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Innovations in genomic antimicrobial resistance surveillance
Nicole E Wheeler, Vivien Price*, Edward Cunningham-Oakes*, Kara K Tsang*, Jamie G Nunn, Janet T Midega, Muna F Anjum, Matthew J Wade, 
Nicholas A Feasey, Sharon J Peacock, Elita Jauneikaite, Kate S Baker, for the SEDRIC Genomics Surveillance Working Group

Whole-genome sequencing of antimicrobial-resistant pathogens is increasingly being used for antimicrobial 
resistance (AMR) surveillance, particularly in high-income countries. Innovations in genome sequencing and analysis 
technologies promise to revolutionise AMR surveillance and epidemiology; however, routine adoption of these 
technologies is challenging, particularly in low-income and middle-income countries. As part of a wider series of 
workshops and online consultations, a group of experts in AMR pathogen genomics and computational tool 
development conducted a situational analysis, identifying the following under-used innovations in genomic AMR 
surveillance: clinical metagenomics, environmental metagenomics, gene or plasmid tracking, and machine learning. 
The group recommended developing cost-effective use cases for each approach and mapping data outputs to clinical 
outcomes of interest to justify additional investment in capacity, training, and staff required to implement these 
technologies. Harmonisation and standardisation of methods, and the creation of equitable data sharing and 
governance frameworks, will facilitate successful implementation of these innovations.

Background
In early 2022, the Surveillance and Epidemiology of Drug 
Resistant Infections Consortium (SEDRIC) held a series 
of workshops to map the current and future landscape of 
genomic antimicrobial resistance (AMR) surveillance. 
Although genomics has already begun to complement 
or replace phenotypic, immunological, and molecular 
approaches to isolate-based surveillance, recent 
innovations in genomic technologies promise to improve 
surveillance and epidemiology of AMR further. These 
developments will allow for tailoring of AMR 
interventions in real time, and address some of the 
barriers that impede widespread implementation. Held 
on May 5, 2022, the fourth workshop focused on 
innovations in genomic AMR surveillance, and brought 
together stakeholders to conduct a situational analysis 
and reach a qualified consensus on the use of several 
predefined innovations for the surveillance and 
monitoring of AMR. Innovations were identified on the 
basis of proven benefits in research and a lack of 
implementation in routine surveillance. The innovations 
selected were clinical metagenomics, environmental 
metagenomics, gene or plasmid tracking, and machine 
learning. Through discussions on the benefits, barriers, 
and potential implementation pathways for these 
approaches, we identified common challenges that need 
to be addressed to enable the integration of these 
innovations with genomic AMR surveillance systems.

Clinical metagenomics
Metagenomics is the study of genetic material directly 
from environmental or clinical samples, without the 
need for isolation or laboratory cultivation of individual 
organisms. For the purposes of the workshop, clinical 
metagenomics was used as a broad term encompassing 

any approach that aims to analyse all genetic material 
from microorganisms and their hosts in clinical 
samples.1 This approach is achieved through next-
generation sequencing (NGS) and aims not only to detect 
potential pathogens, but also to enable an understanding 
of the host, the microbiome, and host–microbe 
interactions.

Clinical metagenomics offers multiple advantages for 
AMR surveillance over traditional laboratory culture and 
single-isolate sequencing approaches. Removing the 
need to culture an isolate has the potential to enable 
much faster diagnosis and the detection of as-yet-
uncultured pathogens.2 These approaches have the 
potential to generate robust causal and phenotypic 
information in clinically relevant turnaround times 
(hours rather than days) and could, therefore, increase 
the uptake of genomic AMR surveillance on the clinical 
front line (figure). Metagenomic data can also enable the 
detection of infections caused by multiple strains 
(polyclonal) and species or pathogens (polymicrobial),3 
and lends itself to the discovery of unexpected or 
previously unknown pathogens4 and pathogens not 
subject to routine surveillance. Additional benefits 
include the ability to identify and characterise all 
antibiotic resistance genes in a sample,5 determine 
reservoirs for resistance,6 provide real-time reporting of 
resistance elements during sequencing,7 and identify 
individuals at risk.8

