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Abstract. Browser extensions allow users to customise and improve
their web browsing experience. The Manifest protocol was introduced to
mitigate the risk of accidental vulnerabilities in extensions, introduced
by inexperienced developers. In Manifest V2, the introduction of web-
accessible resources (WARs) limited the exposure of extension files to
web pages, thereby reducing the potential for exploitation by malicious
actors, which was a significant risk in the previous unrestricted access
model. Building on this, Manifest V3 coupled WARs with match pat-
terns, allowing extension developers to precisely define which websites
can interact with their extensions, thereby limiting unintended exposures
and reducing potential privacy risks associated with websites detecting
user-installed extensions. In this paper, we investigate the impact of Man-
ifest V3 on WAR-enabled extension discovery by providing an empirical
study of the Chrome Web Store. We collected and analysed 108,416 ex-
tensions and found that Manifest V3 produces a relative reduction in
WAR detectability ranging between 4% and 10%, with popular exten-
sions exhibiting a higher impact. Additionally, our study revealed that
30.78% of extensions already transitioned to Manifest V3. Finally, we
implemented X-Probe, a live demonstrator showcasing WAR-enabled dis-
covery. Our evaluation shows that our demonstrator can detect 22.74% of
Manifest V2 and 18.3% of Manifest V3 extensions. Moreover, within the
1000 most popular extensions, the detection rates rise to a substantial
58.07% and 47.61%, respectively. In conclusion, our research shows that
developers commonly associate broad match patterns to their WARs ei-
ther because of poor security practices, or due to the inherent functional
requirements of their extensions.

Keywords: Browser extension fingerprinting · Web-accessible resources
· Browser extension detection.

1 Introduction

With the rapid proliferation of internet-based technologies and applications, web
security has become a primary concern in the modern digital era. The emer-
gence of browser extensions has played a significant role in enhancing the user
experience by enabling users to customise and augment their browsing activi-
ties with a vast array of functionalities. However, the development and design
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of browser extensions often present a difficult trade-off between usability and
security, necessitating careful consideration in order to achieve an optimal bal-
ance [2, 3, 6, 29,39].

In particular, as most extensions are developed by non-professional program-
mers, they may exhibit unintentional vulnerabilities, exposing users to network
attackers or malicious websites. To address this issue, Barth et al. [3] introduced
in 2010 a browser architecture which implements the principles of least privilege,
privilege separation, and process isolation. Their solution involves a protocol
called “Manifest”, which requires extension developers to declare in advance a
list of required and optional permissions. In the original Manifest protocol, how-
ever, websites could potentially access all resources within a browser extension.
This posed a significant security risk because malicious websites could exploit
this access to manipulate the extension’s functionality or to exfiltrate sensitive
information. Thus, in 2012, Manifest V2 introduced the concept of web-accessible
resources (WARs), allowing developers to explicitly expose certain files to the
web, thereby providing a more controlled and secure environment from potential
misuse or unintentional vulnerabilities. Furthermore, WARs are accessed from
a URL which embeds the associated extension’s identifier, used by browsers to
validate the integrity of its exposed files.

However, in 2017, Sjösten et al. [42] found that this measure allows the dis-
covery of installed extensions by requesting large quantities of known URLs,
associated to publicly-declared WARs. Consequently, by verifying the existence
of a certain resource, adversarial websites can unequivocally conclude that the
corresponding extension is installed on a visiting browser. Such exposure can lead
to serious privacy infringements. For instance, it can reveal personal informa-
tion about a user, such as the use of specific extensions like password managers,
ad-blockers, or accessibility tools. Moreover, this exposure can enhance finger-
printing, as the combination of detected extensions may significantly boost the
uniqueness of browser fingerprints, favouring stateless identification and cross-
site tracking [12,21,23,32,48]. The uniqueness of these profiles may be further ex-
acerbated when extensions are installed from different, interoperable web stores,
such as those of Opera and Edge, as their WARs are reached via different URLs,
thereby expanding the fingerprint complexity. Furthermore, this form of track-
ing can occur without knowledge or consent by users, further exacerbating the
privacy concerns associated with browser extensions [16,18].

