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A B S T R A C T

Federated Learning (FL) presents a decentralized approach to model training in the agri-food sector and offers
the potential for improved machine learning performance, while ensuring the safety and privacy of individual
farms or data silos. However, the conventional FL approach has two major limitations. First, the heterogeneous
data on individual silos can cause the global model to perform well for some clients but not all, as the update
direction on some clients may hinder others after they are aggregated. Second, it is lacking with respect to the
efficiency perspective concerning communication costs during FL and large model sizes. This paper proposes
a new technical solution that utilizes network pruning on client models and aggregates the pruned models.
This method enables local models to be tailored to their respective data distribution and mitigate the data
heterogeneity present in agri-food data. Moreover, it allows for more compact models that consume less data
during transmission. We experiment with a soybean yield forecasting dataset and find that this approach can
improve inference performance by 15.5% to 20% compared to FedAvg, while reducing local model sizes by
up to 84% and the data volume communicated between the clients and the server by 57.1% to 64.7%. Our
method demonstrates the potential to use efficient models that are more environmentally friendly to support the
agri-food sector’s transition to net zero. Future enhancements of this method could further optimize distributed
learning in agri-food, enhancing sustainability and applicability.
1. Introduction

The agri-food supply chain involves the whole journey from farm
to fork, including agriculture, food processing, warehousing systems,
distribution and marketing. Data analytics hold the key to ensuring
food security and sustainability. Machine learning has been widely
adapted to provide technical solutions to analytical problems in agri-
culture and food sectors, such as crop yield prediction (Alhnaity et al.,
2021; Jeong et al., 2016; Onoufriou, Hanheide, & Leontidis, 2023; van
Klompenburg, Kassahun, & Catal, 2020), consumption demand fore-
casting (Anagnostis, Papageorgiou, & Bochtis, 2020; Ryu, Nasridinov,
Rah, & Yoo, 2020), crop and disease detection (Kussul, Lavreniuk,
Skakun, & Shelestov, 2017; Mohanty, Hughes, & Salathé, 2016), quality
control and intelligent scheduling (Onoufriou, Bickerton, Pearson, &
Leontidis, 2019; Rong, Xie, & Ying, 2019; Thota & Leontidis, 2021),
and several others.
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Typically, building such statistical models requires large amounts
of data collected from various sources, i.e., different farms, supply
chains, and other stakeholders. However, individually, they may not
have adequate data to train competent machine learning models for the
tasks. While combining their data into a centralized silo may improve
data quality, collecting it may be challenging due to commercially
sensitive information and reputational risks (Durrant et al., 2021).
Federated Learning (FL) is a well-established training algorithm that
addresses this by allowing a model to be trained decentrally without
physically sharing the data but instead sharing the model information
only (McMahan, Moore, Ramage, & y Arcas, 2016). Each participating
device (referred to as a client) participates in training in an isolated
environment and is coordinated by the central server. As a result, FL
allows models to be collaboratively trained on large datasets while
preserving data privacy. This approach is particularly useful in the
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agri-food industry, where training on a local dataset alone may be in-
sufficient. For example, FL can enable coordinated crop yield prediction
across multiple farms, allowing each farm to benefit from a more robust
model without having to share sensitive or proprietary data.

FL requires transmission of the model between the server and the
clients each round. However, with the progressive improvements in
deep learning models, their number of parameters has increased expo-
nentially (Menghani, 2023), and the communication cost often becomes
a bottleneck (Konečnỳ, McMahan, Ramage, & Richtárik, 2016). Large
models also make edge device deployment challenging as they consume
more memory footprint and computational power. Moreover, in real-
world scenarios, clients typically hold heterogeneous data, meaning the
data distribution is different and can be diverse in nature even when the
data measurements are held consistent. For example, when data from
hundreds of farms is used to build a model for crop yield prediction,
it often comes from different regions with inconsistent readings. Such
inconsistencies could arise from disparities in sensor deployment or
from variables not reflected in the data, such as differing crop genetics
and soil types. Heterogeneous data can cause the model to generalize
poorly, especially for clients whose datasets deviate significantly from
the mean distribution.

In this paper, we propose a federated learning strategy, which we
name Federated Pruning (FedPruning) to address these limitations.
Neural networks are typically over-parameterized and there is much
redundancy (Denil, Shakibi, Dinh, Ranzato, & de Freitas, 2014). It
has been consistently shown that same inference performance can
be reached with only a fraction of the original model size (Blalock,
Ortiz, Frankle, & Guttag, 2020). We leverage the theoretical benefits of
pruning, and remove redundant parameters from individual client mod-
els. Through our training algorithm, all client models have different
connections and weight values by the end of training, and they become
localized and tailored to their own data. The resulting models not
only have better local inference performance compared to the previous
method FedAvg, but they are also smaller in size, more energy and
memory efficient. Communication is a common bottleneck in FL, and
we are motivated by the usage of machine learning models in agri-food
both in the traditional broadband and Internet of Things (IoT) settings
where hardware capacity and internet are more limited. Reducing the
number of parameters in the models can decrease the data exchange
volume of the participants, resulting in lower communication costs and
feasibility of edge device implementation, considering the internet and
coverage may be more unreliable and limited in rural settings.

To showcase the potential benefits of FedPruning,1 we employ an
established dataset and a CNN architecture from a previous study
for soybean yield forecasting (Khaki, Wang, & Archontoulis, 2020).
We build a centralized model, local only models and a FL model as
three baselines, and compare four variations of FedPruning with them.
We demonstrate that our method improves inference performance of
local models, reduces communication cost during training and results
in smaller sizes compared to the FL baseline. In summary, this work
describes the following contributions:

• To the best of our knowledge, this is the first study to conceptual-
ize a communication-efficient machine learning methodology that
is built upon data privacy and allows for decentralized training
with neural network pruning in an agri-food setting.

• We propose a new pruning methodology that improves inference
performance and communication efficiency at the same time in a
FL setup.

• We demonstrate the applicability of our method on a real-world
dataset and show that it outperforms both centralized and Fe-
dAvg baselines, suggesting it as a viable option in decentralized
agri-food settings.

1 See the project on GitHub: https://github.com/TensorStrike/soybean_
edpruning.
2

2. Background & related work

2.1. Federated learning

Federated Learning (FL) offers a decentralized approach for training
models across multiple data sources. It addresses two key challenges
that are often present in training local models using local data: pre-
serving data privacy by keeping data on local devices and improving
the overall performance of models, which might otherwise be limited
by the volume and bias of local data (Bonawitz et al., 2016; McMahan
et al., 2016). Recently, FL has been widely adapted into many fields,
such as health care (Dayan et al., 2021; Huang et al., 2019; Ma et al.,
2022; Nguyen et al., 2022; Pfohl, Dai, & Heller, 2019; Rieke et al., 2020;
Xu et al., 2021; Zhang, Li, Ma, Luo, & Li, 2021), IoT (Imteaj, Thakker,
Wang, Li, & Amini, 2021; Khan, Saad, Han, Hossain, & Hong, 2021;
Nguyen et al., 2022; Yu et al., 2020) and finance (Imteaj & Amini, 2022;
Long, Tan, Jiang, & Zhang, 2020; Yang, Zhang, Ye, Li and Xu, 2019).