Analysing metagenomic data in a clinically meaningful 
way can be challenging owing to complexities in accurately 
predicting AMR phenotypes,9 achieving enough 
sequencing depth to comprehensively detect resistance 
determinants,10 and correctly assigning the origin of 
metagenomic reads to a microorganism in the sample,11 
which is particularly challenging when a resistance 
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mechanism is carried on a plasmid. Public datasets will be 
essential for clinical metagenomic analyses because they 
allow baseline trends and patterns to be established, 
against which samples can be compared. However, there 
are currently large representation gaps in these sources of 
data.12 Consequently, the implications of finding under-
represented populations of bacteria present in a sample 
are hard to determine, and require expertise to interpret. 
Data coordination is also inherently challenging on a 
global scale, with geopolitical sensitivities presenting 
challenges to routine data sharing.13 These challenges 
mirror the representation and data governance issues 
identified in the second, third, and fourth papers in this 
Series14–16). Additional barriers include technical issues 
around methodology and reproducibility, such as 
standardising controls between datasets and the handling 
and automated processing of large datasets, as well as 
accessing funding, data storage, and resources for analysis, 
all of which vary by geographical region. As highlighted for 
isolate-based genomic AMR surveillance in the second, 
third, and fourth papers in this Series,14–16 certain barriers 
to implementation (eg, training, infrastructure develop-
ment, and maintenance) are likely to be particularly 
challenging to meet in low-income and middle-income 
countries.

Improvements in frameworks, databases, and software 
are needed to address challenges in the biological 
interpretation of raw metagenomic data. Regional 
differences in funding and coordination create barriers 
that can be mitigated by developing models in which 
routine metagenomic sequencing might begin at regional 
hubs before being disseminated to local and national 
spoke laboratories. Such models enable retention of the 

support and benefits of large regional hubs (eg, centralised 
training and individual skillset development), while 
eventually permitting a more tailored approach at the local 
level, similar to that outlined for isolate-based surveillance 
(see the first paper in this Series).17 Although we should 
ensure that training provision is guided by geographically 
tailored blueprints to ensure that individuals are trained in 
using the tools and approaches available to them, wherever 
possible it will also be important to develop standard 
methods, such as the use of mock communities during 
laboratory pre-processing and sequencing,18 and the use of 
well characterised and robust pipelines for bioinformatic 
analysis.19 However, it should be acknowledged that certain 
aspects of standardisation are not always feasible across 
all locations (eg, the type of sequencing technologies 
available). Additionally, limited standardisation across 
databases adds further complexity. For example, although 
the National Database of Antibiotic Resistant Organisms 
possesses a higher number of acquired resistance 
genes, the Comprehensive Antibiotic Resistance Database 
provides better coverage of mutation-conferred resistance.20 
As such, training for competency in varied approaches for 
genomic analysis and epidemiology will be crucial to 
success in clinical settings and clinical care of infectious 
disease cases, as is true for the other domains covered by 
the working group. This training will also be vital in 
facilitating infrastructure development to enable both 
country-level self-sufficiency and international 
collaboration.

Environmental metagenomics
Sequencing of genetic material from environmental 
samples—known as environmental metagenomics21—
creates opportunities to better understand the niches, 
reservoirs, and transmission routes of antimicrobial-
resistant bacteria. It also holds promise as a tool to 
monitor the impact of public health measures (figure). 
Environmental samples make it possible to survey overall 
levels of AMR, including carriage among the healthy, 
non-symptomatic population, and are comparatively 
accessible, which is particularly valuable in settings 
where access to health care is less equitable. Furthermore, 
environmental metagenomics is culture-independent, 
and might function as an early warning of AMR yet to be 
observed in clinical isolates.

