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ABSTRACT  
 

This qualitative case study investigated teacher educators’ (lecturers) use of the dynamic 
mathematics software, GeoGebra, to teach calculus in three teacher education institutions (TEIs) 
in Zambia. Visualisation, a key characteristic of GeoGebra, is increasingly gaining recognition of 
playing a critical role in mathematics teaching and learning, especially in problem solving tasks. 
It is considered a powerful didactical tool for students to construct mental and physical 
representations that can enhance conceptual understanding of mathematics. GeoGebra is a 
visualisation tool that can be used for problem-oriented teaching and foster mathematical 
experiments and discoveries. GeoGebra’s inherent visualisation characteristics align well with the 
teaching of calculus, the mathematical domain of this study. The study (whose research 
methodology was underpinned by the interpretive paradigm) was undertaken with a broader goal 
of designing and implementing GeoGebra applets and instructional materials on various calculus 
topics. The study is located within the “Teaching and Learning Mathematics with GeoGebra 
(TLMG) project” – a project that involves mathematics teachers and lecturers in Zambia. The case 
in this study is the six mathematics lecturers who co-designed and used GeoGebra applets to teach 
derivatives and integrals to pre-service mathematics teachers in TEIs. The unit of analysis 
therefore is the six lecturers’ use of GeoGebra as a visualisation tool to teach calculus to enhance 
conceptual understanding, their perceptions and experiences of using GeoGebra and the enabling 
and constraining factors of using GeoGebra to teach and learn mathematics. The data for the study 
were video recordings of observations and interviews of lecturers. The data was analysed 
thematically and was guided and informed by an analytical framework adopted from the theory of 
constructivism – the umbrella theoretical framework of this study – and the models of 
Technological Pedagogical Content Knowledge (TPACK), and the Technology Acceptance Model 
(TAM). A detailed analysis of the lecturers’ interactions with the applets enabled me to gain 
insights into the participants’ experiences and perceptions of GeoGebra applets in the teaching 
and learning process. The findings of the study revealed that the visualisation characteristics of 
GeoGebra generally enhanced the conceptual understanding of calculus. It also revealed that 
adequate training, coupled with sufficient knowledge of the subject matter in calculus, were 
necessary for lecturers to use GeoGebra effectively, and that the lack of resources and expertise 
were major hindrances in the use of GeoGebra to teach mathematics in TEIs. It also revealed that 
there is a need to equip GeoGebra with other features that would make it more versatile, and 
suggested a teaching approach that would complement the use of conventional methods and 
GeoGebra to provide a link between abstract and concrete concepts of calculus.  
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CHAPTER 1: INTRODUCTION 
 

The purpose of this introductory chapter is to present the contextual background and goals of the 

study, whose focus is the incorporation of GeoGebra as a visualisation tool to teach calculus in 

Teacher Education Institutions (TEIs) in Zambia. The chapter briefly introduces the theoretical 

underpinnings, the significance of the study, and the methodology. In conclusion, an outline of 

each chapter is presented.  

1.1 INTRODUCTION TO THE RESEARCH 

The rapid increase in technological advancement has led to profound changes in almost all aspects 

of life globally and has attracted much debate on education practice. This has resulted in important 

implications in the teaching and learning process, particularly in mathematics – the focus of my 

study. Consequently, several education reforms (Tondeur et al., 2017a)  have advocated for the 

use of modern technology in classrooms, including the mathematics classroom, under the premise 

that it has the potential to modernise teaching approaches, make them more relevant and yield 

better mathematics results. In mathematics education, the specific focus is on the shift from 

teaching that promotes rote, algorithmic drilling and of facts, to problem solving, reflective 

thinking and reasoning; from pencil and paper computation to model building and conceptual 

learning; and from static and verbal mathematics to evolving mathematics that is highly dynamic, 

visual, and interactive (Hegedus & Kaput, 2004). Reputable mathematics education organisations 

have acknowledged the critical role of technology in mathematics with the National Council of 

mathematics Teachers (NCTM) in the United States of America indicating its “technology 

principle” as one of the six principles for high-quality mathematics instruction: “[t]echnology is 

essential in teaching and learning mathematics; it influences the mathematics that is taught and 

enhances students’ learning” (NCTM, 2000, p. 11). These developments have resulted in a notably 

increased use of technological tools in learning institutions. Despite the steady increase in the use 

of technology, Inan and Lowther (2010) and  Berrett (2012a) maintain that achieving technology 

integration to desirable levels is still a complex process in educational change. This is evidenced 

by the use of technology in schools which is often uncoordinated, and in most instances, inadequate 

(Kim & Md-Ali, 2017). Wanjala (2016) and Kozma and Andersen (2002) concur with this view 

and elaborate that despite many countries having revised their education curricula to include 

Information and Communication Technology (ICT), its integration, and in particular, the teaching 
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and learning of mathematics remains a major challenge and is yet to achieve the anticipated goals. 

Žilinskiene and Demirbilek (2015) observe that “even though teachers have access to computers 

and appropriate software is available both in schools and at home, technology is rarely integrated 

substantially into everyday teaching” (p. 139). This study specifically investigates the 

incorporation and use of a dynamic mathematic software, GeoGebra, as a visualisation tool, to 

teach Calculus in TEIs in Zambia to enhance conceptual understanding. It investigates lecturers’ 

experiences and perceptions of incorporating GeoGebra as a visualisation tool to teach Calculus 

to undergraduates in TEIs. It also investigates the factors that enable and constrain lecturers’ 

adoption of technology in teaching. 

1.2 THE CONTEXT OF THE STUDY 

The Zambian Ministry of Education (Zambia, [MoE], 1996) policy recognises the importance of 

mathematics and reiterates that “one of the purposes of teaching mathematics is to equip the learner 

with knowledge and skills to live effectively in this modern age of science and technology, and to 

enable the learner to contribute to the social and economic development of the nation, (Zambia, 

[MoE], 1996) . The emphasis on mathematics has been necessitated by students’ low performance 

in this subject at almost all levels of education. For instance, in the Zambian school certificate 

mathematics examinations, the mean performance in the 2020 mathematics examinations at Grade 

12 was 24.28 percent compared to 22.04 percent in 2019, showing a slight increase in performance, 

but still very much below the desired performance (Examination Council of Zambia, 2020) At 

Teacher Education level diploma examination results, the national assessment findings of 2020 

conducted by the Examination Council of Zambian indicated that “across all subjects, the lowest 

mean performance in 2020 was recorded in mathematics content at 26.85 percent as compared to 

39.50 percent in the 2019 survey”, (Examination Council of Zambia, 2020) These national trends 

of mathematics performance at teacher education and secondary school levels correlate with the 

performances of students in other Higher Education Institutions (HEIs), (Atchoarena, 2016). Some 

stakeholders have attributed the poor performance in mathematics at HEIs to the students’ weak 

mathematical foundation at primary and secondary school levels coupled with the teaching 

methods in HEIs which generally, in my experience, focus on drilling and memorising algorithmic 

procedures at the expense of student exploration and investigation. This has prompted an advocacy 

for a shift in approaches used in teaching and learning at all levels of education to include teaching 

strategies that are innovative, including methods that make optimal and strategic use of technology. 
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The Zambian government policy recognises and encourages the use of ICT in education. This is 

evidenced by the country’s development of an ICT policy on education and the subsequent creation 

of the National Implementation Framework for ICT (Ministry of Communications and Transport, 

2006). Major recommendations in the ICT policy on education include strategies to equip schools 

and TEIs with modern ICT tools to support teaching and learning, and for TEIs and teacher 

continuing professional development programmes (CPD) to include programmes to produce 

technology-skilled personnel to support schools in enhancing their use of technology in the 

teaching and learning process (Atchoarena, 2016).  

1.2.1 Motivation to undertake the study 

I was motivated to undertake a study on GeoGebra (www.geogebra.org) following my realisation 

of the lack of use and awareness of the software by teachers, during a joint presentation with my 

students on GeoGebra at the 2018 Zambian Association of Mathematics Education (ZAME) 

national conference. The teachers showed overwhelming enthusiasm to learn how to use 

GeoGebra. This prompted me to carry out an informal survey among lecturers in three TEIs in 

Zambia to get baseline data, and the findings confirmed a lack of awareness and use of GeoGebra 

in the institutions (see Table 1 below and Appendix C). Eleven out of thirteen lecturers (85 per 

cent) indicated that their institutions did not use GeoGebra in their teaching and ten lecturers (77 

per cent) stated that they had no personal experience with the software.  

 

 

 

 

 

 

 

http://www.geogebra.org/
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Table 1.1: Use and awareness of GeoGebra among lecturers in TEIs 

 

The question I asked myself was: “Why is there this lack of awareness and use of GeoGebra among 

teachers and lecturers when the software is a free open resource with a lot of potential to enhance 

the teaching and learning of mathematics?”.  

1.3 TECHNOLOGY USE IN MATHEMATICS EDUCATION 

Technology, particularly Dynamic Mathematics Software (DMS), serves a myriad of significant 

roles in mathematics education. Its dynamic interactive environment has the potential to facilitate 

manipulations of virtual objects, graphic visualisations, numeric and symbolic representations to 

promote engagement and deep understanding of mathematics concepts (Konold & Lehrer, 2008). 

Its flexible human-computer-interaction interface fosters mathematical investigations, exploration, 

and communication. Several affordances of technology support innovative and novel ways of 

doing and learning mathematics. Hegedus and Kaput (2004) single out the main affordance of 

technology in mathematics as the unique potential for representations to promote “dynamic, 

interactive, animate, linked, and multiple representation capabilities of technological displays” (p. 

12).  

Technology offers teachers opportunities for flexible incorporation and interpretation into the 

teaching and learning of mathematics concepts that are represented in various ways (Zbiek et al. 

2007). For instance, different representations of the same concept may provide different aspects 

of the concept that invariably necessitate different approaches such as graphical, algebraic, or 

numeric approaches to understand the concept. Consequently, such representational affordances 

of technology help students to explore various approaches that provide meaning to the same 

Number of 
lecturers Percentage

Number of 
Lecturers Percentage

Yes 2 15 3 23
No 11 85 10 77
Total 13 100 13 100

Current use of GeoGebra

 by lectuerers  in TEIs
Personal experience of lecturers

 in using 
GeoGebra  for teaching 
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mathematical idea, encouraging them to connect different representations of the concept, hence 

supporting them to achieve thorough understanding (Zbiek et al., 2007).  

The dynamic and interactive environment that technology often provides, offers a means to engage 

students in conceptual conversations about mathematical relationships, solutions and concepts, 

thereby promoting deeper understandings of mathematics. In this way, technology makes 

mathematical concepts visible to the class and encourages teachers and students to share their 

mathematical experiences (Bos, 2008; Kaput et al., 2007; Zbiek et al., 2007).  

Despite the many affordances associated with technology integration in mathematics education, 

research has revealed some constraints to teachers’ adoption of technology. Tondeur et al., (2017a) 

classified the types of constraining factors to teachers’ technology integration into external and 

internal factors. The external barriers they pointed out were a lack of in-service training, access to 

technology, and restricted curriculum. On the other hand, internal factors cited were teacher 

confidence, beliefs about student learning, and value of technology in the classroom. From my 

experience with teachers, in a number of cases where an attempt to incorporate technology was 

made, it was mostly generic and not subject or topic specific, making it difficult for teachers to 

appropriately design learning activities for students in a technology environment. Other 

constraining factors mentioned were teachers’ attitudes, lack of time and examination demands. 

Lack of supportive institutional policies, technophobia, rapid changes in ICT tools, fear of loss of 

instructional authority and resistance to change were other reasons identified (Agyei & Voogt, 

2015). These factors (Zulnaidi & Zamri, 2017) have been exacerbated by a dearth of research 

examining teachers’ perception of technology use in mathematics teaching. 

1.4 CONCEPTUAL LANDSCAPE – VISUALISATION  

Visualisation is increasingly gaining recognition of having a critical role in the learning of 

mathematics especially when learners are solving mathematical problems. It is considered a 

powerful tool for students to construct mental and physical representations that correctly mirror 

mathematical concepts and relationships (Zimmermann & Cunningham, 1991). Rogness (2011) 

acknowledges the importance of visualisation in the mathematics classroom and proposes “initial 

engagement of students’ interest; improving student understanding of a concept, particularly for 

visual learners; development of visual reasoning skills; and a tool for mathematical exploration 

and research” (p. 6).  
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Despite a lack of consensus on the definition of visualisation, several authors have placed emphasis 

on gaining insights into a concept to deepen understanding as an important aspect of visualisation. 

A more generic definition from Arcavi (2003) states that:  

 “Visualisation is the ability, the process and the product of creation, interpretation, use of 

and reflection upon pictures, images, diagrams, in our minds on paper or with technological 

tools, with the purpose of depicting and communicating information, thinking about and 

developing previously unknown ideas and advancing understanding.” (p. 217) 

Zimmermann & Cunningham (1991) described visualisation as “the process of producing or using 

geometrical or graphical representations of mathematical concepts, principles or problems, 

whether hand drawn or computer generated (p. 1). They add that visualisation does not equate to 

just forming a mental image, but that it is also about visualising a concept or a problem rather than 

just an idea. 

The Zambian Ministry of Education (Zambia, ECZ, 2015) in its revised mathematics curriculum 

has recognised visualisation as an important skill that is indispensable in mathematics and a vital 

cognitive tool in problem solving. Visualisation (Zambia, ECZ, 2015) encompasses mental 

manipulation of various alternatives for solving a problem related to a situation or an object 

without the benefit of concrete manipulatives. 

Hohenwarter and Fuchs (2004) argue that to achieve deep understanding, visualisation cannot be 

isolated from mathematics since learners need to learn how to represent ideas symbolically, 

numerically and graphically, and to navigate between these modes. In calculus, the mathematical 

domain of my study, students’ understanding could be enhanced by dynamic symbolic 

representations of a function and its corresponding graphical representation; and the subsequent 

conversions between the function and its graph when a function is differentiated or integrated. For 

instance, Figure 1.1 below enables learners to observe how the derivative is defined as the limit of 

a sequence of secant slopes in the GeoGebra interface. The secant is dynamically illustrated to 

converge to a unique tangent line by dragging a point. Alternative cases, such as where the 

derivative does not exist, can also be dynamically illustrated.  
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Figure 1.1: Visualisation of the limit process in GeoGebra 

While some visualisation tasks may involve routine observations, the focus in this study is on 

visualisation tasks that are analytical and involve various thought processes. These are tasks that 

draw on experimentation and explorations. Such activities will not only arouse learners’ interest 

in learning, but will increase their curiosity to explore and investigate. In affirmation, Preiner 

(2008) posits that “using dynamic visualisation to explain a concept, makes students grasp the 

mathematical ideas easier than with traditional teaching methods” (p. 49).  

1.5 GEOGEBRA 

Several studies acknowledge that the technological tools that use computer algebra systems (CAS) 

and dynamic geometry software (DGS) have capacities to help teachers and students think 

mathematically and present concepts in multiple ways to foster understanding Artigue (2019); 

Khalil et al. (2018); Kastberg and Leatham (2005). Among the mathematical technological 

software tools equipped with both CAS and DGS is GeoGebra. 

GeoGebra is a free dynamic open-source mathematics software designed to enhance teaching and 

learning of various mathematics topics. Initially designed for students’ use for algebra, geometry 

and calculus, it has been developed to include statistics, probability, vectors, complex numbers 
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and spreadsheets in a single integrated package and has the potential to revolutionise mathematics 

teaching and learning (Hohenwarter & Lavicza, 2013). GeoGebra provides a virtual environment 

where the functionality of DGS and CAS enable users to simultaneously view both a numeric 

algebraic component (e.g. equations or coordinates) and the geometric corresponding features of 

an object (Hohenwarter & Jones, 2007); Preiner (2008). A major strength of GeoGebra is 

facilitating visualisation of mathematics concepts. “One of the most powerful and widely 

recognised didactical components of dynamic mathematics software is visualisation” (Kadunz, 

2002, p. 198). 

1.5.1 Teaching calculus using GeoGebra  

Several topics in mathematics are conducive to technology aided learning environments which 

will promote student understanding. One such area is calculus. In calculus, the visualisation 

features and versatility offered by GeoGebra suits exploration. 

Calculus is a vital course in many HEIs. This is evidenced by many academic departments such as 

teacher education, natural sciences, business and engineering that include it in the first year of their 

undergraduate mathematics courses. However, studies have indicated that many students enrolled 

in HEI calculus classes tend to acquire superficial and incomplete understanding of basic concepts 

of calculus (Sabella & Redish, 2007). They add that the failure to develop a conceptual 

understanding of calculus topics can in part be attributed to teaching practices that emphasise rote, 

algorithmic drilling and manipulative learning.  

Calculus is a topic which emphasises rates of change and the relationship of one quantity to another 

quantity. Teaching strategies for fundamental concepts of calculus should take advantage of 

GeoGebra’s dynamic and visualisation characteristics and the concepts of change, movement and 

relationships in calculus. The software’s versatile capabilities can help presentations of calculus 

content in a manner that promotes ‘meaning making’, for instance, the illustration of the limit 

process illustrated in Figure 1.1 above. In their study which they termed “GeoGebra and Calculus: 

An interesting partnership”, Caligaris et al. (2015) concluded that the incorporation of GeoGebra 

applets and the teaching situations arising, is a much more effective teaching methodology than 

the traditional one to facilitate the learning of the fundamental concepts of calculus. This 

partnership can be viewed from different perspectives. For instance, calculus requires a 

coordination of algebraic and geometric concepts (Little, 2011), and on the other hand, the 
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software (GeoGebra’s main characteristics) are in essence anchored on geometry and algebra. The 

synergy between geometry and algebra windows coupled with logical clarity of the GeoGebra 

screen helps to reinforce the understanding of the algebraic and geometric formulations of calculus 

concepts. This would motivate teachers to use GeoGebra in order to employ a diversity of 

underlying visualisation themes that may result in emphasis on visual thinking in a manner that 

promotes teachers’ and students’ awareness of multiple representations. The use of multiple 

representations is envisioned to provide the missing link between mathematics education and 

technology (Özmantar et al., 2010). 

1.6 MATHEMATICAL PROFICIENCY  

Proficiency in teaching mathematics, according to Kilpatrick et al. (2002) relates to effectiveness 

and consistency in helping students learn mathematical content that is meaningful. Kilpatrick et 

al. (2002) used the term mathematical proficiency to describe what they considered was necessary 

for a person to learn mathematics successfully. They reiterated that teaching for mathematics 

proficiency encompasses “focusing on the interactions between teachers and students around 

educational materials and how teachers develop proficiency in teaching mathematics (p. 48). They 

identified five strands essential for developing mathematics proficiency, namely: conceptual 

understanding; procedural fluency; strategic competence; adaptive reasoning and productive 

disposition (p. 330). An important aspect about the five strands is that though itemised separately, 

they are interwoven and interdependent, and therefore represent different aspects of a complex 

whole of developing proficiency in mathematics. Notwithstanding the importance of all the five 

strands of mathematics proficiency to the learners’ understanding of mathematics, this study will 

only focus on the first two strands: conceptual understanding and procedural fluency, based on 

their relevance to the study and their important implications to teaching. Kilpatrick et al. (2002) 

suggest that mathematical proficiency requires similarly interrelated components that includes 

conceptual understanding of the core knowledge of mathematics and procedural fluency in 

carrying out instructional procedures. 