As a mitigation to WAR-enabled extension discovery, in 2020, Manifest V3
introduced the concept of match patterns, allowing developers to further control
the exposure of their WARs through predefined URL restrictions. Nevertheless,
the efficacy of match patterns in thwarting WAR-enabled extension discovery is
contingent upon their adoption by extension developers. Not only is the adoption
rate of Manifest V3 yet to be reported on, but it is also unclear whether match
patterns have produced a significant impact in curtailing extension discovery.
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1.1 Our Contributions

In order to understand how match patterns are affecting WAR-enabled exten-
sion discovery, in this paper, we conduct an empirical study on the Chrome
Web Store. With this focus, we compare the relative difference in discoverability
between Manifest V2 and V3 extensions. Thus, our contributions are as follows:

1. We provide the first research effort of its kind to evaluate the impact of Man-
ifest V3 on WAR-enabled discovery, by conducting an empirical study of the
Chrome Web Store, and observe that 30% of extensions already transitioned
to Manifest V3. However, most implemented match patterns do not preclude
discovery. Overall, we measure discoverable Manifest V2 and V3 extensions
to be 22.74% and 18.3%.

2. We introduce X-Cavate, a framework to construct a database of WARs, al-
lowing to identify discoverable extensions. X-Cavate produces a database
which can be updated regularly and yields a selection of WARs to be sur-
veyed for conducting extension discovery.

3. We implement a live demonstrator, called X-Probe. Based on our evaluation,
X-Probe can identify 21.34%, 38.16%, 54.9%, and 63% of Chrome Web Store
extensions overall, and within the top 10,000, 1,000, and 100 most popular
extensions, respectively. Additionally, we compare the performance of X-
Probe against existing work on extension detection.

4. We propose additional measures for mitigating WAR-enabled discovery.

The remainder of our paper is structured as follows. Section 2 provides an
overview of the Chrome Extension System. Section 3 describes how WARs can
be exploited to detect installed extensions. Section 4 delineates the methodol-
ogy of our study, illustrates the X-Cavate framework, and evaluates the X-Probe
demonstrator. Section 5 showcases the results of our empirical study and pro-
vides a comparison of our results with previous literature. Section 6 discusses the
implications of our results and drafts our conclusions. Section 7 identifies defen-
sive measures to further limit WAR probing. Section 8 identifies the state of the
art relatively to browser fingerprinting and extension detection. Section 9 sum-
marises our contributions, highlights our key takeaways, and identifies potential
avenues for future work.

2 The Chrome Extension System

Extensions are small programs which run in the browser, allowing user to cus-
tomise their browsing experience. By interfacing with browser APIs, extensions
may execute various functions such as manipulating web content, managing ac-
tive tabs, accessing browsing history, and more. However, the use of extensions
can introduce novel security risks, often as a consequence of their development
by inexperienced programmers. This lack of expertise can lead to privilege esca-
lation vulnerabilities, exposing users to exploitation by adversarial websites or
network attackers. In 2009, Liverani and Freeman demonstrated such security
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risk in Firefox extensions [28]. Successively, Barth et al. identified that the Firefox
architecture allowed full access to its powerful API [3], making most extensions
over-privileged. Thus, they proposed a novel browser architecture, implementing
the principles of least-privilege, privilege separation, and process isolation. Their
architecture lays the foundation for the Chrome Extension System, and was also
adopted by other popular browsers, including Firefox and Safari.

2.1 Architecture Overview

BackgroundWebpage

C
hr

om
e 

A
P

Is Background Script

Event ListenersContent Script

DOM

Isolated World

Fig. 1: A simplified representation of the Chrome Extension System.

The Chrome Extension System, illustrated in Figure 1, aims to strike a bal-
ance between flexibility and security, ensuring that developers can create power-
ful extensions while minimizing the risks associated with accidental exposures. It
mainly consists of two interdependent components implementing privilege sep-
aration and process isolation: the content script and the background script1.
Furthermore, the Manifest protocol is aimed at standardising the development
of extensions and enforcing least-privilege by providing developers with granular
access to the Chrome APIs.

Chrome APIs. The Chrome APIs form the backbone of the Chrome Ex-
tension System, providing a set of JavaScript interfaces for accessing browser
functionalities. APIs are grouped by category, each providing access to distinct
capabilities. Namely, the tabs API allows to manipulate browser tabs, while the
storage API provides methods for storing and retrieving data. Furthermore, the
runtime API facilitates communication between extension components, such as

1 For the sake of simplicity, we omitted various secondary components. Further in-
formation can be found on Google’s official documentation at https://developer.
chrome.com/docs/extensions/mv3/architecture-overview/.

https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
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the content script and background script. This granular approach allows exten-
sions to carry out tasks while adhering to the principle of least-privilege, with
developers declaring required permissions via the Manifest protocol.