However, sample sources for environmental 
metagenomics can be highly variable. For AMR 
surveillance in a One Health context, surveillance of 
sources such as wastewater, waterways, farms, and air 
can all provide valuable information on the flow of AMR 
within and between potential reservoirs22,23 (see the fourth 
paper in this Series16). For example, wastewater sampling 
has been successfully used in the surveillance of a 
number of infectious diseases and public health 
threats.24,25 Experience from the COVID-19 pandemic24 
has indicated that community wastewater surveillance 
can be an important supplement to hospital case 
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Figure: Incorporating innovations in genomic AMR surveillance
Four genomic innovations and AMR surveillance domains that could be positively affected by their realisation, 
indicated by dots overlaying the lines intersecting with the central schematic of the nested surveillance domains. 
AMR=antimicrobial resistance.

Health networks

Global One Health

Clinical diagnostics
Rapid diagnostic sequencing could provide genotypic 
AMR prediction and inform on polymicrobial infections 
in clinically relevant timeframes

Environmental metagenomics
Monitoring of AMR in the environment offers a highly 
accessible and information-rich sample type that might 
act as an unbiased proxy for future surveillance

Machine learning
There is significant potential for developing machine 
learning models to predict resistance phenotypes from 
genomes and future trends in AMR across complex 
networks 

AMR gene or plasmid tracking
Tracking mobile genetic elements across pathogens and 
host compartments would provide greater resolution of 
the sources of transmission of AMR and information on 
potential further spread

Health 
laboratories



www.thelancet.com/microbe   Vol 4   December 2023 e1065

Series

reporting, which—although not a perfect proxy for 
population incidence—corresponds well with infection 
trends and incidence data.26

Difficulty in resolving gene–pathogen relationships, 
determining viability, and quantifying abundance (or 
relative abundance) challenge the interpretation and 
actionability of environmental metagenomic surveillance 
data.6 However, recent genomic approaches offer the 
promise of overcoming some of these challenges; for 
example, metagenomic chromosome conformation 
capture technologies have the potential to allow the 
attribution of plasmids to their hosts in metagenomic 
samples through physically linking plasmids to the 
chromosomes of their hosts.27

Epidemiological interpretation of a single environmental 
sample is fraught with difficulty.28 For environmental 
metagenomics to be most effective, long-term funding (a 
minimum of 10 years) and implementation will be needed 
to establish baseline rates and diversity of AMR in a given 
environment (eg, wastewater), track trends, and identify 
disruptions in these patterns across harmonised sampling 
frameworks. Analysis workflows are also required to 
enable comparison across settings. Understanding the 
uncertainties and variability in environmental samples,29 
which stem from multiple stochastic and systematic 
sources, will be crucial to fostering confidence in the 
utility of the datasets. Establishing sample archives now 
(eg, biobanking), which can be analysed with future 
pipelines, will be crucial to understanding and inter-
preting environmental metagenomic data over time. 
Effective data-management processes and systems, 
including data storage, transfer, and sharing, must also be 
developed. Of note, clarity and consistency on the ethical 
and regulatory implications regarding the handling of 
human reads found within environmental samples is vital 
to enable the sharing of this data.30

The use of environmental metagenomics for AMR 
surveillance has, so far, largely been confined to the 
research domain,6 and a lack of political will to invest in 
advancing this technology into active surveillance or 
monitoring was identified as a barrier to its future use, 
although this picture is changing. The best ways to apply 
these approaches as a surveillance tool are not yet well 
understood, and we have not yet evaluated the additional 
information provided over traditional clinical surveillance 
measures versus the time and cost of more comprehensive 
environmental surveillance. Researchers must generate 
successful use cases that show proportionate, cost-
effective, and timely actionable insights that correlate with 
indicators relevant to clinical or public health, or both.