1.7  RESEARCH PROBLEM AND SETTING 

1.7.1 Significance of the research 

Despite the potential of GeoGebra in enhancing students’ learning of mathematics that includes 

visualisation, manipulation, and exploration of geometrical figures and mathematical concepts, 



10 
 

lecturers in TEIs in Zambia rarely use GeoGebra for teaching. Several studies on technology 

integration in the teaching and learning process have in the recent past focused on secondary 

schools, with very little research being undertaken in TEIs. There has been a dearth of research in 

Zambia examining lecturers’ perception of technology use in mathematics teaching. This study 

locates itself in TEIs and investigates lecturers’ experiences and perceptions of using GeoGebra 

as a visualisation tool to teach calculus to undergraduates in TEIs. It also investigates the factors 

that enable and constrain lecturers’ adoption of technology in teaching. The findings of this study 

may contribute to literature on good practices in teaching calculus. The findings may also guide 

and provide a basis to design appropriate instructional materials for the consolidation of the 

Teaching and Learning Mathematics with GeoGebra (TLMG) Project for quality teacher 

professional development in the use of GeoGebra for mathematics teachers, with a view to 

incorporating GeoGebra in the Zambian teacher education curriculum. 

1.7.2  Research goals and research questions 

The main goal of my study is to investigate the use of GeoGebra as a visualisation tool by lecturers 

in Zambia, to teach calculus in TEIs to pre–service teachers, to enhance conceptual understanding.  

The specific objectives are to:  

• investigate how GeoGebra can be used as a visualisation tool to teach calculus to 

pre-service student teachers in TEIs to enhance conceptual understanding; 

• find out the perceptions and experiences of lecturers in using GeoGebra as a visualisation 

tool to teach calculus in TEIs in Zambia; and 

• analyse the enabling and constraining factors of using GeoGebra in the teaching and 

learning of mathematics.  
Research Questions  

Arising from these objectives, the research questions are: 

• How can GeoGebra be used as a visualisation tool to teach calculus to pre-service student 

teachers in TEIs to enhance conceptual understanding? 

• What are the perceptions and experiences of lecturers in using GeoGebra as a visualisation 

tool to teach calculus in TEIs in Zambia?  
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• What are the enabling and constraining factors of using GeoGebra in the teaching and 

learning of mathematics?  

1.8 THEORETICAL FRAMEWORK 

This section establishes the theoretical framework for the study.  

“A theoretical framework is an idea or a group of ideas that provide structure to a theory 

in a research study. Researchers may use theoretical frameworks to guide their studies, 

discover or analyse new perspectives, or find connections between seemingly unrelated 

concepts. Researchers may choose one or more theoretical frameworks that are appropriate 

to the study.” (Borgatti, 1999, p. 1) 

The umbrella theoretical framework for this study is constructivism (Piaget, 1967; Cobb, 2016). 

The study draws on the Technology Acceptance Model, (TAM) (Davis, 1989) and the 

Technological Pedagogical Content Knowledge (TPACK) model (Mishra & Koehler, 2006) as 

enabling theoretical frameworks. The inter-relationship between the three frameworks as used in 

this study is shown in Figure 1.2 below: 
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Figure 1.2: Theoretical Frameworks of the study
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 Constructivism  

Constructivism focuses on learning of an individual through interactions with the external world, 

physical and social aspects and derives from the writings of Piaget and Vygotsky (Confrey, 2000; 

Von Glasersfeld, 1987). Piaget is credited with conceiving of radical constructivism, one of the 

branches of constructivism and highly associated with mathematics education. It is framed by the 

theoretical constructs of assimilation, accommodation and reflective abstraction (Liu & Chen, 

2016). On the other hand, social constructivism draws on the works of Vygotsky (Popkewitz, 

2019) . Social constructivism operates on the premise that individuals’ construction of knowledge 

is strongly related to social interaction, discourse and the patterns in language (Crawford, 2016; 

Popkewitz, 2019). It addresses the learning of the individual, in relation to the external world. In 

a social constructivist context, learning is perceived as a process of constructing knowledge by 

individuals as opposed to being passive receivers from the teacher (Kolb & Kolb, 2019; Von 

Glasersfeld, 1987), where the learners’ new knowledge is linked to their previous knowledge.  

Mathematics teaching in HEIs in general, and in Zambia in particular, has for a long time embraced 

non-interactive ways of teaching in which the student receives knowledge from the lecturer, with 

very minimal participation (Abaté & Cantone, 2005). This type of method, generally referred to 

as “traditional” is usually dominated by drills, manipulation of facts and algorithms, and falls short 

of addressing the needs of most students. Recently, there have been calls to reform mathematics 

instruction in HEIs by giving consideration to more innovative pedagogical approaches, 

underpinned in constructivist theory with a view to promoting students’ conceptual understanding 

(Sang et al., 2011; Jaworski, 2006; Mokhtar et al., 2013; Orton & Roper, 2008).  

An important aspect in constructivist pedagogy is contextualising learning in authentic 

environments and using real-world examples. Many students have difficulties in connecting 

mathematics to real world applications and this has been cited as one of the reasons for poor 

performance in mathematics (Palincsar, 1998; Kolb & Kolb, 2019). Research further suggests that 

students who adopt constructivist approaches to learning mathematics, tend to follow a conceptual 

approach when solving problems, while those who follow traditional teaching approaches tend to 

incline more towards procedural approaches (Wilson & Thornton, 2002).  

GeoGebra is an activity-based learning tool which has a lot of potential for investigation and 

exploration and therefore aligns well with the constructs of the constructivism theory in various 
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ways. Firstly, the dynamic applets created using the software tools are designed to be used in an 

exploratory and investigative manner. Engaging in exploration and investigation of mathematics 

concepts offers students opportunities to construct knowledge and be responsible for their learning, 

which are major attributes of constructivism. Using technology (Appelbaum et al., 2009) in 

mathematics teaching can encourage students to be more responsible for their learning, increase 

their confidence, and motivate them by providing them with novel experiences (p. 15). 

Technological environments provide many opportunities for a teacher to be a guide rather than 

lead the learning process – which is an important attribute of constructivism.  

Teaching mathematics from a constructivist perspective involves the provision of activities. The 

constructivist approach to the use of technology in teaching mathematics provides opportunities 

to alter the nature of the material to be taught and learnt from routine-based to discovery and 

inquiry-based activities. This can be achieved by employing mathematical software embedded 

with visualisation characteristics and equipped with various features, which facilitate a 

constructive approach to learning mathematics. With its multiple representation capabilities, 

GeoGebra allows the user to drag and move points, lines and graphs on the screen, whilst 

observing changes in parameters and the effects of such changes on geometric shapes. It also 

enables the user to switch easily between numeric, symbolic and visual representations of 

information. These characteristics of the software can enhance constructive learning and 

encourage ‘what if’ situations for students to explore. 

Technology Acceptance Model (TAM) 

Research findings state that teachers’ attitudes towards ICTs have a strong influence on the 

acceptance of the usefulness of ICTs in their lessons, and a bearing on whether teachers integrate 

ICTs into their classrooms (Teo & Milutinovic, 2015; Huang & Liaw, 2005). This is echoed by 

Cuban et al. (2001) who add that other than beliefs, effective implementation of education reforms 

is also dependent on teachers’ knowledge, attitudes and skills. The significance of teachers’ 

contribution to this process is underscored by the NCTM (NCTM, 2000) in their declaration of the 

teacher being one of the six major factors in the effective use of new technology in mathematics 

education 

TAM is a model related to technology adoption and an empirically tested theory (Davis, 1989). It 

originated from the Theory of Reasoned Action (TRA) which claims that the intention to use a 
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computer-driven technology is influenced by its users’ beliefs and perceptions (Ajzen & Fishbein, 

1980). Venkatesh et al. (2007) claim that “TAM currently enjoys the status of being the prime tool 

for testing user acceptance of new technologies” (p. 139). It is underpinned by a social 

psychological approach to explain the adoption of technology and the factors that influence 

individuals’ decisions to adopt technology in their work. TAM theorises that an individual's 

behavioural intention to use technology is essentially determined by two beliefs: perceived 

usefulness and perceived ease of use (Joo et al., 2018). Perceived usefulness is the extent to which 

a person believes that using the system will enhance work performance, whereas perceived ease 

of use is the extent to which a person believes that using the system will be effortless (Venkatesh 

& Davis, 2016) The full constructs of TAM are External variables, Perceived usefulness, Perceived 

ease of use, Attitudes towards ICT, Intention to use and Actual use (Davis, 1989).  

Ajzen (1991) explains that external factors in the TAM framework include institutional policies, 

beliefs about the environment such as support staff, infrastructure, and access to ICTs. Internal 

factors encompass skills, abilities and attitudes. In the context of ICT in education, TAM has been 

perceived useful by several researchers as a strong determinant of user intentions (Venkatesh & 

Davis, 2016).  

As Kriek and Stols (2018) observe, GeoGebra combines its ease of use aspect with the construction 

features of a DGS and the functionality of a CAS. It lends itself to a wide range of possible 

applications for teaching mathematics This aligns well with the constructs of TAM of ‘Perceived 

usefulness’ and ‘Perceived ease of use’. TAM contends that the attitude of the user towards use of 

technology for teaching and learning is very critical. Hew and Brush (2007) concur with this view 

and elaborate that changing attitudes and beliefs about technologies is an important factor and 

should take precedence in the teachers’ ability to integrate technology into teaching. These 

observations resonate with Ertmer et al. (2012) view who elaborate that “If we truly hope to 

increase teachers’ uses of technology, especially uses that increase student learning, we must 

consider how teachers’ current classroom practices are rooted in, and mediated by existing 

pedagogical beliefs” (p. 19). 

Tondeur et al., 2017b) point out that teachers who embrace constructivist beliefs in their 

pedagogies actively are more likely to adopt ICTs compared to those with low constructivist 

beliefs. Echoing this view, Ananiadou and Claro (2009) contend that teachers with constructivist 
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beliefs use technology as a means to assist students develop higher order problem-solving and 

thinking skills and to support students’ capacity to ‘‘apply knowledge and skills in key subject 

areas and to analyse, reason, and communicate effectively as they raise, solve, and interpret 

problems in a variety of situations’’ (p. 7). 

Technological Pedagogical Content Knowledge (TPACK) 

TPACK theorises the intersection among three domains of teacher knowledge: content. pedagogy, 

and technology. In order to describe a framework for the teacher’s knowledge necessary to 

integrate technology in the classroom, Mishra and Koehler (2006) introduced the model TPACK. 

TPACK was a build-up on the earlier work of Shulman (1986) in which he articulated the 

intersection between pedagogy, content and knowledge (PCK). Ruthven (2014) pointed out that 

the idea of TPACK draws attention to how the new technological resources reshape pedagogical 

knowledge, content knowledge and pedagogical content knowledge.  

TPACK describes the complexities and challenges of technology integration, informs strategies 

required to better prepare future teachers for learning and teaching in the 21st Century, and 

articulates the importance of teacher training (Koehler et al., 2017). One of the benefits of using 

TPACK is that it allows teachers to make thoughtful decisions about what technology best suits 

their teaching and students (Oberdick, 2015). The interaction of these bodies of knowledge both 

theoretically and in practice, produces the types of flexible knowledge needed to successfully 

integrate technology use into teaching. The resulting knowledge components of TPACK are: 

Technology Knowledge (TK), Content Knowledge (CK), Pedagogical Knowledge (PK), 

Pedagogical Content Knowledge (PCK), Technological Content Knowledge (TCK), 

Technological Pedagogical Knowledge (TPK); and, Technological Pedagogical Content 

Knowledge (TPCK) (Baran et al., 2011).  

The TPACK model is essential to this study as quality teaching with the help of technology 

requires a thorough understanding of the complex relationships between technology, content, and 

pedagogy. Teachers require TPACK to understand how to effectively use technology to present 

concepts in constructivist approaches. Since TPACK focuses on the knowledge of the teacher 

(Koehler et al., 2017), it would help lecturers to make informed decisions about which topics can 

effectively be taught in a GeoGebra environment and in understanding the teaching and learning 

theories that are appropriate. As teachers create dynamic worksheets for their lessons using 
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GeoGebra, they also synthesise their TPACK. Mishra and Koehler (2009) argue that there is no 

perfect approach to integrating technology into the curriculum, claiming that the process is 

complex. It is therefore incumbent upon teachers to develop and understand this complexity in 

their quest for successful integration of technology into mathematics teaching. 

1.9 METHODOLOGY 

This is a qualitative case study underpinned by an interpretive research paradigm. The interpretive 

paradigm facilitated a deeper understanding of situations of how lecturers interacted with the 

GeoGebra applets from planning to implementation and reflection. It also provided insights on 

how they used their technological knowledge to make decisions during classroom practice in their 

lesson presentations. It sought to investigate the subjective understanding and interpretations that 

are the experiences of the participants concerning the use of GeoGebra applets as a visualisation 

tool in the teaching of calculus.  

The data collection and analysis occurred in four calculus cycles. During the data collection 

process, a variety of techniques were utilised: stimulated recall interviews, audio-video recordings, 

observations and field notes. The data collected from the video recordings of observations of the 

lecturers’ lessons consisted of two data sets: observation data and interview data. These were 

analysed separately. Data was analysed thematically (O’Neill et al., 2018) The observation data 

was analysed based on the analytical tools generated from the constructs of the enabling theoretical 

frameworks of TAM and TPACK. These analytical frameworks also took into consideration the 

constructs of constructivism and Kilpatrick et al.'s (2002) framework, analysed in three stages and 

based on the three research questions that guided the study. The analysis process is presented 

sequentially to illustrate multiple perspectives of this study. A more detailed presentation of the 

research methodology is provided in Chapter 3.  

1.10 STRUCTURE OF THE THESIS 

In addition to this chapter, there are four more chapters in this thesis.  

Chapter 2: Literature Review  

This chapter reviews the literature relevant to my research study. Firstly, the situational analysis 

of teacher education in Zambia from a technological perspective is presented. The chapter then 

discusses visualisation, the conceptual landscape of the study, and how it relates to GeoGebra in 
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the teaching and learning process of mathematics, with particular emphasis to calculus. The 

chapter concludes with the discussion of the theoretical framework and models that underpin the 

study.  

Chapter 3: Methodology  

This chapter presents the qualitative case study approach adopted in this study. It discusses the 

various methods of data collection, viz. interviews, focus group discussions, document analysis, 

audio recordings and video recordings. The chapter then discussed the data analysis methods and 

how the methods enhance the reliability and validity of the study. The chapter concludes with a 

discussion of ethical considerations and a synopsis of the challenges encountered during the data 

collection process.  

Chapter 4: Data Analysis 

In this chapter, I present the analysis of the data. The analysis of the participating lecturers’ 

interaction with the applets is guided by the analytical framework adopted from the literature. The 

findings are presented in relation to each of the three research questions for each mathematical 

topic taught. 

Chapter 5 Conclusion and Recommendations 

In this final chapter, I present a summary of the findings, the limitations and a proposal of 

recommendations based on the research. A discussion of the contributions to the field and 

suggestions for future research are presented.  
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 INTRODUCTION 

In this chapter, I discuss the issue of teacher education in Zambia, with a specific focus on the 

teaching of mathematics in Teacher Education Institutions (TEIs) in Zambia. The use of 

Information and Communication Technology (ICT) in Zambia, and visualisation – the conceptual 

landscape of this study will also be discussed – followed by a discussion on the dynamic 

mathematics software, GeoGebra. Finally, I will discuss mathematical proficiency, the theoretical 

frameworks that guided the study and how they align to each other. 

2.2  TEACHER EDUCATION IN ZAMBIA 

The philosophical rationale for educational provision the world over is to promote the social and 

economic welfare of society and to nurture the holistic development of all individuals. This implies 

that educational policies of every nation should value and promote a multifaceted development of 

all learners, taking into account their individual differences so that they can participate in the 

cultural, economic, and social affairs of the nation.  

Teaching is a key area of focus in current education reform in Zambia due to a number of factors. 

These include low capacity of teacher education institutions, high rates of attrition and the impact 

of HIV/AIDS (UNESCO, 2015). Initial training and professional development underline what a 

teacher should accomplish in the classroom. Mulenga and Luangala (2015) stress that the quality 

of teachers is largely determined by the teacher education experience that a prospective teacher 

goes through. The quality of a teacher, says Zientek (2007) relies heavily on teacher education. 

Teacher educators therefore need to be highly knowledgeable in the content and pedagogical 

knowledge areas of their subjects. This view has been acknowledged by several renowned 

international organisations. UNESCO (2015) acknowledged that teacher educators are significant 

players for maintaining and improving the teaching workforce as they have a huge impact on the 

quality of teaching and learning in schools. The commission, however, noted that despite the 

importance of teacher educators, they are rarely consulted in policy making. Atchoarena, (2016) 

reaffirmed this, but stressed the importance of having sufficient numbers of lecturers in teacher 

education institutions and equipping future teachers with necessary and adequate learning 

materials.  
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The Zambian Ministry of Education, developed the National Policy on Education, ‘Educating Our 

Future’ (MoE, 1996), to respond to the developmental needs of individual learners as well as the 

nation. This document superintends all issues concerning education in Zambia, including teacher 

education. According to the Zambian education policy document, Educating our Future (MoE, 

1996), the aim of school education is “to promote the full and well-rounded development of the 

physical, intellectual, social, affective and spiritual qualities” (p. 29). The Zambian MoE, taking 

into account the complexity of the modern world as skills, knowledge and technology change 

rapidly, endeavours to provide a very clear articulation of the direction of the Zambian curriculum. 

The Zambian Ministry of Education [MoE] (2010) recognises the importance of teacher education 

and stresses that teacher education should assist teachers to develop their planning and 

instructional skills through the use of a variety of teaching methods and techniques. The Zambia 

Education Curriculum Framework (ZECF) is a guide that spells out regulations for all levels of 

learning institutions involved in the provision of formal education in Zambia. It functions as a tool 

to assist teachers and teacher-educators in the implementation of the national policy on education, 

which stipulates the provision of education in Zambia (MoE, 2013).  

The Ministry of Education considers teachers as key human resources in the educational system 

in the country (MoE, 2010). It has often been acclaimed that the quality of an educational system 

cannot be greater than the quality of its teachers, but as noted by Bunyi (2013), little attention is 

paid to understanding how mechanisms that produce teachers can be made more effective, to 

impact positively on learning outcomes. The effectiveness and quality of an education system 

depends to a great extent on the quality of its teachers. Teachers’ competence, commitment, and 

resourcefulness (Manchishi & Mwanza, 2016) play a major role in students’ success. This 

inevitably implies that the quality of training teachers undergo is an important factor.  

The quality of Zambia’s schools reflects the quality of the teachers manning these schools, while 

the quality of the teachers reflects the effectiveness of the institutions that train them. The focus of 

concern in an effective teacher education institution is on transforming its students into competent 

and committed teachers. The programme for teacher education, therefore, must be kept under 

constant review to ensure that it responds to the real needs of Zambian schools (ibid., p. 97). 

Teacher education in Zambia faces a number of challenges. These include a lack of facilities and 

resources, weak capacity and qualifications of staff at TEIs, weak utilisation of ICT. Zambia 
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accounts for low levels of technology integration in the education sector (Sintema, 2018). The 

country is also faced with a challenge of disconnect between the curriculum offered in teacher 

education institutions and that offered in schools (Atchoarena, 2016).  

In response to these challenges, coupled with the necessity and urgency to achieve education 

quality targets, the MoE launched a number of policy actions intended to produce a qualitative and 

quantitative improvement in the management of teacher education and supply (MoE, 2013). These 

included the MoE (MoE, 2013) “improving the quality and relevance of teacher education; 

increasing the output of pre-service teacher education in order to achieve the Millennium 

Development Goals (MDGs) and EFA goals; improving efficiency and effectiveness in college 

education; and improving equity in teacher training” (p. 33). 

