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Review 
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A B S T R A C T   

Skeletal remains of two Neanderthal individuals, a 25-35 year-old woman and a 3-4 year-old child, were 
discovered in a Subalyuk Cave in North-Eastern Hungary. Radiocarbon dating of the female and child remains 
revealed an age of 39,732–39,076 and 36,117–35,387 cal BP, respectively. Paleopathological studies of these 
Neanderthal remains revealed probable evidence of skeletal mycobacterial infection, including in the sacrum of 
the adult specimen and the endocranial surface of the child’s skull. Application of PCR amplification to the 
juvenile cranium and a vertebra gave a positive result (IS6110) for tuberculosis, backed up by spoligotyping. 
Lipid biomarker analyses of the same two specimens revealed definitive signals for C32 mycoserosates, a very 
characteristic component of the Mycobacterium tuberculosis complex (MTBC). A vertebra from the adult provided 
weak evidence for mycocerosate biomarkers. The correlation of probable skeletal lesions with characteristic 
amplified DNA fragments and a proven lipid biomarker points to the presence of tuberculosis in these Nean
derthals. In particular, the closely similar biomarker profiles, for two distinct juvenile cranial and vertebral 
bones, strengthen this diagnosis.   

1. Introduction 

Skeletal remains of two Neanderthal individuals, a 25-35 year-old 
woman and a 3-4 year-old child, were discovered in a Subalyuk Cave 
in North-Eastern Hungary [1,2]. They are kept in the Department of 
Anthropology, Hungarian Natural History Museum, Budapest. Paleo
pathological studies of two late Neanderthal skeletons showed the 
presence of bone lesions that could be associated with tuberculosis (TB). 
While the endocranial lesions of the subadult skull are pathognomonic 
for tuberculous meningitis, the infectious lesions of the adult skeletal 
remains are not pathognomonic. However, they are all compatible with 
a tuberculous infection [3]. The young female adult had a calendar age 
of 39,732–39,076 cal BP and the 3-year-old child was more recent, 
estimated at 36,117–35,387 cal BP [4]. 

Morphological changes in the skeletal material can be strongly sug
gestive of the presence of ancient TB, but biomarker evidence is 

desirable for conclusive diagnosis [5,6]. Amplification of the TB-specific 
DNA fragments was introduced by Spigelman and Lemma [7] followed 
by mycolic acid lipid biomarker profiling [8,9]. Lipid specificity was 
expanded to the inclusion of mycocerosic and mycolipenic acids [10, 
11]. A full TB genome has also been derived from skeletal material [12], 
with a more direct metagenomic strategy being established by Chan 
et al. [13]. 

2. Materials and methods 

2.1. Osteological samples for paleomicrobiological analysis 

Samples were taken from one of the Subalyuk late Neanderthal child 
vertebrae (Inv. No: 68.146.3., Fig. 1a, #1232, 65 mg) and the cranium 
(Inv. No: 68.146.2., Fig. 1b, #1234, 27 mg). Two separated bone powder 
samples were removed from the sacrum (Inv. No: 68.140.1., Fig. 1c, 
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#1239, 60 mg and #1240, 55 mg) and the third sample from a vertebra 
fragment (Inv. No: 68.140.6., Fig. 1d, #1353, 16 mg) in case of the adult 
specimen. A sample blank was used as an internal control. 

2.2. Ancient DNA analysis 

Initially all molecular analyses of the ancient skeletal specimen were 
performed at the ancient DNA laboratory of the EURAC Institute for 
Mummy Studies in Bolzano, Italy. Sample preparation and DNA 
extraction was conducted in a dedicated pre-PCR area following the 
strict procedures required for studies of ancient DNA: use of protective 
clothing, UV-light exposure of the equipment and bleach sterilization of 
surfaces, use of PCR workstations and filtered pipette tips. DNA 
extraction was performed with approximately 100 mg of bone tissue 
powder using a silica-based DNA extraction described by Rohland and 
colleagues [14]. Thereby, retained unlysed bone residues were used for 
further lipid-based analyses. First, the DNA extract of all samples was 
tested for the presence of Neanderthal mitochondrial DNA using a PCR 
assay developed by Gigli and colleagues [15] that increases the effi
ciency of retrieving endogenous Neanderthal DNA by blocking human 
background DNA. In this PCR assay, a short 100 bp fragment was tar
geted in the hypervariable region 1 (16,244–16,301) of the mitochon
drial genome with primers containing 2 and 3 mismatches relative to the 
human reference sequence. For details on the primers, blocking primers 
and PCR conditions used in this assay please refer to the study of Gigli 
and colleagues [15]. Next, the presence of TB DNA by applying a 
PCR-based assay targeting the MTBC multicopy IS6110 region was 
performed [16]. To increase the sensitivity of the assay, a nested PCR 
approach targeting an internal fragment of the first 123 bp IS6110 
amplicon was used [17]. For both the external and internal PCR negative 
controls (DNA extraction blanks and PCR blanks) have been included. 
The nucleotide sequences of all obtained PCR products were determined 
by direct Sanger sequencing and were subjected to sequence analysis via 
NCBI blastN [18]. For details on the nested IS6110 PCR approach 
(primers, PCR conditions) and the Sanger sequencing, please refer to the 
methods part in the study of Cooper and colleagues [19]. Two IS6110 
PCR-positive samples (#1232 and #1239) have been further subjected 
to a spoligotyping assay [20] a method used to further diagnose and 
possibly subtype MTBC bacteria. 

