daily
infections and examples of regulations implemented by the Dutch government to curtail COVID-
19 infections).
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Figure 1 | COVID-19 confirmed cases and measures.
A schematic overview of the daily confirmed COVID-19 cases and the measures taken to mitigate the spread of
the virus in the Netherlands and Belgium, displayed in chronological order. All text labels refer to measures that

were implemented in the Netherlands.

Participants were recruited via social media (e.g., Facebook, Twitter), university media (website,
mailing list), and local news and media (newspaper, television). Dedicated efforts were made to
ensure that older adults were also represented in the final sample, including advertisements and
availability of tablets for questionnaire completion, and support from staff, in local elderly
communities and nursing homes. The study was approved by the Faculty of Psychology and
Neuroscience ethical review committee of Maastricht University (protocol number: 221 62 03
2020).

Survey procedure

The survey was hosted on Qualtrics (Qualtrics, Provo, UT) and was accessible to anyone with a
digital device with an Internet connection. Participants accessed the survey via an anonymous link
and were invited to complete a three-part survey consisting of 1) demographics and COVID-19
status, 2) ratings of psychological indicators of mental well-being (low mood, distress, loneliness,
energy, motivation), and 3) ratings of worries about/preoccupation with COVID-19 and adherence
to widely disseminated infection-mitigation guidelines that necessitate social distancing.

The order of block two and three, as well the item order within each block, was randomized
between sessions. We used a structured diary approach (Bolger et al., 2003; Shiffman et al., 2008)
to investigate within-person changes in ratings over time, as well as associations among items
ratings. Prior to and following completion of the survey, all participants were reminded that the
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survey could be completed once per day for a maximum of five days. We opted for a short sampling
period due to the high uncertainty at time of conducting the study (i.e., April 2020). At this point it
was unclear for how long certain policies and restrictions were going to be implemented. Next, to
boost compliance, participants were invited to set an alarm on their phone or computer for the next
day, as a reminder to complete the next survey 12-24 hours later. This approach ensured that
future prompt times were acceptable to participants, and has been associated with a questionnaire
completion rate similar to that of random prompts (Burke et al., 2017). To complete the next report
upon being prompted by the alarm, participants accessed the link, filled in a unique participant-
generated code (generated during the first session), and completed block two and three again.
Demographics were not collected during these follow-up measurements.

The average survey completion time in the entire sample with valid reports (see section, “3.1
Sample characteristics”) was 9.40 min (SD=4.40) for the first session and 5.80 min (SD=3.04) for
follow-up prompts. Surveys were generally completed within 1-1.5 day intervals (M=1.41,
SD=1.04).

Quality control and final sample
We implemented a number of quality control criteria for survey (attempts), which we represent
visually in a Sankey chart (Figure 2).

- > 30 min to completion (n=203/6.07%)
—— 1 survey/no demographics (n=18/0.54%)
—___ missing item ratings (n=12/0.36%)

all surveys (n=3343/100%)

eligible surveys (n=2227/66.62%)

lack of engagement
(n=862/25.78%)

Figure 2 | Sankey diagram showing inclusion/exclusion of participant reports.

The length of each grey link represents the number of included/excluded reports at different times throughout the
questionnaire completion process (blue/red colors represent included/excluded reports, respectively). Reported
numbers represent unique surveys, and the percentages are relative to the total amount of opened surveys (i.e.,
3343).

First, survey attempts that were largely incomplete (i.e., <50% questions completed) were not
considered for analysis (n=862). In most cases, these incomplete reports indicated a lack of
engagement: for example, in 90.26% of these 862 survey attempts, participants did not move past
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the introduction screen. Remaining survey attempts (i.e., >50% finished) were excluded if the
participant did not reach the final prompt reminder screen (n=21), leaving a set of 2460 (73.60%)
completed surveys.

Completed surveys with a completion time that exceeded 30 min were also excluded (n=203), with
30 min being approximately three times the average completion time. Moreover, a small proportion
of completed surveys from participants that only completed the survey once without providing
sociodemographic details were excluded from the analysis (n=18). This could have occurred if
participants inadvertently indicated during their first survey that they had previously completed the
survey. Participants that completed the survey multiple times without providing demographic
details, however, were not removed from the dataset, and used in some analyses. Finally, we
removed surveys for which at least one of the rating variables of interest, listed in the next section,
was missing (n=12).

After removing the ineligible surveys, a final sample of 2227 completed surveys remained (66.62%
of opened surveys; 89.76% of surveys that participants engaged with), obtained from 1145 unique
participants (1089 with completed demographics), of which 408 participants completed the survey
more than once.

Survey items and outcome measures

Survey items focused on psychological indicators more generally associated with mental well-
being as well as items that were specific to the COVID-19 pandemic. An overview of all self-rated
items is available in Table 1. All items were rated on a 0-100 slider scale with an anchor at both
ends describing the intensity of the rating (for subjective ratings 0=completely absent/ not at all,
100=very much so; for COVID-19 related items O=completely disagree, 100=completely agree).
The only exception to this format was the social isolation item, which was rated on a 0-24-hour
scale and recoded post hoc to a 0-100 scale for consistency with the other items for the analyses
(i.e., hours x 4.167).
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Table 1 | An overview of questionnaire items.
Survey ltem
Mental well-being (“in the past 24hours, I:”)
“Positive mood T
(felt) cheerful
(felt) carefree
(felt) sad ©
"Distress T
felt) relaxed
felt) annoyed
felt) stressed
felt) anxious
felt) calm ©
“Motivation T
(didn’t feel) like doing anything
(wasn’t motivated) to do things | typically enjoy ©

_~ o~ o~~~

(felt) well-rested
(had) little energy ©
“Loneliness T
(felt) lonely
COVID-19 related items
COVID-19 worries
COVID-19-related news worry me
I can easily think about other things than COVID-19 ©
| do not leave my home out of fear that | may contract COVID-19
I think COVID-19-related fears are exaggerated

Consider: many COVID-related deaths, many COVID-19 infections, and hospitals with max-out
capacities. These are things that won't happen in the country | live in

I am not worried about the repercussions of the COVID-19 pandemic on work, income, or future
perspective

Others have a greater chance of contracting COVID-19 than | do ®
COVID-19 is not worse/more dangerous than the flu

| am scared of contracting COVID-19

| am scared that my colleagues, friends and/or family will contract COVID-19

COVID-19 guideline adherence (“in the past 24 hours, I:”)

have followed COVID-19 hygiene guidelines to the best of my ability (1.5 distance, sneezing in elbow,
no handshakes, washing hands)

have deliberately not taken the initiative to meet with other people; to minimize the risk of COVID-19
spread 2

have declined people’s invitations (to physically meet) to the best of my ability; to minimize the risk of
COVID-19 spread @

have not left my home for [XX] consecutive hours ®

) = reverse-scored
a Participants were instructed to exclude individuals that they lived with from their answers
b Rated on a 0—24-hour scale
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Mental well-being items

All internal consistency and factor analyses reported below and under “Factor Analysis” were
conducted on the eligible 1145 first reports. We used previously-validated items from ecological
momentary assessment (EMA) studies (Myin-Germeys et al., 2009) to assess emotional states
which we categorized into measures more closely associated with negative/positive mood (three
items, Cronbach’s a=0.61) and distress (five items, a=0.81). Participants additionally provided
subjective momentary ratings of motivation (two items, a=0.79), energy (two items, a=0.50), and
loneliness (one item). For each of these five mental well-being domains, item ratings were
averaged (see Table 1 for individual items).

COVID-19 items

Participants rated ten COVID-19 related statements about their perceived risk of infection, worries
about and preoccupation with (the potential impact of) the virus, and fear of (contracting) the virus
(COVID-19 worries; a=0.70). An additional set of four statements was used to assess the degree
to which participants adhered to infection-mitigation procedures that involved social distancing,
which were disseminated by each country’s respective government (COVID-19 guideline
adherence; a=0.69). For each of these two COVID-19 domains, item ratings were averaged (see
Table 1 for individual items).

Factor analysis

To confirm the existence of a more general mental well-being and COVID-19 domain we conducted
an exploratory factor analysis (varimax rotation, here and below) using all rating items listed in
Table 1. All 13 mental well-being items loaded more strongly onto factor 1 (0.22 proportion of
variance explained) than factor 2, while 12 out of the 14 COVID-19 items loaded more strongly
onto factor 2 (0.11 proportion of variance explained) than factor 1 (see Supplemental Table 1 for
factor loadings). A similar exploratory factor analysis, but this time using all COVID-19 items,
revealed that the 4 social distancing guideline adherence items loaded more strongly onto factor
1 (0.17 proportion of variance explained) and 7 out of the 10 worry/preoccupation items loaded
more strongly onto factor 2 (0.14 proportion of variance explained). A final exploratory factor
analysis using all 13 mental well-being items revealed the existence of two more general
psychological constructs, one of which seemingly associated with negative (sad, annoyed,
stressed, anxious, lack of undertaking activities/motivation, lower energy, loneliness; 0.27
proportion of variance explained) and the other with positive (cheerful, carefree, relaxed, calm,
well-rested; 0.20 proportion of variance explained) psychological states. All in all, these results
provide some evidence for the item groupings we discussed above and in Table 1, and for all
(network) analyses referenced below we consistently used these item groupings.

Statistical analyses

We first describe sociodemographic characteristics of the final sample using descriptive statistics.
Associations (Spearman’s p for age bracket, x? for categorical predictors) between sample
characteristics and survey-related details, such as the number of repeated measurements, and
date of first report, were also assessed.
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Next, we obtained insights into general, time-related trends in the item ratings. We, therefore, used
linear mixed-effects models with surveys nested within participants to investigate associations
between average item ratings from the 7 domains (i.e., mood, distress, motivation, energy,
loneliness, COVID-19 related worries, COVID-19 guideline adherence) and a) day of first survey
(a proxy of more general between-subjects changes in ratings during the measurement window,
i.e., April 2020) and b) day number relative to day of first survey (a proxy of more general within-
subjects changes in ratings during the study participation window). These analyses were
Bonferroni-corrected for the number of dependent variables tested (a=0.05/7).

Next, we carried out two types of network analyses (Borsboom & Cramer, 2013). The first analysis
focused on data from all eligible first surveys (nsurveys=1145), allowing us to examine cross-
sectional associations among all domains of interest. The second analysis focused on longitudinal
associations. To limit potential effects of very short or long temporal delays between subsequent
surveys, we restricted this longitudinal analysis to surveys with temporal delays of 12 hours to 4
days, leaving a sample of 395 (out of 408) participants with multiple eligible timepoints
(Nsurveys=1038).

For the cross-sectional analyses, we computed a) the product-moment correlations and b) the
partial correlations between the 7 item domains. Significant correlations at a Bonferroni-corrected
a=0.05/21 were visualized in a network graph. For the longitudinal analyses, we fitted a multilevel
lag-1 vector-autoregressive model (Bringmann et al., 2013) that provides information on the a)
contemporaneous associations at a given time point (7x6/2 = 21 correlations) and b) lagged
associations between each variable and the values of all variables from the previous report (7x7
= 49 coefficients). We used a fully multivariate model, in which all variables simultaneously acted
as outcomes and all lagged variables were used as predictors. The temporal (lagged) associations
were of particular interest given the possible causal insights that might be derived from these
analyses (Sacha Epskamp et al., 2018).

Two adjustments were made when fitting this model. First, to account for differences in the lag
between adjacent reports, we included the time lag as a predictor in the model and allowed it to
interact with the coefficients that represent the temporal associations. The lagged associations we
report represent those for a 24-hour time lag. Second, since fitting the model with random effects
for each of the lagged coefficients led to convergence problems, we removed these random effects
and instead used cluster-robust inference methods (Pustejovsky & Tipton, 2018) to test temporal
associations in a model that still included random item intercepts at the subject level. Network
graphs for significant contemporaneous (a=0.05/21 correlation pairs) and temporal (a=0.05/49
coefficients) associations were used to visualize these results.

All models were fitted twice; once without including additional covariates and once when controlling
for age, gender, education, country, and confirmed daily COVID-19 cases (day prior to
measurement). All reported analyses were carried out using R (Team, 2013) using package nime
(Pinheiro & Bates, 2000) for fitting the multilevel vector autoregressive models, package
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clubSandwich for the cluster-robust inferences (Pustejovsky, 2020), and package qgraph
(Epskamp et al., 2012) for the visualizations of the networks.

Results

Sample characteristics

In the final sample of 1145 participants, 35.66% of participants completed two or more surveys.
Demographic variables, available for 1089 participants, are reported in Table 2. In general,
participants were more likely to be women (than men) and living in the Netherlands (compared to
Belgium). The various education levels and age groups were evenly distributed across the sample,
with only some underrepresentation of younger (<20) and older (>70) participants, although
participants older than 60 years of age still made up 22.50% of the total sample.

Only a small subgroup of participants self-reported having a formal positive test result for COVID-
19 (6.89%), with an additional 1.93% being suspected of having COVID-19 by a physician (see
Table 2). Using a rating item that asked about the intensity of influenza-like symptoms, we
confirmed that COVID-19 positive and suspected COVID-19 positive participants on average
experienced greater flu-like symptoms than COVID-19 negative participants (Braw=33.60, 95%
CI=[30.07 — 37.13], t1082=18.69, p<0.001).

Age (Spearman’s p=0.10, p<0.001) and education level (x?=23.68, p=0.02), but not gender
(x?=10.11, p=0.12), country (x?=9.20, p=0.16), or COVID-19 status (x?=12.54, p=0.82) were
associated with the total number of completed surveys. Participants that completed a greater
number of surveys were more likely to participate early in the measurement window (Spearman’s
p for correlation between number of completed surveys and day of first survey=-0.17, p<0.001).
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Table 2 | Sample characteristics.

Variables Percent (%)
Gender
Female 77.41
Male 22.59
TAge T -
16-20 1.93
21-30 21.40
31-40 19.01
41-50 13.96
51-60 21.21
61-70 16.44
>70 6.06
“Education T h
Intermediate vocational education 35.81
Higher vocational education 30.58
University 33.61
“Country T h
The Netherlands 76.49
Belgium 23.51
“Living situation T h
Alone 20.20
With partner 38.57
Children with or without partner 31.13
With parents 7.53
With others 2.57
“COVID-19 status® -
Negative, no symptoms 90.82
Negative, suspected influenza 0.37
Negative, suspected COVID-19 1.93
COVID-19 positive 6.89
“Completed surveys® T -
1 63.34
2 9.53
3 6.56
4 7.60
>5 1.97

aSuspected or confirmed influenza/COVID-19 by a medical expert and/or PCR test
bBased on N=1145 participants

Stability of item ratings during the study and participation window

Mixed-effects model analyses revealed that COVID-19 guideline adherence ratings were
associated with day of first survey (Braw=-0.27, 95% CI=[-0.39 — -0.16], t1081=-4.71, pponr<0.001),
corresponding to a difference of 7.83 percentage points (on the 0-100 scale) between participants
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that completed their first rating on April 1% versus April 30". No mental well-being domains nor
COVID-19 related worries were associated with day of first survey following a Bonferroni
correction.

Positive mood (Braw=0.71, 95% CI=[0.41 — 1.01], t934=4.66, pbonr<0.001), distress (Braw=-0.61, 95%
ClI=[-0.89 — -0.32], fesa= -4.20, pronr<0.001), and energy (Braw=0.96, 95% CI=[0.59 — 1.33],
t934=5.16, pronr<0.001) ratings were associated with day into the participation/measurement
window (relative to first day), suggesting that, over the course of participation, participants rated
items slightly more positive (e.g., subtle improvements of 2.44 - 3.84 percentage points over a 5-
day sampling period). COVID-19 guideline adherence ratings were also marginally associated with
days into the participation window (Braw= -0.32, 95% CI=[-0.54 — -0.09], fo34= -2.79, pvon=0.04).