Manifest. Manifests consist in JSON files, conveying metadata about exten-
sions, including their name, version number, description, and required permis-
sions. At the time of writing, Google is spearheading a shift from Manifest V2 to
V3, with browser extensions gradually transitioning to the latest iteration. Such
transition is equally significant and controversial, as it redefines the permissions
and capabilities of background scripts [11].

Background Script. Background scripts, as the name suggests, run in the
background of extensions. They access the Chrome and JavaScript APIs to per-
form tasks that do not require user interaction, such as listening for events, send-
ing HTTP requests to the Web, running timers, storing data, and broadcasting
messages to other components. In Manifest V2, background scripts could be
either persistent or non-persistent. Persistent background scripts remain active
for the whole duration of a browser session. Non-persistent background scripts,
instead, are automatically unloaded when idle. In Manifest V3, “traditional”
background scripts were deprecated in favour of service workers. In contrast,
service workers are non-persistent, event-driven, and guarantee unique instance
behaviour across all extension pages, windows, or tabs. However, the transition
to fully-asynchronous service workers has sparked controversy due to its limita-
tions on synchronous functionalities, namely, in the webRequest API [4, 11, 13].
Nevertheless, independently of the Manifest version, background scripts detain
most operational capabilities, except for DOM manipulation, which is delegated
to the content script via message passing.

Content Script. Content scripts are closely tied to webpages, with each tab
or window initializing its own content script. While interacting with unsanitised
webpages, content scripts face significant restrictions in accessing Chrome APIs.
To circumvent these limitations, they delegate operations requiring broader ac-
cess to the background script. Additionally, content scripts operate within a
specialized, sandboxed environment known as isolated world. The isolated world
is a distinct JavaScript runtime that provides a unique space for interacting
with the DOM, preventing exposures to the host runtime environment. Con-
sequently, their access to extension files is also limited to the Web-Accessible
Resources (WARs) declared in the Manifest.

Web-Accessible Resources. Before Manifest V2 introduced WARs in 2012,
websites could access all files within extensions installed on browsers. This design
was insecure because it allowed for malicious websites to perform fingerprinting
or detect exploitable vulnerabilities in installed extensions [19,20]. Additionally,
it could lead to unintentional exposures of sensitive data by developers. In Man-
ifest V2, the DOM is restrained from accessing extension filesystems. Instead,
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Listing 1: WARs declaration in Manifest V2 (left) and V3 (right).

{
...
"manifest_version": 2,
...
"web_accessible_resources": [

"images /*. png",
"extension.css"

],
...

}

{
...
"manifest_version": 3,
...
"web_accessible_resources": [{

"resources": ["images /*.png"],
"matches": [

"https://*. google.com/*"
]

}, {
"resources": ["extension.css"],
"matches": ["<all_urls >"]

}],
...

}

developers can optionally specify a list of WARs to be injected into the DOM,
such as scripts, style sheets, or images. Each WAR can be defined as a specific
path or as a wildcard encompassing a group of files. Consequently, WARs will
be exposed to webpages at a specialised URL, embedding the extension identi-
fier and the relative file path: chrome-extension://[EXTENSION ID]/[PATH].
The identifier is unique to each extension, and it allows browsers to validate
the integrity of exposed files. Using Manifest V2, declared WARs are exposed
to any arbitrary website. In contrast, as shown in Listing 1, Manifest V3 allows
developers to implement further accessibility restrictions via match patterns.

Match Patterns. Match patterns specify which websites an extension can
interact with. They are composed by a combination of URLs and wildcards.
For example, a pattern such as https://*.google.com/* would match any
URL within the Google domain. Since the inception of the Manifest protocol,
match patterns have been used, namely, to grant host permissions, determining
which websites an extension can access and modify. Additionally, they are also
employed to dictate where content scripts should be injected, enhancing both
performance and security. With the advent of Manifest V3, the role of match
patterns has been expanded to compound WARs, allowing developers to restrict
the exposure of WARs to specific websites, as shown in Listing 1. This mea-
sure provides developers with a more granular control over the accessibility of
extension resources, mitigating potential misuse and reducing the risk of un-
expected behaviour. However, extensions needing to inject their WARs in all
websites require highly permissive match patterns. For instance, these include
https://*/*, *://*/* and <all urls>. Therefore, the effectiveness of match
patterns is not only contingent on their thoughtful implementation by develop-
ers, but it can also be constrained by the functional necessities of extensions.
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3 Probing WARs To Detect Extensions