Defining a purpose (eg, early warning or monitoring of 
control measure success), harmonisation of sampling 
and analysis processes, and validation are all areas where 
consensus is needed for progress to occur. Establishing 
this consensus will require long-term partnerships 
between researchers and policy makers to align 
surveillance efforts with data needed to inform concrete 

actions that address AMR. Establishing global leadership 
to maintain a long-term vision and highlight the potential 
importance of the environment in AMR is a key area for 
advocacy, which could lead to embedding environmental 
surveillance within AMR action plans and disrupting 
current research silos.

Gene-based and plasmid-based tracking
Tracking AMR genes or the mobile genetic elements that 
carry them (rather than, or as a complement to, the 
pathogen lineages in which they reside) offers several 
advantages for enhancing AMR surveillance. Targeted 
sequencing of AMR genes and plasmids can provide 
clearer insights into the presence,31,32 emergence,33,34 and 
direction35–37 of transmission of AMR among different 
ecological compartments (eg, human and animal, or 
hospital and community), individual hosts, and 
microorganisms than that provided by metagenomic 
surveillance or isolate-based sequencing (figure). Gene-
based or plasmid-based tracking can aid in assessing the 
risk of critically important resistance mechanisms 
moving between compartments—eg, from humans to 
animals or the inverse.38 It can also determine the means 
by which AMR spreads, whether by a small mobile 
genetic element such as a transposon, a larger mobile 
genetic element such as a plasmid, or a chromosomally 
integrated gene, which can be used to anticipate 
dissemination patterns among bacterial populations.

Plasmid monitoring can function across all One Health 
sectors: at a local level for outbreak detection,36,39 and 
at a national and global level for surveillance and 
larger contextual understanding.40,41 Tracking plasmid 
backbones of concern, even when they do not carry AMR 
genes, is key to understanding plasmid epidemiology 
and identifying high-risk settings before an AMR gene is 
acquired. Similarly, tracking the presence of AMR genes 
in non-pathogenic bacteria will reveal the flow of AMR 
genes through different reservoirs, including the 
environment.42 Consideration must be given to how 
existing risk-assessment frameworks based on single-
isolate models can be adapted to mobile cassette or 
plasmid transmission. Mathematical modelling to 
establish the minimal sampling required43 and cost-
effectiveness studies would help justify the cost of 
targeted gene and plasmid monitoring.

Tracking of AMR genes and plasmids currently relies 
on a range of sequencing technologies and platforms 
that have different requirements for consumables and 
offer specific benefits and limitations. Although short-
read sequencing currently dominates AMR surveillance, 
long-read sequencing that produces more complete 
plasmid sequences has the potential to offer more 
detailed insights into plasmid epidemiology.44 Lessons 
can be transferred from the metagenomics community 
on how to standardise and harmonise different 
methods.45 The working group noted that from an 
implementation perspective, a single composite 
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genomics platform that would deliver complete genomes 
sufficient for resolving AMR context with a throughput 
comparable to short-read technologies would be ideal.

Defining plasmid similarity and classification can 
be challenging, especially for plasmids with highly 
plastic sequences. Nomenclature standardisation and 
identification of plasmid characteristics, including their 
individual structure, would benefit these efforts. Building 
on the National Collection of Type Cultures46 and 
American Type Culture Collection,47 institutional and 
stakeholder endorsement of a physical set of standardised 
plasmids from clinical, environmental, and animal 
samples would allow for platform and phenotype 
benchmarking.

Improving the interpretability of plasmid surveillance 
data by linking plasmid characteristics with health 
outcomes in human and animal hosts is a priority for 
future research. We must better characterise plasmid 
diversity,48 transmission rates,49 permissiveness,50,51 
stability,50,51 and other phenotypes.52 Epidemiological data 
can be used as a starting point and as a supplement to 
investigating the clinical and public health risk of 
plasmids, but a better understanding of plasmid biology 
will allow researchers and public health bodies to 
produce increasingly accurate databases53,54 and tools55,56 
to better define and describe plasmids and their 
associated AMR risk.