These results provide some evidence for systematic between- and within-person trends during the
study and participation window. We next turn to the network analyses to investigate (temporal)
associations among COVID-19 and mental well-being item ratings.

Network analyses

We present a visual representation of the (Bonferroni-corrected) significant Pearson product-
moment correlations between item ratings using all eligible first surveys (i.e., cross-sectional
network analysis, nsurveys=1145) in Figure 3A. The Bonferroni-corrected partial correlations, denoted
rp, revealed small-to-moderate associations among a) mental well-being item ratings (i.e., positive
mood, distress, motivation, energy, loneliness), b) COVID-19 item ratings (i.e., COVID-19 related
worries and COVID-19 guideline adherence), and ¢) mental well-being and COVID-19 item ratings
(Figure 3B/Table 3). Most importantly, greater COVID-19 related worries were associated with
greaterlevels of distress (rp,=0.22, psonr<0.001) and lower positive mood (rp,=-0.10, pron=0.02), while
COVID-19 guideline adherence was associated with lower distress (r,=-0.11, pbon=0.003).
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Table 3 | Associations among item ratings.

C19
guideline

pos.mood  distress motivation energy loneliness  C19 worries

pos.mood - - - - - -
distress 1 - - - - -
motivation -0.18 1 - - - -
energy -0.17 0.31 1 - - -
loneliness 0.16 -0.23 -0.03 1 - -
C19 worries 0.22 0.04 0.07 0.02 1 -
C19 guideline -0.11 -0.02 0.01 -0.09 0.37 1
Values in bold are significant at Bonferroni-corrected threshold (a/number of correlation combinations)

Figure 3C and 3D provide a visual overview of the contemporaneous and time-lagged
associations, respectively, as found in the longitudinal network model using all eligible timepoints
from the repeated measures data; nsurveys=1038. The network of contemporaneous associations
was highly consistent with the results from the cross-sectional partial correlation analyses (Figure
3B versus Figure 3C), with greater COVID-19 related worries being associated with increased
distress (r=0.10) and lower positive mood (r=-0.14) ratings. Results from these two analyses,
moreover, provide converging evidence that associations among mental well-being items were
particularly pronounced in the moment.

Importantly, however, most of the associations among mental well-being items were no longer
significant when examining the temporal relationships between these items (Figure 3D). Time-
lagged associations were primarily observed between COVID-19 related worries and mental well-
being items. Specifically, greater worries related to the COVID-19 pandemic at timepoint t were
associated with greater distress (Braw=0.17, 95% CI=[0.10 — 0.25], t125=4.48, pbonr<0.001) and lower
positive mood (Braw= -0.17, 95% CI=[-0.25 — -0.09], t138=-4.36, pbont=0.001) at timepoint t+1.
Moreover, distress and positive mood were among the few mental well-being items that were
temporally associated (Braw=-0.25, 95% CI=[-0.35 — -0.16], t139=-5.26, pbont<0.001 for distress —
positive mood; Braw= -0.16, 95% CI=[-0.23 — -0.08], t145=-4.01, pbonr=0.005 for positive mood —
distress). Although temporal associations were mostly small-to-modest, these results suggest that
COVID-19 related worries may strengthen the reciprocal (negative) interplay between positive
mood and distress. When repeating the analyses while controlling for several demographic
covariates (nsurveys=898, Supplemental Figure 1), we observed a highly similar network of time-
lagged associations, emphasizing the selective temporal dynamics involving positive mood,
distress, and COVID-19 related worries.
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(a) Product-Moment Correlations (b) Partial Correlations
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Figure 3 | Network analyses.

Top: Cross-sectional correlation analyses using all eligible first surveys (nsuwveys=1145). Bottom: Associations
obtained from a vector-autoregressive model using all eligible repeated measures (nsurveys=1038). Associations
visualized in 3A-B represent Pearson product-moment and partial correlation coefficients, respectively.
Associations visualized in 3C represent the estimated contemporaneous correlations among variables.
Associations visualized in 3D represent slopes/B:aw coefficients and are directional; they indicate how ratings of
variable X at timepoint ¢ are associated with ratings of variable Y at timepoint {+1. Temporal autocorrelations in 3D
are visualized as curved/circular arrows. Green = positive association; red = negative association. Line thickness
and color intensity corresponds to the association strength. Only significant associations are shown (based on
Bonferroni corrections for 21 unique correlation pairs in 3A-B-C and for 49 time-lagged associations in 3D).
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Discussion

Here we investigated the psychological state of adults in the Netherlands and Belgium during the
initial phase of the COVID-19 pandemic, a time of drastic changes in daily life routines due to
uncertainty surrounding the COVID-19 pandemic and preventive measures taken to curtail the
spread of the virus. Using network analyses, we found evidence for selective dynamic temporal
interplay between worries about the COVID-19 pandemic and negative emotional states
characterized by higher distress and lower positive mood.

Our cross-sectional results involving Pearson product-moment correlations revealed associations
between COVID-19 related worries — e.g., about infection risk, future repercussions, and impact
on loved ones — with all mental well-being items. However, cross-sectional associations after
controlling for correlations among rating items and contemporaneous associations (using
longitudinal data) revealed a more nuanced pattern of results. In these analyses, COVID-19 related
worries were consistently associated with higher ratings of distress and lower positive mood
ratings. In turn, positive mood and distress ratings were associated with other indicators of mental
well-being, such as loneliness, motivation, and energy.

Previous work has reported associations between COVID-19 stressors and a range of mental
health proxies, including loneliness/social behavior, anxiety, and energy (Fried et al., 2020;
O'Sullivan et al., 2021; Ryu et al., 2021). Interestingly, in studies employing network methodology
— even when using heterogenous samples in terms of participant characteristics and/or
(subclinical) psychopathology — low positive mood and distress exhibit high centrality within
depression-anxiety symptom networks, followed by other symptoms such as anhedonia, low
energy, worthlessness, and nervousness (Bai et al., 2021; Beard et al., 2016). These observations
are consistent with the notion that stress reactivity and low positive mood are paramount to the
regulation of mental well-being (Flores-Kanter et al., 2021; Olff et al., 2021). For example, affective
states are strong predictors of social behavior, daily-life activities and routines, and subsequent
stress coping (Flores-Kanter et al., 2021; Quoidbach et al., 2019). Collectively, our cross-sectional
and contemporaneous findings point to the presence of a relationship between COVID-19
stressors and heightened negative emotional states, which may exert secondary influences on
other components of well-being, such as energy, motivation, and loneliness.

Importantly, associations among indicators of mental well-being were primarily observed in the
same measurement window. Our time-lagged network analysis — which illustrates how variables
predict each other in subsequent measurement windows (S. Epskamp et al., 2018) — revealed
temporal associations within a selective cluster of items including COVID-19 related worries,
distress, and positive mood. These ratings were not only (positively) autocorrelated, indicating a
degree of similarity for ratings of a given item across time, but they also fueled each other over
time. Specifically, COVID-19 related worries at timepoint ¢ (e.g., day 1) were linked to lower positive
mood and increased distress at t+71 (e.g., day 2). These results could indicate that increased
COVID-19 related worries may impact the dynamic regulation of emotional states over longer
temporal windows. In addition, low positive mood and increased distress reciprocally interacted,
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resulting in a vicious cycle (i.e., high distress 2 low positive mood; Figure 3D). Previous studies
have postulated the existence of a bidirectional relationship between stress and (negative) affect,
which can express itself in a downward spiral characterized by low positive mood and high distress
(Langens & Stucke, 2005; Martinowich & Lu, 2008; Wichers et al., 2009; Wolk et al., 2016). Such
interactions between low positive mood and distress can also be observed in the flow of daily life
(Bos et al., 2018). Moreover, enhanced stress reactivity is associated with more severe depression
and anxiety levels (van Winkel et al., 2015). Thus, our results suggest that worries about the current
COVID-19 pandemic have the potential to selectively accentuate the negative interplay between
low positive mood and distress. It would, therefore, be interesting for future studies to evaluate
whether low positive mood and distress could keep reinforcing each other, even when initial
worries about the pandemic start to fade away.

Despite the impact of COVID-19 worries on positive mood and distress, ratings of some mental
well-being items (e.g., positive mood, distress, and energy) slightly improved throughout the
measurement window. These findings are in agreement with previous studies reporting that after
an initial increase in negative emotional states, the intensity of self-ratings may subside over time
(Bendau et al., 2021; Fried et al., 2020). These relative improvements in emotional states could
suggest the presence of an initial elevation bias in negative psychological states, which is often
observed in self-report studies (Shrout et al., 2018). Alternatively, improvements could be
indicative of successful adaptation or resilience (Veer et al., 2021).

Interestingly, adherence to hygiene and social distancing measures slightly decreased during the
measurement window. This is in agreement with a gradual decline in adherence to protective
measures reported in previous studies (Petherick et al., 2021; Scandurra et al., 2021), and may
have been associated with a drop in cases and/or good news reports (e.g., planned reopening of
public institutions announced later in the measurement window). Given the moderate decrease in
distress over time, this finding corroborates the observed positive association between distress
and COVID-19 guideline adherence in the contemporaneous network. That is, lower distress may
lead to reduced guideline adherence — either directly or indirectly via the COVID-related worries
node.

All'in all, our data collected in the initial stages of the COVID-19 pandemic suggest that increased
pandemic-related worries are associated with heightened negative emotional states. Temporal
associations among COVID-19 related worries, distress, and positive mood may constitute a
mechanism by which the ongoing pandemic could impact mental well-being, although studies with
longer measurement intervals and knowledge of underlying resilience determinants would be
necessary to support such conclusions. If confirmed, this mechanism may provide one explanation
for the increased prevalence of affective/stress-related disorders reported during the COVID-19
pandemic (Qi et al., 2021; Salari et al., 2020).

Strengths and limitations
An advantage of the network approach used in this study is that it highlights the complex
associations that collectively influence mental well-being. Our results provide initial insights into
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the psychological mechanisms that may be impacted by the currently on-going COVID-19
pandemic, and, as such, provides clues on potential risk or resilience mechanisms during major
health crises.

However, whether and under which circumstances these emotional changes will meaningfully
contribute to psychopathology remains elusive and speculative. One caveat of this study is its short
duration, which resulted in short intervals between subsequent measurements in conjunction with
a relatively small sample size for online research. Although in this study we observed short-term
temporal stability of the network, it would have been helpful to evaluate associations among mental
well-being and COVID-19 specific items over longer intervals. Longer-term measurement windows
with larger sample size could reveal whether COVID-19 worries, distress, and positive mood
dynamics, uncovered here, persist over the course of the pandemic. Furthermore, caution is
warranted regarding the generalizability of findings due to potential attrition bias, as observed when
comparing cross-sectional and longitudinal data (35.63% of the total sample completed the survey
more than once). Past research has shown that people with mental health problems are more likely
to discontinue participation in follow-up measures (da Graca et al., 2023). Thus, lack of information
regarding participants mental health history and/or use of psychotropic medication is another
limitation that should be acknowledged.

Although we controlled for several sociodemographic variables, our design was not optimized for
stratified analyses, for example based on gender, age, psychiatric history, geographical location,
ethnicity, or education, which could explain the low effect sizes observed. Several studies have
identified potential sociodemographic risk factors that predict worse mental health outcomes during
the COVID-19 pandemic, including being female, younger in age, having pre-existing mental health
problems, lack of social support, previous trauma, and experiencing additional stressful events in
the past month (Li & Wang, 2020; O'Connor et al., 2021; O'Sullivan et al., 2021; OIff et al., 2021;
Varga et al., 2021). Given the age distribution of this sample, future work could look at the
association of age with measured variables, such a social isolation, impact on loved ones, etc.
(Minahan et al., 2021; Sojli et al., 2021). A final limitation is that our sample is self-selected,
meaning that it may not be representative of the entire population. Thus, reported findings should
be extrapolated with caution.

Conclusion

To conclude, this network-based study evaluated the potential psychological repercussions of the
COVID-19 pandemic in the Netherlands and Belgium. We identified worries about COVID-19 to be
temporally associated with the reciprocal interplay between distress and low positive mood.
Increased distress and low positive mood, in particular, seem to be important factors that may
possibly, in the long run, be associated with adverse mental health outcomes in the current health
crisis.
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Supplemental Information

Supplemental Table 1

ltem Factor1 Factor2
cheerful -0.68 -
carefree -0.37 -0.19
sad* -0.73 -
relaxed* 0.70 -
annoyed 0.63 -0.18
stressed 0.74 -
anxious 0.70 0.25
calm* 0.54 0.11
lose interest* -0.71 -
lack motivation* -0.63 -
well-rested -0.48 -

low energy* -0.61 -
lonely 0.63 -
WorryNews 0.36 0.41
EasyThinkOther* 0.53 0.20
FearOutside 0.21 0.55
FearExag* - 0.52
NotHere* - 0.20
NoFearFuture® 0.20 -
OthersMoreLikely* - 0.19
CovlsFlu* - 0.40
FearContract 0.25 0.61
FearOtherContr 0.25 0.56
CovidAdvice -0.16 0.57
SocOthers - 0.64
Ignorelnvites - 0.66
Leave24 - 0.22

Factor loadings for exploratory factor analysis using all 15 mental well-being

items and 14 COVID-19 related items.
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(a) Contemporaneous Associations (b) Lagged Associations

COVID-19
related
worries

guidline
adherence,

COVID-1
guidline
adherence,

positive

positive mood

mood

Supplemental Figure 1 | Network analyses.

Association networks obtained from the vector-autoregressive model that included age, gender, education, country,
and confirmed daily COVID-19 cases as covariates. Note. Networks were visualized using procedures described
in the main text and Figure 3.
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Abstract

Alzheimer's disease constitutes a growing cause of cognitive impairment in aging population.
Given that current treatments do not produce the desired therapeutic effects, the need for finding
alternative biological and pharmacological approaches is critical. Accumulating evidence suggests
inflammatory and oxidative stress responses as potential causal factors of cognitive impairments
in Alzheimer's disease and healthy aging. Curcumin has received increased interest due to its
unique molecular structure that targets inflammatory and antioxidant pathways as well as (directly)
amyloid aggregation; one of the major hallmarks of Alzheimer’s disease. Therefore, this review
summarizes preclinical and clinical findings on curcumin as a potential cognitive enhancer in
Alzheimer's disease and normal aging. Databases used for literature searches include PubMed,
EMBASE and Web of Science; in addition, clinicaltrials.gov was used to search for clinical studies.
Overall, animal research has shown very promising results in potentiating cognition, both
physiologically and behaviourally. However, human studies are limited and results are less
consistent, complicating their interpretation. These inconsistencies may be related to differences
in methodology and the included population. Taking into account measurements of important
inflammatory and antioxidant biomarkers, optimal dosages of curcumin, food interactions, and
duration of treatment would increase our understanding on curcumin’s promising effects on
cognition. In addition, increasing curcumin’s bioavailability could benefit future research.

Keywords: Alzheimer's disease, aging, curcumin (curcuma longa), cognition, preclinical studies,
clinical trials
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Introduction

Neurodegeneration is a hallmark feature of many age-related devastating diseases. The most
frequent neurodegenerative disease is Alzheimer’s disease (AD), which accounts for 60-70% of
cases with dementia (Duthey, 2013; Erkkinen et al., 2018). The symptoms of AD are characterized
by faltering cognitive abilities followed by impaired social and behavioural functioning. The main
histopathological features of AD are amyloid-B (AB) plaques, caused by changes in proteolytic
processing of amyloid precursor protein (APP), and neurofibrillary tangles (NFTs) caused by hyper-
phosphorylation of the tau protein (Hardy & Selkoe, 2002). According to World Health
Organization’s (WHO) report, 35.6 million people worldwide suffer from this disease and as the
lifespan of elderly population increases it is estimated that the frequency will be doubled by 2030
and tripled by 2050 (Duthey, 2013). At present, pharmacological treatments to prevent or cure the
cognitive decline are lacking. Even though the existing cognitive enhancers approved for AD, such
as donepezil and galantamine, may postpone cognitive deterioration, many patients do not
respond to the treatment, the beneficial effect is temporal and accompanied by a number of
adverse effects (Husain & Mehta, 2011).