As explained in Section 2.1, WARs are defined in the Manifest, and are accessed
within the context of a webpage via extension-specific URLs. Such URLs embed
unique extension identifiers, assigned by the publishing extension store. Conse-
quently, as illustrated in Listing 2, a webpage could fetch a known WAR and
observe whether the request is fulfilled. If so, the webpage can unequivocally
determine that the corresponding extension is installed on the visiting browser.
Furthermore, by collecting manifests from online stores, an adversarial website
could survey a large dataset of known WARs to detect installed extensions. How-
ever, it is important to note that this technique has its limitations, as not all
extensions employ WARs. Moreover, such exposure could be further mitigated
in Manifest V3, provided developers employ stringent match patterns.

Listing 2: Working example to detect a password management extension.

fetch("chrome -extension :// hdokiejnpimakedhajhdlcegeplioahd/overlay.html")
.then(response => {

if (response.ok) {
console.log("LastPass is installed.");

}
}). catch(error => {

console.log("LastPass is not installed.");
});

4 Methodology

This section reports on the methodology employed in our study, conducted in
March 2023, to evaluate the susceptibility of Chrome Web Store extensions to
WAR-enabled discovery. To determine the popularity of each extension, we fo-
cused sequentially on the number of ratings, number of downloads, and star
rating, all in descending order, to sort extensions from the most popular to the
least popular. We prioritised the number of ratings as a metric due to observed
inconsistencies and potential artificial inflation in download numbers, evidenced
by some extensions having substantial downloads yet zero ratings.

In Section 4.1 we delineate the X-Cavate framework, employed to (a) collect
identifiers and popularity metrics; (b) download extensions and extract their
manifests; (c) construct a database of available extensions and associated fea-
tures; and (d) produce a sample of WARs exposed to any arbitrary URL. Suc-
cessively, in Section 4.2 we introduce our online demonstrator X-Probe, which
implements extension discovery through the collected dataset.

4.1 X-Cavate Framework

For the purpose of this study, we developed a data collection utility following
the X-Cavate framework, shown in Figure 2. While in this study we focused
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our efforts on the Chrome Web Store, X-Cavate is aimed at automating the
collection of extensions from any given online store. We present below the main
modules constituting our proposed framework:

X-Cavate

Data Collector

X-Probe

Archive Manager Extensions
Directory

Database
Data Manager

X-Probe
Samples

Chrome Web Store

Fig. 2: Abstract structure of the X-Cavate Framework.

Data Collector. The Data Collector refers to a configuration file containing
a URL to an online store and CSS selectors to the extension identifiers and
associated metrics (e.g. downloads, ratings, and category) to be scraped from the
DOM. After collecting an identifier, it downloads the corresponding extension.
Finally, it provides the downloaded extensions and the scraped details to the
Archive Manager and Data Manager, respectively.

Archive Manager. The Archive Manager handles downloaded extensions,
which consist of crx files – i.e. zip archives with additional headers. After an ex-
tension is downloaded, the Archive Manager stores it into a structured directory
tree, strips the crx headers, and extracts the manifest.json file. Successively,
it redacts a list of exposed files, by matching the declared WARs (if any) with
the files located in the archive. Therefore, if a WAR is not located in its spec-
ified path, it is not inserted in the list. Finally, the Archive Manager provides
the extrapolated subset of WARs to the Data Manager.

Data Manager. The Data Manager processes online details scraped by the
Data Collector and downloaded extensions’ metadata, extrapolated by the Archive
Manager. It maintains a normalised database by validating inserted records and
ensuring relational consistency and integrity. The database architecture connects
online information with data extrapolated from downloaded archives. Thus, it
supports repeated insertions of various extension releases overtime, enabling re-
searchers to perform long-term studies. Finally, based on popularity metrics, it
compiles a series of datasets to be employed by the X-Probe demonstrator.
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4.2 X-Probe Demonstrator

We introduce X-Probe, a practical implementation of WAR-enabled discovery,
targeted at Chrome extensions2. X-Probe was evaluated against the four ex-
tensions shown in Table 1, each exposing their WARs with exclusively one vul-
nerable match pattern. We repeated our evaluation on various Chromium-based
browsers (i.e. Chrome, Brave, Opera, and Edge) and observed consistent results.