However, it poses two notable challenges in practice setting. First,
The frequent exchange of model updates between the server and clients
often becomes a bottleneck in the training pipeline, preventing the
effective training of the global model, particularly when the models
are large (Bonawitz et al., 2019; Qiu et al., 2020; Yang, Liu, Chen
and Tong, 2019). This issue is further exacerbated in rural settings
where limited bandwidth can significantly hinder the aggregation pro-
cess (Wu, Wu, Lyu, Huang, & Xie, 2022). Additionally, the varying
hardware capabilities and dataset sizes among clients complicate the
timing and efficiency of model aggregation (Shi & Radu, 2021; Wang,
Liu, Liang, Joshi, & Poor, 2020). Efforts have been made to reduce the
communication cost. Some approaches compress the size of the updates
with reduced dimensionality of the gradient (Konečnỳ et al., 2016; Li
& Han, 2019), quantization (Amiri, Gunduz, Kulkarni, & Poor, 2020;
Konečnỳ et al., 2016; Prakash et al., 2022; Reisizadeh, Mokhtari, Has-
sani, Jadbabaie, & Pedarsani, 2020) or knowledge distillation (Jeong
et al., 2018; Wu et al., 2022) before sending them to the server, while
others focus on optimizing update schemes or strategically excluding
less impactful devices to improve efficiency (Caldas, Konečny, McMa-
han, & Talwalkar, 2018; Hamer, Mohri, & Suresh, 2020; Paragliola &
Coronato, 2022; Tao & Li, 2018). Our paper contributes to this ongoing
effort and falls into the category of model compression with the use of
pruning before aggregation.

Heterogeneity is yet another challenge in FL. While it can take on
many forms, statistical heterogeneity, especially in the form of non-
IID (non-Independently and Identically Distributed) data distributions
is the most common and extensively researched issue (Li, Sahu, Tal-
walkar, & Smith, 2020a; Shi & Radu, 2021; Yang, Liu et al., 2019). This
non-uniform distribution of data among clients often leads to biased
and suboptimal model performance. This issue can be explained by
weight divergence, where the global model, influenced by the non-
IID data, deviates from the ideal model that would be obtained if
the data were IID. Over time, and through successive communication
rounds, this divergence tends to worsen, adversely affecting both model
convergence and overall performance (Zhu, Xu, Liu, & Jin, 2021).
While several solutions (Dinh, Tran, & Nguyen, 2022; Karimireddy
et al., 2019; Li, Jiang, Zhang, Kamp and Dou, 2021; Li et al., 2018; Xu,
Chen, Quek, & Chong, 2022) address this and improve the overall per-
formance, they often do not take into account the efficiency aspect and
in some cases come at the cost of increased communication or extended
training times, making them less practical for real-time applications.
Each method inevitably comes with trade-offs - Table 1 collects various
mainstream methods mentioned in this section with their advantages

and limitations.
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Table 1
Established federated learning methods.

Method Key feature Contribution Limitation

FedBN (Li, Jiang et al., 2021) It treats batch norm separately during
aggregation and keep these parameters
local. Doing so allows each client to
keep its unique data distribution.

It effectively address feature skew in
heterogeneous data.

It does not focus on communication
efficiency; requires the model to use
batch norm to take advantage of this.

SCAFFOLD (Karimireddy et al., 2019) It estimates the update directions of the
server and local model updates and then
‘corrects’ the local updates with the
difference between the server and local
model.

It reduces client drift in the presence of
heterogeneity and improves the learning
consistency across clients.

The process of estimating and correcting
based on the server and local model
discrepancies may introduce additional
computational overhead.

FedProx (Li et al., 2018) It adds a penalty term to FedAvg,
providing a balance between learning
from local data and adhering to the
global model.

It mitigates the impact of statistical
heterogeneity and client drift, leading to
more stable convergence.

The added penalty term may increase
the computation overhead and it does
not address communication cost.

pFedME (Dinh et al., 2022) It employs Moreau envelopes as clients’
regularized loss functions, which
encourages localization in FL.

It achieves significant speedups on
convergence.

It requires extra computation and does
not improve communication efficiency;
regularization may need extra tuning.

MOON (Li, He and Song, 2021) It works to minimize the difference
between what the local and global
models learn, while maximizing the
difference between the current and
previous learning of the local model.

It addresses heterogeneity, improves
training stability as well as reduces the
number of communication rounds.

It involves comparing representations
learned by different models may
increase the computational complexity;
the effectiveness may be diminished if
the global representation is suboptimal.

FedCorr (Xu et al., 2022) Additional steps are designed to identify
noisy clients, and fine-tune on clean
clients

It addresses issues of having high noise
clients and addresses heterogeneity.

The additional steps are computationally
expensive and not suitable for IoT.

McMahan et al (Konečnỳ et al., 2016) It proposes an algorithm tailored to a
setting where a large number of nodes
with uneven data distribution is
involved. It focuses on incurring more
computation on local devices, thus
reducing the number of communication
rounds.

It reduces the communication cost by
reducing the rounds of communication.

The paper’s focus is more on
communication efficiency in distributed
settings rather than directly addressing
non-IID data challenges; may not be
applicable to cross-silo scenarios with
fewer clients.

FedKD (Wu et al., 2022) It compresses the updates with the use
of knowledge distillation and gradient
compression techniques.

It saves a significant amount of
communication cost while achieving
close to centralized performance.

It does not directly address
heterogeneity; achieving the right
balance between learning from the
distilled model and retaining
representations from local data can be
challenging, especially in highly
heterogeneous environments.

FedBoost (Hamer et al., 2020) It trains an ensemble of base predictors,
which work together to improve the
overall accuracy reducing the need for
communication.

It focuses on minimizing per-round
communication costs for both
server-to-client and client-to-server.

It is computationally expensive and not
suitable for IoT.

GWEP (Prakash et al., 2022) It uses joint quantization and model
pruning to compress models in FL.

It significantly reduces communication
cost and model size, making it suitable
for IoT deployment.