The lack of effective pharmacotherapy has led researchers to seek alternative approaches in order
to treat or prevent AD and more neurobiological underpinnings are being discovered. Accumulating
evidence suggests neuroinflammation, oxidative stress, mitochondrial dysfunction or autophagy
as potential etiologies for AD (Amor et al., 2014; Amor et al., 2010; Guo et al., 2018; Kim et al.,
2015). For example, it has been reported that in populations with chronic use of nonsteroidal anti-
inflammatory drugs (NSAIDs), the risk for developing AD is significantly lower (Breitner et al., 1995;
Stewart et al, 1997). Although recent studies regarding the effect of NSAIDs on AD have yielded
both negative and beneficial results (Zhang et al., 2018; Miguel-Alvarez et al., 2015), one major
limitation for the use of NSAIDs is the gastrointestinal toxicity caused by inhibition of
cyclooxygenase (Lim et al., 2001). Therefore, the urgency of finding new, safer, (more) effective
pharmacological strategies is commonly accepted. Epidemiological studies indicate that natural
antioxidant agents, such as polyphenols, fatty-acids or vitamin-rich aliments, may delay the
occurrence of neurodegenerative diseases, however, randomized controlled clinical trials are
absent to confirm the protective or therapeutic efficacy of such molecules (Bastianetto & Quirion,
2004; Stab et al., 2012).

Curcumin is an active hydrophobic polyphenol extracted from the rhizomes of herb Curcuma Longa
Linn, also known as turmeric, which belongs to the family of zingiberaceae. Traditionally, curcumin
has been used as a remedy for many ailments in India and China (Ghosh et al., 2015). Modern
medicine has shown that curcumin exhibits a wide variety of biological and pharmacological
activities, including anti-inflammatory, antioxidant, neuroprotective, chemoprotective properties,
due to its ability to modulate numerous signaling molecules (Gupta et al., 2012; Hewlings &
Kalman, 2017). lts anti-inflammatory activity can be attributed to the suppression of
cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iINOS) enzymes via down-
regulation of nuclear factor kappa B (NF-kB) as well as inhibition of several inflammatory cytokines,
such as tumor necrosis factor-alpha (TNF-a) or interleukin (IL) -1, -2, -6, -8, and -12 (Jurenka,
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2009). Curcumin’s ability to scavenge free radicals, such as reactive oxygen species (ROS) and
reactive nitrogen species (RNS), provides its antioxidant capacity (Alisi et al., 2018). Multiple
studies in rodents and humans have shown that curcumin crosses the blood brain barrier (BBB)
(Dende et al., 2017; Mishra & Palanivelu, 2008; Reddy et al., 2018). However, its main drawback
is the low bioavailability due to poor solubility, low absorption, rapid metabolism, and rapid
excretion (Gupta et al., 2012). Much effort has been made attempting to overcome this issue and
new formulations have been developed, including liposomal encapsulation, nanoparticles, powder
form, micellar form, emulsions, co-administration with other substances, or separate administration
of its constituents. Curcumin is considered to be a safe compound, thus suitable for daily dietary
use as established by the Joint Nations and World Health Organization Expert Committee on Food
Additives (JECFA) (JECFA, 1996). Therefore, many curcumin-based products are currently freely
available (Jamwal, 2018).

Both the pleiotropic and favorable safety profile of curcumin make it a promising compound for use
in complex diseases, such as AD and associated cognitive decline. Novel approaches advocate
that these cognitive deficits may be caused by abnormalities in multiple signaling pathways;
especially inflammatory and oxidative stress mediated pathways. Thus, multi-target compounds
could effectively combat cognitive deficits. Since curcumin interacts with numerous molecules
involved in these pathways, it may be a promising compound for treatment / prevention of cognitive
decline. Therefore, the aim of this systematic review is to provide an overview of pre-clinical and
clinical studies that have examined how curcumin affects cognitive performance in AD and non-
pathological aging.

Methods

This systematic review was conducted according to the established PRISMA guidelines (Liberati
etal., 2009). A literature search was conducted in PubMed, EMBASE and Web of Science to obtain
both preclinical and clinical trials. In addition, ClinicalTrials.gov was searched for human studies.
The following keywords were used: ((((((curcuma [MeSH Terms]) OR curcumin [MeSH Terms])
OR curcuma) OR curcumin)) AND (((((((cognitive) OR cognition) OR cognitive disorders [MeSH
Terms]) OR "cognition disorders") OR "Alzheimer’s disease") OR "aging") OR neurodegenerative
diseases [MeSH Terms])). Separate searches were applied for clinical and pre-clinical studies
using the respective filters. Retrieved articles were imported to EndNoteX8. All articles were
independently screened for, duplicity, eligibility by author SV and checked by author CV.

Inclusion criteria were: 1) original research, 1) published in English, Ill) use of any form of curcumin
as the main pharmacological challenge or treatment (including cases in which a compound was
added in order to increase curcumin’s bioavailability), IV) use of validated cognitive tests (either
for animals or humans) and V) published before June 2018. Articles were excluded if |) the study
did not evaluate AD or aging, Il) no cognitive or behavioral tests were used Ill) curcumin was used
as a positive control or as adjunctive therapy IV) only abstract was available V) the article was a
review, a case report, an in-vitro, in-silico or a non-randomized clinical study.
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In total the search yielded 819 articles of which 38 met inclusion criteria (Figure 1). Six hundred
forty-five preclinical articles were retrieved of which 32 were included after full text screening. One
hundred seventy-four human studies were identified of which 5 articles were deemed for inclusion
after the final screening. In total, 21 preclinical studies evaluating AD and 11 studies examining
healthy aging were included. Aging was included since not only is aging the prime risk factor for
the development of AD but also the majority of clinical trials has been conducted in a healthy or
mildly cognitive impaired geriatric population. Therefore, it was considered essential to include
studies examining aging due to their high translational value. Study characteristics are depicted in
Table 1. Concerning the clinical trials, three of the studies evaluated curcumin on a healthy geriatric
population, while the remaining two studies used patients with mild to moderate Alzheimer’s
disease to test curcumin’s efficacy on cognition.
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Figure 1 | Flow diagram of the systematic review process.

Results

Preclinical studies

Alzheimer’s disease (AD)

AD is characterized by the presence of intraneuronal NFTs and extracellular AB plaques, leading
to neuronal loss and brain atrophy (Hardy & Selkoe, 2002). Cognitive decline, caused by the
accumulation of AB plaques and NFTs, is evident in an anterior-posterior manner, from memory
and executive functioning to learning deficits. However, the underlying mechanism inducing these
protein aggregates remains elusive. Currently, no pharmacological treatment is available to
ameliorate the symptoms of the disease. Curcumin binds to AR plaques, reducing their
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neurotoxicity and initiating their degradation (Lim et al., 2001). Therefore, it is considered a
promising therapeutic agent for altering the cognitive symptoms of AD, as evident by the excess
of preclinical studies examining its efficacy.

Natural Curcumin

Natural curcumin, the substance obtained without chemical modification, has been studied
extensively. Ishrat et al. (2009) explored the effects of natural curcumin (80 mg/kg) on cognitive
performance using intracerebroventricular—streptozotocin (ICV-STZ) infused rats. Streptozotocin
(STZ) is a diabetogenic substance that inhibits the neuronal insulin receptor and leads to
cholinergic deficiency exerting cognitive impairments along with oxidative stress. Therefore, ICV—
STZ is used as a model for sporadic dementia of the Alzheimer's type (SDAT). Three weeks of
oral curcumin treatment after STZ induction significantly improved spatial learning and memory
compared to the vehicle treated group. However, both STZ infused groups showed poorer
performance compared to the sham controls. Furthermore, no difference was observed between
sham groups receiving curcumin or vehicle, indicating that curcumin is effective in obstructing STZ
induced cognitive impairment but does not affect cognition in healthy rodents.

Using a comparable model, Agrawal et al. (2010) evaluated the preventive and the therapeutic
effect of 200 mg curcumin on SDAT. Curcumin was administered orally 14 days prior to disease
induction or 6 days after its induction. Administration of curcumin enhanced memory performance
in Morris Water Maze (MWM) over time in both conditions. Additionally, levels of oxidative stress,
acetylcholine and insulin were restored after administration of curcumin.

Similarly, Awasthi et al. (2010) evaluated the preventive role of curcumin at oral doses of 10, 20
and 50mg/kg, starting the same day as the induction of SDAT. To evaluate the therapeutic
potential, curcumin was also administered at 25 and 50 mg/kg for 7 days after the induction of the
disease. Curcumin prevented memory deficits at dosages of 20 and 50 mg/kg, while administration
of 25 and 50mg/kg of curcumin reversed memory impairments in a dose dependent manner with
the higher dose exerting more beneficial effect. Furthermore, curcumin restored cerebral blood
flow, oxidative stress and acetylcholinesterase activity. Another research group assessed the
protective role of curcumin at a dose of 300 mg kg/day, i.p. (Isik et al., 2009). Additionally, the level
of insulin-like growth factor-1 (IGF-1), a growth factor that promotes phosphorylation of tau protein
was upregulated and neuronal loss was mitigated after treatment with curcumin.

More recently, Samy et al. (2016) studied the role of curcumin as well as erythropoietin in an ICV-
STZ rat model. Animals were injected with saline or STZ. The latter group was treated
subsequently with vehicle, curcumin (80 mg/kg/day, p.o.), erythropoietin (500 1U/kg every other
day, i.p.) or with a combination of curcumin and erythropoietin for three months. Administration of
curcumin and/or erythropoietin restored behavioral, histological and biochemical ICV-STZ induced
alterations. However, curcumin was considered preferable due to its less severe long-term adverse
effects compared to erythropoietin.
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Contrary, a study evaluating prolonged administration of oral curcumin at doses of 25, 50 and 100
mg/kg, found no beneficial effect in short-term spatial memory of ICV-STZ infused rats (Bassani et
al., 2017). However, an improvement was detected in short term recognition memory. Additionally,
even though curcumin did not increase neurogenesis, a reduction of neuroinflammatory
biomarkers was observed, which according to authors could possibly contribute to the frequently
observed therapeutic effects of curcumin.

The familial form of AD (FAD) was studied by Zhang et al. (2015), who evaluated the protective
effect of curcumin at 50, 100, and 200 mg/kg, i.p. on intraventricularly injected AB1-42animals. Acute
treatment with curcumin did not exert positive results. However, cognitive deficits, shown at the Y-
maze and MWM, improved after chronic treatment (7-day administration) with 200 mg/kg curcumin
compared to placebo. The results were comparable to the sham group. Similarly, Wang et al.
(2013) and Yin et al. (2014) tested the effect of curcumin (300 mg/kg, i.p.) on a AB1-40 AD model
and found that curcumin reversed spatial learning and memory impairments concomitantly
promoting hippocampal regeneration.

Frautschy et al. (2001) tested whether dietary curcumin has a protective effect on Ap-induced
neurotoxicity when administered for 2 months prior to AB1-42and AB/HDL injection. A dose of 500
ppm of curcumin reversed spatial memory impairments as compared to the untreated AB-infused
rats. Additionally, curcumin protected against AR deposits to a greater extent than ibuprofen.
Another group evaluated curcumin (300 mg/kg, i.p.) on a AB140 model (Wang et al., 2011).
Curcumin improved spatial memory to levels comparable to the sham group and suppressed
neuronal apoptosis in the hippocampus by balancing the expression of the two apoptotic genes,
Bax and Bcl-2.

The effect of different doses of curcumin was explored by Wang et al. (2014). This group utilized
an APP/PS1 double transgenic AD model to examine the effect of low (160ppm) and high
(1000ppm) dose of curcumin after administration for 6 months in diet. The researchers detected a
significant cognitive improvement at both doses compared to the untreated group, while a
significant dose-response effect was found throughout time with higher doses of curcumin
producing greater cognitive improvement. In addition, data suggest that curcumin reduced AR
deposits potentially by promoting autophagy.

Formulated Curcumin

Despite the positive effects of curcumin on cognition, its main disadvantages when administered
to a human organism are the low bioavailability, the rapid gastrointestinal metabolism and the poor
blood brain barrier (BBB) penetration. Therefore, many formulations aiming to improve the
bioavailability and stability of curcumin have been developed. One of these formulations includes
polymersomes (POs) loaded with curcumin, accompanied by transferrin (Tf) and Tet-1 peptide
(Tf/Tet-1-POs) (Jia et al., 2016). POs are artificial vesicles in which the drug is loaded to control
permeability and increase stability. In addition, Tf is used to increase BBB permeability via
endocytosis and Tet to facilitate the delivery to neurons due to its affinity with the ganglioside GT1B
receptor on neurons. In the study by Jia et al. (2016), AB1-42 AD mice were treated with curcumin
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(15mg/kg, i.v.) for 14 consecutive days to test different combinations of the abovementioned
constituents. Results illustrated a significant improvement of AB-induced spatial and learning
memory in mice treated with curcumin-Tf/Tet-1-PO and curcumin-Tf-PO compared with the
untreated controls. The fact that animals treated with the empty Tf/Tet-1-PO did not display
improvement in their performance suggests that curcumin is the compound contributing to the
beneficial outcome.

Another formulation of curcumin was evaluated by Hoppe et al, who tested the differential effects
of free curcumin and curcumin-loaded lipid-core nanocapsules (Cur-LNC) for 10 days in an AB1-42-
induced model (Hoppe et al., 2013). The results showed significant improvement in cognitive tests
for both formulations of curcumin. Interestingly, a 20-fold lower dose of Cur-LNC (2.5 mg/kg/day,
i.p.) demonstrated similar neuroprotective effects as the high dose free curcumin (50 mg/kg/day).
Furthermore, downregulated levels of the proinflammatory cytokines TNF-a and IL-1B in the
hippocampus were observed only after administration of Cur-NLC, indicating higher bio-distribution
of curcumin under nanoparticle formulation.

Tiwari et al. (2013) reported comparable results. Curcumin-loaded biodegradable poly (lactic-co-
glycolic acid) (PLGA) nanoparticles (Cur-PLGA-NPs) were found to be effective in reversing
cognitive impairment and increasing neurogenesis in an AD rat model at a lower dose than
uncoated natural curcumin after a three-week treatment. Specifically, after intraperitoneal
injections at dosages of 10 and 20 mg/kg of Cur-PLGA-NPs, a 2.1- and 2.8-fold respective increase
was reported in brain curcumin levels compared to the same doses of natural curcumin, indicating
increased bioavailability of this formulation.

Ahmed et al. (2010) compared the effects of the parent curcuminoid mixture with its three separate
constituents, specifically curcumin, bisdemethoxycurcumin and demethoxycurcumin in AB-infused
rats. All components showed a memory-enhancing effect at 3 mg/kg, i.p., whereas the curcuminoid
mixture had no effect on memory at the same dose. At 30mg/kg, i.p. all treated groups showed a
significant beneficial effect on memory, but the three separate components showed additional
improvement over time, suggesting that the parent curcuminoid mixture might not be as effective
as its separate components. On a molecular level, after short term treatment the curcuminoid
mixture and the bisdemethoxycurcumin improved post-synaptic density protein (PSD-95) in the
hippocampus, a marker of postsynaptic plasticity, with the lower dose (3mg/kg) being more
effective. However, after prolonged administration the other two components show similar
outcome. Interestingly, after long term treatment a high dose of demethoxycurcumin (30mg/kg)
seemed to be more effective in augmenting synaptophysin and calcium/calmodulin dependent
protein kinase type IV (camklV) expression - biomarkers of synaptic plasticity - compared to the
other compounds. The authors suggested that these results probably indicate that different
compound compositions could result in different beneficial outcomes depending on the model or
the type of the disease.