Table 1: Extensions used to validate discoverable patterns.
Extension Release Manifest Pattern Detected?

Speed Dial 81.3.1 V3 <all urls> yes
Custom Cursor 3.3.0 V3 *://*/* yes

Talend API Tester 25.11.2 V3 https://*/* yes
ShopQuangChauVN 5.1 V3 http://*/* yes

Hola VPN 1.208.689 V2 N/A yes

X-Probe relies on four JSON-formatted datasets produced with the X-Cavate
framework, containing extension identifiers, each paired with one exposed WAR.
Each dataset represents either the top 100, 1000, and 10,000 most popular ex-
tensions on the Chrome Web Store. Additionally, a dataset containing all discov-
erable extensions was included in the demonstration. While the comprehensive
dataset provides a thorough but resource-intensive scan, smaller datasets offer a
quicker analysis, albeit limited. Based on our evaluation, X-Probe can identify
in the varying datasets 21.34%, 38.16%, 54.9%, and 63% of extensions, overall
and within the 10,000, 1,000, and 100 most popular extensions, respectively.

5 Results

In March 2023 we scraped details for 111,467 extensions, of which 108,416 were
successfully downloaded and analysed. Of the 3051 failures, 105 were due to
corrupted archives, while 2946 were visible on the Chrome Web Store, but no
longer available for downloading. We ranked extensions by their rating count,
download count, and average rating. We prioritised the rating count as it is a
continuous metric, and because reviews can only be provided by authenticated
Google users. Finally, we grouped extensions in the Top 100, Top 1000, and Top
10,000 popularity groups, shown in Figure 3.

5.1 Susceptibility to WAR-Enabled Discovery

In total, 23,132 extensions are detectable via WAR-enabled discovery, account-
ing for 21.35% of the analysed set. Figure 4 shows a positive correlation between

2 X-Probe can be tested on all Chromium-based browsers at: https://xprobe.dev

https://xprobe.dev
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Fig. 3: Categories overview split across popularity groups.

popularity and discoverable proportions, with a detection rate of 64%, 59.4%,
and 38.14% in Top 100, Top 1000, and Top 10,000 groups, respectively. Addi-
tionally, we observe that some categories are more susceptible to WAR-enabled
discovery. Namely, “Shopping” extensions consistently exhibit higher detection
rates than other categories. We performed a one-sided Mann-Whitney U test
to determine if there was a significant difference in the distribution of rating
counts between discoverable and hidden extensions. A statistic of approximately
1.33× 1012 and p-value < 0.05, rejected the null-hypothesis. Therefore, we con-
clude that discoverable extensions have a higher rating count than hidden ones.

5.2 Manifest V3 Adoption Rate

In total, 75,048 extensions use Manifest V2, while 33,368 transitioned to V3,
corresponding to 30.78%. As shown in Figure 5, Manifest V3 extensions account
for 33%, 29.4%, and 28.89% of the Top 100, Top 1000, and Top 10,000 groups,
respectively. Notably, none of the “Developer Tools” and “News & Weather”
extensions in the Top 100 group transitioned to V3. Furthermore, “Blogging”
extensions consistently exhibit lower adoption rates than other categories. This
might be due to the requirements of extensions which extensively use background
scripts and broad permissions to capture, modify, and deliver information: tasks
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Fig. 4: WAR-enabled discovery rates.

Fig. 5: Manifest V3 rate of adoption.

that could become increasingly challenging to perform under the more restrictive
and event-driven environment of Manifest V3.

5.3 Manifest V3 Impact on WAR-Enabled Discovery

We employed Manifest V2 extensions to establish a baseline for evaluating the
impact of Manifest V3 in mitigating WAR-enabled discovery. Successively, we
compared the relative proportions of discoverable extensions to assess whether
there was a difference between each Manifest iteration across popularity groups.
Table 2 shows a consistent positive correlation between popularity and detectable
rates in both Manifest iterations. However, we also observe an increasing miti-
gatory effect of Manifest V3, with a relative reduction ranging between 4% and
10%. In contrast, Manifest V2 extensions in the Top 100 group are less likely to
be detectable than V3 extensions.
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Table 2: Discoverable rates across popularity groups, measured between
Manifest iterations (∆ = V 2− V 3).
Group Overall V2 V3 ∆