It does not address heterogeneity and
high compression may sacrifice
performance.
2.2. Pruning

Pruning techniques are pivotal for efficient neural network deploy-
ment, especially in resource-constrained applications like crop yield
prediction (Han, Mao and Dally, 2015). Early work suggests that prun-
ing aids model generalization by balancing the bias–variance trade-
off (LeCun, Denker, & Solla, 1989; Rasmussen & Ghahramani, 2000).
Recent studies confirm that moderate pruning can even improve model
accuracy (Han, Pool, Tran and Dally, 2015). The primary motivation
for contemporary pruning methods is to enable energy efficiency for
real-time operation on mobile devices and reduce the model size for
easier storage and transmission (Han, Pool et al., 2015).

Most modern pruning algorithms stem from Han et al.’s three-step
process: initial training, weight removal based on importance, and fine-
tuning (Han, Pool et al., 2015). Pruning effectively reduces redundant
weights without compromising performance. For instance, AlexNet and
VGG-16 can be pruned by 9x and 13x, respectively, without loss in
performance (Han, Pool et al., 2015). Various criteria exist for weight
removal, with magnitude-based pruning being widely adopted (LeCun
3

et al., 1989). The recent Lottery Ticket Hypothesis introduces a method
that optimal sub-networks can be found by re-initializing weights after
pruning, and offers an alternative to fine-tuning (Frankle & Carbin,
2018). The sub-networks can be trained in isolation from scratch to
reach the performance no worse than the original with equal or less
training.

3. Materials and methods

3.1. Data

Our demonstration focuses on collaborative federated forecasting
using an accessible open-source dataset, given limited real data avail-
ability in agri-food. We use the tabular data analyzed from a previous
work of Khaki et al. (2020) for the same task of predicting the yield
of soybean (bushels per acre). The dataset is composed of weather, soil
and management data of soybean from 9 states and their counties from
1980 to 2018. In order to maintain consistency with the previous study,
we use data from 1980 to 2015 to predict yield for the final three years

2016, 2017, and 2018.
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Table 2
Data sample breakdown for the states used for prediction year 2016, 2017 and 2018.
Each state represents a silo used in FL.

Location 2016 2017 2018

Train Val Train Val Train Val

Illinois 2977 67 3044 72 3116 64
Indiana 2630 52 2682 54 2736 61
Iowa 3132 94 3226 90 3316 86
Kansas 2443 17 2460 19 2479 15
Minnesota 2134 55 2189 55 2244 43
Missouri 2395 18 2413 19 2432 15
Nebraska 2274 52 2326 43 2369 39
North dakota 574 12 586 12 598 12
South dakota 1164 22 1186 21 1207 20

Combined 19 723 389 20 112 385 20 479 355

• The weather data includes the weekly average of 6 attributes:
precipitation, solar radiation, snow water equivalent, maximum
temperature, minimum temperature and vapor pressure. This data
was acquired from Daymet (Thornton et al., 2020).

• The soil data includes 10 attributes: bulk density, cation capacity
exchange capacity at 7 pH, course fragments, clay percentage,
total nitrogen, organic carbon density, organic matter percent-
age, pH in water, sand, silt, soil organic carbon, all measured
at 6 depths. The data was acquired from Gridded Soil Survey
Geographic Database (gSSURGO, 2023) for the United States and
is generally the most detailed level of soil geographic data in
accordance with the national survey standards.

• The management data includes the cumulative percentage of
planted fields within each state. This data is acquired from Na-
tional Agricultural Statistics Service of the United States (USDA-
NASS, 2019).

he soil data is uniform throughout the period for each county while
he weather and management data change over time. The data is
istributed into 9 silos, with each representing a corresponding state.
ollowing a cleaning and data processing approach similar to that
escribed by Khaki et al. (2020), we end up with silos containing a
iverse range of samples, as detailed in Table 2. Such an imbalance
n data distribution is common in practical scenarios. Clients with

large training data volume account for a larger proportion of the
veral training data, and can reduce the accuracy of clients with fewer
amples (He & Garcia, 2009). To address this, we implemented a
trategy akin to random oversampling. This method aims to balance
he dataset by adjusting the sample size across silos without losing
nformation. It involves replicating samples from under-represented
ilos more frequently, and those from over-represented silos less so,
esulting in a more uniform distribution among all silos.

.2. Federated pruning

The ultimate objective of FL (McMahan et al., 2016) is to find a set
f parameters, denoted by 𝜃𝑔𝑙𝑜𝑏𝑎𝑙 that minimizes the global loss function

 across all clients, 𝐾, such that:

𝜃𝑔𝑙𝑜𝑏𝑎𝑙 ∈ arg min
𝜃

(𝜃) ∶= 1
𝐾

𝐾
∑

𝑖
𝓁𝑖(𝜃) (1)

his is particularly relevant in the agri-food contexts where individual
ilos often lack sufficient data to train an accurate model and data
olders are often reluctant to share the data due to privacy and security
oncerns. However. the heterogeneity in data can lead to performance
egradation on clients experiencing distribution shifts.

To address these challenges, we leverage pruning as described
n Eq. (2). ‖𝜃 ‖ the L0 norm of the pruned parameters 𝜃 , represents
4

𝑝 0 𝑝
he number of non-zero elements. To obtain the pruned network 𝜃𝑝, the
odel is pruned until ‖𝜃𝑝‖0 is less than a preset threshold 𝑁 .

arg min
𝜃𝑝

(𝑥; 𝜃𝑝) subject to: ‖𝜃𝑝‖0 < 𝑁 (2)

During FL, we prune local weights at the end of each local training
cycle. This results in localized models with unique sets of parameters
tailored to their own data distributions. The pruned models are not
only more accurate but also smaller in size, thereby reducing the
communication overhead. This is especially beneficial in agri-food
settings like farms, where bandwidth is often limited. The server then
aggregates these sparse models and disseminates the updated weights
to the clients. This iterative process continues for 𝑇 communication
rounds, ultimately yielding localized and compact models. We refer
to this method as Federated Pruning (FedPruning) throughout this
paper. FedPruning can be described as in Eq. (3). We obtain client
parameters 𝜃𝑘 by averaging client 𝜃𝑝 (obtained with a prune function
𝑃 ) in aggregation during federated learning (see Fig. 1).

𝜃𝑘 ∈ arg min
𝜃𝑝

(𝜃𝑝) ∶=
1
𝐾

𝐾
∑

𝑖
𝓁𝑖(𝑥; 𝜃𝑝)

where 𝜃𝑝 = 𝑃 (𝑥; 𝜃) s.t. ‖𝜃𝑝‖0 < 𝑁

(3)

Unlike typical FL scenarios involving random client selection, our
approach is specifically designed for case scenarios in agri-food where
the number of clients, such as farms or silos, is finite and well-defined.
In such contexts, random selection is not only unnecessary but also
counterproductive, as each client contributes valuable, albeit hetero-
geneous, data that is crucial for the global model. Therefore, in our
FedPruning method, all available clients are included in each communi-
cation round for model aggregation. This ensures that the global model
benefits from the full spectrum of data distributions, making it more
robust and applicable to the specific challenges of agri-food systems.