Yanagisawa et al. (2015) utilized the double transgenic APP/PS1 model to compare three forms
of dietary curcumin; natural curcumin, FMeC1 and FMeC2. FMeC1 is a derivative of curcumin
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substituted at the C-4 position, which previously has shown to bind to AR deposits, while leaving
AB monomers untouched (D. Yanagisawa et al., 2010). FMeC2 is a product of FMeC1 hydrolysis.
Improved spatial memory comparable to the sham group, was evident in the group treated with
FMeC1; however, no memory improvement was observed in the group treated with free curcumin
or FMeC2. Likewise, treatment with FMeC1 reduced the accruement of AB4o and AB42, while this
trend was not observed after treatment with natural curcumin or FMeC2. Additionally, Okuda et al.
(2017) evaluated a new derivative of curcumin, called PE859 (1 and 3 mg/kg/day, i.g.), on a
SAMP8/TaSIc mouse strain. No significant differences were displayed on spatial learning and
memory. However, PE859 seemed to diminish insoluble AB1-40 but not AB1-42 deposits.

Besides AR deposits NFT’s accumulation is a hallmark of AD. For that reason, Ma et al. (2013)
explored the effect of dietary solid lipid nanoparticle Longvida® (500ppm)on a Tau mice model with
intraventricular injections of tau dimers. Their findings suggest that curcumin supplementation may
improve memory and result in a number of biochemical alternations leading to suppressed tau
aggregation. To examine abnormal deposition of both AR and NFT’s, Sundaram et al. (2017) chose
to use a p25 transgenic mice model to evaluate the same dietary form of curcumin. Both features
of AD were reduced presumably due to suppressed levels neuroinflammatory cytokines MIP-1a,
TNF-a and IL-1B. Additionally, Longvida® improved spatial and working memory as observed in
the 8-arm radial maze.

More recently, McClure and his team (2017) introduced an inhaled formulation of curcumin to
increase BBB permeability and tested its efficacy in preventing AD. They have shown that treating
young 5XFAD mice with intranasal curcumin prevented memory deficits and A plaque burden in
adulthood as compared to the untreated mice. In addition, no side effects or incidents of toxicity
were reported in the respiratory and the circulatory system of the animals as expected to due to
the nebulized form of curcumin.

Overall, the vast majority of AD animal models indicates that curcumin has both preventive and
therapeutic effects on cognition. Beneficial effects are observed not only on molecular but also on
behavioral level. Formulated curcumin seems to result in increased bioavailability compared to the
natural compound.

Non-pathological ageing

Aging is a physiological process associated with functional, morphological and biochemical
alternations in the central and peripheral nervous system. The biological underpinnings of aging
remain unclear; however, oxidative stress, inflammation and mitochondrial dysfunction have been
suggested to play an important role in age-related cognitive impairments, causing individuals to
become vulnerable for developing neurodegenerative diseases (Troen, 2003). Given its potential
positive effects on oxidative stress and inflammation, curcumin could be of interest in ameliorating
aging-associated cognitive impairments and/or reducing the risk for development of
neurodegenerative diseases, such as AD.
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Kumar et al. (2011) studied the neuroprotective effects of orally administered curcumin at 15 and
30 mg/kg using galantamine (5mg/kg) -an acetylcholinesterase inhibitor prescribed for the
treatment of cognitive decline in AD- as a positive control group in a D-galactose (D-gal) animal
model. D-gal is a decreasing sugar that can accelerate senescence and induce cognitive
dysfunction to experimental animals in a way that resembles human aging. Groups treated either
with curcumin or galantamine performed better on cognitive tasks compared to the untreated D-
gal group, even though locomotor activity remained the same in all groups. In addition, both
curcumin and galantamine diminished levels of oxidative stress and mitochondrial dysfunction. The
results thus indicate that CUR could be an alternative treatment for aging-induced cognitive deficits
with a higher dose showing more beneficial results.

Equally, Nam et al. (2014) studied the effects of orally administered curcumin at 300 mg/kg in D-
gal induced mice. A beneficial trend of curcumin on learning and spatial memory was observed in
D-gal mice treated with curcumin as compared to the vehicle treated D-gal mice. No significant
difference was found in cognitive performance between curcumin and vehicle treated healthy
animals. Results demonstrated increased neuronal proliferation in the hippocampus after
administration of curcumin, as evident by the elevated brain-derived neurotrophic factor (BDNF)
protein expression and increased phosphorylation of the transcription factor CREB in the
respective brain region.

The same model was applied to compare the synergistic effect of curcumin and piperine versus
curcumin and piperine monotherapy when administered orally at doses of 20mg/kg or 40 mg/kg
for curcumin and 6mg/kg or 12mg/kg for piperine by the group of Banji et al. (2013). Combined
curcumin and piperine showed superiority, in a dose dependent manner, compared to separate
administration in ameliorating memory and normalizing oxidative burden, biochemical levels and
hippocampal morphology. Moreover, using a similar study design they compared the same
compound synergism but this time using higher doses of piperine (Baniji et al., 2013). As in the
previous study, co-administration of curcumin and piperine ameliorated movement and cognitive
deficits caused by D-gal administration, while also reducing oxidative stress in a dose dependent
manner. One year later the same group evaluated the effects of combined curcumin and hesperidin
(glycoside). Likewise, both separate and co-administration augmented behavioral performance
with higher doses of the mixture demonstrating better overall profile in reducing mitochondrial and
oxidative damage as well as apoptosis (Baniji et al., 2014).

Sun et al. (2013) studied the effects of 20 and 50 mg/kg curcumin when administered
intragastrically using senescence-accelerated mouse prone 8 (SAMP8 mice). SAMPS is a line that
closely mimics human’s phenotype of senescence; therefore, it was compared with a normal aging
SAMR1 strain. They found an improvement in spatial memory at both doses of curcumin compared
to the untreated SAMP8 mice as well as enhanced antioxidant capacity and synaptic plasticity.
Again, stronger effects were found on the high dose of curcumin (50 mg/kg).

A different approach was followed by Dong et al., who instead of modeling senescence in young
animals, evaluated the effect of curcumin in normal aging rats (Dong et al., 2012). Non-spatial and
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spatial memory were tested after 6 and 12 weeks of curcumin treatment (480 mg/kg in chow). After
12-weeks curcumin treatment, spatial memory significantly improved in the aged rats, whereas no
effect was found after a 6-week administration. A subtle improvement in non-spatial memory was
detected in the curcumin group after both treatment durations. Interestingly, increased
neurogenesis was observed in the hippocampus of the rats after prolonged administration of
curcumin.

Another study found small beneficial effects of curcumin (300mg/kg/day, p.o.) in aged rats
(Belviranlh et al., 2013). Performance on learning and spatial memory improved in curcumin treated
compared to vehicle treated rats. However, except from a downregulated marker of oxidative
stress (malondialdeyde) in the group treated with curcumin the other markers remain unchanged
(protein carbonyl and glutathione). Yu et al. also examined the effect of prolonged administration
of curcumin on aged rats (Yu et al., 2013). Curcumin ameliorated cognitive deficits induced by
aging. The underlying mechanism of curcumin’s action could be attributed to the activation of the
neuronal nitric oxide synthase/nitric oxide (n(NOS/NO) pathway.

In a more recent study, Vidal et al. (2017) similarly examined the effect of oral curcumin on aged
rodents. Animals treated with curcumin exhibited better performance on recognition memory as
compared to the vehicle treated group. Additionally, curcumin improved dendritic spike density and
dendritic length in the hippocampus and the prefrontal cortex, however, with regards to the
amygdala the results were not consistent across measurements.

The only study examining non-human primates was the study of Moore et al. (2017). In this study
middle aged rhesus monkeys received curcumin or placebo in their diet to assess its effect on age
related cognitive deficits. Results revealed amelioration of spatial memory in the curcumin treated
animals, however, no improvement was observed concerning the visual recognition memory.
According to the authors, this deviation could probably be explained by the fact that in middle aged
monkeys recognition memory has not begun to decline yet, whereas spatial memory is typically
deteriorated at this age-range.

In general, results indicate that curcumin may benefit age-related cognitive impairments. Higher

doses of curcumin seem to be more effective compared to the lower doses regardless the route of
administration and co-administration with piperine seems to enhance further curcumin’s effect.
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Table 1 | Summary of the included pre-clinical studies.

Study Duration Study design, Species Cognitive Primary Main results
of treatment Dose & (N) Measuremen Objective
Route of ts
administration
Alzheimer’s disease
Ishrat et 3weeks (1) Shams: Male Wistar  MWM, PA  The effect of CUR
al. (2009) operation+ rats curcumin on counteracted ICV-
vehicle; (2) (N=40; cognitive STZ-induced
shamy. operation+ n=10/group) impairments and alterations in
CUR (80 mg/kg, oxidative damage cognitive and
p.o.); (3) STZ in ICV-STZ behavioral
+vehicle, p.o.; (4) infused rats. parameters and in
STZ +CUR (80 markers of
mg/kg, p.o.) oxidative stress.
Agrawal  1-14 days (1) Untreated Adult male MWM The effect of Curcumin
etal. (pre- group; (2) Sprague— curcumin on improved memory
(2010)  treatment) swimming control  Dawley rats memory and and restored
14-20 days (no training); (3) (N=35;n=5 insulin receptors  insulin, cholinergic
(post- vehicle treated per group) in the brain. and oxidative
treatment) group, p.o.; (4) stress markers.
Sham group; (5)
STZ group; (6)
pre-treated
CUR (200mg,
p.o.) + STZ; (7)
post-treated
CUR 200mg, p.o.
+STZ
Awasthi  1-21days  Pre-treatment: Adult male MWM, PA  The preventive  Curcumin
etal. (pre- (1) Control group;  Swiss albino and therapeutic  prevented and
(2010)  treatment) (2) Sham group;  mice (n = 6-8 effect of curcumin reversed spatial
19-25 (post- (3) STZ group; (4)  per group) on memory, memory deficits in
treatment_ STZ+ 10mg/kg cerebral blood a dose dependent
CUR; (5) STZ+ flow, oxidative manner.
20mg/kg CUR,; (6) stress, and Additionally, it
50mg/kg CUR, cholinergic levels. improved cerebral
p.o. post- blood flow,
treatment (1) oxidative and
STZ+ vehicle; (2) cholinergic levels
STZ+ 25 mg/kg in the brain.
CUR,; (3) STZ+50
mg/kg CUR, p.o.
Isik et al. 10days (1) Sham group; Male Wistar PA, MWM  The Curcumin
(2009) (2) STZ+ vehicle  rats (N = 24; neuroprotective  significantly
(0.5 ml, i.p.); (3) ni=8,n=7, effect of CUR improved
STZ+ CUR (300 n3= 8) compared to ICV- behavioral and
mg/kg daily in STZ induced histological
vehicle, i.p.) cognitive alterations
impairments. resulting from
ICV-STZ
induction.
Additionally, IGF-1
levels were
elevated after
administration of
curcumin.
Samyet 3 months (1) Sham group; Male Wistar MWM, PA  The comparison Both combined
al. (2016) (2) ICV-STZ rats of combined CUR and monotherapy
+vehicle; (3) ICV- (N=40; n= and reversed
STZ + curcumin 8/group) erythropoietin cognitive,

(80 mg/kg/day,

treatment against

biochemical, and
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Bassani
etal.
(2017)

Zhang et
al. (2015)

Wang et
al. (2013)

Yin et al.
(2014)

30 days

7 days

7 days

7 days

p.o.); (4) ICV-
STZ+
erythropoietin
(500 IU/kg q.0.d,
i.p.); (5) ICV-STZ
+ curcumin

(80 mg/kg/day,
p.o.) &
erythropoietin
erythropoietin
(500 1U/kg q.0.d,
i.p.)

(1) Sham group;
(2) STZ infused
group; (3) STZ+
CUR (25mg/kg,
p.0).; (4) STZ+
CUR (50mg/kg,
p.o.); (5) STZ+
CUR (100 mg/kg,
p.o.)

~ S~

(1) Sham group;
(2) AB1-42 +
saline; (3) AB1-
42+ 50, (4) 100,
and (5) 200
mg/kg, i.p. of
curcumin
respectively

(1) Sham group;
(2) AB140 (10

ul) + vehicle (300
mg, i.p.); (3) AB1-
40 + CUR (300
mg, i.p.)

(1) Sham group;
(2) AB1ao +
vehicle (300
mg/kg, i.p.); (3)
AB140 + CUR
(300 mg/kg, i.p.)

Male Sprague-

Male Sprague-

Male Wistar  OFT, OLT,
rats ORT, EPM,

(N=35; n1=7, Y-Maze

na= 7, n3=6,

n4=8, n5=7)

Male Sprague Y-Maze, OFT,
Dawley rats MWM
(N=40; n=8 in
each group)

MWM
Dawley rats

(N=48; n=

16/group)

MWM
Dawley rats

(N=48; n=

16/group)

monotherapy in
cognition.

To examine the
possibility that
chronic
administration of
CUR may favor
cognition of STZ
induced rats and
increase
neuronal
proliferation.

The modulating
impact of
curcumin on
cognitive deficits
after ventricular
injection of
amyloid-B1-42
(AB1-42).

To examine the
protective effect
of CUR on AB1-
40-induced
cognitive deficits
and explore
whether CUR
acts on
collapsing
response

mediator protein-

2 (CRMP-2).

To explore the
underlying
mechanisms of
curcumin for the
treatment of AD.

histological
changes.
However,
curcumin
demonstrated a
better safety
profile.

At high dosages
curcumin might be
able to prevent
short term
recognition but not
spatial memory.
No signs of
neurogenesis
were evident, but
reduced
neuroinflammation
was observed.

Chronic CUR
supplementation
attenuated AB1-42
induced cognitive
impairments and
increased BDNF
levels in the
hippocampus.

Treatment with
CUR significantly
ameliorated
cognitive
impairments and
moderated
phosphorylation of
CRMP-2 leading
to hippocampal
regeneration.

CUR significantly
improved spatial
memory
performance.
CUR’s
mechanism of
action could be
related with
suppressing
hippocampal
Nogo receptor
expression and
subsequently
increasing axonal
regeneration.
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Frautsch
yetal.
(2001)

Wang et
al. (2011)

Wang et
al. (2014)

Jia et al.
(2016)

Hoppe et
al. (2013)

2 months

7days

6 months

14 days

10 days

(1) Control group, Female
vehicle; (2) AB Sprague-
infused+vehicle Dawley rats
(chow); (3) AB (N=30; n=10/
infused+ CUR group)

(500 ppm, chow)

(1) Sham group  Male Sprague-
+saline; (2)AB140  Dawley rats
+ saline; (3) AB140  (N=48; n=

+ CUR 16/group)
(300mg/kg/day,

i.p.)

(1) APP/PS1 Male mice
control group; (2) (N=33;
APP/PS1+CUR n=11/group)
(160 ppm); (3)

APP/PS1+CUR

(1000 ppm) in

diet, chow

(1) CUR solution; Male C57BL/6
(2) CUR-Pos; (3) mice
CUR-Tf/-Pos (n=8 per
(15mg, i.v.); (4) group)

CUR-Tet-1-Pos
(15mg, i.v.); (5)
CUR-Tf/Tet-1-Pos
(15mg, i.v.); (6)
AB1.42 induced
control group +

saline i.v.; (7)

sham control

group

(1) Sham group; Male Wistar
(2) sham +free rats
CUR; (3) sham + (n=10-16/
CUR-loaded lipid- group)

core
nanocapsules
(Cur-LNC group);
(4) AB1-42 infused
group; (5) AB1-42
infused+ vehicle
(6) AB1.42 infused
+ blank lipid-core
nanocapsules (B-
LNC group), (7)
i.c.v. infused +
free CUR; (8)
Cur-LNC group)
->50 mg/kg/day
CUR and

MWM

MWM

MWM

MWM

Y-Maze,
NORT

Protective activity
of dietary
curcumin against
AB-induced
neurotoxicity and
cognitive deficits.