All 21.35% 22.74% 18.3% 4.44%
Top 10,000 38.14% 40.47% 32.39% 8.08%
Top 1000 55% 58.07% 47.61% 10.46%
Top 100 65% 62.68% 66.67% -3.99%

Table 3: Comparison with previous work.
Paper Attack Class # Extensions % Detectable

[48] DOM analysis 10,000 9.2%
[24] DOM analysis (CSS rules) 116,485 3.8%
[44] DOM analysis (user actions) 102,482 2.87%
[16] Multi-class 102,482 28.72%*
[30] Multi-class 91,147 17.68%*
[42] WAR probing 43,429 28%*

Ours WAR probing 108,416 21.34%

Note: We report percentages over the complete set of analysed extensions when the
original work reports absolute numbers. *Evaluated on WARs prior to Manifest V3.

5.4 Comparative Evaluation

Table 3 provides a comparison between our work and the existing literature in
the field of extension discovery. Despite DOM analysis being a popular method,
its effectiveness is limited, with detection percentages below 10%. A substan-
tial leap in detectability was observed with the advent of WAR probing, as
demonstrated by [42]. In the work of [16], a multi-class strategy was employed,
merging WAR probing with DOM analysis and interception broadcast communi-
cation by extension components, achieving even higher detection rates. Notably,
within their approach, WAR probing alone was able to detect 25.24% of ex-
tensions, underscoring its superior efficacy in extension discovery. Similarly, [30]
implemented a strategy combining WAR probing with DOM analysis, although,
their results were significantly lower than [16], with 11.37% of extensions being
detected through WAR probing alone. However, these studies were conducted
with WARs under the Manifest V2 framework. With the transition to the more
restrictive Manifest V3, a new set of challenges emerges, leaving the effectiveness
of these previous methods in the updated constraints uncertain. Our research
addresses this challenge by adapting WAR probing to the Manifest V3 environ-
ment, providing an up-to-date study on the effectiveness of this strategy.
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6 Discussion

6.1 Popular Extensions Are More Discoverable

The results from our analysis highlight a paradoxical correlation: as an exten-
sion’s popularity increases, so too does their susceptibility to WAR-enabled dis-
covery. In all analysed groups, there is a consistent trend of increased discov-
erability with increased popularity – as determined by rating count, download
count, and average rating. However, this pattern has significant implications for
user security and privacy. A particular concern lies in browser fingerprinting, as
the set of detected extensions on a browser can greatly enhance the complexity
of fingerprints, especially when coupled with other identifiable attributes. Thus,
detectable extensions provide adversarial entities with an expanded toolset to
uniquely identify and track users across the web in a stateless manner. This
raises several questions regarding the security implications for the most used ex-
tensions, as they appear to be more visible and hence potentially more exposed
to attacks. Extensions’ popularity, in this context, might inadvertently serve as
a double-edged sword. On the one hand, it makes these extensions more acces-
sible to users, thereby contributing to their popularity. On the other hand, it
simultaneously exposes them to potential malicious entities, aiming to carry out
targeted attacks and cross-site tracking.

6.2 Developers Employ Broad Match Patterns

Manifest V3 allows developers to enforce least-privilege in their WARs through
match patterns. Although Manifest V3 produces a quantifiable impact, its limi-
tations lay in the assumption that developers will enact appropriate restrictions.
Furthermore, many extensions provide functionalities which require exposing
WARs to all websites. For example, extensions that modify the appearance of
webpages, such as themes or custom cursors, need to inject their resources across
all domains. Similarly, extensions that provide web development tools, like colour
pickers or CSS inspectors, also require broad access to function effectively. In
these cases, the use of highly permissive match patterns becomes a necessity
rather than a choice. This implies that even with the best intentions, developers
may be forced to compromise on least-privilege due to the inherent requirements
of their extensions. Consequently, while Manifest V3’s approach to WARs is a
step in the right direction, it may not fully eliminate the risk of WAR-enabled
discovery, especially for extensions that inherently require broad access.