3.3. Localization-preserving aggregation

The primary incentive to participate in FL is to have a global model
that is better performing than the individual local models. However,
in practice, local clients can outperform the global model due to data
heterogeneity (Hanzely & Richtárik, 2020) or not independent and
identically distributed (Non-IID) data, and it defeats the purpose of
FL. For a supervised learning task on client 𝑘, the data is in the
form of (X,y) where 𝑥 is the input features and 𝑦 is the label, and it
follows a local distribution 𝑃𝑘(𝑋, 𝑦). By Non-IID, the 𝑃𝑘(𝑋, 𝑦) differs
from client to client (Zhu et al., 2021). We may experience this from
different types of skews. First, the conditional distribution 𝑃𝑘(𝑦|𝑋) may
be different across the clients although 𝑃𝑘(𝑋) is the same. In the agri-
food sector, this could be resulted from the different measuring devices
or sensitivities of sensors used to capture the local data. Second, for
time-series data such as ours, it can happen when clients have uneven
distribution across the years. Some may have more data points towards
later years while others have more from the early years.

While the widely popular FedAvg can work with non-IID to some
degree, it ultimately lacks the theoretical guarantee to converge for all
clients (Li, Sahu, Talwalkar, & Smith, 2020b). In the agri-food sector,
feature shifts, often caused by variations in local measurement devices
or measurement sensitivity are the primary reason for non-IID data
across local data silos. Such shifts in feature distribution can cause
performance degradation, as local models are trained on distributions
that are not aligned with those of other clients. During communication
rounds, FedAvg aggregates the gradients of the local models by taking
the weighted average of the local gradients and returning it back to the
clients (McMahan et al., 2016). It results in handling all the various
data distributions with one single global model. In our method, instead
of attempting to obtain a ‘‘one model to fit all’’, each client learns a
localized sparse network that is tailored to its own data distribution.
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Fig. 1. Federated Pruning during one round of federated learning.
Fig. 2. Localization-preserving aggregation. The original weights (top) are aggregated
(middle) to become new weights (bottom), which are updated with on the clients.

Following the idea of FedAvg where the average weights are propor-
tional to the number of participants, we use the aggregation algorithm
proposed in LotteryFL (Li, Sun et al., 2021), which is designed to
aggregate sparse networks. Largely pruned networks may overlap with
each other on some connections while having unique or infrequently
overlapped connections due to the non-IID data distribution across the
clients. This aggregation strategy updates on only the overlapped con-
nections of the sub-networks while keeping the non-overlapped parts
unchanged. Fig. 2 illustrates how the averages of sparse tensors are
computed. For instance, at the leftmost position, we take the average
from client 1 and client 3 since client 2 has it pruned. The aggregated
weights are then sent back to the clients and the unpruned weights
are updated. This aggregation strategy allows the server to maximally
preserve weights that are important to individual clients.

3.4. Communication cost

In the field of agri-food, a persistent issue is the insufficient avail-
ability of robust wireless connectivity in rural regions. Any delay in
data exchange or loss of connection among IoT devices such as sensors
or electronic devices could directly hinder farming operations (van
Hilten & Wolfert, 2022). The application of sparsity to neural networks
is a widely adopted technique for minimizing the number of param-
eters transmitted to the server, and thereby reducing communication
costs (Aji & Heafield, 2017; Alistarh et al., 2018). Communication
constitutes a common bottleneck in FL since the participating clients
are regularly required to send and receive updates from the server. By
removing a portion of parameters per update, the communication cost
is reduced to the compact size of a sub-network from the full network.
5

3.5. Iterative magnitude pruning

We obtain a sparse neural network on each client 𝑘 ∈ 𝐾 by training
the network and pruning its smallest-magnitude weights. Consider a
dense neural network 𝑓 (𝑥; 𝜃𝑘) with parameters 𝜃𝑘, when optimizing
with gradient descent on a training set, the validation loss 𝑙𝑘 converges.
In the implementation, pruning a percentage of the weights leads to
the generation of a mask 𝑚𝑘 ∈ {0, 1}. If the magnitude of parameter
is smaller than the quantile, the corresponding mask entry is set to 0.
The mask is combined with the state of the network to produce a sub-
network 𝑓 (𝑥; 𝜃𝑘⊙𝑚𝑘), which is then trained again to recover 𝑙𝑘 (If LTH
is used, the weights of the sub-network are reset to 𝜃𝑔 at initialization
before re-training). The network is trained and pruned over 𝑇 rounds;
each round prunes 𝑝% of the remaining weights that survived the round.
This iterative magnitude pruning step makes the basis of the client
updates presented in our approach.

We define the sparsity of a network as 𝑃𝑚 = ‖𝑚‖0
|𝜃| , with ‖𝑚‖0 being

the number of zeros in a mask and |𝜃| being the number of weights
in a network, i.e., 𝑃𝑚 = 75% means that 75% of weights have been
pruned. 𝑃𝑚 is used as the metric to evaluate the compactness of the
models throughout this paper. Our approach produces sub-networks ∃𝑚
for which 𝑙′ ≈ 𝑙(𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑙𝑜𝑠𝑠𝑒𝑠) and ‖𝑚‖0 ≪ 𝜃(𝑓𝑒𝑤𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) for
all clients 𝐾.

3.6. Training algorithm

The general training algorithm is formally described in Algorithm
1. The steps are taken as follow:

1. Global weights are downloaded from central server to clients.
2. Perform local training on each client for 𝑒 epochs.
3. If 𝑙𝑜𝑠𝑠 < 𝑙𝑜𝑠𝑠𝑏𝑒𝑠𝑡, prune 𝑝% of the parameters 𝜃 by magnitude,

generating mask 𝑚. Train for 𝑒 epochs to recover the loss.
4. The current sub-networks 𝜃𝑡𝑘 of the clients are sent to the global

server for aggregation. Update the global model 𝜃𝑡𝑘 to 𝜃𝑡+1𝑘 .

The above steps are iterated for 𝑇 rounds. We use magnitude as our
pruning criterion to determine the importance of weights. To give
networks enough time to converge, we avoid pruning prematurely by
running regular FL without pruning for 2 communication rounds — we
find that it greatly reduce the risks of networks failing to recover, and
increases the pruning potential in future rounds.