Fig. 1a. Well-preserved and fragmentary vertebral bodies of the Subalyuk 
Neanderthal child (Inv. No: 68.146.3.). The smallest fragment on the left was 
used for the analyses. Photo: G. Pálfi. 

Fig. 1b. Isolated skull fragments of the Subalyuk Neanderthal child (Inv. No: 
68.146.2.). The smaller fragment on the right was used for the biomolecular 
analyses. Photo: G. Pálfi. 

Fig. 1c. Bone powder sampling from the Subalyuk adult Neanderthal sacrum 
(Inv. No: 68.140.1.). The cavity from a previous sampling was used. Photo: 
I. Pap. 

Fig. 1d. Isolated vertebral fragment of the Subalyuk adult Neanderthal skel
eton used for sampling (Inv. No: 68.140.6). Photo: F. Maixner. 
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2.3. Lipid biomarker analysis 

Samples were hydrolysed by heating with 30 % potassium hydroxide 
in methanol (2 ml) and toluene (1 ml) at 100 ◦C overnight [11]. In 
parallel, standard biomass from M. tuberculosis and a solvent-only sam
ple blank control were processed. Long-chain compounds were extrac
ted, as described previously, and the extract was treated with 
pentafluorobenzyl bromide, under phase-transfer conditions, to convert 
acidic components into pentafluorobenzyl (PFB) esters [11]. Separation 
on an Alltech 209250 (500 mg) normal phase silica gel cartridge gave 
fractions containing non-hydroxylated fatty acid PFB esters and mycolic 
acid (MA) PFB esters [11]. The MA PFB esters were reacted with pyr
enebutyric acid (PBA) to produce PBA-PFB MA derivatives, which were 
purified on Alltech 205250 (500 mg) C18 reverse phase cartridges [11]. 
The PBA-PFB mycolates were analysed by reverse phase HPLC, as 
described previously [11]. The non-hydroxylated PFB ester fractions 
were refined on an Alltech 205,250 (500 mg) reverse phase silica gel 
cartridge, using a water-methanol/methanol/methanol-toluene elution 
sequence [11,21]. A fraction enriched in mycocerosic acid and other 
longer chain (>C20) PFB esters was eluted by 100 % methanol with the 
more usual C12 to C20 esters eluting in the earlier water/methanol 
fractions. The fractions containing possible mycolipenate and myco
cerosates, were analysed by negative ion chemical ionisation gas chro
matography mass spectrometry (NICI-GCMS), essentially as previously 
described [21]. 

2.4. Mycocerosic and mycolipenic acid analysis by GC-MS 

A Thermo Scientific DSQII Mass Spectrometer coupled to a Thermo 
Scientific TRACE GC Ultra gas chromatograph was used at Swansea 
University. The column was a Phenomenex Zebron ZB-5 (5 % phenyl, 95 
% dimethylpolysiloxane; 30 m × 0.25 mm i.d. × 0.25 μm film thickness), 
using He as carrier gas (constant flow mode 1.2 ml min− 1) and ammonia 
as the CI reagent gas. A GC oven temperature gradient from 200 to 300 
◦C at 17.5 ◦C min− 1 was used, the final temperature being held for 17.5 
min. The ion source temperature was 170 ◦C, the injector used was a 
programmable temperature vapourising injector, which started at 50 ◦C 
for 0.2 min and increased to 300 ◦C at a rate of 10 ◦C s− 1 where it stayed 
for 0.5 min. PFB esters, on NICI-GCMS, fragment to produce negative 
carboxylate [M − H]- ions, which can be detected at high sensitivity. 
Selected ion monitoring (SIM) was used to search for mycocerosate 
carboxylate ions at m/z 367.6311 (C24), 395.6844 (C26), 409.7111 (C27), 
437.7645 (C29), 451.7911 (C30), 479.8445 (C32), 493.8712 (C33) and 
507.8978 (C34). Additionally, m/z 407.6952 was monitored for the 
presence of the C27 mycolipenate carboxylate ion. Partial racemisation 
of mycocerosates during the alkaline hydrolysis leads to the formation of 
diasteroisomers, which resolve on gas chromatography to give charac
teristic doublets. 