The effect of
CUR on AD
related cognitive
deficits and cell
apoptosis.

To evaluate
whether CUR can
induce
autophagy and
attenuate
cognitive
impairments
induced in
APP/PS1 double
transgenic mice
model.

The effect of
different
formulations of
CUR on cognition
in AB1-42
induced mice.

To compare
efficacy and
bioavailability of
free CUR versus
Cur-LNC and
identify potential
mechanisms
underlying
curcumin’s
protection against
AB (1-42) induced
cognitive
impairment.

CUR prevented
memory deficits
and attenuated AB
deposits as well
as post-synaptic
density (PSD)-95
loss.

CUR significantly
improved
cognitive
impairments and
protected against
neuronal
apoptosis.

CUR improved
memory in a dose
depended manner
and induce
autophagy.

CUR-Tf/Tet-1-Pos
and CUR-Tf-PO
formulations
demonstrated
significant
improvement after
AB-induced
memory and
cognitive
impairment. In
vivo and in vitro
results supported
better
bioavailability of
Tf/Tet-1-Pos
formulation.

Administration of
curcumin in both
formulations
prevented
behavioral
impairments,
neuroinflammation
and cell synaptic
malfunctions
triggered by AB
induction.
Nanoencapsuled
curcumin
demonstrated
higher potency
compared to free
CUR.
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2.5 mg/kg/day

Cur-LNC, i.p.
Tiwariet 3 weeks (1) Sham group; Male Wistar PA Comparison CUR-loaded
al. (2013) (2) AB untreated rats between bulk nanoparticles at
(2) AR+ empty (n=6/ group) CUR and CUR  both doses and
PLGA-NP-; (3), nanoparticles in  high doses of bulk
(4) Ag+bulk hippocampal curcumin
Curcumin-Treated neurogenesis ameliorate
Group (0.5 and and cognition. cognitive
20mg/kg, i.p.) impairments and
mg/kg); (5), (6) potentially
CUR-PLGA-NPs- increases
Treated Group neurogenesis in
(0.5and 20 an A rat model.
mg/kg, i.p.)
Ahmed 5 days (1) Control group; Male, MWM The effects of Individual
etal. ->shortterm (2) Abinduced Sprague— curcuminoid curcuminoid
(2010) & 20 days—> group; (3), (4) Dawley rats mixture and its ~ components
long term curcuminoids 3 (n=8/group) individual demonstrate more
mg/kg and 30 constituents on  effective profile
mg/kg, i.p.; (5), spatial learning  than the parent
(6) curcumin, 3 and memory in  mixture on
mg/kg an amyloid-beta memory
and 30mg/kg, i.p.; (AB) peptide- performance.
(7), (8) infused rat model
bisdemethoxycurc of AD.
umin
3 mg/kg
and 30 mg/kg, i.p;
(9). (10)
desmethoxycurcu
min
3 mg/kg
and 30 mg/kg, i.p.
Maetal. 4 months (1) Wild-type Male & female MWM, Y-  The effect of CUR
(2013) animals; (2) C57BI/6J mice Maze, NORT dietary curcumin supplementation
Control hTau (N=24; n4=9, on NFTs enhanced
mice; (3) hTau + n2= 7, n3=8) accumulation and cognitive
CUR -Longvida memory. performance in
(500 ppm in mice and reduced
chow) soluble tau
aggregates.
Sundara 12 weeks (1) WT normally  Male & female 8-arm radial To investigate Dietary Longvida
metal. fed; (2) WT C57BL/6 mice maze fundamental and improved
(2017) Longvida 4g/kg (N=22; n1=5, behavioral effects cognitive functions
(0.8g CUR/kg) in n2=6, n3=5, of Longvida® on and mitigated
chow; (3) p25Tg ns=6) AD mice model. neuroinflammation
normally fed; (4) as well as
p25Tg CUR features of AD.
Longvida 4g/kg
(0.8g CUR/Kkg) in
chow
Daijiro 6 months (1) WT group; (2) Male & female MWM, Y- To compare free FmeC1 showed
Yanagisa Control group, C57BL/6 mice Maze CUR, FmeC1 superior efficacy
wa et al. APPswe/PS1dE9; (N=48; n1=12, and FmeC2 for in reducing
(2015) (3) APPswe/ n2=12, n3=6, the treatment of  cognitive deficits
PS1dE9+free ny=12, ns= 6) AD. and AB
CUR; (4) aggregates
APPswe/PS1dE9 compared to the
+ FmeC1; (5)

164



APPswe/PS1dE9
+ FmeC2 >
500ppm in chow

other two
formulations.

Okudaet 9weeks (1) SAMP8/TaSIc Male MWM, Y-  To examine the  Even though no
al. (2017) + vehicle; (2) SAMP8/TaSIc Maze, efficacy of a new significant
SAMPS8/TaSIc + mice (N=25; Rotarod, Grip CUR derivative, differences were
PE859 n1=9, n;=n3=8) strength named PE859 on observed in
(1mg/kg/day, i.g.); an AD model. behavioral testing,
(3) SAMP8/TaSIc PEB859 reduced
+ PE859 AB1-40
(3mg/kg/day, i.g.) aggregates.
McClure 18 Weeks (1) WT group; (2) Male & female  Y-maze To evaluate Nebulized CUR
et al. 5XFAD, control; C57BL/6 mice intranasal prevented
(2017) (3) 5XFAD + (N=30; n= formulation of memory deficits
5mg/kg CUR, i.n. 10/group) CUR for the and reduced
prevention of AD. formation of AR
plaques.
Ageing
Kumaret 6 weeks (1) Vehicle control Male Laca MWM, EPM To explore the All treatment
al. (2011) group; (2) D-gal mice (n=12 possible groups showed
(100 mg/kg, s.c.); per group) protective role of improvement in
(3) Galantamine curcumin against cognitive and
(5 mg/kg, p.o.) D-galactose- neurobiochemical
+d-gal induced cognitive markers.
(100mg/kg); (4) dysfunction, Locomotor ability
CUR (15 mg/kg, oxidative remained
p.o.) +d-gal damage, and unchanged.
(100 mg/kg); (5) mitochondrial
CUR (30 mg/kg, dysfunction in
p.o.) +d-gal ageing mice.
(100 mg/kg, s.c.);
(6) CUR alone
(30mg/kg, p.o.)
Namet 10 weeks (1) Control group Male C57BL/6 MWM The effects of Curcumin
al. (2014) + vehicle; (2) mice CUR on learning protected against
D-gal (100 mg/kg,  (n=10 per and spatial memory
s.c.); (3) CUR group) memory in impairment
(300 mg/kg, p.o.) healthy and D- induced by D-gal
(4) D-gal (100 galactose- and increased
mg/kg, s.c.) + induced aged neurogenesis in
CUR (300 mg/kg, mice. the hippocampus.
p.o.)
D. Baniji 49days (1) Youngrats + Male Wistar MWM To compare Superior effect of
etal. vehicle, p.o.; (2) rats effects of single  combined
(2013) Aged rats (N=36; n=6 and combined compared to
+vehicle, p.o.; (3) per group) administration of separate
Young rats + D- CUR and administration of
gal (60mg/kg, piperine on CUR and piperine
i.p.); (4) Young aging. in cognitive and

rats + D-gal+
CUR (20mg/kg,
p.o.); (5) Young
rats + D-gal+
piperine (6mg/kg,
p.o.); (6) Young
rats + D-gal +
CUR (20mg/kg,
p.o.) + piperine
(6mg/kg, p.0.); (7)
Young rats + D-
gal + CUR
(40mg/kg, p.o.) +

neurobiochemical
changes related to
aging.
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Banji et 56 days
al. (2013)

Baniji et 63 days
al. (2014)

Sunetal. 25 Days
(2013)

Dong et 6 &12 weeks
al. (2012)
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piperine
(12mg/kg, p.o.)

(1) Young rats +
vehicle, p.o.; (2)
Aged rats
+vehicle, p.o.; (3)
Young rats + D-
gal (150mg/kg,
s.c.); (4) Young
rats + D-gal+
CUR (40mg/kg,
p.o.); (5) Young
rats + D-gal+
piperine (7.5
mg/kg, p.o.); (6)
Young rats + D-
gal + CUR
(20mg/kg, p.o.) +
piperine (7.5
mg/kg, p.o.); (7)
Young rats + D-
gal + CUR
(40mg/kg, p.o.) +
piperine
(15mg/kg, p.o.)

(1) Control group
+ vehicle; (2) D-
gal (150mg/kg,
s.c.) + vehicle; (3)
D-gal+ CUR

(50 mg/kg, p.o.);
(4) D-gal
+hesperidin

(10 mg/kg, p.o.);
(5) D-gal + CUR
(50 mg/kg, p.o.) +
hesperidin

(10 mg/kg, p.o.);
(6) D-gal+ CUR
(100 mg/kg, p.o.)
+ hesperidin

(25 mg/kg, p.o.)

(1) SAMR1 mice,
as control (normal
aging); (2)
SAMP8 mice; (3)
SAMP8 + CUR
(20 mg/kg, i.g.);
(4) SAMPS8 +
CUR (50 mg/kg,
i.g.)

(1) Control group; Male Sprague-

(2) CUR (480
mg/kg, in chow)
-> six weeks; (3)
CUR (480 mg/kg,
in chow) > twelve
weeks

Male Wistar EPM, Rotarod To delineate the

synergistic effect
of curcumin and
piperine in
treating aging
symptoms and to
compare it with
monotherapy.

To delineate the
combination of
CUR and
hesperidin as

compared to their

individual

administration for

the treatment of
D-gal induced
cognitive
impairments.

The effect of
CUR on learning
and memory in
aging and its
possible
mechanisms.

To assess
behavioral
performance and
hippocampal cell
proliferation in
aged rats after 6-
and 12-week
curcumin-fortified
diets.

Co-administration
of CUR and
piperine improved
cognitive and
motor D-gal
induced
impairment and
reduced oxidative
stress.

The mixture of
CUR and
hesperidin as well
as individual
administration
minimized the
behavioral
impairments. The
higher doses of
the mixture
reversed
apoptosis,
mitochondrial and
oxidative damage.

Both dosages of
CUR significantly
improved
cognition,
normalized
oxidative damage
and enhanced
synaptic plasticity.
The higher dose
displayed stronger
effects.

Non spatial
memory improved
at both durations,
whereas spatial
memory was
improved after
long-term
treatment but not
after short-term.



Increased
neurogenesis
after 12-week
treatment.

Belviranli 12 days (1) Aged control ~ Female Wistar MWM The effect of Administration of

etal. group + vehicle; rats (N=20; CUR on cognitive CUR significantly

(2013) (2) Aged Cur n=10/group) impairments and improved spatial
group oxidative stress  learning and
(300mg/kg/day, induced by age. memory, whereas
p.o.) some markers of

oxidative stress
were decreased.

Yuetal. 21days (1) Young control Male Kunming NORT, PA To investigate the CUR alleviated

(2013) group + vehicle; mice (N=48; effect of CUR on  memory
(2) Aged control n=12/group) cognitive decline impairment in
group + vehicle; caused by aging aged mice.
(3) Aged CUR and to explore its
group (50mg/kg, mechanism of
i.p.); (4) Aged action.
CUR (50mg/kg,
i.p.) +7-NI

(150 mg/kg, i.p.);
(5) Aged 7-NI
(150 mg/kg, i.p.)

Vidal et 60 days (1) Aged control ~ Male Sprague-  NORT To investigate the CUR improved
al. (2017) group + vehicle; Dawley rats effects of memory and
(2) Aged CUR (N=20; n=20 curcumin elevated dendritic
treated group per group) treatment in aged spine density and
(100mg/kg/day, rats and its length in certain
p.o.) relationship with  brain regions.
neurogenesis.

Moore et 8 months (1) Middle aged ~ Male & female DNMS, DRST The effect of CUR improved

al. (2017) control group rhesus CUR on aging spatial but not
+vehicle; (2) monkeys, related memory  recognition
Middle aged CUR Macaca deficits. memory in middle
treated group mulatta, aged monkeys.
(500 mg in diet) (N=17; n4=9,
n2=8)

CUR =curcumin, i.p.=intraperitoneal, p.o.=per os (orally), i.g.=intragastrical, s.c.=subcutaneous injection,
i.v.=intravenous, i.n.=intranasal, |CV=intracerebroventricular, WT=wild type, MWM=Morris Water Maze,
PA=passive avoidance task, OFT=open field test, OLT=Object location test, ORT=object recognition test,
NORT=Novel Object Recognition task, EPM=elevated plus maze, DNMS=delayed non-matching to sample task,
DRST=delayed recognition span task, SAMP8=senescence-accelerated mouse prone 8, SAMR1=senescence-
accelerated-resistant, q.o0.d=every alternate day, Kl=knock-in, 3NP=3-nitropropionic acid, C-SLN=curcumin solid
lipid nanoparticle

Clinical Trials

With regards to human data, a few randomized clinical trials (RCTs) have been conducted
measuring cognitive functioning after curcuminoid administration. The majority of these trials
included an elderly population, with or without AD. In total five articles met the inclusion criteria.
Study specifics are displayed in Table 2.
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Rainey-Smith et al. (Rainey-Smith et al., 2016) conducted a randomized study in which participants
between 40 and 90 years old without cognitive impairment were tested on a battery of clinical and
cognitive testing after 12 months of 1500mg Biocurcumax™ or placebo administration. The results
showed cognitive decline after 6 months in the placebo group on the Montreal cognitive
assessment, that is used to assess general cognitive functioning; however, cognitive performance
in the curcumin group remained stable. This difference on Montreal cognitive assessment was not
observed after the 12-month follow-up. Other cognitive and clinical measures revealed no
differences between groups across time. The authors concluded that curcumin does not enhance
cognition, but rather attenuates its decline over time. It must be noted that out of 160 participants
that underwent baseline assessment, 23 subjects, two of which belonged in the placebo group,
were excluded from the analysis due to reported gastrointestinal complains, suggesting that the
high dose of Biocurcumax™ used in the study has probably impacted tolerability of the compound.

A comparable population was assessed by Cox et al. (2015). Sixty healthy adults, between 65 and
80 years of age, were tested using an acute (1 and 3 hours after a single dose), chronic (four
weeks) and acute-on-chronic (1 and 3 hours after single dose following 4-week treatment)
administration of 400mg dose of Longvida® Optimized Curcumin. This compound is a solid lipid
formulation that contains approximately 80mg of curcumin. One-hour post-dose, curcumin
administration had a beneficial effect on working memory and sustained attention measurements.
A similar pattern was observed after chronic administration; however, no significant results were
found 3 hours’ post-acute administration. Moreover, mood was improved; increased calmness and
a reduction in fatigue were observed in the chronic curcumin group.

Examining the effect of curcumin on cognition, Baum et al. (2008) conducted a pilot trial in a
Chinese adult population, over 50 years of age with progressive cognitive impairment (probable or
possible AD). Curcumin was administered at 1 or 4 g either in capsules or as powder for 6 months
and was compared to placebo. No differences in Mini-Mental state examination (MMSE) scores
were detected throughout time or among treatments. Additionally, there was no significant
difference in serum AB1-40 levels among treatments, however AB1-40 levels tended to increase on
curcumin, indicating reduced AR aggregation in the brain after treatment with curcumin.
Additionally, curcumin increased vitamin E, reflecting a potential antioxidant activity. Interestingly,
capsules exhibited better bioavailability compared to the powder formulation, whereas no
differences in curcumin’s metabolites was observed between 1 and 4 g. Furthermore, no severe
side effects were reported after curcumin’s administration.