In our test setting, clients converge at different rates and their
eventual losses vary. Thus, we perform pruning based on their own
convergence and use their best loss as an indicator for whether they are
ready to be pruned. We ensure that the loss recovers to its previous best
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Algorithm 1 Training Algorithm. T rounds are indexed by t; The clients
re indexed by 𝑘; r is the prune ratio; m is the local mask; 𝜂 is the

learning rate; 𝓁 is the loss function
1: initialize global model 𝜃𝑔𝑙𝑜𝑏𝑎𝑙 with 𝜃0
2: while round t < T do
3: ClientUpdate(𝜃𝑔𝑙𝑜𝑏𝑎𝑙) ∶
4: for each client k1, k2… do
5: 𝜃𝑡𝑘 ← 𝜃𝑔𝑙𝑜𝑏𝑎𝑙 ⊙ 𝑚𝑡

𝑘
6: 𝜃𝑡𝑘 ← Train(𝜃𝑡𝑘)
7: ⊳ If loss has recovered; target sparsity has not reached; no

pruning in final rounds
8: if 𝑙𝑜𝑠𝑠 < 𝑙𝑜𝑠𝑠𝑏𝑒𝑠𝑡 and 𝑟𝑡 < 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑡 < 𝑇 − 3 then
9: 𝑚𝑡

𝑘 ← Prune p% of 𝜃𝑡𝑘
10: 𝜃𝑡𝑘 ← 𝜃0 ⊳ Reset weights to initialization (if LTH is used)
11: 𝜃𝑡𝑘 ← Train(𝜃𝑡𝑘 ⊙ 𝑚𝑡

𝑘) ⊳ recover loss
12: end if
13: Return 𝜃𝑡𝑘 to server
14: end for
15: Server Executes:
16: 𝜃𝑡+1𝑔𝑙𝑜𝑏𝑎𝑙 ← aggregate(𝜃𝑡𝑘1, 𝜃

𝑡
𝑘2,… ) ⊳ Note: client weights have

already been masked
17: end while
18: function Train(𝜃𝑡𝑘)
19: for epoch e = 1, 2,… , do
20: for batch b ∈ B do
21: 𝜃𝑡+1𝑘 ← 𝜃𝑡𝑘 − 𝜂∇𝜃𝑡𝑘𝓁(�̂�, 𝑦)
22: return 𝜃𝑡+1𝑘
23: end for
24: end for
25: end function

before it can be pruned again. In practice, we set this threshold to 10%–
20% over its best loss to accelerate pruning early on as it is likely that
the loss will recover in later rounds. Obtaining smaller models early
on means that there is less communication cost throughout the entire
FL training process. To allow losses to recover and stabilize following
pruning, a number of non-pruning round is added.

3.7. Model architecture

The previous work by Khaki et al. (2020) tested five different
models for this forecasting task — CNN–LSTM, Random Forest, Deep
fully connected neural network (DFNN) and LASSO. The CNN–LSTM
was most effective in predicting yields of soybean with RMSE for
the validation data being approximately 8%. However, the line of
research for iterative magnitude pruning is almost exclusively based
on convolutional and fully connected layers (Liang, Glossner, Wang,
Shi, & Zhang, 2021), so we build a model based on these layers to
realize the theoretical benefits of pruning. We utilize the previously
established convolutional layers to capture the temporal structure of
the data for weather, soil and management, but concatenate them
along with yield data from the previous dependent years into the fully
connected layers, which work as our regressor. Batch normalization is
also used after the non-linearity to accelerate training and improve the
accuracy (Santurkar, Tsipras, Ilyas, & Madry, 2018). We experimented
with different configurations and found that 3 fully connected layers
gave an accuracy comparable to the DFNN model from the previous
work. Rectified linear unit (ReLU) activation function is used for all
convolutional and fully connected layers.

3.8. Metrics

We use several key metrics to evaluate performance and efficiency
6

in this study. First, we use the Root Mean Square Error (RMSE) as
the primary performance metric to assess the accuracy of our yield
predictions. RMSE provides a reliable measure of the model’s prediction
errors, allowing us to understand the accuracy of regression model.

For assessing model compression, we relied on the sparsity metric,
previously defined as 𝑃𝑚 = ‖𝑚‖0

|𝜃| , and this is the ratio between zero and

non-zero weights. Additionally, we measure the theoretical size of the
pruned models based on the number of parameters, first converting this
count into size in bits, and then a more tangible metric of KB.

An important aspect of our study was evaluating the communication
cost savings achieved through model compression during transmission
in the FL process. We calculated this by measuring the reduction in
bandwidth usage due to model compression. For example, if a model
is compressed by 50% at a certain communication round, subsequent
rounds would require correspondingly less bandwidth and have a com-
pounding effect. This effect accumulates over the course of the process,
and the result shows the theoretical amount saved in MB during the
whole FL process.

4. Results

4.1. Experiment setup

Our experiments were conducted on a laptop with an Intel Core i7
processor, 16 GB RAM, and an NVIDIA GTX2080 Super GPU, using
Python 3.7, PyTorch 1.13.1 with CUDA 11.7 support, and additional
dependencies listed in our repository. To evaluate the inference ac-
curacy of the models, the data for 2016, 2017 and 2018 are used as
validation years and their yields are predicted in bushels per acre. We
implemented three baselines to make a fair comparison.

• Centralized is trained on the combined data of the clients.
• Local only is trained locally by each client.
• FedAvg (McMahan et al., 2016) is the classic FL approach where

clients download the global model from the server, train using
local data, and then send updates to the server to update the
global model through aggregation.

In addition to the baselines, we implement and evaluate FedProx
nd FedBN, two popular mainstream methods that address non-IID
ata. These methods are benchmarked for a comparison in efficacy in
andling the complexities inherent in non-IID dataset in real life, such
s ours.

• FedProx (Li et al., 2018) introduces a proximal term that pe-
nalizes large deviations from the global model to encourage sta-
bility and less divergence among client updates. We set 𝜇 in
the proximal term definition in Li et al. (2018) to 0.01 for our
experiment.

• FedBN (Li, Jiang et al., 2021) keeps batch norm layers specific to
clients while updating other parameters. In the implementation,
we revise the update logic such that the batch norm parameters
are not updated from the server.

To make local models more accurate and compact in our own
method, each sub-network prunes the least important parameters after
local training. The hypothesis behind this is that the surviving parame-
ters are those that are most important to the local clients (not other
clients), and the aggregation of pruned models will preserve the lo-
calized parameters derived from pruning. To evaluate the effectiveness
of our proposed method, we implement four variations, and compare
them with the baselines.