3. Results and discussion 

3.1. Ancient DNA 

First, we screened the DNA extracts of the Subalyuk individuals for 
the presence of Neanderthal mitochondrial DNA using a specific PCR 
assay that preferentially amplifies Neanderthal DNA by blocking human 
background DNA. The analysis resulted in all tested samples in a positive 
amplification product (Table 1). Further comparative analysis revealed 
that only the sequence obtained from the vertebra sample of the adult 
individual (#1353) carried the Neanderthal characteristic transversion 
(16,256A) and insertion (16263.1A) in the analysed short stretch of the 
mitochondrial hypervariable region [22]. Sequences from all other 
samples missed these diagnostic differences and most likely stem from a 
contamination with extant human DNA that can often outnumber the 
endogenous Neanderthal DNA [15]. Next, we analysed all samples for 
the presence of M. tuberculosis DNA (Table 1). Both a vertebra fragment 
(#1232) from the Subalyuk child and a sacrum fragment (#1239) of the 
adult individual were tested positive for the repetitive element IS6110. 
Further spoligotyping analysis revealed in the same sacrum fragment 
(#1239) of the adult and in a cranium fragment (#1234) of the child few 
positive spots only (one to four out of 43 possible spoligotyping spots) 
which is most likely due to the highly fragmented state of the ancient 
DNA (Supporting Information Fig. S1). The patchy spoligotyping pat
terns could not be used for further strain typing and were solely 
considered as additional indications for the presence of MTBC DNA. In 
summary, our PCR-based assays indicate the presence of Neanderthal 
DNA (adult) and MTB DNA (child, adult) in the Subalyuk individuals. 
These first indications however require in the future further support 
using next generation sequencing methods and current ancient DNA 
authentication criteria such as the presence of DNA damage patterns 
[23]. 

3.2. Lipid biomarkers 

Strong mycolic acid reverse phase HPLC profiles were not encoun
tered, but in the two juvenile late Neanderthal vertebra and cranium 
cases (#1232 and #1234) and the adult Neanderthaal vertebra sample 
(#1353), very weak peaks were found in the same region as those from 
the M. tuberculosis standard (Fig. 2). These mycolic profiles were so weak 
that it was not possible to collect the total mycolate fractions and 
scrutinise them by normal phase HPLC to explore different types of 
mycolic acids [5,11,24]. In the other two adult Neanderthal sacrum 
cases (#1239 and #1240), there was no evidence for the presence of 
mycolic acids (Fig. 2). 

In contrast, distinct mycocerosic acid profiles were seen for the 
vertebra (#1232) and cranium (#1234) from late Neanderthal child 
(Fig. 3A and B). In both these positive cases, the main C32 and C30 
mycocerosates corresponded with those of the M. tuberculosis standard 
(Fig. 3F). In the case of the C32 signals, peak expansion clearly reveals 

Table 1 
Overview on the samples used in this study and the obtained molecular results.  

Eurac 
ID 

Individual Sample C14 Dating mtDNA 
analysis 

IS6110 internal 
fragment 

Spoligotyping Mycolic 
acids 

Mycocerosates 

1232 Subalyuk, 
child 

Vertebra, fragment (Inv. No: 
68.146.3.) 

36,117-35387 cal BP 
(Mester et al., 2023) 

+ + – + +

1234 Cranium, fragment (Inv. No: 
68.146.2.) 

+ – + + +

1239 Subalyuk, 
adult 

Sacrum, bone powder (Inv. 
No: 68.140.1.) 

39,732-39076 cal BP 
(Mester et al., 2023) 

+ + + – – 

1240 Sacrum, bone powder Inv. 
No: 68.140.1.) 

+ – – – – 

1353 Vertebra, fragment (Inv. No: 
68.146.6.) 

+ – – + –  
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the presence of double peaks that are positively diagnostic for the di
astereoisomers characteristically formed by multimethyl-branched 
mycocerosates (Fig. 2) [5,11,24]; C27 mycolipenate (m/z 407) was not 
recorded. The samples taken from the adult Neanderthal sacrum (#1239 
and #1240) and vertebra (#1353) (Fig. 3C, D, E) specimens lacked 
mycocerosates and mycolipenates [5,25]. 