Ringman et al. (2012) evaluated the efficacy of a different curcumin formulation; the Curcumin 3
Complex®, which is the parent curcuminoid mixture comprising the three different constituents
(curcumin, bisdemethoxycurcumin and demethoxycurcumin). The compound was administered for
24 weeks in a population with mild to moderate AD. Participants were randomized into 3 groups
(placebo, 2g/day and 4g/day curcumin). The experiment extended for 24 weeks, during which the
placebo group was randomly divided into the 2 or 4g/day groups. No evidence of Curcumin C3
Complex® efficacy at cognition or at AR and tau levels in plasma and CSF were found, while low
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bioavailability in plasma was reported. Moreover, three participants of the curcumin group dropped
out due to gastrointestinal complains.

More recently, Small et al. (2018) evaluated the effect of Theracurmin®, a compound that contains
90 mg of curcumin. Forty non-demented adults between 51 and 84 years of age were randomized
to either Theracurmin® or placebo twice a day for 18 months. Visual and verbal, short-term
memory as well as attention improved in the Theracurmin® group in comparison to the placebo
group. Additionally, data derived from FDDNP-PET scans indicate reduction in amyloid and tau
accumulation in the amygdala and stable levels in the hypothalamus of the curcumin treated group
compared to respective elevated levels in the placebo group.

Results of human studies are mixed with regards to curcumin’s use on cognitive impairments.
Besides Biocurcumax™ that was administered in a high dose, the other compounds have
demonstrated a safe profile. Due to the limited number of published RCTs, the findings remain
inconclusive.

Table 2 | Summary of the included human studies.

Study Study Drug & Duration Disorder Cognitive Primary Main AE
Design  Dose Age Measure- Objective results
(N) ments
Rainey- R,DB, (1) 12 months  Healthy (1) RAVLT Ability of  Cognitive 23
Smithet PC, PG Placebo elderly (2) COWAT; curcumin decline after gastrointesti
al. (2) 1500 40-90y (3) WAIS-R; to prevent 6 monthsin nal
(2016) mg/day (N=96; n1=(4) cognitive  placebo but complains (2
Biocurcu 57,n2= Computeriz decline notin on placebo)
maxTM 39) ed curcumin.
CogState Effect on
battery; (5) mood
MoCA
Coxet R,DB, (1) 4 weeks Healthy (1) Effect of  Single-dose
al. PC, PG Placebo; eldery COMPASS; acute and improved NO
(2015) (2) 400 60-85y (2) chronic performance
mg (N=60; DASS21; administrat on working
Longvida n1= 30, n2=(3) CFS; (4) ion of memory and
® 30) BL-VAS; (5) curcumin  sustained
(assess STAI on attention.
ment: 1 cognition, Four-week
and 3h mood and treatment
and 4- biochemic improved
week al. WM and
treatmen measures reduced
t) fatigue.
Downregulat
ion in total
and LDL
cholesterol.
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Discussion

Curcumin’s diverse array of molecular targets, that offers anti-inflammatory and antioxidant
properties, have made it an interesting compound for the enhancement of cognitive function.
Therefore, the aim of the current review was to provide an overview of both preclinical and clinical
studies examining the effectiveness of curcumin for cognitive enhancement both in Alzheimer’s
disease and healthy aging.

Summary of findings

Pre-clinical studies

Preclinical models have predominately demonstrated a positive effect of curcumin on cognitive
functioning. Common practice in animal research is the inclusion of two control groups; a sham
group that undergoes the same operational procedures as the experimental group without the
induction of cognitive and biochemical alternations, and/or a control group with induced cognitive
impairments treated with vehicle. Some preclinical studies have reported improvement of the
curcumin treated group in cognitive testing comparable to the sham group, suggesting complete
recovery of cognitive functions (Wang et al., 2011; Yanagisawa et al., 2015; Zhang et al., 2015).
However, the majority of studies have reported superiority of curcumin compared to the control
group. Interestingly, in healthy or sham animal groups treated with curcumin cognitive performance
was not altered (Ishrat et al., 2009; Nam et al., 2014). This suggests that curcumin is able to
reverse or prevent disease induced cognitive decline rather than enhance further ‘normal’ cognitive
functioning. This is probably related to the ability of curcumin to act directly on AB plaques as well
as to its anti-inflammatory and antioxidant properties.

Indeed, a number of preclinical studies have reported downregulation of biomarkers of
inflammation (e.g. TNF-a, IL-1B) and oxidative stress (e.g. lipid peroxidation, ROS, nitrite and
glutathione) believed to be involved in cognitive impairments, confirming the anti-inflammatory and
antioxidant properties of curcumin (Agrawal et al., 2010; Banji, Banji, Dasaroju, & Annamalai, 2013;
Baniji, Banji, Dasaroju, & Kumar Ch, 2013; Banji et al., 2014; Bassani et al., 2017; Hoppe et al,,
2013; Ishrat et al., 2009; Kumar et al., 2011; Sandhir et al., 2014; Singh & Kumar, 2017; Sundaram
et al.,, 2017). Increased neurogenesis observed after treatment with curcumin or initiation of
autophagy suggest other possible actions of this compound in potentiating cognition (Dong et al.,
2012; Nam et al., 2014; Tiwari et al., 2013; Wang et al., 2014; Wang et al., 2013). These outcomes
highlight the wide array of molecular mechanisms of curcumin compared to the existing
mechanistic target of cognitive enhancers.

Clinical studies

Contrary to animal studies, only a limited number of clinical studies has examined curcumin’s effect
on human cognitive functioning. The results of these studies are inconsistent; some studies report
no cognitive enhancing effects of curcumin (Baum et al., 2008; Ringman et al., 2012) whereas
other studies suggest a beneficial effect of curcumin on cognition (Cox et al., 2015; Rainey-Smith
et al., 2016; Small et al., 2018). Similar to animal research some studies suggest protective
mechanisms of curcumin against cognitive decline (Baum et al., 2008; Small et al., 2018). Findings
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concerning AB reduction are ambiguous, since most of the peripheral measurements, such as
plasma, serum and CSF levels have not detected significant changes in AB or tau levels between
curcumin and placebo (Baum et al., 2008; Ringman et al., 2012); however, neuroimaging supports
that curcumin reduces AR deposits in the brain (Small et al., 2018). Unfortunately, only one study
has reported measurements on oxidative stress biomarkers (Baum et al., 2008), while none of the
studies have reported measurements on inflammatory biomarkers, although these are the main
targets of curcumin and have shown great improvement in animal research.

Translational and Methodological Limitations

Results of animal and human studies are not completely aligned. In animal research, curcumin
predominantly yields promising outcomes for the treatment of cognitive functions in AD and aging,
which is not observed in all human trials and is possibly related to the different types of memory
studied in animals and humans. Preclinical research has mainly evaluated spatial working memory
and learning. Nevertheless, in patients suffering from AD episodic and working memory are the
first to be affected at the onset of the disease (Gold & Budson, 2008; Jahn, 2013). Perhaps the
use of tests measuring episodic memory along with the standard measurements of spatial working
memory could increase the translational value of the animal studies; however the reliability of those
tests is still debatable (Griffiths & Clayton, 2001; Roberts, 2006). In addition, this difference in types
of impaired memory between humans and animals poses the question of whether underlying
biological differences might lead to impairment of different aspects of memory across species.

It is known that none of the animal models authentically reproduces the full constellation of
symptoms observed in human pathology (Jackson-Lewis et al., 2012; LaFerla & Green). In both
cases, a wide variety of models has been utilized to reproduce the separate disease-like
symptoms. However, different models affect different aspects of disease-related mechanism and
pathology. For instance, in AD some animal models do not develop NFTs, some models develop
AB-40 while others AB-42 accumulation. The same applies to non-pathological aging. In addition,
even though the existing animal models are valuable for revealing key inflammatory or oxidative
biomarkers involved in downstream pathologies of both conditions, none of these models
reproduces the exact inflammatory or oxidative response due to differences in the nature of
inflammation / oxidative stress between humans and rodents (LaFerla & Green).

An important issue, that could contribute to the difference in results between animals and human
studies, is the heterogeneous methodology used in preclinical and clinical studies. For example,
in preclinical studies different formulations of curcumin in different strains were used as well as
different doses in different routes of administration e.g. orally, intraperitoneal, intravenously, etc.
In addition, the use of different behavioral tests that evaluated different aspects of memory and
learning affects generalizability of results, especially considering that in some cases distinction
between motor and cognitive components may be difficult (Sterniczuk et al., 2010). All these
factors complicate a reliable transition from preclinical to clinical studies.

Furthermore, similar to animal studies, different formulations and different doses of curcumin were
used in human studies. Also, different tests were used to assess cognitive performance. The
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maijority of studies included a relatively small number of participants resulting in limited power
(Baum et al., 2008; Ringman et al., 2012; Small et al., 2018). Additionally, the differences in
ethnicity, namely Caucasian and Asian, further complicates interpretation of the different results,
since certain drugs can differently affect people according to their race/ethnicity (Burroughs et al.,
2002). For instance, genetic factors, such as polymorphisms or cultural differences, e.g. increased
use of curcumin in many Asian cuisines, can be major determinants of curcumin’s effects. So far,
none of the studies have reached Phase Il in clinical trials, suggesting that curcumin has not fully
met expectations. However, for reasons outlined above and because of the restricted number of
clinical studies performed to date, it is not possible to directly compare clinical studies and draw
concrete conclusions about the effectiveness of curcumin yet.

Future directions

Bioavailability of Curcumin

The major drawback of curcumin supplementation for therapeutic purposes is the low
bioavailability of the compound. Many equivalents of curcumin have been developed to improve
this. As mentioned previously, administration of any of the three constituents (curcumin,
bisdemethoxycurcumin and demethoxycurcumin) separately instead of the parent curcuminoid
mixture was recommended as a more efficient way of treatment (Ahmed et al., 2010). Furthermore,
a synergistic effect of curcumin with other dietary supplements, such as piperine, a-lipoic acid, N-
acetylcysteine, B vitamins, vitamin C, and folate, has been suggested to enhance its effects
(Parachikova et al., 2010; Rinwa & Kumar, 2012). However, at present nanoparticles are mainly
used, since they demonstrate better BBB penetration and provoke deeper biochemical changes
than free curcumin (Hoppe et al., 2013; Kundu et al., 2016; Ma et al., 2013; Sandhir et al., 2014;
Tiwari et al., 2013). Nevertheless, there is still room for improvement and future research should
focus on ways to further increase curcumin’s systemic bioavailability, in particular by improving
BBB permeability and reducing first pass metabolism of the compound.

A dose-response relationship should also be taken into account. The optimal dose would have
maximum cognitive enhancing effects with the safest pharmacokinetic profile. It is important to
mention that the vast majority of animal studies illustrates beneficial effects of curcumin on
cognition in a dose dependent manner with the higher dosages generally being more effective
compared to lower dosages used in animals (Reeta et al., 2009; Sun et al., 2013; Tiwari et al.,
2013; Tiwari & Chopra, 2013; Wang et al., 2014; Zhang et al., 2015). However, there are animal
studies that report an inverted U-shape effect in AR plaques reduction but behavioral data are not
available (Lim et al., 2001). At the same time, human studies suggest a ceiling effect concerning
the dose of curcumin (Baum et al., 2008). Subsequently, a medium dose range might be preferable
at clinical settings. The existing studies have evaluated disperse formulations of curcumin
impeding any comparison between compounds. Therefore, it is of substantial importance to
conduct reliable pharmacokinetic/ pharmacodynamics (PK/PD) and comparative studies in order
to determine a standard dose using the analogue that would be able to reach brain targets in the
most efficacious way.
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An interesting subject for future research would be the impact of nutritional status on curcumin’s
therapeutic effects. Curcumin is a highly lipophilic molecule. One animal study showed aggravated
cognitive performance in rats consuming high-fat diet in conjunction with curcumin administration
(Wu et al., 2006). In contrast, clinical studies suggest that consuming a meal rich in fat prior to
curcumin’s administration slows down gastric elimination and allows maximum absorption of the
compound (Lao et al., 2006; Ringman et al., 2012; Vareed et al., 2008). Nevertheless, a number
of pharmacokinetic clinical studies has been performed in fasted subjects (Bertolino et al., 1998;
Gota et al., 2010; Kanai et al., 2012; Kocher et al., 2015; Schiborr et al., 2014). The clinical trials
discussed here used different dietary patterns prior administration of curcumin.

Another issue for future consideration is the targeted population in human studies. Clinical studies
have mainly used participants without established cognitive dysfunction. However, in preclinical
studies, amelioration of cognitive deficits was evident in cognitive impaired rodents. Curcumin did
not exert beneficial effects on cognition of healthy or sham control animals, suggesting that
curcumin enhances cognitive deficits rather than boosts normal cognitive functioning (Ishrat et al.,
2009; Nam et al., 2014). Clinical findings have also supported that this compound does not
significantly improve cognitive functioning in healthy or mildly cognitive impaired population, but
probably prevents or stabilizes cognitive decline (Cox et al., 2015; Rainey-Smith et al., 2016;
Ringman et al., 2012; Small et al., 2018). Therefore, evaluation of patients with established
cognitive deficits might yield different results.

Lastly, an important factor that could benefit future trials, is an extended duration of treatment.
Curcumin exerts its therapeutic effect through anti-inflammatory and antioxidant pathways.
However, regulation of inflammation, oxidative stress or neurogenesis are lengthy processes. In
human trials, the maximum duration of curcumin’s administration was 18 months and yielded the
most positive results compared to the rest of the studies that lasted one year or less (Small et al.,
2018). Considering the low bioavailability of the compound, prolonged periods of treatment may
be required to detect essential improvement in cognition.

Conclusion

In conclusion, numerous preclinical studies have demonstrated beneficial effects of curcumin on
cognition in AD and non-pathological aging. However, a limited number of human studies was
identified, and these results are less consistent than results of preclinical work. Preliminary
evidence from human studies supports preclinical findings that curcumin may stabilizes / prevents
cognitive decline rather than improves it in healthy population. Since, curcumin is an interesting
compound with potential capability of preventing cognitive decline, it is crucial to find ways to bridge
this translational gap. An important advantage of curcumin is that constitutes a natural, widely
available compound. Thus, it does not involve a great economic burden for the patients that might
benefit from its use. Additionally, even though studies have reported mild side effects in the elderly
patients at a high dose, curcumin demonstrates a safer profile compared to the current
compounds. Thus, as current treatments for cognitive impairments remain insufficient and are
accompanied by severe side-effects, curcumin may be a promising alternative. However, further
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research to improve curcumin’s bioavailability is crucial and more human trials examining
curcumin’s cognitive enhancing effect are necessary.
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CHAPTER 7

General Discussion



Purpose of this dissertation

The central aim of this thesis was to explore the diverse effects of multiple forms of stress on
cognition at various levels of analysis, including behavioral (chapter 2, 3, 4), cognitive (chapter 2,
4, 5), neurochemical (chapter 4, 6), and self-report (chapter 3, 5) measures. A summary of the
results for the separate chapters is provided in the Appendix. This chapter will attempt to discuss
and integrate the main findings of previous chapters. Additionally, several methodological
considerations and future directions will be discussed.

The changing conceptual landscape: stress as one of the core transdiagnostic
regulators

In the introduction of this thesis (chapter 1), it was outlined that stress is a risk factor for many
neuropsychiatric disorders (Hammen, 2005; Lupien et al., 2009; Revollo et al., 2011; Wilson et al.,
2005), with a particular emphasis on the impact of stress on (subthreshold) motivational and
cognitive dysfunctions (Lupien et al., 2009; Salamone et al., 2015; Salamone et al., 2016).