7 Recommended Mitigation Measures

Based on our findings and expertise acquired while developing this project, we
propose the following countermeasures for mitigating WAR-enabled discovery.
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Limiting failed requests. WAR-enabled discovery involves probing a large
sample of WARs. For instance, our demonstrator X-Probe employs a sample
of 23,132 discoverable extensions. Consequently, the vast majority of surveyed
WARs is expected to return an error from the browser API. Therefore, since
this unreasonable amount of requests is unlikely to be performed for legitimate
purposes, we propose the introduction of a failed-request cap in the browser
API. Such cap could be enforced on the offending webpage by preventing its
JavaScript environment from requesting further resources.

Limiting accessibility. Content scripts use the Chrome API method getUrl

to obtain a resource’s URL given its relative path in the extension repository.
The process-isolation pattern allows browsers to determine whether getUrl was
called from a content script or a webpage. Therefore, we propose a “gate” system,
which only exposes WARs to a webpage after they are requested by the content
script. While this measure would not prevent access to WARs of highly-active ex-
tensions (e.g. password managers), it may severely limit extension fingerprinting
capabilities. Furthermore, as Manifest V3 introduces background service work-
ers, webpages could be blocked from accessing the WARs of idle extensions.

User-enforced least-privilege. Manifest V3 empowered extension distribu-
tors to arbitrarily restrict WAR exposure. However, users intending to replicate
such restriction have to disable extensions from their browser settings, or open
an “incognito” session. Realistically, the average user is unlikely to perform this
procedure each time they visit a new website. Therefore, we recommend that
browsers introduce functionalities allowing users to enact such restrictions on
demand. This would involve blocking all WAR requests originating from un-
trusted websites, and informing the user about request attempts. Finally, the
user could either deny or authorise all requests. Alternatively, they could decide
to expose specific extensions. Naturally, users should be also allowed to tailor
default settings based on their privacy needs to avoid hindering usability.

8 Related Work

8.1 Extension Detection

Over the past decade, extensions have begun to emerge as a new area of study,
with researchers exploring its potential uses and challenges in the context of
online privacy and security [4–6, 8, 10, 16, 18, 33–36, 39–41, 46]. In this emerging
field, different strategies have been developed for detecting extensions, mostly
focused on analysing changes to the DOM and probing WARs.

DOM analysis. Starov and Nikiforakis [48] examined the top 10,000 Chrome
Web Store extensions, and showed that at least 9.2% introduced detectable DOM
changes on any arbitrary URL. Additionally, they developed a proof-of-concept
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script, able to identify 90% of the analysed 1,656 identifiable extensions. Ex-
tending this research, Starov et al. [47] revealed that 5.7% of the 58,034 anal-
ysed extensions were detectable due to unnecessary DOM changes. Consequently,
Laperdix et al. [24] investigated how CSS rules injected by content scripts can
be used to detect installed extensions, revealing that 3.8% of the 116,485 anal-
ysed extensions could be uniquely identified with this method. Building on this
existing body of knowledge, Solomos et al. [44] highlighted that user-triggered
DOM changes had been overlooked by previous research. Thus, they identified
4,971 extensions, including over a thousand that were undetectable by previous
methods. Additionally, they revealed that about 67% of extensions triggered by
mouse or keyboard events could be detected through artificial user actions. Ad-
ditionally, Solomos et al. [45] proposed continuous fingerprinting, a technique
capable of capturing transient modifications made by extensions, previously un-
detectable due to their ephemeral nature. This technique substantially increases
the coverage of extensions detectable through their DOM modifications.

WAR probing. Before the introduction of Manifest V3, Sjösten et al. [42]
conducted the first comprehensive study of non-behavioral extension discovery,
focusing on the detection of WARs in both Chrome and Firefox. Their empiri-
cal study, found that over 28% of the 43,429 analysed Chrome extensions could
be detected. Building on their work, Gulyas et al. [12] conducted a study on
16,393 participants for evaluating how browser extensions detected with WARs
contributed to the uniqueness of users. They found that 54.86% of users which
installed at least one extension were uniquely identifiable. Additionally, they
found that testing 485 carefully selected extensions produced the same level of
uniqueness. Subsequently, Sjösten et al. [43] further examined the issue of de-
tecting browser extensions by web pages, particularly focusing on the recent
introduction of randomised WAR URLs by Mozilla Firefox, which they found
could potentially compromise user privacy rather than protect it. They intro-
duced “revelation attacks”, to detect these randomised URLs in the code injected
by content scripts, thereby enabling enhanced user tracking.