In summary, the presence of C32 mycocerosate in vertebra and cra
nium samples from the late Neanderthal child (Fig. 3A and B) is clear 
evidence for tuberculosis infection, correlating well with IS6110 and 
spoligotyping positivity (Fig. S1, Supporting Information). 

3.3. Tuberculosis susceptibility of Neanderthals 

The possibility of infectious disease playing a significant role in the 
life of Neanderthals has been very underplayed, presumably due to the 
lack of hard evidence. In an open-minded review, Sørensen [26] raised 
the possibility of defenceless Neanderthals being exposed to new dis
eases, including tuberculosis and anatomically modern humans were 
suggested as the source. An innovative approach highlighted the fact 
that Neanderthal genomes were already expressing regions of DNA 
associated with responses to infection, including tuberculosis [27]. 
Lower genetic diversity, linked to inbreeding, has been postulated to 
result in higher susceptibility of Neanderthals to newly virulent infec
tious diseases [28,29]. Sophisticated modelling of population dynamics 
concluded that, on exposure to novel disease, the very rapid demise of 
Neanderthals was highly predictable [30]. 

3.4. Tuberculosis in the Pleistocene 

A fundamental question is: “Where was tuberculosis in the Pleisto
cene?” A much-quoted hypothesis is that TB and humans co-evolved 
from 70 ka onwards and emerged “Out of Africa”, as representatives 
of all modern TB clades are found therein [31,32]. However, this is only 
unlinked parallel genomic development and there is no Pleistocene ev
idence for any TB in Africa [5]. Verification of such concepts is difficult, 
due to the lack of any African human or animal TB cases in the Pleis
tocene. However, there is no direct evidence that modern TB’s supposed 
ancestor evolved outside of Africa either. There is mounting evidence 
that TB was present in a range of megafauna across the whole Northern 
Hemisphere before the Holocene, with clear cases being observed in 
ancient bison metacarpals [5,11,33,34]. In the same general epoch, 
there is evidence that a significant increase in the transmissibility and 
virulence of tubercle bacilli took place. This change was attributed to 
increased proportions of mycobacterial outer membrane apolar lipids, 

providing enhanced whole-cell hydrophobicity that correlates with 
facile aerosol transmission [35,36]. A plausible hypothesis is that TB 
evolved from environmental mycobacteria in hordes of Pleistocene 
megafauna, initially as a relatively avirulent taxon similar to modern 
smooth morphology “Mycobacterium canettii” [5,35–37]. The emergence 
of clades of “rough” morphology virulent TB bacilli, between ~50 and 
~20 thousand years ago, may have contributed to the extinction of 
many classes of megafauna in that period [5,36]. 

The oldest certified cases of modern TB have been confirmed in early 
Holocene skeletons in settlements in the so-called “Fertile Crescent”, 
possibly involving naïve hominins emerging “Out of Africa”. The locations 
of these TB infections were at Atlit Yam, Israel (~9 ka) [24,38] and Dja’de 
el Mughara, Syria (~10.5 ka) [21]. In the present context, TB in ~7 ka 
skeletons from Alsónyék-Bátaszék [39–41] and Hódmezővásárhel 
y-Gorzsa [42,43], Hungary is worthy of note along with other German and 
Polish sites from Neolithic Central Europe [44,45]. 

3.5. Neanderthal and Palaeolithic humans – megafauna interactions 

Isotopic evidence indicates that Neanderthals relied on a high- 
protein meat diet, from 120ka onwards [46], including consumption 
of Bison priscus [47]. It has been suggested that animal foods apparently 
have more importance in the higher latitudes occupied by Neanderthals 
[48]. Hunting, rather than scavenging, was evident, involving bone cut 
marks for bovids, equids and cervids, most commonly [49]. In a very 
instructive ~160 ka case from Coudoulous, France, it was found that 
butchering was confined to possibly 232 examples of only one species, 
Bison priscus [49,50]. Similarly, a ~50 ka site at Mauron, France, yielded 
137 B. priscus individuals, some with clear cut marks [49,51]. At the Late 
Pleistocene Pech-de-Azé site in France, hunting was dominated by bison 
and red deer [52]. The long-term practice of Homo species hunting is 
illustrated at the Middle Pleistocene site of Isernia La Pineta, Italy; cut 
marks were found on seven identified megafaunal bones, including at 
least three specimens of Bison schoetensacki, dated at ~583–561 ka [53, 
54]. Interestingly, it was demonstrated that only adult and sub-adult 
bison were hunted at this site and butchering cutmarks were concen
trated on the best muscle-bearing bones to obtain the best cuts of meat 
[55]. Middle Pleistocene butchered bison bones were also encountered 
at Boxgrove, UK [56]. The extensive Lower Paleolithic site at Schönin
gen, Germany, has butchering evidence for B. priscus, but a diet of horse 
meat appeared preferable [57]. Pawlowska [58] has given an extensive 
account of early butchering across Europe, including the earliest 
~1.8–1.7 Ma detection at Dmanisi, Georgia [59]. There is an informa
tive survey of bovids on Neanderthal menus in North-eastern Italy [60]. 
A recent study at Abri du Maras, France (end of MIS 5, ~80–70ka BP), 
showed cut marks for bison and other fauna and an excellent summary 
of previous research was provided [61]. 