The importance of mathematics in any curriculum cannot be over emphasised. Mathematics is one 

of the most important subjects in any curriculum. In the Zambian education system, mathematics 

is a compulsory subject at both primary and secondary school levels. To underscore the importance 

of mathematics as a subject, the Examinations Council of Zambia (ECZ, 2014) stated that “one of 

the objectives of teaching the mathematics curriculum is to build up understanding and 

appreciation of mathematical concepts and computational skills in the learners in order for them 

to apply them in other subject areas and everyday life” (p. 31). There are a number of competencies 

and skills that mathematics can offer. These include analytical skills, abstract or spatial thinking, 

creativity, critical thinking, problem solving and effective communication skills (Fátima et. al., 

2007).  

The development of mathematics student teachers is highly dependent on the quality of 

mathematics education. In Zambian TEIs, the training of student teachers is made up of a large 

component of high-level mathematics content. However, over the last three decades, some 

researchers have observed that teachers who have studied advanced mathematics may not 

necessarily understand secondary school mathematics (Akkoç, 2015; Ball & Bass, 2000; Simsek 

& Clark-Wilson, 2018; Mueller et al., 2008). While the study of advanced mathematics with future 

engineers and mathematicians (as is the case in most TEIs in Zambia) can form a foundation for 

understanding school mathematics – this in itself is not a guarantee that the students will 

understand the school mathematics they have to teach (Berrett, 2012b; Wilson et al., 2005; Hiebert, 

1999). It is argued that secondary school mathematics has its own aspects, different from 
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mathematics in higher institutions (Rösken, et al., 2007). It was noted that in a number of Southern 

African TEIs, the training of pre-service mathematics teachers does not often include training to 

teach the fundamentals (Malambo, 2020).  

It is assumed that since the pre-service mathematics teachers did well in mathematics at school, 

they possess what it takes to teach effectively in schools. This view was exemplified at the 

University of Zambia (UNZA), (Malambo, 2020), where mathematics content courses are offered 

by the School of Natural Sciences (whose focus is not on teacher preparation), while methodology 

courses are offered in the School of Education. This results in a situation where mathematics 

courses studied by student teachers are the same as those being taken by future mathematicians, 

with the expectation that teachers will reacquaint themselves with the school mathematics when 

they start teaching. 

Mathematics textbooks used in schools provide both structure and content. In theory this enables 

newly trained mathematics teachers to refresh their understanding and teach the basic principles 

that did not form part of their teacher education. The study by Malambo and Putten (2019) to 

investigate mathematics student teachers’ understanding of key function concepts at school, 

revealed that studying advanced mathematics during teacher training did not entail developing an 

understanding of school mathematics sufficient enough to explain concepts and justify reasoning 

– as is the case in most TEIs in Zambia. The study also revealed that a number of final year 

mathematics student teachers may possess procedural knowledge but lacked the conceptual 

knowledge of the mathematics required to teach. The shortage of qualified teachers in Zambia is 

extremely acute in mathematics and the sciences, and the country is also faced with the challenges 

of over enrolment in schools and HEIs.  

To address the challenges of the shortage of teachers in mathematics, the MoE launched what it 

termed the ‘Fast Track Training’ initiative for teachers of mathematics and science by upgrading 

the qualifications of in-service teachers of mathematics and science through a fast-track three-year 

distance learning programme through a partnership by government and the private sector. Further, 

the (MoE, 2013) embarked on transforming selected colleges of education into universities. While 

this action solved some problems, it created others. I am located in one of the institutions that was 

recently upgraded into a university which lacks adequate infrastructure and qualified personnel.  
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In an effort to improve the qualification profile of teachers, the MoE upgraded all teacher 

qualifications offered at colleges of education to three-year diploma programmes from the 

traditional two-year certificate programmes. Despite these changes, the MoE noted that qualified 

human resources, infrastructure and teaching and learning materials still remained the main 

challenges in all colleges of education (MoE, 2010, p. 36). According to the MoE (2013)), teachers 

can obtain one of three qualifications: (i) the teaching diploma, which is required to teach at 

primary and junior secondary level; and (ii) a teaching degree – either at a bachelor’s or master’s 

level – which is a requirement to teach in senior secondary education (Grades 10–12) (p. 73). To 

teach in a college of education or a university, the minimum qualification is a Master of Education.  

There have been other teacher professional growth initiatives that have been government-driven 

and donor-funded to improve teacher competence and qualifications in mathematics. For instance, 

the Japanese International Cooperation Agency (JICA) and the MoE implemented a project termed 

‘Strengthening of Mathematics, Science and Technology Education’ (SMASTE) which began in 

2005 (MoE, 2010). Similarly, the British government supported a one-year advanced diploma 

programme called the Zambia Mathematics and Science Teacher Education Project (ZAMSTEP), 

which upgraded mathematics diploma holders to an advanced diploma.  

However, it has been noted that despite the number of teachers holding university degrees 

increasing at a fast rate in Zambian learning institutions, the performance of learners in 

mathematics is below the desired standard (ECZ, 2015). In School Certificate mathematics results, 

the overall poor performance in mathematics and science has largely been attributed to the bad 

performances in mathematics and science. In presenting the 2015 School Certificate results, the 

(MoE, 2015) report in the MoE document reiterated that “the overall unsatisfactory performance 

in School Certificates is attributed in large measure to poor performance in mathematics and 

science” (p. 53).  

2.3  THE USE OF INFORMATION AND COMMUNICATION TECHNOLOGY IN 

EDUCATION 

2.3.1 The role of technology in teaching and learning mathematics  

Over the last three decades, it has been recognised that technologies such as computers and 

graphing calculators have a significant impact on the teaching and learning of mathematics in 
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schools (Lawrence & Tarr, 2018; Ruggiero & Mong, 2015; Gardner et al., 2018). The predictions 

were mostly concerned with opportunities for enhancing student learning; for instance, by enabling 

connections to be made between graphical, algebraic and numeric representations of mathematical 

concepts. It was also highly anticipated that technology would bring about changes in teachers’ 

and students’ roles, based on the premise that teachers would act as facilitators of student 

collaborative exploration and discussion with peers (Petko et al., 2018; McCulloch et al., 2018; 

Ebrahim, 2018).  

In response to emerging trends, several education institutions ventured into research on how to 

integrate new technologies in the curriculum, in a quest to reshape their curriculum with 

technology (Ottenbreit-Leftwich et al., 2018; Tømte et al., 2015). However, Trust (2018) observes 

that although recent frameworks of professional standards have stressed the importance of 

promoting student teachers’ competences in teaching with technology, she noted that is rarely 

reflected in teacher education classrooms. Regarding teacher education, it was noted that TEIs 

were struggling to provide student teachers with adequate inspiring role models because of the 

insufficient number of teacher educators that used technology effectively (Tondeur et al., 2018; 

Prestridge, 2017). In view of this, teacher educators were encouraged to support student teachers’ 

ability and their knowledge to choose optimal technologies to reach specific pedagogical goals 

with specific groups of learners (Koehler et al., 2017; Chien et al., 2012).  

Tondeur et al. (2019) argue that the innovative use of technology in education lags far behind 

expectations. They observed that several teachers are in the early stages of integrating technology 

into their classes, and that the level of use varies widely between and within schools. They further 

claim that technology is predominantly used to support existing ‘traditional’ practices and not as 

a way to transform pedagogical practices. The use of technology for changing pedagogical 

practices is limited among student teachers, new teachers and in-service teachers. Student teachers 

and in-service teachers feel that they are not sufficiently equipped for teaching and learning with 

technology in their classrooms (Ottenbreit-Leftwich et al., 2018; Tondeur et al., 2012; Becuwe et 

al., 2017).  

The question that arises is “how can teacher education institutions meet these demands, and 

especially what is required of teacher educators within this context? Teacher educators are known 

as second-order teachers (Murray & Male, 2005), as opposed to first-order teachers who work 
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directly with pupils, because they educate student teachers who will be working with pupils in the 

future. Therefore, in addition to being teachers, teacher educators also serve as role models for 

their students in teaching with technology as well as in fostering students' technological 

knowledge. As role models in teaching, this implies that teacher educators’ pedagogical behaviour 

should be in congruence with the pedagogical behaviour they want to promote in their students 

(Wright & Wilson, 2011; Lunenberg et al., 2007).  

Teacher educators not only deliver the course content to their students, but they also teach and 

model technology use, instructional strategies and pedagogical beliefs ((Ertmer et al., 2012; Uerz 

et al., 2018). Modelling is one of the effective techniques to help student teachers learn to use 

technology (Teo & Milutinovic, 2015, Akinde, 2016). However, to effectively prepare student 

teachers to integrate technology as a tool in their future practice, teacher educators need to do more 

than just model technology use. They need to substantiate the underlying pedagogical and 

educational choices, and connect aspects of technology, pedagogy and content and their underlying 

relationships explicitly, to justify their modelled behaviour (Koehler et al., 2014; Lunenberg et al., 

2007). 

It can therefore be argued that teacher educators are faced with an even more complex task than 

first-order teachers on the use of technology in education. The complexity has been exacerbated 

by the fact that while research on teacher educators' teaching with technology in pre-service 

teacher education is expanding, it is still far less than research on learning and teaching with 

technology by teachers in secondary and primary schools.  

Several TEIs are conducting research into how to integrate new technologies in the curriculum, in 

a quest to reshape their curriculum with technology (Ottenbreit-Leftwich et al., 2018; (Tømte et 

al., 2015). However, Trust (2018), observes that although recent frameworks of professional 

standards have stressed the importance of promoting student teachers’ competences in teaching 

with technology, this is rarely reflected in the teacher education classrooms. Other studies claim 

that TEIs are struggling to provide student teachers with adequate inspiring role models because 

of the insufficient number of teacher educators that use technology effectively (Gronseth et al., 

2010, Tondeur et al., 2012). In view of this, teacher educators are encouraged to support student 

teachers’ ability and their knowledge to choose optimal technologies to reach specific pedagogical 
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goals with specific groups of learners (Chien et al., 2012; Koehler et al., 2017). I argue in this 

study that GeoGebra could be one of those technologies.  

Mathematics curriculum and policy documents currently place increased emphasis on processes 

of problem solving, communication and reasoning, and promote student discussion of 

mathematical ideas as a means of reflecting and developing their understanding (NCTM, 2000). 

These actions for curriculum reform are embraced by current research in mathematics education 

that promotes sociocultural theories of learning (Vygotsky, 1994; Wertsch & Rupert, 1993).  

This theoretical perspective holds that all human development involves learning from others and 

from the culture that precedes us, and that thinking and reasoning are mediated by cultural tools 

such as material artefacts, signs, language, symbol systems and diagrams (Trouche, 2016). 

Mathematics teaching and learning therefore calls for the formation of a classroom community of 

learners where epistemological values and discourse conventions of the mathematics community 

are progressively enacted and appropriated (Goos, 2014; Schoenfeld, 1989). In such learning 

environments, collaboration and discussion are valued in building an atmosphere of intellectual 

challenge. As opposed to relying on the teacher as an unquestioned authority, students are 

encouraged to be analytical and defend mathematical conjectures and ideas, and to thoughtfully 

respond to mathematical arguments of their peers. 

Despite technology’s recognised potential for teaching and learning, its integration into 

mathematics education lags behind the high expectations that many researchers and educators have 

promised (Lagrange, 2005). The role of the teacher has been acknowledged as both a problematic 

and critical factor in this integrative process (Artigue, 2019; Trgalová et al., 2018; Hennessy et al., 

2005), Ruthven, 2014). It is critical in the sense that the way in which teachers approach 

technology use has major consequences for the effects of its use in the mathematics classroom 

(Kendal & Stacey, 2003). It is problematic, because some teachers do not conceive the use of 

technology in their teaching as valuable for their educational goals, and in most cases avoid it, 

unless they are required to do so by curriculum or institutional constraints. Additionally, teachers 

quite often experience difficulties in adapting their teaching techniques to situations in which 

technology plays a role (Drijvers et al., 2015).  

Therefore, in order to help teachers to benefit from technology in mathematics teaching, it is 

necessary to have sufficient knowledge about the new teaching techniques that emerge in the 
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technology-oriented classroom and how they relate to teachers’ views on mathematics education 

and the role of technology. The technological tools recommended for use in the teaching and 

learning processes of mathematics include statistical software packages, graphical calculators, data 

analysis routines, educational software classroom response systems, applets, spreadsheets, web-

based statistics related resources, online texts and. data repositories (Devi, 2017).  

Computers and internet technologies support novel ways of teaching and learning mathematics by 

not simply allowing students and teachers to do what they have done before in another way (Noor-

Ul-Amin, 2013). It has been observed that for teaching and learning to improve, technologies must 

not simply be used as an alternative delivery platform, but rather, as cognitive tools for teaching 

and learning (Herrington & Herrington, 2008).  

Integrating technology in a mathematics classroom has the potential to promote the development 

of computational skills as well as develop higher order mathematical skills. Bansilal (2015) is of 

the view that using technological tools can significantly improve the teaching and learning of 

mathematics by allowing learners to focus more on underlying properties and relationships instead 

of paying attention to tedious complicated calculations that may detract from the intended 

outcomes. Technology provides opportunities for learning by helping learners to spread, access, 

and share ideas and information, which is transmitted in integrated communication designs. In 

addition, technological tools can open up access to a wider variety of problem-solving strategies 

compared to those limited to pencil and paper strategies (Bansilal, 2015). Umugiraneza et al. 

(2018) elaborate that tools such as online videos enable students to vary the pace at of learning 

new material in mathematics.  

By providing access to different representations that help in the visualisation of mathematical 

objects, certain mathematics software can contribute to a conceptual understanding of concepts. 

Technology also opens up possibilities for developing mathematics concepts by enabling the 

visualisation of the concepts; it can demonstrate complex abstract ideas clearly, while providing 

multiple examples (Griqua, 2019).  

2.3.2 ICT and Teacher Education 

There is an emerging consensus that to a great extent, ICT has impacted significantly on the way 

teaching and learning is conducted globally (Lim & Wang, 2016). The growth of ICT has opened 
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up many opportunities for the improvement of education, particularly in teaching, where teaching 

and learning can take place anywhere and anytime (Adarkwah, 2021). The potential for teachers 

and students to harness the power of ICT to improve and enhance the quality of teaching and 

learning in the classroom is tremendous. The skills and knowledge students need in the digital age 

have resulted in a growing demand on educational institutions to adopt ICT in their daily activities. 

In a globalised digital age, the adoption and integration of ICT into teaching and learning 

environments provide more opportunities for teachers and students to work interactively. 

Technological innovations are increasingly being used to drive changes intended to deliver 

significant improvement in education (Lawrence & Tarr, 2018).  

Information and communication technology (ICT) includes all technologies specific to education, 

and used in the handling and communication of information. This includes desktops, laptops, 

recording equipment, mobile telephony, projection technology, digital, intranet, internet, software 

applications, multimedia resources, information systems, tablets, PCs and e-readers (Lawrence & 

Tarr, 2018). These devices provide great opportunities and challenges for education in general, 

particularly in the teaching and learning process. ICT offers a new paradigm shift globally in how 

education is delivered, and it is changing the face of education. The adoption and integration of 

ICT in education has continued to gain momentum in educational literature (Wanjala, 2016). 

Studies have shown that the appropriate use of ICT has the potential to connect learning to real-

life situations and raise educational quality (Lowther et al., 2008; Alt, 2018).  

The adoption and integration of ICT is extremely important both in the access of knowledge and 

keeping pace with modern developments (Plomp et al., 2007). There is a remarkable increase in 

the availability of global resources such as digital libraries, where teacher educators, teachers and 

students can access and share research and course materials anytime and anywhere. UNESCO 

(2015) elaborates that new educational approaches are possible in the teaching and learning 

process through the adoption and integration of ICT, which leads to the provision of higher order 

skills such as collaborating across time and place and solving complex real-world problems, thus 

improving and enhancing the perception and understanding of the learning process.  

Technology has various effects on education, particularly in enhancing students' learning (Tarmizi, 

2010). When technology and appropriate teaching methods are integrated in the teaching and 

learning process, a positive impact may be observed in the affective, cognitive and psychomotor 



29 
 

domains. The various opportunities that technology provides for improving classroom instruction 

have been demonstrated in mathematics education. The NCTM urges teachers of mathematics to 

use technology in teaching and learning mathematics (NCTM, 2000). However, the NCTM 

cautions that technology should not replace the mathematics teacher. The teacher plays many 

important roles in a technology-rich classroom and makes decisions that affect students’ learning 

in a number of ways (NCTM, 2000). The use of technology as a tool to communicate with others 

enables learners to play an active role, compared to the passive role they play when they receive 

information transmitted by a textbook or broadcast. Several educators are of the view that 

technology has the power to provide enrichment and illustrate concepts that go beyond what 

teachers can provide. Technology also encourages students to think actively about information, 

and to make choices and execute skills that are typical in teacher-led lessons (Englund et al., 2017). 

On the other hand, students need guidance in applying the latest technology to solve various 

mathematical problems. The computer is now widely used as a teaching aid in mathematics in 

order to enhance students’ self-motivation and self-confidence (Oldknow, 2009). 

Studies, such as those done by Dockendorff and Solar (2018) and Suárez-Rodríguez et al. (2018)) 

have indicated that the use of ICT in the classroom is essential for providing opportunities for 

students to learn to operate effectively in an information age. The conventional educational 

environments are not sufficient for preparing learners to function or be productive in the 

workplaces of today’s society. They emphasise that educational organisations that do not 

incorporate the use of ICT in schools cannot genuinely claim to prepare their students for life in 

the 21st century). They acknowledge that ICT can play various roles in learning and teaching. They 

reiterate several studies that have reviewed the literature on ICT and learning and conclude that it 

has great potential to enhance the learning and teaching process. 

Many researchers affirm that the use of technology can help students to become knowledgeable 

and reduce the amount of direct instruction given to them. It can also give teachers an opportunity 

to assist those students with particular needs (Bransford et al., 2000). While ICT can assist students 

in their learning, it can also help teachers enhance their pedagogical practice. Lowther et al., (2008) 

posit that ICT can play a role in developing student skills, knowledge and motivation. They further 

claim that ICT can be used as a tool to present information to students and help them complete 

learning tasks. Reid (2002) indicates that the success of the integration of new technology into 
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education varies from curriculum to curriculum and depends on the ways in which it is applied. 

He adds that in mathematics education, there are some areas where ICT has shown to have a 

positive impact. 

Inan and Lowther (2010) elaborate that ICT presents a unique opportunity for teaching and 

learning to enhance and improve learning activities by providing course materials online where 

they can be accessed anytime and anywhere. This implies that that learning is not restricted to a 

geographical location but can occur anywhere. Reid (2002) posits that ICT offers students time to 

explore beyond the mechanics of course content – which provides opportunities to understand 

concepts more efficiently. Technology use does not only change the conventional methods of 

teaching, but also accords teachers opportunities to be more creative in customising and adapting 

their own teaching materials and strategies (Reid, 2002).  

Juan et al. (2011) concur with Reid and add that ICT assists in transforming the teaching 

environment into a learner-centred one, since learners are involved actively in the learning 

processes. While appreciating that it is difficult to measure the impact of ICT on learning, 

researchers Juan et al. (2011) and Lowther et al. (2008) have highlighted some of the potential 

opportunities that can be gained from the effective use of ICT in education generally, and in 

enhancing teaching and learning activities:  

● to provide opportunities for students to learn from local and/or international experts; 

● to provide opportunities for students to develop global understanding and cultural 

sensitivity;  

● to collaborate and cooperate with students from other countries; 

● to students in accessing digital information efficiently and effectively; 

● to support student-centred and self-directed learning;  

● to produce a creative learning environment;  

● to improve and enhance teaching and learning quality;  

● to support teaching by facilitating access to course content;  

● to promote problem solving and develop critical high order thinking skills; 

● to improve communication skills;  

● to motivate and engage learners; and  

● to tailor learning to the learner. 
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(Lawrence & Tarr, 2018, p. 83). 