• Federated Pruning (FedPruning) is the method described in
Algorithm 1 where individual models are pruned on the client’s
end and sub-networks are aggregated on only the overlapped
connections on the server’s end. The surviving sub-networks are

fine-tuned and their losses are recovered.

https://github.com/TensorStrike/soybean_fedpruning
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Fig. 3. Sparcification schedules.
Table 3
Settings tested in this experiment. The pruning rate denotes the percentage of weights pruned each time pruning is executed, and target sparsity
represents the intended level of sparsity achieved at the end of training. Notably, the sparsity achieved by iterative pruning may slightly deviate
from the target sparsity depending on the training performance.

Method Rounds/Local epochs Learning rates Pruning rate Target sparsity

Centralized 1/300 5e−5, 1e−5, 2e−6 0.0 0.0
Local only 1/300 2e−5, 4e−6, 8e−7 0.0 0.0
FedAvg 40/5 2e−5, 4e−6, 8e−7 0.0 0.0
FedProx 40/5 2e−5, 4e−6, 8e−7 0.0 0.0
FedBN 40/5 5e−5, 1e−5, 2e−6 0.0 0.0
FedPruning (ours) 40/6 2e−5, 4e−6, 8e−7 0.25 0.80
FedPruning-LT (ours) 40/8 2e−5, 2e−6, 4e−7 0.415 0.80
One-shot (ours) 40/5 2e−5, 4e−6, 8e−7 0.70 0.70
One-shot-LT (ours) 40/5 1e−5, 2e−6, 4e−7 0.70 0.70
• Federated Pruning with Lottery Ticket (FedPruning-LT) is
trained on the same algorithm as FedPruning, but with LTH (Fran-
kle & Carbin, 2018), which resets the remaining weights to initial-
ization, creating a winning ticket. Both FedPruning approaches
prune iteratively, which repeatedly train, prune, re-train, and
aggregate over T rounds. Each round prunes 𝑝% of the survived
weights until target sparsity is reached.

• One-shot prunes all client networks by a large 𝑝% at once (Lee,
Ajanthan, & Torr, 2019) and proceeds with federated learning
with the same aggregation strategy as FedPruning.

• One-shot with Lottery Ticket (one-shot-LT) executes a one-
shot pruning, but with weights reset to initialization following
pruning.

For all methods, we use a batch size of 50, and the weights are
initialized with the Kaiming method (He, Zhang, Ren, & Sun, 2015).
Adam optimizer is used with a learning rate decaying at around 5 and
10 by a factor of 0.2. L2 regularization can be used to enforce sparsity
during training by encouraging smaller weights (Han, Pool et al., 2015),
and therefore we set a weight decay of 0.0001. For federated methods,
the model is trained for a maximum of 40 communication rounds with
5–8 epochs trained locally. Local early-stopping is also used to prevent
overfitting. Table 3 includes additional parameter settings used in this
experiment.

Sparsification Schedules. Model sparsity is trained with a schedule. As
shown in Fig. 3, FedPruning (a) prunes a relatively small percentage
iteratively, whereas FedPruning-LT (b) prunes a maximum of three
times but a larger portion each time. This is because, in our testing, LT
requires more iterations to recover due to the weight reset. If a network
is pruned prematurely before the loss is recovered, it can impede its
ability to recover its former loss and also prevent further pruning.
Hence, FedPruning-LT is given a minimum of 7 rounds to recover
following a pruning round, while FedPruning is given a minimum of
3 rounds to recover. In addition to these mandatory recovery rounds,
clients are evaluated before pruning and pruning is only executed if
their losses have been recovered. Pruning is also prohibited in the
7

Table 4
RMSE (bushels per acre) of the 9 states trained using different training procedures. The
values are recorded using the average of 3 runs each year with random initialization
seeds. The final average sparsity for our methods are in the bracket. The best
performance is highlighted in bold.

Method 2016 2017 2018 Average

Centralized baseline 8.74 6.04 5.83 6.8
Local only 10.10 7.46 7.96 8.84
FedAvg 9.70 6.53 6.85 7.69
FedProx 9.94 5.92 6.25 7.37
FedBN 10.06 5.98 6.48 7.51
FedPruning (ours) 8.87 (0.75) 5.02 (0.84) 5.62 (0.78) 6.50 (0.79)
FedPruning -LT (ours) 9.52 (0.73) 5.24 (0.76) 5.52 (0.76) 6.75 (0.75)
One-shot (ours) 8.50 (0.7) 5.54 (0.7) 5.55 (0.7) 6.53 (0.7)
One-shot-LT (ours) 8.39 (0.7) 4.85 (0.7) 5.26 (0.7) 6.17 (0.7)

final rounds to ensure the best final inference performance. Both one-
shot approaches (c) prune a significant portion as soon as the network
converges and proceed with training and aggregating sparse networks.

4.2. Inference performance, communication cost and size

The centralized baseline pools all training and testing data together,
and demonstrates a commensurate level of inference performance when
compared to the DFNN model from the previous study (Khaki et al.,
2020). We find that the local models, which only use data from their
respective silos, exhibit poor performance compared to the centralized
baseline, as indicated in Table 4. This is expected as the local clients
have limited training data. FedAvg addresses the data limitation by
leveraging all data from all silos via aggregation and model updates.
We evaluate the performance of FedAvg, FedProx and FedBN using
the global model directly following the aggregation. Our findings in-
dicate that FedAvg outperforms the local models for all years by
approximately 10.5%. However, FedAvg’s performance still falls short
compared to the centralized. When compared to FedAvg, the impact of
FedProx and FedBN appears limited as they perform marginally better
for some years but worse in others.
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Fig. 4. RMSE performance and model sparsity of FedPruning, FedPruning-LT, One-Shot, and One-Shot-LT compared to the FedAvg basedline over 40 communication rounds for
2018. The solid lines at top represent the average RMSE of clients. The shades correspond to the RMSE between the highest and lowest clients. The graph is produced using the
average of 3 runs with random initialization seeds.
Since FedPruning produces different, localized models for each
client, we evaluate the individual client models instead of the global
model like we do with FedAvg. Therefore, to evaluate the performance
of FedPruning — both with iterative and one-shot pruning, with and
without LTH, we assess the inference performance using local test data
from each silo at the end of local training. The most direct way for the
method to be demonstrably useful is for it to be a drop-in replacement
for FedAvg — that is it must be able to reach the inference perfor-
mance no worse than FedAvg on all clients on average and result in
fewer parameters within a specific number of communication rounds.
Symbolically, (A 0→𝑇

fp (𝜃𝑝)) ≤ (A 0→𝑇
fa (𝜃)) and |𝜃𝑝| < |𝜃|, where |𝜃𝑝|

and |𝜃| are the numbers of parameters in pruned and unpruned models
respectively,  is the average loss across all clients, A 𝑥→𝑦

fp and A 𝑥→𝑦
fa

are the FedPruning and FedAvg procedure for training from round 𝑥 to
round y, and 𝑇 is the final round.