3.6. Implications for Neanderthal extinction 

The rationalisation for the extinction of Neanderthals has been 
sought over many decades without decisive resolution. An objective 
summary of eleven distinct inconclusive hypotheses has been compiled 
by Villa and Roebroeks [62]. Neanderthal extinction was over soon after 
40 ka BP [63] and this can be regarded as part of a more general loss of 
megafauna in the same period [48]. As outlined above, there is clear 
evidence that tubercle bacilli were widespread in Pleistocene megafauna 
[5] and a late upsurge in transmissibility and virulence may have 
contributed to the demise of a range of these mammals [36]. The TB 
DNA and lipid biomarker evidence presented here suggest the inclusion 
of at least some Neanderthals in this cataclysmic extinction scenario. In 
the case of the Subalyuk child, the infection may have been intense 
enough to provide detectable TB biomarkers. However, if highly virulent 
TB suddenly appeared it may have led to fatalities before it had time to 
spread extensively into skeletal material and provide diagnostic bone 
lesions. As noted above, it was predicted that exposure to new pathogens 

Fig. 2. Reverse phase fluorescence High Performance Liquid Chromatography 
(HPLC) of total mycolic acid pyrenebutyrate-pentafluorobenzyl ester de
rivatives, compared to M. tuberculosis standard. 
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might well result in rapid disappearance of the Neanderthals [30]. Ne
anderthals had considerable dependence on animal protein, so if 
megafaunal prey were being decimated by newly virulent TB, there 
could be dietary deprivations. Consequently, the possibility of TB as a 
contributing factor to the demise of many Neanderthals cannot be ruled 
out. 

3.7. Conclusions 

Based on the data, summarised above, a practical hypothesis for the 
emergence of tuberculosis and its influence on the mammalian world, 
including Neanderthals, is outlined below.  

• First evidence of tuberculosis has been found in Neanderthals, as 
demonstrated in this study of the Subalyuk human remains from 
Hungary.  

• Megafauna, such as bison, were hunted for meat by humans e.g., 
Neanderthals.  

• TB in the Pleistocene probably evolved as a zoonosis, involving 
megafauna.  

• Early tubercle bacilli were hydrophilic and semi-environmental with 
low pathogenicity, similar in properties to modern isolates labelled 
“Mycobacterium canettii”.  

• After ~50 ka BP, TB became a hydrophobic obligate mammalian 
pathogen, with enhanced aerosol transmissibility and virulence. 

Fig. 3. Selected ion monitoring negative ion-chemical ionisation (NI–CI) gas chromatography-mass spectrometry (GC-MS) of mycolipenic and mycocerosic acid 
profiles from samples A) #1232, B) #1234 C) #1239, D) #1240, E) #1353, F) M. tuberculosis standard, G) Blank. Peak intensities are normalized to the main 
component (100 %). 
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• Late Pleistocene mammals may have succumbed to newly invigo
rated Mycobacterium tuberculosis. 

• Diverse modern tuberculosis clades probably evolved from a reser
voir of “M. canettii”– like ancestors in Africa, or also possibly from 
pre-formed M. tuberculosis strains from Eurasia.  

• The oldest known cases of TB in H. sapiens have been found in early 
Holocene settlements in the so-called “Fertile Crescent”, where naïve 
“Out of Africa” humans probably encountered tubercle bacilli with 
enhanced pathogenicity. 

• The possibility that TB contributed to the extinction of the Nean
derthals should be thoroughly investigated.  

• The relatively new infectious disease encountered in Eurasia may 
have presented a very high risk for H. neanderthalensis probably 
susceptible to TB, posing a danger both through being a direct health 
risk and decimating prey animal populations. 
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