Teachers are therefore encouraged to embrace the current changes and strive to realise the use of 

the latest technology in the classroom. Teacher educators of mathematics, through the use of ICT, 

should endeavour to make mathematics an interesting subject in order to attract students’ interest 

and at the same time to help them to consciously focus on important mathematical concepts. It is 

the teachers’ responsibility to prepare students to focus on the future world which undoubtedly 

depends on mathematics, science and technology (Furner & Marinas, 2007).  

However, despite the huge investment in ICT infrastructure, equipment and professional 

development, to improve the quality and delivery of education in many countries, the expected 

results have not been realised. Research (for example Cuban et al., 2001; Eteokleous, 2008; Hayes, 

2007) has shown that although many governments have invested substantially in the integration of 

technology in institutions of learning, the results have fallen short of the expectations and the 

intended educational outcomes have not been achieved (Houghton & Keynes, 2013). Gülbahar 

(2007) concurs with these findings and adds that huge educational investments have produced little 

evidence of ICT adoption and use in teaching and learning. There are, however, some projects 

where the integration of ICT in education has been relatively successful.  

2.3.3 Successful projects integrating technology in education  

Motivated by the prospect of greater economic, social, educational and technological gains, both 

developing and developed countries are bringing about education reform with a clear focus on ICT 

integration in education (Farjon et al., 2019; Anthony et al., 2019). To this effect, countries have 

invested substantially in terms of money, resources, expertise and research to integrate technology 

in education in a quest to make the classroom environment more conducive for enhanced teaching 

and learning. To compete favourably in the global information and knowledge-based economy, 

there is a need for a workforce that is skilled in the use of technology. Therefore, it is no longer a 

question of whether technology should be integrated in education, but rather when and how to 

integrate technology so that it benefits all stakeholders ranging from teachers, students, 

administrators, the community and parents to compete favourably in the global economy (Farjon 

et al., 2019; Anthony et al., 2019). This section focuses on some successful projects on ICT 

integration in education. 
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The GeoGebra Literacy Initiative Programme (GLIP) 

The GeoGebra Literacy Initiative Programme (GLIP) is a teacher development project in Mthatha 

in the Eastern Cape, in South Africa (Mavani, 2019). It aimed to equip teachers and students with 

the skills to use the technological tool, GeoGebra, a dynamic mathematics software (DMS), for 

teaching and learning mathematics. The GLIP project was primarily designed to promote 

collaborative reflection and engagement among teachers adopting technological tools for effective 

use in mathematics classrooms. Launched in 2015, the project had twelve participants who were 

all drawn from secondary schools, spearheaded by two researchers under the guidance of Rhodes 

University. The GLIP intervention programme had two phases, with the first phase comprising 

training of teachers in the basic use of GeoGebra. 

In the second phase, which was the intervention stage, the participants used the GeoGebra applets 

they had collaboratively developed, to implement in mathematics classrooms. The focus of the 

researchers was twofold. One researcher focused on how the learners engaged with the applets 

while the other focused on how the teachers implemented the applets. Both studies harnessed the 

visualisation opportunities of the applets to develop ‘meaning-making’ and enhance conceptual 

understanding. 

The findings of the GLIP study revealed that “collaborative teamwork among the GLIP teachers 

is a feasible way to bridge the gap between having access to technology and adapting it for 

effective use in the classrooms” (Mavani et al., 2018). The study also supported that view that 

teaching with the aid of DGS offered teachers other teaching strategies that would not have been 

possible to implement in conventional classrooms.  

It was also observed that elsewhere in South Africa, the integration of dynamic mathematics 

technology into the South African classroom was very tentative (Ndlovu et al., 2013). Ndlovu et 

al. further argued that despite GeoGebra being implemented in South Africa, it is done in isolated 

cases, and that the implementation is still a challenge since most teachers do not have adequate 

prior experience with computers. It was recommended that there was a need to develop teacher 

competencies so as to speed up the rate of integration of ICT into mathematics classrooms.  
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Project determining the effects of Google Sketchup based geometry activities on the spatial 

visualisation ability of student mathematics teachers 

Spatial visualisation ability refers to the ability to manipulate, rotate and change the position of an 

object in the mind depicted as a picture (Kurtuluş & Uygan, 2010). Spatial ability plays a key role 

in the teaching of mathematics and geometry. Spatial thinking enables an individual to draw shapes 

during mathematical problem-solving to visualise verbal problems in the mind and to categorise 

the given data in tables. Spatial thinking has many important applications in many disciplines, 

including geometry education. Hence the purpose of this project conducted in Turkey, was to 

determine the effects of SketchUp based geometry activities and projects on spatial visualisation 

ability of pre-service mathematics teachers (Kurtuluş & Uygan, 2010). 

In this project, both experimental and control groups each had twenty-four mathematics student 

teachers. In order to obtain data, the Santa Barbara Solid Test (SBST) to identify cross sections 

that are two-dimensional (2D) slices and three-dimensional (3D) objects, was used (Ferla et al., 

2009).  

A post-test and pre-test experimental design was used. For the experimental group, problem-based 

activities related to how solid objects were designed and solved in the SketchUp environment were 

used. The experimental group solved problem-based activities by using dynamic tools and a 

project study carried out on the SketchUp environment. On the other hand, traditional geometry 

activities requiring the use of only paper and pencil were given to the control group.  

The researchers had earlier introduced the basic tools of the software to the experimental group. 

The students then solved problems on solid objects while manipulating and analysing 3D 

simulations of objects in a dynamic environment. The SketchUp software gave students 

opportunities such as sketching, rotating and cutting solid objects. In contrast, the control group 

solved the problems on paper without using any technological tools. The experimental group 

designed objects having different complex geometric shapes on SketchUp; then they measured 

their surface area and volume using the measurement tools of the software and illustrated their 

surface developments on paper. Finally, they made virtual presentations of their products. 

The findings revealed that SketchUp-based activities illustrated spatial visualisation abilities. 

However, the conventional applications of static tools with examples of 2D objects did not show 
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any significant effect on spatial visualisation. The result, in the context of SketchUp, could be used 

beneficially for improving spatial visualisation. The results of the project indicated that 3D 

dynamic software was more effective on spatial skills than conventional instructions and that 

Google SketchUp could be used more effectively in geometry education as an alternative to other 

dynamic geometry software to improve spatial visualisation ability.  

The Bring your own Technology Project 

Among the most popular educational projects in the United States of America (USA) is the “Bring 

your own technology’ (BYOT) also referred to as “Bring your own device’ (BYOD). Many 

schools in districts in the USA are increasingly promoting BYOT initiatives as a way to increase 

access to technological gadgets such as laptops and tablets within schools. While the BYOT project 

has been well embraced, it has nonetheless raised issues such as costs, equity, digital safety and 

maintenance (Ballagas et al., 2004).  

The Preparing to Teach Mathematics with Technology Project 

The ‘Preparing to Teach Mathematics with Technology’ (PTMT) is another successful project 

based in the USA. Funded by grants from the National Science Foundation since 2005, the aim of 

this longitudinal project was to create instructional materials. It also focused on the implementation 

and sustenance of the use of new instructional strategies in teacher education programmes, which 

included developing faculty expertise, evaluating and conducting research on the effectiveness of 

the PTMT approach (Lee & Hollebrands, 2008). The PTMT project impacted practices of about 

eighty faculties in teacher education programmes across Canada and the USA and its materials 

have been used with over one thousand five hundred prospective and practicing mathematics 

teachers (Lee & Hollebrands, 2008).  

The One Laptop Per Child project 

In Peru, the one laptop per child (OLPC) XO project was initiated in 2008. The main goal of the 

OLPC XO laptops project was to distribute a laptop to each student to help integrate technology 

in the mathematics classroom. With an initial focus of distributing laptops to learners in rural and 

remote schools, one million OLPC XO laptops (Cristia et al., 2020), were given to students.  

A randomised evaluation of the impact of the OLPC project was undertaken by the American 

Development Bank (ADB). While the OCPL project served the educational institutions 
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substantially positively with increased engagement of students in learning practices, the findings, 

however, brought out some important issues for educational reformers and technology proponents. 

These findings raised debate on whether large scale introduction of new technologies will, in and 

of themselves bring about the promised positive changes in educational systems (Cristia et al., 

2020). 

2.3.4 Opportunities and constraints of using technology in mathematics education 

Research on the use of technological tools for teaching and learning mathematics has been widely 

conducted and there is agreement that incorporating technology into the teaching and learning of 

mathematics is very desirable and recommendable (Scherer et al., 2019). However, there is 

relatively little research focused on factors that influence technology integration in mathematics 

instruction; the way that technology is positioned in the teaching and learning of mathematics; and 

a synthesis of studies on preparing teachers to teach mathematics using technology. Afshari et al. 

(2009), Hew & Brush (2007), Cuban et al. (2001) and Goos & Bennison (2008) concur and 

elaborate that while a number of studies have been conducted to describe technology use in the 

mathematics classroom, not much research has been done on factors that influence teachers’ 

decisions to integrate technology into their teaching (Bray & Tangney, 2017). An insight into these 

factors may be significantly beneficial to mathematics teacher educators, who consequently equip 

pre-service teachers with the tools needed to teach mathematics with technology successfully and 

prepare them to be better teachers.  

Prudent use of technology can inevitably foster the migration from the concrete and externalisation 

of mathematics, to the abstract and internalisation of mathematical concepts respectively. It may 

also support the idea of iteration between processes as postulated by (Mudaly & Rampersad, 2010). 

Technology’s influence on mathematical teaching and learning is either amplified or limited 

through the types of mathematical tasks and activities teachers provide in a learning environment,  

 Opportunities  

Students need guidance in the use of the latest technology to solve various mathematical problems 

(Oldknow, 2009). The computer is widely used as a teaching aid in mathematics in order to 

enhance students’ self-confidence and self-motivation (İsleyen & Sivin-kachala, 2019). Over the 

last two decades, the variety and number of technological tools that teachers and students have 

access to in schools has risen greatly, and the mathematics classroom is no exception (Gray et al., 
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2010; Snyder et al., 2016). The teacher plays a critical role in determining effective ways of how 

this technology is used.  

Teachers are encouraged to embrace the current changes and strive to realise the use of the latest 

technology in the classroom. Educators should endeavour to make mathematics a very interesting 

subject in order to attract students’ interest and at the same time help them to consciously focus on 

important mathematical concepts. It is the teachers’ responsibility to prepare students to focus on 

the future world which will undoubtedly depend on mathematics, science and technology (Furner 

& Marinas, 2007). Technology-based learning provides symbols, formulas, tables, graphs, 

numbers, equations and manipulative materials to link them with various real-life situations. 

Technology application in teaching and learning mathematics helps students to better understand 

basic mathematical concepts and to experience intuition in solving certain mathematical problems 

(Prestridge, 2017). Hollebrands et al. (2017) are of the view that learners can benefit in various 

ways from the integration of technology into everyday teaching and learning and state that: 

Technological environments have the potential to offer students opportunities to engage 
with various mathematical skills and levels of understanding through a variety of 
mathematical tasks and activities.  

Van Voorst (1999) emphasised the notion that technology was “useful in helping learners view 

mathematics less passively, as a set of procedures, and more actively as reasoning, exploring, 

solving problems, generating new information, and asking new questions… he asserted that 

technology helps learners to “visualises certain mathematics concepts better and adds a new 

dimension to the teaching of mathematics” (p. 2). 

With an emphasis on mathematical processes, technology in the mathematics teaching and learning 

process becomes increasingly necessary. With the help of technology, laborious computations are 

easily performed and multiple representations of concepts are produced with minimal effort. With 

dynamic, vivid visuals, technology can provide strategies that foster mathematical thinking. This 

ultimately allows teachers and learners more time to concentrate on mathematical processes in the 

classroom. The illustrative properties of technological software allow learners to visualise and 

make reference to graphs, images, charts, and diagrams. This has the potential to facilitate the 

conceptualisation of the mathematical ideas and concepts and in reasoning and conjecturing during 

their engagement with tasks. 
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Findings from a study conducted by Ottenbreit-Leftwich et al. (2018) indicated that one of the 

most important factors when making decisions about use of technology in mathematics was how 

well it aligned with the goals of a lesson. The findings further revealed that when considering how 

to infuse technology into teacher education programmes, it is necessary for teachers to focus more 

broadly on ease of use for both their students and themselves, and on how particular activities align 

with specific mathematics learning objectives and outcomes.  

The teachers’ role regarding technology use in mathematics teaching and learning is underscored 

by the NCTM, whose position on the use of technology is that “effective teachers optimises the 

potential of technology to develop students' understanding, stimulate their interest, and increase 

their proficiency in mathematics” (NCTM, 2000). Thus, teachers should not only integrate 

technology in their mathematics teaching, but should integrate it competently. However, anecdotal 

evidence suggests that very few teachers use technology in ways that align with NCTM's position. 

Many mathematics teachers primarily use technology for data storage, as a simple calculation tool, 

for the display of static materials or in ways that are unlikely to stimulate their students’ interest, 

develop student understanding, or increase their proficiency in mathematics (Cuban et al., 2001; 

Ertmer, 2005).  

Most developed countries have good and reliable access to technology, thus alleviating the severity 

of external barriers; however, some internal barriers still persist (Vongkulluksn et al., 2018; Kaleli-

Yilmaz, 2015; Wachira & Keengwe, 2011). These include beliefs regarding the role of the teacher 

across different levels and beliefs about the nature of mathematics teaching and learning.  

While an increase in the use of technology in a classroom is a positive step towards enhancing 

students’ learning, its mere presence does not however guarantee successful outcomes. The 

success of technology implementation depends, to some extent, on the type of software (Khan, 

2017) and the type of tasks to be implemented (Sherman, 2014). The software used mostly for 

drill-and-practice, for example, has very little impact on student achievement (Hennessy et al., 

2005). What is of significance is the type of software used, and the role played by the teacher in 

its implementation. The decisions the teacher makes when integrating technology is key to its 

successful implementation (Escuder, 2013; Li & Ma, 2010); Drijvers et al., 2015; NCTM, 2000).  

In their review of the study on teachers' uses of technology, Zbiek et al. (2007) described the 

various concerns teachers had about integrating technology, which included personal, managerial 
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and technological concerns. They posited that teachers’ decisions about whether to include 

technology in their instruction was based on “their comfort with the tool, their perceptions of 

whether students would be able to use it, and their confidence in the technology working” (p. 23). 

These roles are to a large extent influenced by teachers' beliefs on instructional practices. 

Research on the effects of computers on teachers’ instructional practices has been limited. Ertmer 

(2005) reported that “although many teachers are using technology for numerous low-level tasks 

(word processing, Internet research), higher level uses are still very much in the minority” (p. 25). 

Cuban et al. (2001) examined two high-tech high schools in California and came to a similar 

conclusion. 

Constraints  

Notwithstanding the fact that ICT has impacted teaching and learning positively in several ways, 

literature however also indicates that there are some impediments in integrating and adopting ICT 

in the teaching and learning process. Although research has been limited regarding factors that 

inhibit significant changes to instructional style, a number of possibilities have been put forward. 

Tearle (2003) categorises the barriers for the successful implementation of ICT into three levels: 

teacher-level, school-level and system-level. At the teacher level or individual level, among the 

major constraining factors identified are teachers’ beliefs (Ottenbreit-Leftwich et al., 2018). The 

constraining factors associated with beliefs include teachers’ beliefs about the following: 

technological skills; the nature of teaching and learning; the nature of mathematical knowledge; 

the role of computers in the classroom and their possible effects on student outcomes; and beliefs 

about their students’ capabilities (Kendal & Stacey, 2003).  

Charles (2012) identified school level barriers as lack of effective training to solve the technical 

problems and lack of access to resources. Teacher-level barriers, on the other hand, include 

resistance to change and lack of confidence. In Pelgrum's (2001) view, the obstacles to ICT 

adoption could be material or non-material. The material condition comprises insufficient software 

and hardware while the non-material condition includes lack of teachers’ ICT skills and 

knowledge, challenges of integrating ICT-based instruction and insufficient time for teachers to 

prepare ICT integrated lessons.  
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Ertmer (2005) categorised barriers to technology integration into two parts: external barriers and 

internal barriers. External barriers include the availability of computers, professional development 

opportunities involving technology and level of administrative support. On the other hand, internal 

barriers principally involve teachers' attitudes and beliefs. They include teacher concerns about 

whether students should use technology to learn mathematics and whether the students will 

become over-reliant on technological tools. 

Other constraining factors at system level are: the amount of curricular freedom afforded to the 

teacher (Becker, 2000), prior teaching experiences with technology (Escuder, 2013), adequate 

preparation and training of teachers (Afshari et al., 2009; Becker, 2000), adequate time for 

planning (Hadjerrouit, 2019), preferred teaching style (Brenner & Brill, 2016)), lack of appropriate 

software (Carver, 2016) and the time when the software was adopted (Rosdi et al., 2020).  

2.4  VISUALISATION 

2.4.1 Visualisation processes in mathematics education 

Many researchers have emphasised the importance of visual reasoning and visualisation for 

learning mathematics, as visualisation is an important facet of students’ understanding of the 

construction of mathematical concepts (Haciomeroglu & Haciomeroglu, 2020). Some proponents 

of visualisation have suggested that visual thinking can be both an alternative and powerful 

resource for students learning mathematics (Pettigrew & Shearman, 2014). They added that it is a 

resource that can pave the way to various ways of thinking about mathematics other than the 

logico- propositional thinking and linguistic way of traditional proofs and manipulation of symbols 

of traditional algebra.  

Visualisation is a critical aspect of mathematical thinking, reasoning and understanding. A 

growing body of knowledge is in support of the assertion that understanding of mathematics is 

strongly linked to the ability to use analytic and visual thinking. Researchers further contend that 

for students to construct a sound understanding of mathematical concepts, visual and analytic 

reasoning must both be present and integrated (Aspinwall & Miller, 2001; Pfeiffer, 2017).  

Visualisation in the teaching of mathematics has become a research focus for many researchers 

(Arcavi, 2003; Presmeg, 2014; Rösken & Katrin, 2006). But despite being studied by many 

researchers, there is no consensus on the definition of the term ‘visualisation’.  
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Different authors have defined and explained visualisation differently. The term “visualisation” 

(Zimmermann & Cunningham, 1991) is concerned with a concept or problem involving 

visualising. Nobre et al., (2016) defined visualisation as a tool that penetrates or travels back and 

forth between learners’ mental perceptions and external representations. Goldin (2002) put 

emphasis on the relationships between conceptual understanding, mathematical visualisation, and 

representation. Dreyfus and Eisenberg (1990) contended that what learners ‘see’ in a 

representation is linked to their conceptual structure. They suggested that visualisation should be 

regarded as a learning tool. This resonates with Presmeg (2014), who views visualisation as 

“processes involved in constructing and transforming both visual images and all of the 

representations of a spatial nature that may be used in drawing figures or constructing or 

manipulating them with pencil and paper” (p. 73). The emphasis of Presmeg’s definition is that in 

mathematical thinking and problem solving, graphs that can be used as problem-solving tools, may 

be drawn to represent mathematical concepts.  

As for Dubinsky et al.,(1996) “visualisation is the act in which an individual establishes a strong 

connection between an internal construct and something to which access is gained through the 

senses” (p. 46). On the other hand, Konyalioglu (2008) defined it as “the bridge between the 

experimental world, thinking and reasoning” (p. 123). A more generic definition given by (Arcavi, 

2003) is that: 

Visualisation is the ability, the process and the product of creation, interpretation, use of 
and reflection upon pictures, images, diagrams, in our minds on paper or with technological 
tools, with the purpose of depicting and communicating information, thinking about and 
developing previously unknown ideas and advancing understanding. (p. 217)  

From these numerous definitions, it can be deduced that visualisation takes different meanings in 

different contexts. Based on Arcavi’s definition of visualisation, it can be interpreted that there is 

a need for ‘objects’ to interact with people for visualisation to take place Arcavi (2003). Therefore, 

for the purposes of this study, Arcavi's (2003) definition is key as it synchronises the major issues 

raised in the other definitions.  