Results from this thesis add to this growing body of work. In chapter 3, the relationship between
altered cost-benefit reinforcement learning and constructs strongly linked to a transdiagnostic risk
of psychopathology were evaluated, namely perceived chronic stress, anhedonia, energy/fatigue,
impulsivity, using self-report measures in the general population, which also included a smaller
sample of people with a diagnosis of depression and anxiety. Key results from this chapter suggest
that perceived chronic stress and impulsivity were associated with a more general reduction in
reinforcement learning regarding the costs and benefits of actions. Surprisingly, neither anhedonia
nor energy/fatigue were associated with task performance, even though these constructs have
received increased scientific attention as transdiagnostic components of psychopathology (Huys
et al., 2013; Miller et al., 2021; Waltz & Gold, 2016). One potential explanation for these findings
could be the use of a naturalistic sample including heterogenous groups of patients, which in the
past has shown to result in different outcomes compared to using strictly selected patient groups
(Brolsma et al., 2021). Another explanation could be that chronic stress has been found to be a
predisposing factor to symptoms like anhedonia and fatigue, hence these symptoms were not
correlated with task performance in the general population.

In chapter 5, network analyses were used to evaluate how worries and stress about the COVID-
19 pandemic, and adherence to mitigation guidelines, were associated with several self-reported
indicators of mental well-being, namely mood, distress, energy, loneliness, and motivation in adults
living in the Netherlands and Belgium. The results showed that worries about COVID-19 were
mainly linked with increased subjectively reported distress and lower mood, which in turn exerted
secondary influences on the other indicators of mental well-being, i.e., energy, loneliness, and
motivation. Interestingly, temporal network analysis showed that worries related to COVID-19 at a
given time point were associated with increased distress and lower mood at the following time
point. Moreover, these two factors (i.e., distress and mood) reciprocally interacted over time in a
downward spiral manner. These results could provide a mechanistic explanation of how (di)stress
may be a predisposing factor but also consequence of other mental health problems. For example,
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stress related to COVID-19 may contribute to the onset or exacerbation of symptoms associated
with affective/stress-related disorders (as increased prevalence was observed during COVID-19)
by increasing distress and worsening mood which, in turn, could also intensify each other, resulting
in increased stress and, potentially, a vicious cycle.

Interestingly, the Hierarchical Taxonomy of Psychopathology (HiTOP) model (Krueger et al.,
2018), a relatively novel theoretical framework which summarizes transdiagnostic dimensions in a
hierarchical manner, views (di)stress as a high-order factor. Results from chapter 3 and chapter
5 are in agreement with the HITOP model. Specifically, they suggest that stress is an important
transdiagnostic regulator, followed by other factors ranked lower in the HiTOP hierarchy, in our
studies anhedonia, fatigue, or loneliness. Thus, these results underscore the notion that stress
(like other high-order factors, e.g., impulsivity) may influence a wider range of behaviors compared
to lower-order factors (e.g., anhedonia), and therefore warrants extensive attention. To deepen our
understanding about stress, we further explored different stress dimensions aiming to unravel how
they impact cognition and behavior.

Cost and benefit learning under acute and chronic stress

As previously mentioned, stress can affect cognition and motivation in various ways. The
combination of graded dimensions related to both stress (e.g., acute - chronic duration; low - high
intensity) and the cognitive processes (e.g., habitual - goal directed) under investigation can
determine the outcome of their interaction (i.e., beneficial or impairing) (Sandi, 2013). The
importance of investigating the full range of variation of such factors (or constructs) to move
towards a dimensional conceptualization of psychopathology is highlighted in the Research
Domain Criteria (RDoC) framework (Insel et al., 2010). In line with this approach, the first chapters
of this thesis, chapter 2 and chapter 3, have focused on investigating the effect of acute and
chronic stress respectively on a specific aspect of cognition, namely the (cost and benefit)
reinforcement learning (included in the Positive Valence System of RDoC’s framework).
Measurements of cost and benefit learning evaluate whether participants are incentivized more by
(monetary) benefits or (physical/cognitive) effort costs when (learning to) carry(ing) out goal
directed actions. By teasing apart the impact of costs and benefits on goal-directed behavior, and
by making explicit distinctions between acute and chronic stress, chapter 2 and 3 aimed to better
understand how various aspects of the stress response may influence specific motivational
processes involved in goal-directed behavior.

In chapter 2 we found that, following acute stress induction, participants improved learning to
maximize rewards relative to learning to minimize effort cost, which may have been driven by an
increased sensitivity to reward versus effort cost. On the contrary, no-stress control participants
showed similar performance on learning to maximize rewards and minimize effort, as well as
similar sensitivity to both reward and effort cost. These results align well with previous work that
has found increased sensitivity for positive but not negative outcomes after acute stress induction
(Lighthall et al., 2013; Mather & Lighthall, 2012; Petzold et al.,, 2010). Using cognitive
computational modeling we demonstrated how the asymmetric impact of acute stress on cost-
benefit learning might be attributed to changes in reward and effort learning rates. In other words,

185



these analyses revealed how acute stress might prompt individuals to employ cognitive strategies
that direct motivation towards obtaining pleasurable outcomes (i.e., reward) at the cost of avoiding
negative outcomes (i.e., expending effort).

On the other hand, in chapter 3 we observed that higher levels of perceived chronic stress were
associated with a general learning reduction, independent of whether participants were learning to
maximize rewards or minimize effort. In addition, perceived chronic stress was associated with
reduced sensitivity to both positive and negative reinforcers, but not positive/negative
punishments. These observations are in agreement with previous studies showing that stress-
related disorders are characterized by reduced reward sensitivity and reduced influence of
previous outcomes on subsequent actions (Ironside et al., 2018; Olino, 2016; Vidal-Ribas et al.,
2019). In addition, these results suggest that chronic stress might be more specific to reinforcement
versus punishment learning, rather than valence (i.e., reward versus effort) learning.

Combined, chapter 2 and 3 underscore how acute and chronic stress exert unique effects on
motivation and goal-directed behavior. In chapter 2, acute stress was found to facilitate reward
maximization and impair effort minimization. In chapter 3, perceived chronic stress was associated
with impairments in more general learning components. These findings align with past research
that has indicated that acute stress enhances reward sensitivity, while chronic stress decreases
reward sensitivity, associated with stress-related psychopathology such as loss of motivation and
anhedonia (Baik, 2020; Barch et al., 2014; Ironside et al., 2018). So far, many studies that evaluate
the effects of stress on motivation have used the term stress to refer to either acute or chronic
stress or have used acute stress models to investigate symptoms of chronic stress. Findings from
these chapters highlight that future work should acknowledge different types and dimensions of
stress, such as acute - chronic stress. In addition, incorporating (cognitive or physical) effort into
studies of motivation is essential, as it can provide novel insights regarding cost and benefit
computations under acute and chronic stress (Barch et al., 2014; Pessiglione et al., 2017).

As already noted, additional dimensions, such as stress intensity, timing and context can also
shape the effect of stress on cognition. For example, an inverted-U-shape relationship between
stress intensity and cognition is often described in the literature, suggesting that low or high levels
of stress might be impairing, whereas moderate levels might be more beneficial for cognitive
functions (Diamond et al., 1992; Kim & Diamond, 2002; MendI, 1999). This notion is in agreement
with findings in chapter 2, in which we observed that, following acute stress induction, moderately
stressed participants showed greater learning asymmetry in favor of reward maximization. In
addition, the time of stressor (e.g., before, during or after the learning process) is an important
factor that can lead to differential effects of stress on cognition (Joéls et al., 2006). Lastly, the
context can also determine whether acute stress will act adaptively or maladaptively. For instance,
the findings reported in chapter 2 suggest that, depending on the context, the observed cost-
benefit asymmetry after acute stress may be adaptive (e.g., reach a desired goal such as safety
despite high cost) but may also be maladaptive (e.g., overindulging in rewarding foods or
substances, while neglecting energetic costs or even reducing self-control (Maier et al., 2015)).
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The role of stress-related neurotransmitters on cost and benefit learning and decision-
making

Neurotransmitters including dopamine (DA) and noradrenaline (NA), in addition to the well-studied
stress hormone cortisol, are thought to mediate the neural effects of the stress response (Hermans
et al., 2014; Jung et al., 2019; Kvetnansky et al., 2009; Vaessen et al., 2015). Both DA and NA are
active molecules that belong to the same family known as catecholamines (Gurwitz & Ray, 2022).
However, DA has received increased scientific attention, whereas NA is considered a relatively
“neglected” neurotransmitter in the context of motivation. Converging evidence suggests that
exposure to mild acute stress results in increased levels of dopaminergic and noradrenergic activity
in the brain, whilst exposure to severe chronic stress is associated with dopaminergic and
noradrenergic downregulation (Bloomfield et al., 2019; Haller et al., 2002; Holly & Miczek, 2016;
Koob et al., 1997; Yu et al., 2013), often in a regionally specific manner (Moreines et al., 2017;
Roth et al., 1982). Increasing evidence suggests that DA and NA often co-exist and interact on a
molecular level, and might exert complex, complementary effects on motivation (Ranjbar-Slamloo
& Fazlali, 2020; Xing et al., 2016). Thus, even though comparing their neuromodulatory effects
and decoding their behavioral and cognitive outputs can be challenging, it is of imperative
importance as these two neurotransmitter systems are implicated in the pathogenesis of several
stress-related conditions, such as depression, psychotic disorders, attention deficit hyperactivity
disorders, addiction (Nutt et al., 2007; Weinshenker & Schroeder, 2007; Winograd-Gurvich et al.,
2006). For these reasons, in chapter 2 and chapter 4 of the current thesis, it was investigated
how DA and NA may influence motivation, using measurements of cost and benefit learning and
decision-making processes respectively.

In chapter 2, pupillometry and physiological measures were used in combination with outcomes
from cognitive computational modeling to indirectly estimate catecholaminergic activity and its
relationship with the strategies employed during a cost-benefit reinforcement learning task.
Positive associations were found between RPE (reward learning signals) and pupil size,
suggesting a tentative link between catecholamine activation and reward maximization in the
stress group. Reward learning rate and RPE-pupil size slopes were inversely correlated with some
physiological data and subjective stress ratings suggesting that mainly moderately stressed
participants drove the preference for reward maximization (in agreement with the inverted U-shape
relationship that has also been described between DA and cognition (Baik, 2020)). Results from
EPE (effort learning signals) and pupillometry together with salivary and physiological measures
suggested tentative links between increases in NA and reduction in effort cost minimization in the
stress group. These findings could suggest that the impact of acute stress on motivation (here,
reinforcement learning) may be mediated by DA and NA. However, we should emphasize that
indirect measures were used to approximate DA and NA activity in this study.

Therefore, to investigate the effect of DA and NA more directly, in chapter 4 we used single-dose
pharmacological challenges to evaluate the role of these two neurotransmitter systems in
motivation (here, cost and benefit decision-making). During the cost and benefit decision-making
task, participants could choose to accept or reject an offer if they deemed the reward was worth
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the effort exerted on a dynamometer. Preliminary results indicated that low-dose haloperidol
(primarily targeting dopamine D2 receptors) increased response vigor at the cost of reduced
acceptance over time, while propranolol (primarily targeting noradrenergic 8 receptors) may have
increased sensitivity to effort cost. These results surprisingly do not directly link DA with reward
valuation and provide evidence that DA and NA contribute to effort processing alternations.

It is becoming increasingly evident that there are theoretical and empirical limitations in the
traditional DA hypothesis, which has labelled DA as the “reward and motivation” neurotransmitter
(Salamone et al., 2009; Weinshenker & Schroeder, 2007). In chapter 4, we observed that both
DA and NA regulated action-related functions in decision-making processes. Preliminary results
suggest that NA may be more specific to mobilization of action and DA more specific to action
vigor, in agreement with findings from animal research (Hosking et al., 2015; Schweimer et al.,
2005; Varazzani et al., 2015). These findings could contribute to uncovering the neurochemical
architecture underlying motivated behavior, as both catecholamines are involved in the
development of many (stress-related) neuropsychiatric conditions characterized by motivational
deficits and can be dysregulated by different pharmacotherapeutic options.

Interestingly, animal research has attempted to explain how DA might integrate RPE and action-
related functions to obtain rewards (measure of motivation). Phasic bursts of DA have been
proposed to encode learning signals, whereas tonic or ramping (intermediate in speed) signals
have been proposed to encode action/vigor motivation (Jessica et al., 2023; Mohebi et al., 2019;
Niv, 2007; Niv et al., 2007). Findings from chapters 2 and 4, are consilient with the dual role of DA
in cost and benefit learning and decision-making. Human research directly comparing the role of
DA and NA in learning versus decision-making would be important to explore how these findings
are translated to human subjects.

In search of finding treatments to improve cognition

Studies including clinical and non-clinical cohorts have found that chronic stress is associated with
deficits in cognitive skills such as working memory, attention, vigilance etc. (Girotti et al., 2018).
Exposure to prolonged or excessive stress has been suggested to accelerate biological aging as
well as the onset of functional impairments (Polsky et al., 2022) and age-related diseases,
including Alzheimer’s disease (AD) (Briones et al., 2012; Wilson et al., 2005). Despite extensive
research efforts, there are currently no effective pharmacological treatments to prevent or cure
cognitive deficits. Existing cognitive enhancers may postpone the cognitive decline rather than
restore cognitive abilities (Husain & Mehta, 2011). Chapter 6, evaluates curcumin, a natural
compound as a potential cognitive enhancer. Moving away from the amyloid hypothesis,
inflammation and oxidative stress have been suggested as potential underpinnings of AD and
cognitive decline. Curcumin’s anti-inflammatory and antioxidant properties have shown potential
for its use as a cognitive enhancer. For this reason, chapter 6 provides a summary of animal and
human research investigating the effect of curcumin on cognition in aging and AD. Animal research
has shown promising results in improving cognition. However, results from clinical trials so far have
been mixed possibly due to curcumin’s low bioavailability and the lack of homogenized clinical
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trials. Thus, more research is still needed to enhance curcumin’s bioavailability and understand its
therapeutic potential.

Methodological considerations

In this thesis different study designs were used ranging from experimental using lab-based set-up,
observational using web-based set-up to systematic review of the literature. Consequently, we also
used different types of analyses with their own strengths and limitations. As both strengths and
limitations are described in the separate chapters, more general points of considerations will be
discussed in this section.

First of all, an important strength of the studies described in this thesis is the evaluation of different
dimensions of transdiagnostic constructs, namely stress (acute stress in chapter 2, perceived
chronic stress in chapter 3, stress related to COVID-19 in chapter 5) and cognition (cost and
benefit learning in chapters 2 and 3, cost and benefit decision-making in chapter 4, emotion
regulation in chapter 5, and cognitive skills in chapter 6). Thus, the current thesis used a diverse
set of approaches and samples to study in-depth the effect of the different forms of stress on
cognitive abilities including behavioral, cognitive, biological, and self-report measures. In addition,
besides the many drawbacks of the COVID-19 pandemic, it provided us with the unique opportunity
to measure the effects of stress during an ongoing major stressor (chapters 3 and 5) (as opposed
to stressors occurred in the past), which may have minimized recall bias and increased ecological
validity.

However, besides the strengths presented above, there are several limitations that should be
mentioned. Methodological differences across studies included in this thesis make it difficult to
compare the results of these studies. For example, we used different study designs, manipulations
(e.g., stress versus pharmacology), and proxy measures of motivation (e.g., reinforcement learning
versus cost-benefit decision-making), which makes a direct comparison between different chapters
challenging. Formal comparisons between the related constructs using standardized
measurements could minimize such pitfalls.

Moreover, due to COVID-19 pandemic we had to turn to online studies and rapidly gain new
expertise (chapter 3 and chapter 5). Even though this resulted in relatively large sample sizes, it
was inevitably accompanied by limitations inherent to the data being gathered through online
surveys. For example, self-reports may vary in objectivity when supervision from a researcher is
missing. Another concern is that online studies are more likely to be completed by people who are
(technologically) literate, as well as by those who might be more interested in the subject under
investigation (although this is also possible in other designs). This might have led to selection bias
and a convenience sample. Since the motives of the responders are unknown to us, we cannot
estimate the extent of these biases and the results should be interpreted with caution. Nonetheless,
adopting an online design was the best solution at that time when social distancing measures
impeded lab-based data collection. Naturally, other study designs bear limitations as well (e.g.,
experimental studies might lack ecological validity or observational studies might be more prone
to confounding variables).
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In most of the studies described in this thesis, females outnumbered male participants; a
phenomenon increasingly observed in psychological research. In addition, many chapters focused
on young, instead of older, adults, limiting comparisons between sex and age groups. Sex and age
are two out of many factors that can cause variability in research findings. Other variables such as
weight, personality traits, genetic profile are known to induce variability and substantial individual
differences, thus they warrant increased attention and investigation. Lastly, it should be noted that
most of the studies used healthy participants which does not allow to draw direct conclusions about
psychopathology.