Combined techniques. Karami et al. [16] implemented a multi-class ap-
proach which involves DOM analysis, WAR probing, and interception of broad-
cast messages by extension components. Their technique detected 29,428 out of
102,482 extensions, demonstrating resilience against countermeasures to DOM
analysis proposed by [50]. Although their results are best-performing among
present literature, their evaluation dates before the diffusion of Manifest V3
on the Chrome Web Store. On the other hand, Lyu et al. [30] presented their
approach comprising of DOM analysis and WAR probing, detecting 16,166 ex-
tensions out of 91,947, with 11,856 being detectable by their WAR probing ap-
proach. However, there is no mention of WAR match patterns or Manifest V3
throughout their paper. Furthermore, it is unclear why their WAR discovery rate
(i.e. 13.01%) is comparatively lower than in previous literature and our results.
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8.2 Browser Fingerprinting

There is a growing body of work exploring browser fingerprinting [51] and the
ways it can be augmented by the virtually-unlimited combinations of potentially
installed extensions [12,17,50]. Additionally, much work has been conducted on
devising defensive and mitigatory measures [7, 9, 14, 15, 22, 25, 31, 49]. Finally,
literature has focused on the utilisation of fingerprinting as a tool for streamlin-
ing user authentication [1, 37, 38], although, some have highlighted the security
limitations of such methods [26,27].

9 Conclusion

Manifest V3 coupled WARs with match patterns to further mitigate the expo-
sure of extensions to webpages. We presented an empirical study on 108,416
Chrome Web Store extensions, with focus on WAR-enabled discovery. To the
best of our knowledge, we are the first to evaluate the impact of Manifest V3
match patterns applied to WARs. Our results show that Manifest V3 produces
a relative reduction in detectability, growing from 4% to 10% as extensions be-
come more popular. In contrast, Manifest V3 extensions among the 100 most
popular, exhibit a relative increase of 4% in detectability, when compared to V2.
Furthermore, independently of the adopted Manifest iteration, popular exten-
sions are more likely to be discoverable. We argue that match patterns do not
fully eliminate the risk of WAR-enabled discovery, both because some develop-
ers neglect least-privilege practices, and due to inherent extension functionalities
which require universal exposure of resources. Therefore, we proposed a range
of defensive measures to be implemented on the browser side. Through a combi-
nation of these measures, we anticipate a significant improvement in preventing
unwarranted probing of WARs.

In addition, we devise the X-Cavate framework to repetitively collect ex-
tensions from online stores and extract their Manifests to maintain a structured
database overtime. Alongside X-Cavate, we developed a live demonstrator called
X-Probe to emphasize the efficacy of WAR-enabled discovery. Based on our eval-
uation, X-Probe has proven its capability in detecting 22.74% of Manifest V2
and 18.3% of Manifest V3 extensions, overall. Moreover, relatively to the 1000
most popular extensions, the detection rates rise to a substantial 58.07% and
47.61%, respectively, further highlighting the severity of this exposure.

Future work could involve the integration of a diverse array of extension
discovery techniques, alongside the development of a demonstrator that can
function across various browser architectures. In addition, once the transition
to Manifest V3 is fully completed, it could be especially insightful to conduct an
updated user study. This would allow for an examination of the uniqueness of
extension fingerprints, presenting a valuable opportunity to better understand
and further contribute to this evolving field.
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46. Somé, D.F.: EmPoWeb: Empowering Web Applications with Browser Extensions.
In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 227–245 (May 2019).
https://doi.org/10.1109/SP.2019.00058

47. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnecessarily
Identifiable: Quantifying the fingerprintability of browser extensions due to
bloat. In: The World Wide Web Conference. pp. 3244–3250. WWW ’19,
Association for Computing Machinery, New York, NY, USA (May 2019).
https://doi.org/10.1145/3308558.3313458

48. Starov, O., Nikiforakis, N.: XHOUND: Quantifying the Fingerprintability of
Browser Extensions. In: 2017 IEEE Symposium on Security and Privacy (SP).
pp. 941–956 (May 2017). https://doi.org/10.1109/SP.2017.18

49. Torres, C.F., Jonker, H., Mauw, S.: FP-Block: Usable Web Privacy by Controlling
Browser Fingerprinting. In: Pernul, G., Y A Ryan, P., Weippl, E. (eds.) Computer
Security – ESORICS 2015. pp. 3–19. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24177-
7 1

50. Trickel, E., Starov, O., Kapravelos, A., Nikiforakis, N., Doupé, A.: Everyone is
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