Research has indicated different ways to visualise learning. Examples of the means of visualisation 

include two-dimensional (2D) or three dimensional (3D) physical manipulatives; graphs, diagrams 

and pictures; technological tools such as in dynamic geometry environments (Cabri, GeoGebra)); 
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graphing calculators and other computer software (Tall et al., 2008; Toptaş et al., 2012; 

Konyalioglu, 2008; Hollebrands et al., 2017; Kastberg & Leatham, 2005).  

Visualisation tools are among the most innovative technologies to emerge in the last few years in 

educational settings. They offer new potentialities for mathematical learning by means of dynamic 

representations and animations, interactive simulations, and live streaming of lessons. 

Additionally, visualisation tools have the potential to promote dynamic, visual, distributed and 

embodied mathematics, rather than individual achievements and static representations 

(Zimmermann & Cunningham, 1991) 

Sedig and Summer (2015) outline in more detail the benefits of interactive visualisation to include:  

making latent properties visible, hence amplifying their epistemic utility and extending 
their communicative power”; provide opportunities for “experimentation and exploration 
of hypothetical ‘what if?’ situations”; “guide and transform the path of reasoning and 
understanding”; and coordinate users’ “internal mental models with external visual models 
of objects and processes. (p. 345) 

Presmeg (2014) interpreted visualisation processes as learners’ individual ways of problem solving 

that tend to be centred on either visual or analytical approaches. She adds that the nature of 

mathematics frequently requires the use of both these approaches. An awareness of these different 

preferred approaches, she emphasises, is important for effective teaching. In her study on the 

visualisation process and learner difficulties, Presmeg (2006) concluded that students performed 

better in managing analytic processes but struggled in managing visual processes. This is echoed 

by Lowrie and Kay (2001) who reiterated that analytic learners were more successful at problem 

solving than visual learners, but they were quick to point out that this could be related to other 

aspects of the teaching environments such as students’ prior experiences.  

There is a growing body of research study focused on the significance accorded to visualisation as 

an essential component in the teaching and learning of mathematics. Current trends in 

mathematical inquiry include an exploration of the role of visual representations which are 

illustrated through data representations, graphs, pictures, diagrams, words, symbols and patterns 

in the development of mathematical concepts. Presmeg (2006) states that “mathematics is a subject 

that has diagrams, tables, spatial, arrangements of signifiers such as symbols, and other inscriptions 

as essential components” (p. 206). This implies that mathematical language is rich in visuals. 

Secondly, Arcavi (2003) is of the view that visualisation plays more than a perceptual role and is 
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directly linked to conceptual understanding. Arcavi (2003) remarks further that visual 

representations have unfortunately been considered by some as ‘second-class citizens’. This can 

be attributed to the prominence of conventional teaching methodologies that stress the application 

of rules, procedures and logical sequential steps in problem solving. However, Presmeg, (2014) 

emphasises the relationship between external representations and visual processes in school 

mathematics – which she claims are essential foundations of visualisation. 

2.4.2 The role of visualisation in teaching and learning mathematics 

Due to the important role visualisation plays in mathematical activities, it is imperative that 

teachers and students clearly understand the visualisation roles in a given mathematical situation. 

Haciomeroglu et al., (2010) allege that visual presentation is very helpful, especially for 

mathematics concepts that are of an abstract nature and require students to consider situations 

which do not physically exist.  

Mathematics is built on abstract concepts (Bhagat & Chang, 2015), and mathematics students are 

often required to comprehend the abstract processes and concepts. During problem solving, 

students usually deal with symbolic representation of questions and then attempt to give meaning 

to algebraic and symbolic equations. Even in non-challenging questions, students normally base 

their thoughts on abstract concepts of axioms and theorems (Caligaris et al., 2015). In such features 

of mathematics, students have a great need to navigate from the abstraction level of mathematical 

solutions and formulas to the concrete level (Goldin, 2002). This can be performed with mental 

activities or physical constructions. In such circumstances, visualisation or visual representations 

of the same mathematical concept play a vital role.  

Corter and Zahner (2007) categorised visual representations into two categories: internal (e.g. 

mental imagery) and external (e.g. pictures, graphs, diagrams). They elaborated that external visual 

representations used by problem solvers include those concepts with visuospatial relationships 

such as mathematical symbols, tree diagrams, graphs, Venn diagrams, contingency tables, 

formulas and pictures. External visual representations can help problem solvers (Veřmiřovský, 

2018) build models (internal visuals), of the described problem situation. These can further 

augment cognitive capabilities by aiding memory and attracting attention (Crompton et al., 2018) 

and facilitate discovery and inference. 
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Konyalioglu (2008), separated visualisation into two forms, which he referred to as: non- 

mathematical representations and mathematical representations. Mathematical representations, he 

elaborated, are tangible or visible features, such as graphs, arrangements of manipulatives, 

concrete objects, diagrams, written words, mathematical expressions, formulas or depictions on 

the screen of a computer or calculator. These encode mathematical relationships or ideas. On the 

other hand, non-mathematical representations encompass non-tangible concepts such as spoken 

mathematical language, movements, gestures, interjections, facial expressions and postures. 

From the students’ perspectives, the abstract nature of mathematics makes it challenging for them 

to learn and comprehensively understand concepts. Many researchers indicate that visualisation 

plays an important role to overcome this challenge, (Arcavi, 2003; Corter & Zahner, 2007; 

Konyaloglu et al., 2011; and Presmeg, 2014). Corter and Zahner (2007) stated that, by placing 

emphasis on the external visual representations such as diagrams and graphs, visual tools support 

students’ memory, provide models for students and attract their attention, thereby facilitating the 

finding of correct solutions of the problems.  

There are numerous advantages of using visualisation in mathematics teaching and learning. For 

instance, in classroom applications, it is apparent that while students can see different 

representation types at the same time, they can easily make connections and can see the effect of 

any change in one representation type on another (Hur et al., 2016). Another advantage of using 

visualisation, according to Özkaya et al. (2016) is related to the fact that the major source of 

gathering information is the sense of seeing. He claimed that depending on what we see in an 

object, we can deduce information about it.  

It is therefore logical to argue that visualisation may provide students with enhanced understanding 

of mathematical concepts that have an abstract and complex nature. The importance of figures, 

pictures and observation samples, emphasized by Mainali & Key (2008), may provoke mental 

operations such as constructing relations among abstract mathematics concepts. (Konyaloglu et 

al., 2011) add that in the process of mathematics education, visualisation has positive effects on 

both cognitive and emotional response.  

Another advantage of using visualisation is that it deters students from learning by anchoring onto 

memorisation. As a matter of fact, some scholars do not consider memorisation to be learning 

(Soylu et al., 2009). Soylu et al. (2009) advocated for the enhancement of meaningful learning 



44 
 

compared to memorisation-based learning. When students solve questions without comprehensive 

understanding, they are likely to encounter difficulties when they face new questions based on the 

same principles (Englund et al., 2017; Lawless & Pellegrino, 2007). According to Bansilal (2015) 

several studies have indicated that students can comprehend mathematical subjects and concepts 

by means of visual aids.  

Evidence suggests that graphical representation of mathematical problems inspires students to gain 

more insight into a question (Dikovic, 2009). He elaborates that students benefit from the visual 

tools used in teaching and learning mathematics concepts by constructing multiple representations 

of the concepts and linking the mental images with such representations. Another positive attribute 

of visualisation is that students can, without much effort, accommodate the procedures needed in 

successful problem-solving processes, transfer the knowledge obtained from prior experiences to 

new situations and subsequently become successful in the new tasks (Hsieh et al., 2015). 

Additionally, students can deepen their problem-solving abilities and their understanding of the 

mathematical concepts through visualisation (Hitt et al., 2017). He further asserted that visualising 

mathematics is a way to transform the abstract nature of mathematics into concrete, which assists 

students to comprehend concepts easily. In a nutshell, using visual aids to learn and teach 

mathematics subjects is necessary, and the use of visualisation methods are gaining more 

prominence. However, if not used well, just like other approaches, using visualisation may not 

produce the desired results. 

While most studies assert the positive aspects of visual tools and their use in teaching and learning 

mathematics, some researchers caution people about the possible misapplication of visual 

manipulatives. Shaw (2018) emphasises a positive correlation between the structure of the problem 

given to students and the appropriateness of the visual tool, otherwise problems in students’ 

understanding and knowledge construction may arise. There is also a risk of students focusing only 

on the given visual material or model (Topuz & Birgin, 2020) at the expense of the knowledge to 

be learnt. It is therefore necessary for students to understand the relationship between the symbolic 

form of the mathematical notion and its visual representation (Ruthven, 2014). A lack of 

understanding of this relationship may result in a negative effect on students’ understanding of the 

new knowledge. Zazkis (2016) explains that “this situation as perhaps the most harmful, yet quite 

a common difficulty with visualisation is that students have shown a lack of ability to connect a 
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diagram with its symbolic representation, a process some authors consider to be an essential 

companion to visualisation” (p. 91). Kimmons and Hall (2018) add to this assertion. They postulate 

that there is a belief that visual representations and models cannot be a part of a proof, because 

these models and representations are difficult to comprehend and construct from students’ 

perspectives.  

Furthermore, Pantziara and Philippou (2007) point out other possible misleading features of the 

use of visualisation. They assert that the possible challenges of using diagrams can be the 

particularity of the diagrams, such as standard diagrams that neither support flexible thinking nor 

promote students’ recognition and understanding of a concept, and that the same diagram can be 

perceived in different ways. 

Research has also revealed that there is a prejudgment of visualisation among mathematicians 

(Zimmermann & Cunningham, 1991). Owing to the fact that most of the successes in formal 

mathematics were achieved through symbolic studies in the 19th and 20th centuries, visual 

approaches in mathematics are looked down upon. Therefore, there is a tendency among students, 

teachers and other mathematicians to think that mathematics requires formal and symbolic 

illustrations, not visual representations. Therefore, even in cases where visualisation is encouraged, 

teachers and students prefer to use formal mathematics when they are asked to show a proof or 

solve questions (Caglayan, 2014).  

From another perspective, as teachers use visual tools to enhance students’ learning, there is a 

likelihood of students getting engaged more in the figure or diagram being used than the analogical 

meaning of what it presents. This results in situations where students perceive the visual tool as 

the ultimate goal instead of simply a means to enhance their learning (Zimmermann & 

Cunningham, 1991). Another aspect is that the use of visualisation may only represent a restricted 

part of the given condition, while a lot of reliance on visualisation may prevent students from 

mathematical thinking (Presmeg, 2014).  

Thus, visualisation in mathematics education facilitates a broader coverage of mathematical topics, 

and gives students access to new ways to approach mathematics (Elliott et al., 2000). Students are 

able to conceptualise ideas with visual arguments. Zimmermann and Cunningham, 1991) assert 

that:  
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visualisation supplies depth and meaning to understanding, serving as a reliable guide to 
problem solving, and inspiring creative discoveries. In this sense, visualisation cannot be 
isolated from the rest of mathematics; in other words, symbolic, visual and numerical 
representations must be connected. (p. 35)  

The use of applications presenting various semiotic registers in the process of learning 

mathematical concepts enables students to interact dynamically with different semiotic 

representations of the object studied, thus promoting conceptual learning (Caligaris et al., 2015). 

Among the education technology tools that are equipped with visualisation features and have 

potential to enhance the teaching and learning of mathematics is GeoGebra (www.geogebra.org).  

  

http://www.geogebra.org/
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2.5  GEOGEBRA  

2.5.1 Use of GeoGebra as a visualisation tool to teach mathematics 

The developments of technology applications such as drill-practice software, Computer algebra 

System (CAS) and Dynamic Geometry Software (DGS), have been comprehensive. In the last two 

decades DGS has been developed for both algebra and geometry. Among the software developed 

is GeoGebra (www.geogebra.org). 

Created by Markus Hohenwarter in 2001 for his master’s thesis study at the University of Salzburg, 

Austria and initially designed for students’ use for algebra, geometry and calculus, GeoGebra has 

been developed to include statistics, probability, vectors, complex numbers and spreadsheets, and 

it is increasingly being used both as a learning and teaching tool. The functionality of DGS enables 

users to work with points, vectors, segments and lines, while the capabilities of CAS enables 

dynamic manipulation of coordinates and equations. These two characteristics of GeoGebra 

provide its default screen with two windows in which each object in the geometry window 

corresponds to an object in the algebra window, and vice versa, (Hohenwarter & Jones, 2007; 

Hohenwarter & Fuchs, 2004) It allows diverse representations of mathematical objects where 

points, vectors, lines, conic sections and functions can be graphed and modified dynamically. 

GeoGebra is a DMS designed for teaching and learning mathematics from kindergarten to tertiary 

education. The software combines the ease of use of a DGS with features of a CAS, and therefore, 

allows for bridging the gap between the mathematical disciplines that include geometry, algebra, 

vectors, statistics, and calculus (Hohenwarter et al., 2007). GeoGebra can be used to visualise 

mathematical concepts as well as to create instructional materials. It also has the potential to foster 

active and student-centered learning by allowing for mathematical experiments, interactive 

explorations and discovery learning. Additionally, it is user friendly for beginners and has an easy-

to-use interface for both students and teachers (Dikovic, 2009).  

Unlike other technological tools which are equipped with only one of the features of DGS or CAS, 

GeoGebra has the added advantage of being equipped with both DGS and CAS, therefore making 

it easy to show synchronous multiple representations algebraically and graphically.  

Its unique characteristic of establishing a relationship between geometry and algebra in one 

interface makes it more relevant and practical to the mathematics curriculum (Hohenwarter & 

http://www.geogebra.org/
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Jones, 2007). These attributes contributed largely to GeoGebra being adopted for this study, as 

calculus – the mathematical domain of this study – requires a coordination of algebraic and 

geometric concepts. By utilising DGS and CAS synchronously, DGS enables users to work with 

points, vectors, lines segments, and conic sections, while CAS is used to enter functions and 

equations algebraically. The data entered can be modified dynamically where necessary in the 

GeoGebra interface, a task which would not be easily undertaken using the conventional method 

of ‘pencil and paper’.  

GeoGebra can be used by both teachers and by students. Teachers can use it for instructing their 

students while students can use it for solving tasks. Findings from research indicate that students 

benefit from visualisations during demonstrations (Drijvers al., 2010). This is one major reason 

for teachers to use GeoGebra. Systematic use of the visualisation features of GeoGebra can help 

students to explore, solve problems, receive prompt feedback and to engage in reasoning (Jones et 

al., 2009; Hohenwarter & Jones, 2007; Tatar & Zengin, 2016). Kadunz concurs with this and states 

that “[o]ne of the most powerful and widely recognised didactical components of dynamic 

mathematics software is visualisation” (Kadunz, 1998, p. 198)).  

Many studies have shown that DMS supports reasoning, problem solving and the development of 

conceptual understanding (Bu et al., 2010). During problem solving, students need clear reference 

to mathematical concrete objects, such as visual representations like geometric figures, graphs and 

algebraic expressions, (Sedig, 2015). GeoGebra enables students to create mathematical objects, 

which can be displayed in multiple representations. The representations are dynamically linked, 

so that if anything is altered, for instance in an algebraic representation, the graphical 

representation will accordingly adjust. Unlike in the use of pen and paper, GeoGebra accords 

students opportunities to construct supporting mathematical objects from direct instructions and to 

investigate relations between different representations and properties. Ultimately, through frequent 

interaction with the software during problem solving, students may construct a method to solve 

the problem (Villarreal & Borba, 2010).  

The software enables visualisations of mathematical concepts and multiple representations. This 

attribute enables the users to create activities with multiple representations of mathematical 

concepts that are linked dynamically (Zengin et al., 2012). To effectively engage in problem 

solving and reasoning, students require visual mathematical representations for reference, for 
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example algebraic expressions, graphs and geometric figures, (Tatar & Zengin, 2016). GeoGebra 

may be used to explore, construct and manipulate representations, for example, the calculus 

functions and their derivatives and integrals. When a mathematical expression is entered in 

GeoGebra, and its representation is automatically displayed, GeoGebra can adjust it in either the 

algebraic or the corresponding graphical representation (Preiner, 2008). Thus, as students engage 

in problem solving, they can use GeoGebra to make their ideas visual, confirm or falsify their 

assumptions, and to obtain immediate feedback. Additionally, GeoGebra is equipped with tools 

that students may use to examine the visual representations and to explore mathematical processes, 

relationships and properties. Furthermore, GeoGebra takes care of time-consuming constructions 

such as graphs. By using tools like sliders and drag-and-drop, students can easily construct 

variations of a graphical representation that can be used to generalise and explore concepts (Arcavi, 

2000; Marrades & Gutiérrez, 2000). While it is appreciated that representations like graphs or 

geometric figures could also be constructed using pen and paper, however, the accuracy and speed 

with which the dynamic software enables students to construct multiple representations, to explore 

the dynamic representations, and to receive immediate feedback on their actions is not easy to 

accomplish with pen and paper. Research has furthermore revealed that the exploration, 

construction and the use of feedback is very beneficial to students. For instance, since GeoGebra 

takes care of time-consuming procedures like the drawing of graphs, students have more time to 

concentrate on other more cognitive aspects like reasoning and problem solving (Heid and 

Edwards., 2001; Zazkis, 2016). The way students use GeoGebra to explore various mathematical 

prosperities, processes, and relationships has shown to support their reasoning and their problem 

solving.  

As students interact with GeoGebra and plan for the next step in their problem-solving process 

they need to engage in reasoning. Similarly, to construct a mathematical activity to submit to 

GeoGebra, students need to consider relations between concepts and mathematical properties 

(Drijvers et al., 2010; Olsson, 2017). Such interaction with GeoGebra may encourage students to 

predict the outcome of a computer activity. Research has revealed that students who engage in 

predictive reasoning are more efficient in reasoning generally (Lee et al., 2015). This potential of 

GeoGebra to support students’ reasoning and problem solving could be used as a justification to 

include GeoGebra in a didactic design that expects students to take an explorative approach to 

solving tasks. 
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In summary, positive impacts of GeoGebra in mathematics include: enhancing mathematics 

teaching; conceptual development; enriching visualisation of concepts; laying a foundation for 

analysis and deductive proof; creating opportunities for creative thinking; and providing easy 

access to multiple representations of mathematics content (Hohenwarter & Fuchs, 2004; 

Hohenwarter & Jones, 2007; Hohenwarter & Lavicza, 2013; Ocal, 2017).  

2.5.2 Teaching calculus using GeoGebra  

With the pervasiveness of technology in almost all aspects of life globally, there is a notable 

increased use of computer software in the teaching and learning process. The integration of 

technology into the curriculum has availed the classroom to accommodate more flexible teaching 

methods that result in more engagement of students’ learning processes, and in the changing roles 

of the teacher and the student. Consequently, the technology-backed learning environment has 

enhanced the learning process, and enabled students to access information, communicate with one 

another in real time and develop applications that make learning an active process. 

In mathematics education, research has revealed that the use of technology has the potential to 

contribute to mathematical problem solving and develop creative thinking skills that can 

significantly contribute to mathematical reasoning and thinking (Tatar & Zengin, 2016). 

According to Samuels (2010) and Jaworski (2010), calculus is the starting point of higher 

mathematical thinking, and the limit function is the main concept of calculus. He argues that 

students often face difficulty in understanding the concepts of calculus and limit, but he emphasises 

that these are the foundation for all standards of modern analysis, and also form the basic 

conventional pedagogy in the introduction of calculus.  