Machine learning
Machine learning is a subfield of artificial intelligence 
that focuses on enabling computer systems to learn 
from, and make, decisions based on data. The goal of 
machine learning is to create systems that can 
autonomously improve their accuracy and performance 
over time, without being explicitly programmed to do so. 
Machine learning tools for the analysis of large, diverse, 
and often complex data streams have improved a great 
deal over recent years,57 creating an opportunity to 
improve genomic AMR surveillance through the 
integration and analysis of different data streams. We 
highlight two such use cases.

The first application is the use of machine learning 
to predict AMR using genomic and antimicrobial 
susceptibility testing (AST) data (figure). The advantages 
of adopting machine learning approaches include 
identifying novel resistance mechanisms,58 predicting 
AMR from incomplete data (eg, metagenomics),59 and 
modelling the interaction between resistance 
mechanisms.58 However, several challenges exist in 
translating promising preliminary work in this area into 
public health benefits. Large, internationally representative 
datasets of high-quality phenotypic AST data are required 
to develop accurate machine learning algorithms.60 
Quantitative minimum inhibitory concentration data are 
more easily combined and compared than categorical 
sensitive, intermediate, and resistant (SIR) data owing to 
the breakpoints between categories and conventions 

changing over time,61 but are less commonly made 
available to the research community. Centralised AST 
tends to produce more consistent phenotyping results, but 
distributed international capacity for AST coupled with 
external quality assessment would enable more sustainable 
and equitable data generation.62,63 Good model training 
data should have an even representation of sensitive and 
resistant isolates, and of different resistance mechanisms, 
a distribution unlikely to be captured by a standard 
surveillance sampling framework. In the future, 
algorithms would ideally be independently benchmarked 
against a shared set of test isolates that are changed 
regularly to capture new AMR mechanisms64 and prevent 
overtraining of algorithms to the test data. A valuable 
adjunct to standard surveillance sampling frameworks 
would be to preferentially sequence treatment failures and 
rare resistance phenotypes to enrich for potentially novel 
resistance mechanisms.65

The second promising application of machine 
learning to AMR surveillance is the use of forecasting 
tools to measure and predict changes in resistance rates 
over time and space.66,67 Models can be trained to predict 
resistance rates based on historical prevalence data and 
identify unexpected fluctuations in resistance that 
might reflect a successful intervention or a concerning 
new trend. However, heterogeneous data obtained at 
different scales is difficult to integrate.68 Fine scale data, 
such as monthly AST data broken down by postcode, is 
ideal,66 but increased granularity in surveillance poses 
greater privacy concerns. These concerns could be 
addressed by providing restricted access to data, similar 
to Global Initiative on Sharing All Influenza Data69 and 
the UK Biobank.70 Another limitation of current models 
is that there is little or no integration of the mechanisms 
causing AMR in the modelling process.71 This 
integration could be achieved by integrating other data 
sources, such as gene or plasmid tracking, antimicrobial 
use, or human and animal movement data, or a 
combination of these.67

Several general challenges in the application of 
machine learning to AMR surveillance were identified. 
Machine learning algorithm accuracy can degrade over 
time following deployment.72 Existing training datasets 
are biased towards a small number of high-income 
countries, making it probable that algorithms will 
perform better in these settings and might falter in 
different locations or over longer time periods. As such, 
these surveillance tools should be regularly validated 
against traditional surveillance data to evaluate their 
robustness.73 Successful deployment and translational 
impact of machine learning for AMR surveillance will 
require bringing together experts and stakeholders from 
different disciplines from the conception of a project to 
its deployment. But the development of machine learning 
for health is still, to a large degree, undertaken in silos, 
without the integration of knowledge and expertise 
available from other fields of application.74 Using 
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community platforms such as Kaggle or CAMDA could 
improve the interaction between the machine learning 
community and stakeholders to identify key challenges 
and describe robust solutions.