Assessing the inference performance of local models. The results
indicate that FedPruning under all four settings significantly outper-
form FedAvg, with performance improvements ranging between 15.5%
to 19.8%. The iterative pruning methods FedPruning and FedPruning-
LT outperform the centralized baseline for 2017 and 2018, while
exhibiting slightly inferior performance for 2016. Overall, these meth-
ods demonstrate comparable inference performance to the centralized
baseline. One-shot surprisingly shows a similar performance compared
to its iterative counterpart, despite being slightly less pruned. However,
when LTH is applied to one-shot, it shows a small but noticeable
increase in performance across all years, amounting to a 5.5% im-
provement overall. We also make the observation that these varia-
tions collectively are on par with the centralized baseline or even
marginally outperform it. One-shot-LT shows the biggest difference by
approximately 10%.

Fig. 4 shows how the pruning approaches perform in terms of
RMSE and sparsity over 40 communication rounds. It is observed that
FedPruning and One-shot (left graph) have a narrower client RMSE
range than FedAvg, with the upper bound of client RMSE being lower.
Additionally, FedPruning exceeds the final performance at a lower
sparsity (approximately 𝑃𝑚 = 30%–60%) and decreases slightly as we
prune, forming Occam’s Hill, which suggests that if the model is either
too simple or too complex, performance on an independent test set
will suffer (Rasmussen & Ghahramani, 2000). FedPruning-LT (right
graph) prunes more each time but fewer times in total. We tested
it with the same schedule as FedPruning, and observed that when
client models are pruned before they recover, they may permanently
lose the performance. This not only affects itself but also other clients
since some of their weights are shared. We also find that the overall
performance may be better when the clients are pruned and recovered
8

together, as opposed to independently. The RMSE spikes on the graph
indicate the impact of weight reset after pruning, and we allow them
to recover fully before the next pruning round. Despite the effort, it
does not appear to match the performance of FedPruning and One-Shot-
LT. One-Shot-LT on the other hand, although simpler to implement,
consistently shows superior performance compared to both one-shot
and FedPruning-LT.

Assessing the Cost of Communication and Model Size. Communica-
tion costs in federated learning are primarily influenced by the volume
of data transmitted between clients and the server. This volume is
affected by two factors: the sparsity of the model which dictates the
compression ratio and the timing of model pruning. Sparse models,
which are compressed more effectively due to their reduced size, incur
lower transmission costs. Moreover, the earlier the pruning occurs, the
larger the cumulative savings in communication costs. For example,
inducing significant compression early on results in reduced transmis-
sion costs in all subsequent rounds. On the other hand, compressing
the model in the final round gives no transmission savings in the
rounds leading up to it. The bottom graphs of Fig. 4 illustrate these
concepts, contrasting the data consumption patterns of iterative versus
one-shot pruning approaches. Initially, iterative pruning methods, such
as FedPruning, lead to higher communication costs that decrease over
time as the models become sparser. In contrast, one-shot pruning
methods cut down the model size in a single step, leading to immediate
and consistent communication savings, affecting all subsequent rounds.
Nevertheless, all pruning techniques successfully reduce the model size
while maintaining inference performance. Notably, one-shot pruning
achieves a 3.22X reduction in model size, while iterative methods like
FedPruning and FedPruning-LT achieve reductions of 4.76X and 4X,
respectively (see Table 5).

5. Discussion

Existing works (Frankle & Carbin, 2018; Han, Pool et al., 2015)
demonstrate that neural networks can be represented by substantially
fewer parameters. We drew inspiration from the benefits of network
pruning and implemented the fundamental pruning steps, which are
training the initial network, removing connections, and fine-tuning the
model for the participating local clients in the FL process. Subsequently,
we aggregated the overlapping connections of the sub-networks instead
of the full network. Through testing with the soybean yield prediction
dataset, we observed that the proposed method consistently outper-
formed the benchmark of the classic FedAvg approach across all years
tested. Additionally, this method efficiently produced more compact
models for edge device utilization, thereby introducing new options
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Table 5
Communication cost and size of an average client model during the FL process. The values are recorded using the average
of 3 years, with 3 runs per year with random initialization seeds.

Method Communication cost (MB) Communication saved (%) Client model size (kB)

FedAvg 50.76 0 634.64
FedPruning 21.78 57.1 133.27
FedPruning-LT 20.96 58.7 158.66
One-shot 17.92 64.7 196.95
One-shot-LT 17.92 64.7 196.95
for the implementation of FL in practical agri-food settings. These
findings suggest that the proposed method could potentially improve
the efficiency and feasibility of FL in agri-food settings, and may offer
practical advantages over the classic FedAvg approach.

Model localization. In theory, if all client datasets are identically and
ndependently distributed, and the overall data volume is large enough,
hen FedAvg and the centralized model using combined data could
chieve similar inference performance because the client stochastic
radient is an unbiased estimate of the full gradient and the average
odel weights of the client models will approximate the centralized
odel (Bottou, 2010; Rakhlin, Shamir, & Sridharan, 2012). However,

his assumption nearly never holds in practice, as we can see from our
xperiment. The non-IID data happens in the presence of inconsistent
ata distributions when there is an attribute imbalance of the training
ata across clients due to perturbations. When the number of data
ollection points becomes large, it is difficult to keep the measurements
onsistent. For instance, the measurement of temperature may vary
etween farms due to the deployment of sensors in different positions
ithin the polytunnels. Different farms may also use different fertilizers
nd be exposed to different climates, or elements not captured in the
atasets but affecting the yield. By producing sparse neural networks,
he weights important to the client itself are retained. As sparsity
𝑚 increases, the number of parameters shared with other clients via
ggregation decreases. A percentage of these remaining weights are
early unique or shared with a few clients who also consider these
eights important to themselves, and these parameters attribute to

he localization of client models. A higher sparsity may reduce the
ivergence from non-IID data, which causes poor performance. This
an be seen from our results, as FedPruning consistently outperform
edAvg on individual client models.

runing. For best results, rather than pruning all weights at once, the
common practice is to repeat the train-prune-retrain procedure until
the target sparsity is reached. As LeCun et al. (1989) put ‘‘A simple
strategy consists in deleting parameters with small ‘‘saliency’’, i.e. those
whose deletion will have the least effect on the training error... After
deletion, the network should be retrained. Of course this procedure
can be iterated’’. The concept of iterative magnitude pruning is also
realized by many contemporary research works. Han, Pool et al. (2015),
who modernized this method states ‘‘Our pruning method ... learns the
network connectivity via normal network training... The second step
is to prune the low-weight connections... The final step retrains the
network... This step is critical. If the network is used without retrain-
ing, accuracy is significantly impacted.’’. Modern literature seems to
agree that pruning should be performed iteratively for best inference
performance. However, in our study, we did not observe a significant
disparity between the iterative and one-shot approaches. This may
suggest that the true potential of iterative FedPruning has yet to be
realized. Local losses degrade after the models are pruned, and it is
observed that they may not recover to their pre-pruning state before
they are passed to the central server. Although they typically recover
in subsequent rounds, passing these models for aggregation may result
in ‘hiccups’, a temporary degradation in the overall loss. This can be
observed from the jagged loss curve in Fig. 4 compared to the smooth
curves of FedAvg and the one-shot methods. We have established a
generalizable algorithm that effectively leverages pruning during FL.
However, there may be unexplored approaches to identifying more
9

optimal settings for iterative pruning, such as determining the ideal
granularity, schedule, and other related factors.