Researchers Zazkis (2016) and Aspinwall & Miller (2001) contend that in order for students to 

construct deep understanding of mathematical concepts, both analytic and visual reasoning must 

be present and integrated. Despite the significance given to visual thinking in understanding 

mathematics, Dreyfus & Eisenberg (1990) concluded that calculus students have a strong tendency 

to think analytically rather than visually. The use of dynamic software in calculus teaching helps 

make the learning of abstract concepts easier (Tatar & Zengin, 2016). Research has shown that 

technology use in teaching some mathematics content is more effective than traditional teaching 

methods (Zengin et al., 2012; Ross and Bruce, 2009; Reis, 2010). 
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Calculus is conducive to technology-aided learning environments in that its visualisation features 

and versatility offered by GeoGebra suits exploration. Therefore, teaching strategies for 

fundamental concepts of calculus should take advantage of GeoGebra’s dynamic and visualisation 

characteristics and the concepts of change, movement and relationships in calculus. The software’s 

versatile capabilities can help presentations of calculus content in a manner that promotes 

‘meaning making’. One of the uses of GeoGebra in calculus is to enable the user to investigate the 

parameters of the equation of a curve using a mouse to drag the curve and observe the equation 

change, and conversely to change the equation of the curve directly and observe the change of the 

objects in the geometry window (Hohenwarter & Jones, 2007).  

Sabella and Redish (2007) recount that the use of the technological tools for performing the 

procedures of calculus and algebra can free students from routine tasks, to concentrate more on 

exploring the underlying concepts. They elaborate that learning in a technology-supported 

environment may be more effective in promoting students' understanding of concepts of calculus. 

They added that:  

Topics in mathematics which lend themselves to computer implementation, have visual 
aspects which can be well represented on a computer screen; have transformational aspects 
which necessitate a dynamic implementation; have technical computational aspects which 
are not very relevant to the essence of the topic and are thus better being taken care of by 
the computer; and are intimately connected to the relationship between two different 
representations of the same concept; which can be dealt with in parallel by the computer 
program. (p. 7) 

Bu et al. (2010) reaffirmed that:  

without having to spend a significant amount of classroom time on drawing figures, 
objects, or functions, students can explore mathematical concepts and dynamically connect 
algebraic, graphic and numeric representations of these concepts. (p. 25)  

Tall (2009) reiterates that “the use of the computer as a tool for performing the procedures of 

calculus and algebra can free students to explore applications. The course can then de-emphasise 

skills and concentrate on the underlying concepts” (p. 14). In the study of definite integrals, Kendal 

and Stacey (2003) revealed that visual-spatial abilities play a crucial role in finding the volume 

formed by the curves of the objects and the area between curves. They added that spatial 

visualisation ability has an influence on the use of multiple representations in problem solving 

involving definite integrals.  
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A study was conducted by Engelbrecht et al. (2005) to elicit the opinions of teachers on using 

GeoGebra to teach definite integrals with a focus on the Riemann’s sum. The findings showed that 

GeoGebra facilitates visualisation of lessons as the visual representation of the Riemann sums 

helped students’ internalisation of concepts. They added that it facilitated a grasp of concepts, 

increased retention, enabled manipulation, fostered conceptual learning, and minimised 

memorisation. The study further revealed that the use of the software fostered the recognition of 

conceptual learning in the relationship between lower sum, upper sum and Riemann sums. The 

teachers indicated that the method was motivating, interesting, fun and facilitated concretisation 

of concepts. In affirmation, a participating teacher acknowledged “in particular, dynamic software 

keeps mathematics away from abstraction and helps to visualise the concept, which positively 

contributes to achievement in understanding the concept of definite integrals” (p. 31). Furthermore, 

Zengin et al., (2012) noted that the software enhances visuality and assists learners to discern the 

relationships between mathematical concepts. The examples below illustrate how GeoGebra can 

be used to enhance understanding of the concepts of slope in derivatives, and area under a curve 

in definite integrals.  

Example 1: In differential calculus, the graph of the general polynomial function,  

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 can be created in the GeoGebra interface and setting sliders, 

𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 from -10 to +10 for the minimum and maximum values respectively. GeoGebra can 

be used to make visual the underlying mathematical meaning attached to the constants of a 

polynomial, as well as explore the concept of the slope of the tangent by simply changing the 

values of the parameters, 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑. Students will be able to observe synchronously the changes 

made to the graph and to the equation in the geometric and algebraic views respectively, as shown 

in Figure 2.1. Such illustrations can motivate students to explore further.  
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Figure 2.1: The cubic function drawn with the aid of GeoGebra 

Example 2: (Adapted from Sanella, 2008)  

GeoGebra can be used in the example below, (see Figure 2.2) to investigate some concepts on the 

definite integral using the Riemann sum. By writing the general equation 𝑓(𝑥)= 𝑎𝑥3 + 𝑏𝑥2 +

𝑐𝑥 + 𝑑 and using sliders from 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 from -5 to +5 in the input bar of the GeoGebra 

window, and using the lower sum command of (𝑓, 𝑎, 𝑏, 𝑛) a dynamic worksheet is obtained.  



54 
 

 

Figure 2.2: The Riemann sum visualisation using GeoGebra 

The Riemann sum visualisation using GeoGebra 

By dragging the endpoints 𝑎 and 𝑏 of the intervals with the mouse, learners can observe the 

characteristics of the rectangles of the lower and upper sums and discuss their observations with 

colleagues. Additionally, by moving the slider with the mouse, they can change the number of 

rectangles 𝑛, observe the effect of the difference between the lower and upper sum, write down 

their conjectures and discuss the results. Finally, by changing both the interval endpoints 𝑎 and 

𝑏 and the number of rectangles 𝑛, they can investigate further and gain deeper insights into 

underlying concepts of the definite integral.  

However, teachers are cautioned that technology should not just be used for its own sake, but 

should be used judiciously. From my experience, in most learning institutions, typical uses of 

technology tend to simply complement conventional teaching instead of making underlying 

changes to the dominant teacher-centred instructional paradigm.  

Despite the potential of GeoGebra to enhance students’ learning of mathematics including 

visualisation, manipulation and exploration of geometrical figures and mathematical concepts, 

lecturers in TEIs in Zambia hardly use GeoGebra for teaching. This is despite GeoGebra being a 
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free open source software, with a lot of potential to enhance teaching and learning of mathematics. 

Unlike other software, GeoGebra does not require any licence fees, and is therefore well suited to 

low-income countries such as Zambia. Against this background, during a joint presentation with 

my students on GeoGebra at the 2018 Zambia Association of Mathematics Education (ZAME) 

national conference, teachers, lecturers and administrators showed overwhelming enthusiasm to 

learn how to use GeoGebra. Furthermore, having been a teacher and teacher educator for over 

three decades in Zambia, I have come to realise that one of the challenging topics both in secondary 

schools and TEIs is calculus. Calculus is a topic which emphasises rates of change and the 

relationship of one quantity with another quantity. Teaching strategies for fundamental concepts 

of calculus should take advantage of GeoGebra’s dynamic and visualisation characteristics and 

the concepts of change, movement and relationships in calculus. The software’s versatile 

capabilities can help presentations of calculus content in a manner that promotes ‘meaning making’  

(Caligaris et al., 2015). I was therefore motivated to undertake this study due to the overwhelming 

desire shown by teachers and lecturers to learn how to use GeoGebra and the students’ poor 

performance in calculus at both secondary school and in TEIs. Additionally, calculus lends itself 

well to exploration using the features of GeoGebra.  

This study locates itself in TEIs and investigates lecturers’ experiences and perceptions of 

incorporating GeoGebra as a visualisation tool to teach calculus to undergraduates in TEIs. It also 

investigates the factors that enable and constrain lecturers’ adoption of technology in teaching. 

The findings of this study may contribute to literature on good practices of teaching calculus. The 

findings may also guide and provide a basis to design appropriate instructional materials for the 

consolidation of the Teaching and Learning Mathematics with GeoGebra (TLMG) project for 

quality teacher professional development in the use of GeoGebra for mathematics teachers, with 

a view to incorporating GeoGebra in the Zambian teacher education curriculum. 

2.6  MATHEMATICAL PROFICIENCY  

2.6.1 Conceptual understanding and procedural knowledge 

Proficiency in teaching mathematics, according to Kilpatrick et al. (2002), relates to effectiveness 

and consistency in helping students learn mathematical content that is meaningful. Kilpatrick et 

al. (2002) used the term ‘mathematical proficiency’ to describe what they considered was 

necessary for a person to learn mathematics successfully. They reiterated that teaching for 
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mathematics proficiency encompasses “focusing on the interactions between teachers and students 

around educational materials and how teachers develop proficiency in teaching mathematics” (p. 

48). They identified five strands essential for developing mathematics proficiency, namely: 

conceptual understanding; procedural fluency; strategic competence; adaptive reasoning and 

productive disposition (p. 330). An important aspect about the five strands is that though itemised 

separately, they are interwoven and interdependent, and therefore represent different aspects of a 

complex whole of developing proficiency in mathematics. Notwithstanding the importance of all 

the five strands of mathematics proficiency to the learners’ understanding of mathematics, this 

study will only focus on the first two strands: conceptual understanding and procedural fluency, 

based on their relevance to the study and their important implications to teaching. Kilpatrick et al. 

(2002) suggest that mathematical proficiency requires similarly interrelated components that 

include conceptual understanding of the core knowledge of mathematics and procedural fluency 

in carrying out instructional procedures. 

Several studies in mathematics teacher education are in agreement that the hallmark of the reform 

processes in mathematics education is teaching mathematics for understanding (Cockroft, 1982; 

(NCTM, 2000). Ball and Bass (2000) appreciate this view, but cautions that teaching mathematics 

for understanding is a complex process that calls for considerable review of content and 

pedagogical knowledge. Kilpatrick et al. (2002) refer to conceptual understanding as “an 

integrated and functional grasp of mathematical ideas” (p. 42). They explain that students with 

conceptual understanding know more than isolated facts and methods. They understand the kinds 

of contexts in which a mathematical idea is useful and why the idea is important. Such students, 

they add, organise their knowledge coherently, which enables them to learn new ideas by 

connecting them to their prior knowledge.  

The connection between facts and methods learned with understanding plays a critical role in the 

acquisition of conceptual knowledge. This connection helps in retention and construction of 

knowledge (Ball & Bass, 2000). An important indicator of conceptual understanding, suggest 

Kilpatrick et al. (2002), is the ability to interpret mathematical concepts in multiple representations 

and knowing how the multiple representations can be useful in different situations. These multi-

representations could be in visualisation features such as diagrams, symbols or computer graphics. 
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In mathematics education, understanding connections between similarities and differences 

between various connections is an important aspect. “The degree of students’ conceptual 

understanding is related to the richness and extent of the connections they have made” (Kilpatrick 

et al., 2002, p. 122). Knowledge anchored on conceptual understanding provides a strong basis for 

solving new and unfamiliar problems and generating new knowledge. In a study by Mhlolo and 

Schafer on learners’ responses in geometric tasks in South Africa, it was observed that when 

solving mathematics tasks, learners erroneously made connections based on subjective 

impressions. The study revealed that geometrical problems required both visual and conceptual 

understanding (Mhlolo & Schafer, 2013).  

Kilpatrick et al. (2002) are of the view that “when learners have acquired conceptual understanding 

in an area of mathematics, they see the connections between concepts and procedures and can give 

arguments to explain why some facts are consequences of others” (p. 119).  

On the other hand, “[p]rocedural fluency refers to knowledge of procedures, of when and how to 

use them appropriately, and skills in performing them flexibly, accurately, and efficiently” 

(Kilpatrick et al., 2002). Procedural knowledge is demonstrated Engelbrecht et al. (2005) by 

learners’ ability to solve a problem through the manipulation of mathematical rules, skills, 

formulas, algorithms, procedures and symbols used in mathematics.  

Engelbrecht et al. (2005) observed that mathematics teaching at almost all levels of education tends 

to be generally procedural. The common trend, he adds, is that most students enter university with 

well-developed skills for manipulation but with little exposure to deeper conceptual understanding. 

This often leads to students being proficient in procedural ways of thinking but lacking sound basic 

concepts of mathematics. He observes that from a teachers’ perspective, communication systems 

for calculus and other mathematics topics in schools tend to follow the procedural approach to 

teaching mathematics and not laying much emphasis on the conceptual base. Affirming this view, 

Aspinwall and Miller (2001) recount that “students regard computation as the essential outcome 

of calculus and thus end their study of calculus with little conceptual understanding” (p. 17). Figure 

2.3 below illustrates the difficulties students encounter in solving problems on derivatives and 

integrals. 
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Figure 2.3: Difficulties in Solving Derivative and Integral Problems – adapted from Hashemi et al. (2015) 

From a technology perspective, the NCTM (2000) emphasises that the use of appropriate 

technology is key to developing students’ conceptual understanding of mathematics sense-making 

(p. 25). Research indicates that learning environments that foster conceptual understanding 

through multiple representations could be created through the use of technology. They argue that 

technology provides students with many opportunities to learn abstract concepts based on 

individual learning styles and interests (Alacaci & McDonald, 2012; Özgün-Koca & Meagher, 

2012; Meagher & Edwards, 2011).  

Kilpatrick et al. (2002) emphasise that to acquire mathematics proficiency, a close link between 

conceptual understanding and procedural fluency needs to be taken into consideration. In their 

study, Miller and Upton (2008) discovered that graphical representations link more appropriately 

with conceptual understanding. By contrast, symbolic expressions, they assert, lend themselves to 

procedural operations. Such representations, explain Kay and Knaack (2008), can concretise 

abstract concepts if undertaken with a sound pedagogical approach. GeoGebra is a tool that 
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possesses features to represent mathematical concepts symbolically and graphically and is 

therefore well suited for mathematics pedagogies that foster conceptual understanding and 

procedural fluency. It can therefore be argued that successful teaching of mathematics requires a 

combination of both conceptual understanding and procedural fluency.  

Among the reasons for teachers’ use of GeoGebra in mathematics classrooms is to make students 

learn mathematics conceptually and meaningfully (Ocal, 2017). Research in mathematics 

education indicates that effective use of GeoGebra supports and has a positive impact on students’ 

conceptual understanding and performances in a variety of mathematics topics including calculus 

(Aydos, 2015; Tatar & Zengin, 2016; Tekin et al., 2021).  

Aspinwall and Miller (2001), Mahir (2009) and Tatar and Zengin (2016) have reaffirmed that one 

of the major reasons for students experiencing challenges in learning calculus emanates from 

inadequate conceptual knowledge. This is exacerbated by the students’ perception that 

computations done in solving calculus questions is the ultimate goal in calculus courses, thus their 

focus is mainly on procedural knowledge (Nedaei et al., 2021).  

In a study conducted by Tatar and Zengin (2016) to determine the impact of GeoGebra software 

on the achievement of pre-service secondary mathematics teachers in their conceptual 

understanding of definite integrals, it was discovered that GeoGebra software: 

… facilitates visualisation in lessons, enables a better grasp of concepts, increases 
retention, provides an environment of conceptual learning instead of memorisation, and 
enables practicing; in particular, it was recognised as enabling conceptual learning of the 
relationship between lower sum, upper sum, and Riemann sums. (p. 122)  

Additionally, Tatar and Zengin (2016), in their study on first grade university students’ discovered 

that conceptual understanding on the definite integral was significantly higher in the experimental 

group where the mode of instruction was done with GeoGebra. Similarly, Aydos (2015), 

conducted an investigation into the influence of teaching mathematics with GeoGebra on 

secondary school students’ conceptual understanding of continuity and limits. The findings 

revealed that the students in the experimental group that received intervention with GeoGebra 

performed significantly better in the test that measured their conceptual knowledge than those who 

received conventional instructions. From these findings, it can be deduced that teaching the 

application of derivatives and integrals with the help of GeoGebra has the potential to impact 

positively on students’ achievement regarding their conceptual knowledge. This development can 
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be attributed to the nature of the topic – calculus – coupled with the characteristics of GeoGebra. 

Rasslan and Tall (2002) attest to this notion and affirm that the concepts in calculus are abstract – 

which may require students to deal with formal proofs and definitions.  

Though the above studies were done using the pre- and post- experiment methods, this study takes 

a qualitative approach and focuses on the perceptions and experiences of teacher educators as they 

incorporate GeoGebra as a visualisation tool to teach calculus in TEIs to pre-service teachers.  

2.7 THEORETICAL FRAMEWORK 

2.7.1 Constructivism 

Different researchers have acknowledged the complexities of integrating technology into learning 

and teaching (Angeli and Valanides, 2009; Artigue, 2019; Drijvers et al., 2015; Niess, 2011 and 

Gueudet & Trouche, 2011). The complexities of integrating technology in teaching and learning 

have led researchers to advocate for various models of integrating technology in mathematics 

education. Some researchers like Wang, (2008) proposed a generic model, consisting of social 

interaction, pedagogy and technology, while others, eg Margaret and Happiness (2019) proposed 

a framework that guides and describes the process of teachers’ learning as they develop their 

model. Christou et al. (2006) affirm that sound theoretical frameworks with reliable innovative 

reference models are indispensable in informing the design of technology-oriented learning 

environments.  

The umbrella theoretical framework for this study is constructivism (Piaget, 1967; Cobb, 2016). 

This study also draws on two key theoretical models on the integration and adoption of ICT in 

teaching and learning: technological pedagogical content knowledge (TPACK), Mishra & 

Koehler, 2006), and the technology acceptance model (TAM), (Davis, 1989). These theoretical 

perspectives offer insight into the factors that influence teachers to adopt and integrate 

technologies in general and ICT in particular. These perspectives touch on crucial insights that 

could not have been achieved by reliance on a single perspective. These models will widen the 

scope of inquiry and pool the issues learned from research that spans methodologies and 

disciplines, and thus provide insights that may help to extend the depth of understanding of the 

integration and adoption of ICT in teaching and learning.  
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The constructivist theory has been very prominent in past research on mathematics learning and 

teaching and has provided a basis for many recent reforms in mathematics teaching (Cobb, 2016). 

In the recent past, the constructivist approach to teaching was central to empirical and theoretical 

research in mathematics education (Cobb, 2016; von Glasersfeld, 1987; Confrey & Kazak, 2006). 

Constructivism is an epistemological and a philosophical approach which describes learning as a 

change in meaning that is constructed from experience (Ottenbreit-Leftwich et al., 2018). 

Constructivism places learners at the centre of the learning process. It holds that knowing is a 

process of actively constructing and interpreting individual knowledge representations. A concern 

for a lived experience as experienced and understood by the learner is the core of constructivism.  

Roblyer and Doering (2015) contend that in a constructivist environment, knowledge is 

constructed by learners through experience-based activities as opposed to direct instruction which 

is based on behaviourist and information-processing models of learning. It is concerned with how 

learners construct knowledge. One of its main tenets is that human beings construct knowledge of 

the world from their experiences and perceptions, which are mediated through previous knowledge 

and acknowledge the existence of the external reality (Confrey et al., 2010).  

The constructivist environment accords learners an opportunity to give meaning based on their 

experiences, socially or individually (Fox, 2010; Narayan, 2016). Barak (2017) explains that 

constructivism postulates that knowledge is not transferred to the student, but constructed by a 

student. The students are therefore not blank slates, as they bring prior knowledge and experiences 

to the learning situations. The experiences and prior knowledge can be integrated into the new 

knowledge that students construct and make an impact (Merriam et al., 2007). On the contrary, in 

a more traditional, teacher-centered classroom, information transfer is prevalent, and students are 

less likely to be engaged as the meaning is in most cases interpreted on their behalf by the teacher. 

Olofson et al. (2016) reminisces that there should be interaction among learners and knowledge of 

prior social experiences for knowledge to be constructed. Recent efforts to integrate technology 

into the process of teaching and learning in the classroom have been within a constructivist 

framework.  