Future directions

All studies described in this thesis have focused on transdiagnostic constructs reflecting either risk
factors or subsequent symptoms and used samples ranging from healthy volunteers and the
general population to unselected patient groups. In order to define more clear dimensional
constructs, it has been proposed that it is advisable for future clinical research to refrain from
utilizing case-control designs based on categorical diagnoses (Latzman et al., 2020), because
categorical designs may often measure factors that confound between cases and controls on the
dimensions of interest. Instead, it has been suggested that researchers should direct their attention
towards sampling from heterogeneous patient population and/or the general population, with the
possibility of oversampling individuals that fall within the high range on the dimensions of interest
(Latzman et al., 2020). Thus, future research using this approach might shed light into several
transdiagnostic constructs and facilitate the definition and more optimal use of transdiagnostic
dimensions. However, both dimensional and categorical approaches can be valuable under
different circumstances (Chmura Kraemer et al., 2004).

Moreover, in the current thesis, we independently evaluated the effects of acute and chronic stress
on cost and benefit reinforcement learning (chapter 2 and chapter 3 respectively). Nevertheless,
further investigation on the interactions between chronic and acute stress on these cognitive
computations is needed. For example, it is likely that even though both have an impact on cost
and benefit learning (seemingly in different directions) they might not moderate each other’s effect
(Hammen et al., 2009). However, it is also possible that heightened chronic stress levels may
indicate higher likelihood of experiencing acute life events (Turner & Turner, 2005) (e.g. chronic
health issues might lead to job loss) and sensitize individuals to have more negative reactions after
acute stress (Hammen et al., 2009). On the other hand, another scenario is that chronic stress
might decrease negative effects of acute stress acting in a protective way (Cairney et al., 2003;
McGonagle & Kessler, 1990). Thus, more research on the relationship between acute and chronic
stress and the effect of their interaction on cost and benefit learning and decision-making is
needed.

Another point for future consideration relates to exploration of individual differences in the effects
of stress on cost and benefit computations. For instance, previous work has revealed gender-
dependent effects of stress. Previous findings indicate that after acute stress induction, females
show blunted reward responsiveness (making them more prone to anhedonic-like behavior)
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(Bogdan & Pizzagalli, 2006), while males show increased reward seeking behavior (making them
more prone to substance abuse behaviors) (Lighthall et al., 2012). In addition, acute stress was
found to increase risky decision in males compared to females (Mather & Lighthall, 2012). How
acute stress affects cost computations, and whether these findings still hold after chronic stress or
during reinforcement learning remains to be elucidated. In the majority of our studies under-
representation of male subjects did not allow such comparisons (see also methodological
considerations).

In chapter 4 and chapter 6 we investigated neurochemical agents, used either as drug challenges
or therapeutic compounds, in order to explore their effect on cognition. One limitation of such
compounds is the lack of target specificity and selectivity, showing affinity for different (sub)types
of receptors (Wang et al., 2022). The ability of a drug to distinguish between different targets is
important both as a drug challenge, since it can result in more specific physiological effects, but
also as a therapeutic agent, since it can be more effective and produce fewer side effects. Another
issue of consideration is the degree of drug bioavailability. Low bioavailability is a significant
determinant impending successful entry of drug candidates into the market. As described in
chapter 6, curcumin’s low bioavailability is one potential reason why it has not reached phase Il
of clinical trials yet. Therefore, ways to improve curcumin’s bioavailability and blood brain barrier
penetration are required. For these reasons, more research is needed to optimize drug delivery,
precision, and permeability. Nanoparticle-based formulations have shown potential in this regard,
thus improving efficacy and practicability of these formulations might prove to be very beneficial
(Mitchell et al., 2021). Lastly, besides catecholamines (chapter 2, 4), inflammation is another
biological response that underlies stress, motivation, and cognition (as discussed in chapter 6),
hence further investigation on their relationship is needed.

Conclusion

Overall, the studies described in this dissertation corroborate with the emerging and fast-
developing transdiagnostic approach (promoted by novel models such as RDoC and HiTOP),
which aims to provide novel insights into the increased heterogeneity and comorbidity observed
among and within mental health problems as well as individual differences in both heathy and
patient populations. The ultimate goal was to explore parts of the interaction between the
multifaceted aspects of stress and cognition. While the current findings may only represent a
fraction of a complex puzzle, they provide important pieces for its gradual completion in the future.
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APPENDIX






General Summary



The overarching aim of this thesis was to explore the interplay between the mutlifaceted aspects
of stress and cognition. Over the last decades, research focus has been shifted towards a
transdiagnostic, dimensional approach, which investigates constructs (and their dimensions) that
are not bound to traditional categorical classifications but cut across different disorders. To gain
insight into the dimensionality of mental disorders and health, the primary outlook of chapters 2,
3, 4, 5 and 6 was to investigate mechanisms underlying the interaction between the various
dimensions of stress and cognition.

In chapter 2, we investigated the effect of acute stress on a cost (i.e., physical effort) and benefit
(i.e., monetary reward) reinforcement learning task testing healthy participants that were allotted
to either acute stress or no stress control condition. We found that acute stress reprioritized
learning to maximize monetary rewards over learning to minimize the expenditure of physical effort.
Using computational modeling, we demonstrated that this learning strategy can arise when reward
and effort learning rates are afforded equal importance. Pupillometry analyses showed a link
between cost and benefit learning with activity of neuromodulators such as dopamine and
noradrenaline. These results provide an initial step in explaining how acute stress could act both
beneficially and detrimentally. Specifically, it suggests that prioritizing rewarding over costly things
could confer immediate benefits (e.g., reaching a valuable goal despite a high action cost) but,
probably depending on the context, might also be detrimental (e.g., substance use relapses under
acute stress).

In chapter 3, we evaluated how transdiagnostic factors linked to psychopathology (i.e., perceived
chronic stress, anhedonia, impulsivity, energy) are associated with alterations in learning about
the costs and benefits of actions in the general population, utilizing a simplified version of the task
used in chapter 2 for online research purposes. We observed that elevated levels of perceived
chronic stress and impulsivity were consistently associated with reduced accuracy in the task,
which could be explained by a selective reduction in learning from reinforcement (not punishment).
The other factors, namely anhedonia and energy, were not associated with various task
performance metrics. These results highlight how interindividual differences related to
susceptibility for psychopathology may contribute to cognitive mechanisms that support goal-
directed behaviour. In addition, this work illustrates some challenges associated with data
collection via online platforms and suggests the use of a single device type when conducting online
research.

In chapter 4, we investigated the roles of dopamine and noradrenaline - two stress-related
catecholamines - on performance in a value-based decision-making task, during which participants
could earn monetary rewards in exchange for physical effort. Healthy volunteers were assigned to
placebo, propranolol (B-noradrenaline receptor antagonist) or haloperidol (dopamine D2 receptor
antagonist) according to a randomized double-blind placebo-controlled design and 150 minutes
post-administration (~time max), they completed the cost-benefit decision-making task.
Preliminary results indicate that low-dose haloperidol may temporarily increase response at the
cost of reduced acceptance over time, while propranolol might increase sensitivity to effort cost.
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Future computational modeling can provide further insights into mechanisms that may mediate
these effects.

In chapter 5, we used network analyses to explore the relationship between COVID-19 related
stressors and changes in mental well-being in adults living in the Netherlands and Belgium during
the initial phase of the COVID-19 pandemic. Results illustrate that worries about the pandemic
were associated with elevated distress and low positive mood, which, in turn were associated with
other components of mental well-being, such as energy, motivation, and loneliness. Time-lagged
network analysis — which illustrates how variables predict each other in subsequent measurement
windows (e.g., from day 1 to day 2), identified worries about COVID-19 to be temporally associated
with the reciprocal interplay between heightened distress and low positive mood. The outcome of
this study points to psychological mechanisms associated with changes in mental well-being during
COVID-19, which, in the long run, could result in poorer mental health outcomes and may provide
an explanation for the increased prevalence of affective/stress-related disorders reported during
the pandemic.

Chapter 6 presents a summary of preclinical and clinical findings on curcumin as a potential
cognitive enhancer. Results demonstrated that animal studies show beneficial effects on improving
cognitive functions both on molecular and behavioral level, however, human studies remain mixed
regarding curcumin’s effects on cognition. This review highlights the difference in findings between
preclinical and clinical research regarding curcumin. It suggests that improving curcumin’s
bioavailability and conducting homogenized clinical trials are required to bridge this translational
gap. Because curcumin is a natural, widely available compound with mild side effects, we propose
that it warrants further investigation.

Finally, chapter 7 discusses the main findings, strenghts, limitations and suggestions for future
research. Although there is still a long way to go, findings from the current thesis provide some
steps for the long term goal of adopting dimensional conceptualizations that could lead to a
comprehensive understanding of the full spectrum of mental disorders and health. Future research
exploring further both biological and behavioral functioning of the different dimensions as well as
their interactions, will help put more pieces together.
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Impact Paragraph



Stress is ubiquitous in people’s lives, affecting mental well-being and various cognitive functions.
Everyone has experienced stress, difficulties concentrating, or reduced motivation at some point
in their lives. These symptoms do not necessarily reflect the presence of a mental disorder.
However, their prolonged or intense presence is highly associated with a range of mental health
problems either as risk factors or as symptoms. Impairments in one of these transdiagnostic
constructs (i.e., excessive stress, cognitive deficits, motivational decline) can impact vocational,
personal, every-day functioning and can pose a considerable financial burden for society. For
instance, past research has estimated that the total costs of stress-related problems worldwide
range from $221 million in Australia to $187 billion in the USA (Hassard et al., 2018). In addition,
a recent study estimated that in the Netherlands an episode of sick-leave due to stress-related
problems amounts to €19,151 on average for Dutch employers (Wolvetang et al., 2022). Thus,
increased insight into the different dimensions of these constructs is essential to improve our
understanding about transdiagnostic clinical phenomena, which could lead to better treatment
options in the future and benefit not only people who experience such problems but also society
as a whole.

For this reason, this thesis evaluated the interaction of different dimensions of these
transdiagnostic constructs, particularly stress (acute, chronic, COVID-19 related), cognitive
aspects of motivational impairments (reward and effort processing during learning and decision-
making) as well as cognitive skills (e.g., memory), in accordance with the approach of a unified
framework for understanding mental disorder and health as a continuum. Improving
transdiagnostic dimensional models could inform interventions in two major ways. The first one is
conceptual, since they could provide an explanation on why or which pharmacological agents, as
well as psychotherapeutic interventions, are effective for multiple diagnostic groups. The second
one is more practical, as they could provide biological targets or psychological dimensions that
could be targeted through specialized interventions and have an impact across many conditions
(Krueger & Eaton, 2015).

However, implementing transdiagnostic approaches into clinical practice might be challenging as
it depends crucially on developing a clear framework as well as assessments and interventions
that can replace or supplement their diagnostic counterparts (Fusar-Poli et al., 2019). In this thesis
we focused on some sub-components of this complex process. However, complexity should not
be equated with vagueness. Therefore, we highlight that we should be very specific when referring
to different dimensions (e.g., acute vs chronic stress instead of stress as an umbrella term)
because they can result in different biological and behavioral effects as observed in chapters 2
and 3 and discussed in chapter 7.

Another challenge of transdiagnostic approaches is to achieve a more detailed understanding of
the circuitries and molecular mechanisms involved in the maladaptive behavioral manifestations in
both healthy and dysfunctional states. This would allow identification of systems that are sensitive
to dysregulation, and that may be considered candidate targets for future pharmacological and
non-pharmacological treatments. For instance, catecholamines, such as dopamine (DA) and
noradrenaline (NA), are involved in the pathogenesis of many (mental) disorders and are targets
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of multiple pharmacological interventions but they can also be altered in healthy states (chapter
2). Disentangling and/or finding their complementary action could be informative for the
development of better, pharmacological treatment strategies (chapter 4). Therefore, continued
research on stress and the motivational functions of DA and NA could shed light on the neural
circuits underlying some of the motivational symptoms observed in health and psychopathology
and could promote the development of novel treatments for these symptoms. In addition, several
biological underpinnings are being explored for the treatment of cognitive impairments, which are
also present across multiple disorders as well as healthy aging (Abramovitch et al., 2021; Amor et
al., 2014; Kim et al., 2015). Particularly, biological pathways such as inflammation and oxidative
stress, as discussed in chapter 6, deserve more attention, especially considering that in addition
to cognitive deficits they underly a plethora of (mental) disorders.

Next to pharmacological treatments, psychological interventions are equally important. As stated
in chapters 2, 3, 4 reward and effort processing dysfunction (in learning and decision-making) is
observed in many stress-related disorders. Providing a mechanistic explanation about these
processes with the use of computational models could be beneficial for psychotherapeutic
interventions. For instance, cognitive-behavioral approaches, such as behavioral activation
therapy (Farchione et al., 2017), that encourage effort expenditure/ approach behavior in order to
experience rewarding emotions, can be effective on many people that experience decline in
motivated behavior (with or without a neuropsychiatric diagnosis). The underlying theory is that re-
engagement with various activities, such as work, social interactions, hobbies, which may have
been limited due to the clients’ condition, will prove to be more enjoyable and less effortful than
initially anticipated. As a result, a series of positive prediction errors might gradually adjust clients'
expectations regarding the costs and benefits associated with their actions (Zald & Treadway,
2017). For example, exploring how measures of reinforcement learning and RPE signals can be
utilized to predict which groups of people might show better prognosis to such treatment can be of
high interest. Another relevant intervention for people that experience, for instance, problems with
cost benefit decision-making could be motivational interviewing (Miller & Rollnick, 2013). The aim
of this approach is to alter subjective costs and benefits associated with behavioral change,
allowing the subjective value of a more adaptive behavior to surpass that of maladaptive behaviors
(Zald & Treadway, 2017). Moreover, network analyses (chapter 5) can provide key symptoms or
clusters of symptoms that could be potential targets for interventions. Exploring how interaction of
symptoms contributes to psychopathology could be informative for the development of treatments
that target specific symptoms even before psychiatric disorders arise. However, since not everyone
who experiences certain symptoms will develop mental disorders, we should highlight that more
research is needed to delineate when symptom dynamics might contribute to psychopathology.

Importantly, besides the wide range of patient groups affected by stress exposure, as already
mentioned in the thesis (from people with depression and anxiety to Alzheimer’s disease),
transdiagnostic approaches can also have an important impact in the non-clinical population with
subclinical symptoms. Thus, developing tools that could distinguish between different
transdiagnostic dimensions could promote further awareness on vulnerable, non-clinical groups
and contribute to improving their well-being. Considering the broad target group of this approach,
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improving transdiagnostic conceptualization, and exploring related treatment strategies is very
important, not only for both clinical and non- clinical population but also for the general health care,
economy, and job market worldwide.

Lastly, we have already taken steps to disseminate results of this thesis to the scientific community,
so that others can expand on these ideas in the future. This work has been presented in several
scientific meetings. In addition, all studies described in this thesis use open science practices. All
published papers used open-access publishing, ensuring unrestricted accessibility to a wide range
of readers. In addition, research data and source code are publicly available in online repositories
with links provided in each paper. This facilitates free access to the data, promoting transparency
and enabling reproducibility of results. Additionally, availability of these sources fosters replicability
and enhances the ability of researchers to validate the findings.
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