When we applied LTH to FedPruning, we observed that the weight
reset (required to find the ticket) resulted in a significant deterioration
(increase in the local loss), returning it to the initial training state.
Unlike the isolated experiments by Frankle and Carbin (2018), our local
models required weight sharing with each other. When local models
performed weight resetting, retraining and averaging independently
and frequently, it would adversely affect the aggregated weights of
other clients, causing the overall loss to cease improving. We reduced
the noise caused by this by changing the schedule of sparsification
— nearly simultaneous pruning across all clients and less frequently.
Our experiments demonstrated that applying LTH to the iterative Fed-
Pruning was arduous and less advantageous compared to the other
variations, though still outperforming the FedAvg baseline. However,
LTH was more effective when applied only once, as shown in the com-
parison between one-shot and one-shot-LT. This finding may suggest
that the property of LTH reemerges when scheduling of sparsification
becomes less of an issue. It invites a number of follow-up questions and
may be explored empirically in future research.

Sustainability and Inference Efficiency. Large models should be com-
pressed to effectively participate in FL and fit on edge devices, as they
require more computations, energy consumption and carbon footprint.
The efficiency of machine learning inference is dictated by memory
locality — if a large model cannot be held in on-chip storage (SRAM),
references need to be made to access off-chip memory (DRAM), and ac-
cessing DRAM memory (640 pJ) is significantly more energy-intensive
than accessing SRAM memory (5 pJ) (Horowitz). When compared to
the energy cost of 32-bit float multiplications (3.7 pJ), memory locality
dominates. Sparse models with compatible hardware or framework
require less computations and data movement during inference than
their dense counterparts and form a step towards creating sustainable
solutions in agri-food and beyond.

Use Cases. As our goal is to propose technological solutions to facilitate
data sharing and enable the development of efficient and ‘green’ ma-
chine learning models at scale, as well as to potentially encourage those
in agri-food sector to adopt such technologies, we provide example
use cases that could benefit from such a methodology, beyond the
soybean case we are considering in this paper. Especially in areas where
we see data sharing in agri-food via distributed training to be most
applicable. In this paper, we focused on forecasting for collaborative
federations for our empirical demonstration given the accessibility to
suitable open-source datasets. However, the proposed methodology is
directly applicable to the other use cases. We describe two key use
cases observed in the agri-food sector that we believe data sharing
and distributed/collaborative training with efficient machine learning
models can assist; this list is not exhaustive.

• Strawberry yield forecasting for collaborative consortia
The aggregation of more data from a variety of sources and
multiple farms can vastly improve the performance of machine
learning models and other decision-support systems. In the agri-
food sector, soft fruit growers, for instance, can be limited by their
data collection processes, yet they may wish to employ decision-
support frameworks to improve not only profits but also their

sustainability (net-zero targets). Another aspect of this relates
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to contractual agreements between growers and large retail su-
permarkets; over-/under- estimating the amount of produce can
lead to fruit waste or fruit shortages respectively, which can
have both financial and environmental repercussions for grow-
ers and the sector. Having a technical solution in place that
allows the creation of federations like that explored in Durrant
et al. (2021) facilitated through our proposed efficient federated
learning methodology can enable multiple growers to share data
in a trustworthy and transparent manner to improve their own
processes and production systems towards achieving financial and
environmental sustainability. A decentralized pruned model can
also be deployed on edge and/or other devices for more efficient
real-time inference.

• Plant diseases and pest detection from crop images
One of the most devastating factors that affect yield and the
quality of plants relates to plant diseases and pests. Recognizing
early signs of such events is paramount towards damage lim-
itation. Object recognition systems and remote monitoring can
be useful tools that can help to identify such adverse events as
early as possible, but they require lots of representative images
to be used for training large-scale models. In practice, it may
be unlikely that a single grower or farmer will have adequate
data that can be used to train a single local model, performing
well enough to be practically useful. Aggregating image datasets
from various sources, including infrared cameras, depth cameras,
and simple color cameras, can be transformational in developing
robust plant disease and pest identification systems. This can aid
in early problem recognition and helps reduce waste, thereby
contributing to the financial viability of growers and farmers in
the agri-food sector. Our proposed methodology can be applied
to such settings and be trained with multimodal data, therefore
enabling decentralized training with efficient pruned neural net-
work models. Such a lightweight model can be deployed on edge
devices for real-time decision support.

. Conclusion

As machine learning models grow rapidly in size, they demand
ore memory and energy footprint, and make it especially challenging

or FL on edge devices in agricultural settings where network and
ardware capacities are even more limited. Moreover, the non-IID data
dversely affects the local accuracy of clients. Our proposed solution,
hich involves local pruning of models followed by global aggregation
ddresses these challenges effectively. The key advantages include the
uperior local inference as a result of the localized models, reduced
odel sizes for more efficient deployment and reduced communication

osts during training.
Our method’s effectiveness was validated using various pruning

olicies on a real-world agri-food dataset, focusing on inference per-
ormance, communication costs, and model sizes. We found that our
pproach consistently outperformed the FedAvg baseline across all
ested settings and years. Notably, it often matched or even marginally
urpassed the centralized baseline in performance. We have repeatedly
een in literature that moderately pruned models (before reaching
xtreme sparsities) tend to perform better than the unpruned counter-
art (Han, Pool et al., 2015; Suzuki et al., 2018), and this coincides
ith our finding even in a distributed setting. However, we acknowl-
dge the need for further empirical studies across diverse datasets and
odels to generalize this finding. Therefore, direct future work aims to

xplore this behavior and the effects of different pruning policies with
ther open-source datasets and problem settings. Furthermore, model
parsification may be used in conjunction with other techniques and
ardware to maximize the compression effects. Moving forward we aim
o develop a more comprehensive pipeline for maximizing efficiency in
10

ederated learning, especially in resource-constrained environments.
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