The two constructivist perspectives that have dominated research on technology in mathematics 

education are radical constructivism and social constructivism. Cobb (2016) argues that social and 

radical constructivism cannot be separated since they complement each other. Both perspectives 
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share the common epistemological assumption that knowledge or meaning is not discovered, but 

rather constructed by the human mind. Knowledge is invented or actively created by the learner 

and not passively received from the environment (Cobb, 2016). Students, therefore, need to 

construct their own understanding of mathematical concepts. There are, however, some differences 

between radical and social constructivism. The major difference between the two is centred on 

knowledge construction. Despite both perspectives having the same general view of how 

individuals learn or construct knowledge, they differ with respect to the mechanisms they see at 

work.  

Radical constructivism is associated with von Glasersfeld, whose thinking was greatly influenced 

by the theories of Piaget. Von Glasersfeld (1987) defines radical constructivism based on the 

conceptions of knowledge. He assumed that external reality cannot be known and that the learner 

constructs knowledge ranging from observations to scientific knowledge. He focuses on individual 

learners and pays little attention to the social processes in knowledge construction. Radical 

constructivists take a cognitive perspective and argue that students must discover knowledge by 

themselves without explicit instruction. Its focus is on the individual’s construction of knowledge. 

Olofson et al., (2016) are of the view that even though social interaction is seen as an important 

aspect in radical constructivism, the focus is on the reorganisation of individual cognition. 

However, this research is anchored in the social constructivist theoretical perspective, with 

particular emphasis on the social construction of knowledge through the mediation of technology. 

The social constructivist perspective influenced the selection of a constructivist epistemology 

which assumes that intellectual development is preceded by learning through mediated 

transactions and that social interaction plays a vital role in the children’s acquisition of knowledge 

(Kalina & Powell, 2009; Wertsch & Rupert, 1993; Ernest, 1994; Narayan, 2016, and Gurung, 

2019).  

The social or realist constructivist theory is often said to derive from the works of Vygotsky. 

Ernest's (1994) opinion was that the social constructivist theory acknowledges that both individual 

sense and social processes have an essential part to play in the learning of mathematics. 

Notwithstanding the varied views among social constructivist theorists, they all subscribe to the 

idea that the social environment plays a central role in learning. They believe that learners are to 

be enculturated into their learning community and appropriate knowledge through their interaction 
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with the environment. Students are therefore encouraged to construct their own understandings 

through social negotiation and validation of new perspectives (Ertmer & Newby, 2013).  

Social constructivist pedagogy emphasises teaching approaches that focus on concepts and 

contextualisation as opposed to instructing isolated facts (Brooks & Brooks, 1999). The theory 

also gives credence to students’ social interaction with peers and the teacher and suggests that 

student’s preferred learning styles should be given consideration (Palincsar, 1998; Kolb & Kolb, 

2019). Research further suggests that students who adopt constructivist approaches to learning 

mathematics tend to follow a conceptual approach in solving problems, while those who follow 

traditional teaching approaches tend to incline more to procedural approaches (Summit & 

Rickards, 2013). Constructivist approaches are considered to be cardinal to deeper understanding 

and internalising concepts (Narayan, 2016). Fosnot and Perry (2005) emphasise that the 

constructivist approach focuses on a holistic view of learning mathematics, and on deep 

understanding and strategies, rather than rote memorisation. 

Mvududu and Thiel-Burgess (2012) claim that constructivism is touted as an approach where 

learners’ levels of understanding are probed, with a view to increase their understanding to higher 

level thinking. Constructivism attempts to explain how students can make sense of concepts and 

also how the concepts can be taught effectively. Goodwin and Webb (2014) affirm that 

constructivism changes the learners’ roles to that of active participants in the learning process from 

that of passive recipients of knowledge. This has the potential to enable learners to become 

involved in applying their existing knowledge and real-life experiences, learn to test their 

conjectures and in due course assess their findings.  

Social constructivism considers learning as a collective process through which people learn by 

interacting with signs, artefacts, peers and adults (Goos, 2014; Galbraith et al., 2001). It focuses 

on how individuals construct knowledge and make sense of their world. From a technological 

perspective, social constructivists argue that the formation of learning requires the use of 

technology and symbolic tools to act as mediators of knowledge acquisition (Artigue, 2019).  

Vygotsky, a key proponent of social constructivism, focused on the social factors that influence 

learning. Digital technology, which has significantly changed the learning environment from what 

Vygotsky originally conceived it to be, did not exist in Vygotsky’s days. However, the introduction 

of technology compelled some researchers (Ridgway, 2016; Verillon & Rabardel, 1995) to revisit 



64 
 

Vygotsky’s socio-constructivist theories with a view to reconceptualise them in line with the 

emerging research field of technology, by starting to infuse technology where appropriate into 

mathematics education (Simsek & Clark-Wilson, 2018).  

Jonassen (2019) contends that in a constructivist-learning environment, students use technology 

to explore relationships and manipulate data. He further suggests that, in their quest to respond to 

tasks and challenges that come from actively engaging in mathematics problems and 

environments, learners form models that construct mathematical knowledge. This implies that 

learners do not simply take in information. According to Lerman (1989), “constructivism is 

defined by a widely accepted hypothesis which states that knowledge is actively constructed by 

the cognising subject, not passively received from the environment” (p. 211). 

The fast-increasing developments in technology have led to new dimensions to necessitate 

technology inclusion within the domain of cultural artefacts accessible in mathematics learning 

environments. Crawford (2016) considers technology as cultural artefacts that teachers and 

students can use to mediate and internalise mathematics learning. 

The social constructivist perspective adopted for this study entails understanding how interaction 

with GeoGebra as a visualisation tool can enhance the teaching of calculus. Kaptelinin (2005) 

argues that by understanding the ways in which people use an artefact and the needs it serves, the 

nature of an artefact can be understood within the framework of human activity. They further state 

“… technology is just another artefact that mediates the interaction between learners and their 

learning environment, but it has the potential to empower the individual learner to develop 

cognitive structures” (Kaptelinin, 2005, p. 56).  

The need for social interactions (Cobb et al., 2015), is underscored, owing to the fact that 

mathematical meanings are socially constructed and culturally situated. For instance, some major 

developments of mathematics, such as the history of the derivative, reveals that they were in 

response to the needs of the specific generations and the ideas were influenced by society. On the 

basis of this, mathematics teaching must contextualise, as much as possible, the mathematical 

concepts being taught. Ernest (2006)) surmises that mathematics cannot be understood outside its 

history.  
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Constructivism provides mathematics education with insights on how students learn mathematics. 

It also guides various stakeholders on how to use instructional strategies that begin with children 

rather than adults or teachers (Fosnot & Perry, 2005). In their description of constructivist 

compatible instruction, Zbiek et al. (2007)) noted that it stems from the theory of learning that 

suggests that understanding arises through prolonged engagement of the learner in relating new 

ideas to the learner’s own prior beliefs.  

Constructivist approaches generally utilise student-centred methods in mathematics instruction 

and encourage students to search for information that stimulates thinking (Mokhtar et al., 2013). 

Lecturers in TEIs should therefore strive to use technology to foster student-centred methods as 

they teach pre-service students. Utilisation of student-centred methods in mathematics instruction 

has been reported to have positive effects on student learning, which includes an increase in 

students’ interest in the subject and their success rate, an increase in students’ appreciation of the 

role of mathematics in life and the motivation to learn mathematics and realise its applicability 

(Ruggiero & Mong, 2015; Edwards & Ward, 2008). Research has also revealed that in general, 

student-centred approaches enhance students’ motivation in learning mathematics.  

Constructivist teaching beliefs are more likely to adopt learner-centered teaching methods and are 

inclined to innovation in instruction approaches compared to the teachers that hold conventional 

teaching beliefs. Furthermore, Tondeur et al. (2008) point out that teachers who embrace high 

constructivist beliefs in their pedagogies actively use ICTs more compared to those with low 

constructivist beliefs.  

The constructivist approach to teaching accords a teacher an opportunity to examine learning from 

the child’s perspective (Olivier, 1989). Misconceptions therefore form an important entry point for 

teaching. For instance, students learning about definite integrals in a context that involves area 

under the 𝑥 − axis would develop a misconception that the numerical value for area can be 

negative. Such misconceptions (Bell, 1993), should be challenged by the use of counterexamples. 

Appropriate use of GeoGebra can help mitigate such misconceptions. Almeida (2010) further 

points out that teaching is more effective if it focuses on challenging, identifying and ameliorating 

the misconceptions. From a constructivist perspective, students should be given authentic tasks 

that allow them to observe, experiment, explore, make conjectures and construct generalisations. 
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In specific reference to mathematics teaching and learning, Cobb (1988), a constructivist 

proponent, states that: 

A fundamental goal of mathematics instruction should be to help students build structures 
that are more complex, powerful, and abstract than those that they possess when instruction 
commences. The teacher’s role is not merely to convey to students’ information about 
mathematics. One of the teacher’s primary responsibilities is to facilitate profound 
cognitive restructuring and conceptual reorganisaisation. (p. 89)  

This resonates with what students, teachers and lecturers need in the ‘Teaching and Learning 

Mathematics with GeoGebra (TLMG) project’ in Zambia – to have a deeper, conceptual 

understanding of mathematical concepts in calculus and other mathematics topics. Learners can 

be supported in this by providing logical explanations to justify a generalisation. The software 

GeoGebra has the potential to undertake such tasks. Since GeoGebra provides learners with an 

opportunity to actively construct, experiment and explore mathematical concepts, it can be argued 

that tools within a GeoGebra interface can be utilised to facilitate such cognitive restructuring and 

conceptual reorganisation as espoused in a social constructivist perspective.  

2.7.2 Technological Pedagogical Content Knowledge (TPACK) 

A number of researchers in the field of technology integration in teaching and learning adopt the 

TPACK framework to explore the development of teacher knowledge about technology integration 

(Lee & Hollebrands, 2008; Mishra & Koehler, 2006; Harrington et al., 2019). Building on 

Shulman’s (1986) pedagogical content knowledge (PCK) framework, Mishra and Koehler (2006), 

developed the TPACK framework. This framework has emerged as a particularly important way 

of conceptualising research and practice in technology-driven classrooms (Koehler et al., 2014). 

They argued that teacher knowledge for technology integration is built on interaction among three 

domains of knowledge: content knowledge, pedagogy, and technology. TPACK describes the 

complexities and challenges of technology integration, informs strategies required to better prepare 

future teachers for learning and teaching in the 21st century and articulates the importance of 

teacher training (Koehler et al., 2017). Ruthven (2014) pointed out that the idea of TPACK draws 

attention to how the new technological resources reshape pedagogical knowledge, content 

knowledge and pedagogical content knowledge.  

Confrey et al. (2010) emphasised the importance of TPACK in understanding mathematical 

concepts and their inter-relationships, in order to effectively determine how these can be 
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represented within the mathematics software. They further stressed that teachers’ content 

knowledge is transformed in problem-solving contexts as well as in multiple representations of 

concepts. The focus of TPACK is on the knowledge teachers need to meaningfully teach with 

technology.  

One of the benefits of using TPACK is that it allows teachers to make thoughtful decisions about 

what technology best suits their teaching and students (Oberdick, 2015). Kopcha et al. (2014) 

elaborate that TPACK is a body of professional knowledge that teachers need to have in order to 

significantly incorporate pedagogy and technology into the content that they teach. Mishra and 

Koehler (2009) emphasise that: 

this professional knowledge is about effective teaching with technology, requiring an 
understanding of the representation of concepts using technologies; pedagogical 
techniques that use technologies in constructive ways to teach content; knowledge of what 
makes concepts difficult or easy to learn and how technology can help redress some of the 
problems that students face; knowledge of students‘ prior knowledge and theories of 
epistemology; and knowledge of how technologies can be used to build on existing 
knowledge to develop new epistemologies or strengthen old ones. (p. 9) 

The interaction of these bodies of knowledge, as shown in Figure 2.4, both theoretically and in 

practice, produces the types of flexible knowledge needed to successfully integrate technology use 

into teaching.  



68 
 

 

Figure 2.4: TPACK framework and its knowledge components 

The resulting knowledge components of TPACK are: Technology Knowledge (TK), Content 

Knowledge (CK), Pedagogical Knowledge (PK), Pedagogical Content Knowledge (PCK), 

Technological Content Knowledge (TCK), Technological Pedagogical Knowledge (TPK); and 

Technological Pedagogical Content Knowledge (TPCK) (Baran et al., 2011).  

The TPACK model is essential to this study as quality teaching with the help of technology 

requires thorough understanding of the complex relationships between technology, content and 

pedagogy. Teachers require TPACK to understand how to effectively use technology to present 

concepts in constructivist approaches. TPACK is considered an appropriate lens for the study of 
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mathematics teacher educators’ knowledge development as they work on GeoGebra tasks where 

the tasks are designed to advance both mathematics and technology knowledge. Since TPACK 

focuses on the knowledge of the teacher (Mishra & Koehler, 2009), it would help lecturers to make 

informed decisions about which topics can effectively be taught in a GeoGebra environment and 

in understanding the teaching and learning theories that are appropriate. As teachers create 

dynamic worksheets for their lessons using GeoGebra, they also synthesise their TPACK. Mishra 

& Koehler, (2009) argue that there is no perfect approach to integrate technology into the 

curriculum, claiming that the process is complex. It is therefore incumbent upon teachers to 

develop and understand this complexity in their quest for successful integration of technology into 

mathematics teaching. 

The TPACK framework is a criterion for effective integration of technology in education (Mishra 

& Koehler, 2006). These authors clarify that TPACK is the interaction of these bodies of 

knowledge, theoretically and in practice, to produce the types of knowledge needed to successfully 

integrate technology use into teaching. (Mishra & Koehler, 2006, p. 63) describe the seven 

knowledge constructs as follows: 

Content Knowledge (CK) is teachers’ knowledge about the subject matter that incorporates 
knowledge of theories, concepts, and organisational frameworks. It also includes 
knowledge of proof and evidence and established approaches and practices toward 
developing such knowledge.  

Pedagogical Knowledge (PK) is teachers’ knowledge about the processes, practices and 
methods of teaching and learning. It includes knowledge about techniques used in the 
classroom; the nature of the audience targeted, and strategies to evaluate students’ 
understanding.  

Technological Knowledge (TK) is the knowledge about different technologies and requires 
a mastery and thorough understanding of thinking about and working with technology.  

Pedagogical Content Knowledge (PCK) is knowledge of pedagogy that is appropriate to 
the teaching of specific content. It covers the fundamental aspects of teaching, learning and 
assessment. It includes issues that foster links among curriculum, pedagogy, and 
assessment.  

Technological Content Knowledge (TCK) is the knowledge about pedagogy needed to 
understand the specific technologies that are best suited to address the subject-matter when 
learning various domains. It also incorporates how content may dictate or alter the 
technology and vice-versa.  
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Technological Pedagogical Knowledge (TPK) is the knowledge needed for deep 
understanding of the affordances and constraints of technologies and the contexts within 
which their functions are applied.  

To sum up, TPACK is the intersection of the three domains of knowledge that teachers need to 

implement the curriculum while they support students’ learning with technologies for specific 

content. It is the desirable knowledge required for effective teaching with technology, demanding 

an understanding of the interactions among the three knowledge domains: content, pedagogy, and 

technology, based on the interrelation of these domains and their contextual parameters.  

In the context of my study, the TPACK framework constructs are defined as: CK is the teacher 

educators‘ knowledge about calculus including knowledge of concepts, theorems, symbols and 

graphs; PK is the teacher educator’s knowledge about the processes and methods of teaching and 

learning calculus; TK is the knowledge about GeoGebra that requires a deep understanding and 

mastery of effective ways of working with GeoGebra; PCK is knowledge of pedagogy that is 

relevant to the teaching of calculus; TCK is knowledge required to understand how GeoGebra is 

best suited to address the learning of calculus; TPK is knowledge needed for a thorough 

understanding of the affordances and constraints of using GeoGebra to teach calculus; and finally, 

TPACK is the knowledge required for teaching calculus with GeoGebra effectively. 

In view of the above, to understand TPACK well, there is a need to view the three knowledge 

domains as interrelated and not in isolation.  

2.7.3 Technology Acceptance Model (TAM) 

One of the most challenging issues in educational research is understanding why organisations 

accept or reject technological innovation (Luhamya et al., 2017). TAM (Davis, 1989) is an 

adaptation of the theory of reasoned action (TRA) (Ajzen & Fishbein, 1980), which explains 

factors that influence users’ acceptance of information technology. Technology acceptance, 

according to Masrom et al. (2009) is “an individual's psychological state about his or her voluntary 

or intended use of a particular technology” (p. 139). It is a model related to technology adoption 

and an empirically tested theory (Venkatesh & Davis, 2016). It is underpinned by a social 

psychological approach to explain the adoption of technology and the factors that influence 

individuals’ decisions to adopt technology in their work. It is a model that adapts the belief-

attitude-intention-behaviour relationship of the TRA to clarify users’ acceptance of technology. 
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The TRA operates on the premise that the intention to use a computer-driven technology is 

influenced by its users’ beliefs and perceptions (Ajzen & Fishbein, 1980). In the context of ICT in 

education, TAM has been perceived as useful by several researchers and as a strong determinant 

of user intentions (Venkatesh & Davis, 2016)). TAM provides one of the perspectives for 

understanding the integration and adoption of ICT in the teaching and learning process. It attempts 

to provide an explanation of the determinants of computer acceptance in general and user 

behaviour across a wide range of end-user technologies in computing.  

Research findings state that teachers’ attitudes towards ICTs have a strong influence on the 

acceptance of the usefulness of ICTs in their lessons and a bearing on whether teachers integrate 

ICTs into their classrooms (Teo, 2011; Huang & Liaw, 2005)). This is echoed by Cuban et al. 

(2001) who add that, other than beliefs, effective implementation of education reforms is also 

dependent on teachers’ knowledge, attitudes and skills. The significance of teachers’ contribution 

to this process is underscored by the NCTM (NCTM, 2000) in their declaration of the teacher 

being one of the six major factors in the effective use of new technology in mathematics education. 

Venkatesh et al., (2007) claim that “TAM currently enjoys the status of being the prime tool for 

testing user acceptance of new technologies'' (p. 139). It is underpinned by a social psychological 

approach to explain the adoption of technology and the factors that influence individuals’ decisions 

to adopt technology in their work. TAM theorises that an individual's behavioural intention to use 

technology is essentially determined by two beliefs: perceived usefulness and perceived ease of 

use (Davis et al., 1989). Perceived usefulness is the extent to which a person believes that using 

the system will enhance work performance, whereas perceived ease of use is the extent to which a 

person believes that using the system will be effortless (Davis et al., 1989). The full constructs of 

TAM are External variables, Perceived usefulness, Perceived ease of use, Attitudes towards ICT, 

Intention to use and Actual use ((Davis, 1989)), as shown in Figure 2.5. 
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Figure 2.5: Technology Adoption Model 

Ajzen (1991) explains that external factors in the TAM framework include institutional policies, 

beliefs about the environment such as support staff, infrastructure and access to ICTs. Internal 

factors, he adds, encompass skills, abilities and attitudes. In the context of ICT in education, TAM 

has been perceived useful by several researchers as a strong determinant of user intentions 

(Venkatesh et al., 2007).  

TAM contends that the attitude of the user towards use of technology for teaching and learning is 

very vital Hew and Brush (2007) concur with this view and elaborate that changing attitudes and 

beliefs about technologies are an important factor and should take precedence in teachers’ ability 

to integrate technology into teaching. These observations resonate with Ertmer (2005) who 

elaborates that “[I]f we truly hope to increase teachers’ uses of technology, especially uses that 

increase student learning, we must consider how teachers’ current classroom practices are rooted 

in, and mediated by, existing pedagogical beliefs” (p. 19). 

Tondeur et al. (2017a) point out that teachers who actively embrace constructivist beliefs in their 

pedagogies are more likely to adopt ICTs compared to those with low constructivist beliefs. 