Recommendations from the working group
Several key themes emerged when discussing potential 
innovations in genomic AMR surveillance. First, funding 
and political will are key requirements for the 
implementation of technological innovations in AMR 
surveillance, across regional, national, and international 
scales. A proposed concrete step for engaging funders 
and policy makers was for researchers and public health 
organisations to provide clear use cases where these 
innovations add demonstrable value, and present a 
thorough economic assessment of the costs versus 
benefits of investing in additional capacity. Ultimately, a 
long-term strategy and supporting funding and 
infrastructure are needed to realise the potential of 
innovations in genomic AMR surveillance.9 In the long 
term it will be important to harmonise these strategies 
on multiple levels: globally, by working with key partners 
such as WHO; nationally, by working with governments 
and public health providers; and locally, by working with 
health professionals familiar with local needs and 
priorities.

Second, introducing innovative technologies and 
data streams requires training, capacity building, 
infrastructure, and collaboration to provide actionable 
insights. The successful translation of innovations 
requires multidisciplinary stakeholder involvement 
from the initiation of a project (eg, choosing a problem 
to address) to the deployment and maintenance of 
an effective surveillance system. Involvement of 
stakeholders (from research, industry, public health, 
and policy) from across the One Health landscape is 
also needed to ensure data can be integrated and 
compared in a meaningful way, and to avoid duplication 
of efforts. Harmonisation and standardisation of 
methods and overcoming technical challenges are still 
required to get the best use out of these innovations. 
Importantly, it will be vital to map how well these data 
streams correspond to outcomes of interest, such as 
clinical infection incidence and disease outcomes, to 
justify the additional investment in capacity, training, 
and staff.

Data governance challenges must also be addressed. 
For example, human reads in metagenomic sequencing 
pose potential privacy concerns. Consensus guidelines 
on addressing these concerns should be established. The 
availability of representative data for training machine 
learning algorithms is also a challenge, particularly 
where providers of the data might be risking potential 
reputational damage (eg, in the food industry), or 
reduction of their research competitiveness.

Agreement on sampling frameworks and standards 
for data quality and sharing for denominator 

populations (which illustrate the baseline frequency of 
an AMR mechanism of interest) is needed, particularly 
for environmental and plasmid monitoring. These 
frame works could be modelled from existing 
frameworks, such as the European Food Safety 
Authority harmonised monitoring of AMR75 or the UK 
Veterinary Antimicrobial Resistance and Sales 
Surveillance frameworks.76 Part of achieving this 
agreement will be resolving a core tension between 
standardising genomic AMR surveillance practices 
globally and tailoring approaches to provide cost-
effective solutions to local problems. Tiered models of 
adopting genomic AMR surveillance at different price 
points are a good example of a strategy for addressing 
these tensions.63

Conclusions
Moving to more technically sophisticated AMR surveillance 
will improve human and animal health, provided that the 
approaches focus on solving the right problem, produce 
actionable data, and can be integrated into existing 
systems. To achieve this transition, researchers must 
provide clear evidence of the marginal utility of these 
innovations. The innovations discussed here are likely to 
function as a complement to some degree of ongoing 
isolate-based surveillance, rather than a replacement. Each 
of these innovations relies on high-quality reference 
data produced from whole-genome sequencing and 
phenotyping of single isolates. Each innovation offers 
potential improvements in surveillance relative to isolate-
based sequencing, either by allowing analysis of many 
isolates at once across multiple ecological compartments, 
allowing targeted tracking of AMR mechanisms of interest 
at a lower cost, or enabling the analysis of data at a scale 
and speed not achievable by other approaches.

While nations work to translate these methods from 
research to practice, technical innovation continues. 
Promising developments, such as on-site sequencing that 
dynamically enriches and depletes specific sequences,77 
rapid point-of-care AMR diagnostics,78 and automated 
literature mining for novel AMR mechanisms,79 might 
play important roles in the future. To achieve ongoing 
enhancements, it is essential to provide platform-agnostic 
support for integration as outlined in the recommendations 
from the working group (see the first paper of this Series17). 
By implementing these strategies, we can proactively 
enhance AMR surveillance and effectively confront the 
challenges presented by antimicrobial resistance.
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