Echoing this view, Ananiadou and Claro (2009) contend that teachers with constructivist beliefs 

use technology as a means to assist students to develop higher order problem-solving and thinking 

skills and to support students’ capacity to “apply knowledge and skills in key subject areas and to 

analyse, reason, and communicate effectively as they raise, solve, and interpret problems in a 

variety of situations” (p. 7). 
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Systems which are considered highly in perceived usefulness, are those in which users believe in 

the existence of a positive use-performance relationship. In contrast, perceived ease of use (Davis, 

1989) is “the degree to which a prospective user believes that using a particular system would be 

free of effort” (p. 8). Anecdotal evidence suggests that an application perceived to be easier to use 

than another is more likely to be accepted by users. The TAM model posits that both perceived 

usefulness and perceived ease of use correlate with system use, a relationship that explains why 

teacher educators may accept or reject technological innovations (Maslin, 2007).  

As Stols and Kriek (2011) observe, GeoGebra combines its ease of use aspect with the construction 

features of a DGS and the functionality of a CAS. It lends itself to a wide range of possible 

applications for teaching mathematics This aligns well to the main constructs of TAM of 

‘Perceived usefulness’ and ‘Perceived ease of use’. 

In this study, the three frameworks discussed, namely the TAM, TPACK and constructivism, 

explain the connections between technology, pedagogy, content, beliefs, attitudes and practice. 

The frameworks are aligned with each other as TPACK can help to identify the nature of 

knowledge required by lecturers for technology integration using GeoGebra (as an artefact in a 

learning environment that mediates in the learning process), while TAM can provide meaningful 

information on the link between intention and motivation to integrate technology in the teaching 

and learning process from a constructivist perspective. As alluded to earlier, social constructivism 

lays emphasis on the importance of prior knowledge and the construction of knowledge. This 

resonates with Salomon (2006) who argues that the balance between accessing prior knowledge 

and constructing new knowledge with technology tools has changed, with the scale inclining 

towards construction of new knowledge. In a constructivist classroom, learning is constructed 

actively, reflectively and collaboratively, and it is enquiry based and evolving. Constructivism also 

holds that problem solving is at the heart of learning, thinking and development. 

Furthermore, this study is located in interpretivism, where knowledge is believed to be acquired 

through involvement with content as opposed to repetition or imitation. The constructivist 

approach to learning contends that learning is personally constructed and is attained through 

interaction with tools or artefacts (Maloney et al., 2004). Among such tools is GeoGebra, which 

is equipped with the attributes of a constructivist environment as outlined in Chapter 1. 
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Constructivist learning environments also provide multiple representations of reality (Gilakjani et 

al., 2013) and also provide opportunities for hands-on activities.  

GeoGebra is a technological tool equipped with these constructivist features and therefore, in this 

study, as lecturers interact with GeoGebra when teaching calculus concepts to pre-service 

students, their focus is aligned to these constructivist goals.  

This is in resonance with what the calculus reform movement emphasised on the use of multiple 

representations in the presentation of concepts: that they should be represented graphically, 

numerically, algebraically – tasks that can be done accurately and effectively with GeoGebra 

(Haciomeroglu & Haciomeroglu, 2020). Integrating technology into discourses of learning and 

teaching in using technology within the existing curriculum, implies that curricula should be 

flexible to incorporate technology tools so that teachers can create new learning environments that 

engage students in constructivist approaches to learning.  

However, to mediate teaching and learning in a technology environment, the (NCTM, 2000) states 

that “teachers select or create mathematical tasks that take advantage of what technology can do 

efficiently and well-graphing, visualising, and computing” (p. 97). This is not something that 

teacher educators can achieve by a simple combination of software and hardware. Studies indicate 

that teachers encounter challenges in the integration of ICT into the classroom. Some of these 

barriers can be attributed to a lack of TPACK, and teacher resistance, as espoused in the TAM 

constructs, to integrate technology in a constructive teaching and learning discourse.  

2.8 CONCLUSION 

In this chapter, I discussed the use of ICT in education. Visualisation processes in mathematics 

education and the role of visualisation in teaching and learning mathematics were also discussed. 

I then discussed the use of the DMS, GeoGebra, as a visualisation tool to teach mathematics in 

general and calculus in particular. I finally looked at mathematics proficiency and the theoretical 

frameworks that guide the study.  
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CHAPTER 3: METHODOLOGY 
 

3.1  INTRODUCTION 

The aim of this research project was to specifically explore how GeoGebra could be incorporated 

as a visualisation tool to teach mathematics, with a particular focus on teaching calculus to enhance 

conceptual understanding. Consequently, this study sought an in-depth investigation of how 

GeoGebra could be used as a visualisation tool to teach calculus to pre-service students in TEIs in 

Zambia to enhance conceptual understanding. Furthermore, the interviews and observations I 

conducted, sought an in-depth understanding of the perceptions and experiences of lecturers on 

using GeoGebra as a visualisation tool to teach calculus in TEIs in Zambia; and finally the study 

sought to gain insights into the enabling and constraining factors of using GeoGebra to teach 

mathematics. All these are discussed in view of how they relate to answer the research questions 

of the study as presented in Chapter one, which are:  

• How can GeoGebra be used as a visualisation tool to teach calculus to pre-service student 

teachers in TEIs to enhance conceptual understanding? 

• What are the perceptions and experiences of lecturers in using GeoGebra as a visualisation 

tool to teach calculus in TEIs in Zambia?  

• What are the enabling and constraining factors of using GeoGebra in the teaching and 

learning of mathematics?  

3.2 THE RESEARCH ORIENTATION 

This study is oriented in the qualitative research framework. Qualitative research designs focus on 

data gathering that occur in natural phenomena (Williams & Morrow, 2009). Qualitative data is 

usually in the form of words and is generated through the use of various methods in order to gain 

a deep understanding of events. In line with the key research questions and the need to deeply 

understand the perceptions and experiences of teacher educators on the incorporation of GeoGebra 

as a visualisation tool in the teaching and learning process, the qualitative approach underpinned 

by the interpretive research paradigm was chosen to answer the research questions. It is affirmed 

that “to understand the subjective world of human experience is fundamental in the context of an 

interpretative paradigm’, (Cohen et al. 2018, p. 21).  
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The qualitative approach allows the researcher to make sense of the participants’ engagement 

towards a phenomenon under consideration in a natural setting, such as a mathematics classroom. 

This is done through the use of interviews, focus group discussions, observations, audio and video 

recordings, field notes and photographs, among others, to interpret or make sense of the 

participants’ engagement or response to a phenomenon under consideration (Denzin & Giardina, 

2017). The active involvement of participants is therefore critical to constructing meaningful 

understanding.  

Patton (2002) postulates that a paradigm is a worldview of breaking down the complexities of the 

world and that paradigms are deeply ingrained in the socialisation of practitioners and adherents. 

The researchers’ worldview determines what they choose to place emphasis on during the data 

gathering and analysis processes. Interpretivists interpret the world through the conceptual lens 

formed by their previous experiences, existing knowledge, beliefs and assumptions about the 

world, and their theories about knowledge and how it is accumulated (Carroll & Swatman, 2017). 

  

In an interpretive paradigm, researchers rely heavily on participants’ perspectives when reaching 

a conclusion. The interpretive perspective is anchored on the premise that a person’s way of 

making sense of the world should be respected (Patton, 2002). In view of this, in this study I 

engaged the participating lecturers in interviews and observations in an attempt to figure out how 

they arrived at their generalisations and conjectures. Additionally, the tasks the lecturers undertook 

as they taught pre-service students using GeoGebra applets on derivatives and integrals provided 

feedback vital to arriving at the findings. According to Cohen et al. (2018), “What characterises 

the interpretive paradigm is that the researcher tries to make sense of the world from the 

participants’ point of view. The intention is to get ‘inside’ the participant and to understand his/her 

world from within” (p. 152). The actual words of the participants are vital in conveying the 

meaning of the participants – which ultimately guide the findings of the study. The researcher’s 

role is crucial as he or she interprets the participants’ interactions and responses based on the 

interventions. In this study, I drew inferences on how teacher educators incorporated GeoGebra, 

a visualisation tool, to teach calculus to pre-service teachers in TEIs to enhance conceptual 

understanding.  
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3.3 RESEARCH METHODOLOGY – CASE STUDY 

In the field of education, research is situated in diverse epistemological settings that create a 

diverse methodological and intellectual landscape. Research methodology, according to Cresswell 

(2014), is a systematic and theoretical analysis of the methods used in a field of study. Daymon 

and Holloway (2001), affirmed this view and accentuated that “a methodology is a systematic 

framework which guides the researcher in the selection of participants, collection and analysis of 

data, and presentation of the findings” (p. 129). In educational research, there are generally three 

major methodological approaches: quantitative and qualitative research, or a combination of the 

two – mixed methods.  

This is a qualitative case study oriented in the interpretive paradigm. Qualitative research aligns 

itself with the interpretivist paradigm, and aims to understand the social world (Newby et al., 

2012). Qualitative research is described in various ways by different authors. Daymon and 

Holloway (2001) refer to qualitative research as a type of social enquiry with a focus on the way 

people make sense and interpret their experiences. Quick and Hall (2015) contend that a qualitative 

approach is systematic and is used to describe life situations and experiences to provide meaning. 

On the other hand, Creswell and Cresswell (2017) envision that qualitative researchers retain a 

focus on the meanings that are held by participants about an issue. It is a holistic approach that 

explores experiences, behaviour, views, and emotions of the participants (Cohen et al., 2018; 

Williams, 2007). Qualitative research seeks to understand and describe human experiences 

(Myers, 2000). Approaches that are used in qualitative research include narrative enquiry, 

grounded theory, ethnography, phenomenology and case study (Creswell & Cresswell, 2017). 

 As is the case in this study, in qualitative research, a researcher often approaches reality from a 

constructivist perspective, which allows for various meanings of individual experiences (Denzin 

et al., 2011). Qualitative data can provide rich information about human behaviour based on 

participants’ own meanings (Creswell et al., 2011).  

The rationale for adopting a qualitative case study approach was because the aim of this study was 

to explore the understanding and interpretation of lecturers’ perceptions and experiences of 

incorporating GeoGebra as a visualisation tool to teach derivative and integral concepts to pre-

service students. Case studies, according to Ertmer and Newby (2013), can be excellent at giving 

researchers a rich understanding of a situation. Cohen et al. (2018) claim that there is a resonance 
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between interpretive methodologies and case studies. A case study is a systematic and in depth 

study in its context, where the case may be a person (such as a teacher, a learner, a principal or a 

parent), a group of people (such as a family or a group of learners, a school, a community or an 

organisation (Rule & John, 2011, p. 4). Yin (2014), adds that case study designs allow for a study 

to examine phenomena empirically within real-life contexts when the boundary between context 

and phenomena are not apparent. I explored selected lecturers’ perceptions and experiences 

(phenomena) of teaching calculus within a teacher education mathematics programme (context), 

and as such, the nature of the inquiry appropriately suited the case study design. Case studies are 

styles of research that are often used by researchers in the interpretivist paradigm where the 

researcher aims to capture the reality of the participants’ lived experiences of, and thoughts about 

a particular situation (Cohen et al., 2018, p. 182). This study involved interactions with lecturers 

from three TEIs.  

The data collection occurred over a period of six months between June 2020 and March 2021. The 

case study approach enabled me to gather holistic and rich information from the participants’ 

perspectives in a natural classroom setting where technological software was used. Newby (2014) 

states that a case study is a “detailed analysis of an individual circumstance or event that is chosen 

because something new is in operation” (p. 51). In this regard, the use of GeoGebra in TEIs in 

Zambia was a novel phenomenon that required empirical reflection in order to understand the 

complexities of teaching with technological devices. In context, as GeoGebra was used to teach 

calculus to students, the study aimed to understand the processes that teacher educators used in the 

process. I studied several cases in a single project in order to gain a comprehensive understanding 

of the phenomenon. In this single project, the case comprised six lecturers from three different 

TEIs.  

Though case studies may be used in some cases in quantitative analysis, Farquhar et al. (2020), 

observe that in a qualitative study, case studies opt for analytic as opposed to statistical 

generalisation, as they can develop a theory which can assist researchers to understand other 

similar cases, situations or phenomena. Cohen et al. (2018) suggest that the case study approach 

is notably valuable when the researcher has little or no control over events. They further suggest 

that a case study has several characteristics, that include: 

● concern with a rich and vivid description of events relevant to the case; 
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● providing a chronological narrative of events relevant to the case; 

● blending a description of events with analysis; 

● focusing on individual actors or groups of actors, and seeking to understand their 

perceptions of events; 

● highlighting specific events that are relevant to the case; 

● integral involvement of the researcher in the case; and 

● portraying the richness of the case in writing up the report (p. 253).  

The six mathematics lecturers from three TEIs who interacted with GeoGebra applets to teach 

derivatives and integrals to pre-service mathematics teachers constitute the case in this study. 

Therefore, the unit of analysis is the six lecturers’ use of GeoGebra as a visualisation tool to teach 

calculus to enhance conceptual understanding, their experiences and perceptions of using 

GeoGebra, and the enabling and constraining factors of using GeoGebra to teach and learn 

mathematics.  

The research sites were the three TEIs in Zambia. I selected two lecturers from each TEI. All three 

TEIs are government owned and they train students in a three-year secondary teaching diploma 

programme in mathematics. The calculus activities on derivatives and integrals that were used to 

create applets for the intervention in the study were based on activities that were common in the 

curricula of all the three TEIs.  

3.1.1 Participants and selection criteria 

In qualitative research, the selection of research sites and participants is purposeful and intentional 

to best understand the central phenomenon under study (Creswell & Cresswell, 2017). There are 

various purposeful sampling strategies, and the onus is on the qualitative researcher to select one 

based on their intent regarding the sampling. The researcher selects individuals because they are 

convenient, available and represent some characteristics the researcher seeks to study.  

The six participants were purposively selected. In qualitative research, purposeful sampling is 

widely used for the selection and identification of information-rich cases linked to the phenomenon 

of interest. Six mathematics lecturers, two from each of the three TEI research sites in Zambia 

comprised the sample. In purposive sampling (Cohen et al., 2018), researchers “handpick the cases 

to be included in the sample on the basis of the judgement of their typicality or possession of the 

particular characteristics being sought. They assemble the sample to meet their specific needs” (p. 
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218). This sampling technique is useful for selecting participants from a group of people who hold 

information relevant to the study based on their experiences (Palinkas et al., 2015). The six 

participants were all lecturers in TEIs who are computer savvy and have experience of teaching 

calculus to undergraduate students. I present a brief background of each of the six participant 

lecturers who took part in this study. 

Lecturer 1, from TEI 1, had been teaching for over fifteen years. Having initially trained as a 

primary school teacher, where she obtained a certificate in primary school teaching, she furthered 

her studies and obtained a secondary teachers’ diploma with specialisation in mathematics and 

geography. She once again furthered her studies at a local public university and obtained a 

bachelor’s degree with education (BA Ed), in mathematics and geography, and was subsequently 

transferred to a TEI. Despite having specialised in both mathematics and geography, she only 

taught mathematics at college at the TE1. TEI 1 offered mathematics education using both full 

time and distance education modes: in early childhood education, (ECE), primary and secondary 

education and Lecturer A was involved in all the programmes.  

Prior to her involvement in this project, Lecturer 1had not used any technological software in her 

teaching. She had, however, used Microsoft Paint.net, to draw diagrams mostly for preparing her 

assessment papers. She was one of the two participants who had the GeoGebra software installed 

on her laptop, but had never used it. During the training, she was very committed and eager to 

learn, and showed the same commitment during her lesson presentations to students. She offered 

both mathematics methodology and content courses at TEI 1.  

Lecturer 2, also from TEI 1, had been teaching for between eleven and fifteen years. Of all the six 

participants, he was the only one who had gone directly to university after leaving secondary 

school, as the others had first gone to college before proceeding to university as in-service students. 

Upon completing his BA Ed degree programme in mathematics, he taught mathematics in various 

secondary schools and later read for a master’s degree programme in mathematics content at a 

public university. He was promoted as lecturer at TEI 1 even before he graduated with his master’s 

degree. He was only offering mathematics content at TEI 1. During the GeoGebra training course, 

he was quick to learn and exhibited sound knowledge of content in calculus. He presented his 

lessons with confidence and did not have major challenges in learning how to use the software. 
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On the use of technology in his teaching, Lecturer 2 revealed that he used PowerPoint to present 

his lessons occasionally.  

Lecturer 3 of TEI 2 had been teaching for over fifteen years. He initially trained as a junior 

secondary school teacher at a public college and obtained a secondary teachers’ diploma. Despite 

having trained to teach at junior secondary school, (Grades 8 and 9), due to the shortage of teachers 

in schools he was assigned to teach senior classes (Grades 10, 11 and 12), in ordinary level 

mathematics. When the teacher who was qualified to teach additional mathematics was not 

available, he stood in for him and he subsequently developed an interest in teaching additional 

mathematics. After teaching for close to twenty years, he furthered his studies and obtained a BA 

Ed qualification in mathematics. Upon completion of the degree programme he was promoted as 

a lecturer at TEI 2.  

While at secondary school, he hardly used technology in his teaching, as he always used the ‘chalk 

and talk’ method. When he moved to teacher education, he was introduced to Microsoft Excel, 

which he mostly used to compile students’ results. On his experience of teaching calculus, he said 

students did not generally have challenges with differentiation, but encountered difficulties with 

integration, especially with questions involving graphs, area and volume. At TEI 2, lecturer 3 

taught both content and methodology in mathematics education. 

Lecturer 4 of TEI 2 had been teaching for over 15 years. Like a couple of the other participants, 

he initially trained as secondary school teacher, and obtained a diploma in mathematics and 

geography. After teaching for a couple of years, he went for further studies and obtained a BA Ed 

degree in mathematics and geography. He was transferred to TEI 2, and later obtained a master’s 

degree in mathematics content. Prior to taking part in this study, lecturer 4’s interaction with 

technology was limited to PowerPoint presentations during lessons, and using Microsoft Excel to 

manage students’ results and records.  

He found the teaching of calculus in TEIs interesting, but pointed out that students generally had 

challenges in certain components. These components included differentiation and integration of 

trigonometric, exponential and logarithmic functions. He attributed the challenges to poor 

foundation in from secondary school and lack of practice by students. He further explained that 

students had fewer challenges with questions that only required the use of the power rule.  
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Lecturer 5 of TEI 3 had been teaching for over fifteen years. Likewise, he initially trained as a 

primary school teacher, where he obtained a certificate and taught at primary school. Before he 

had even finished a year in service, he enrolled as a distance education student for a diploma 

programme, and obtained a secondary teachers’ diploma in mathematics. He was consequently 

transferred to a secondary school. After teaching for some years in secondary school, he again 

enrolled through the distance mode for a BA Ed programme with Mathematics as major and 

geography as minor subjects. At the time the study was being conducted, he been a lecturer at TEI 

3 for seven years and he was offering mathematics only, both content and methodology. His 

interaction with technology in his teaching process was confined to PowerPoint presentations of 

some of his lessons, and he asserted that he had never used any packaged software to present a 

lesson. On his experience of teaching calculus, he said it was good, as the students were able 

understand certain concepts, and made an effort to research on their own when they faced 

challenges. 

Lecturer 6 of TEI 3 had also been teaching for over fifteen years, and just like his colleagues, he 

had started from primary school and worked his way up. For his professional qualification, he held 

a primary teachers’ certificate, a secondary teachers’ diploma and a BA Ed, in mathematics. At 

the time of the study, he was pursuing a masters’ degree in mathematics education. He used 

technology from time to time in class was to present lectures on Power Point. He affirmed that his 

students encountered challenges learning calculus and attested that there were some concepts in 

calculus that even he was not very comfortable to teach as well.  

3.4 RESEARCH DESIGN 

A research design, essentially, is a plan of how the researcher systematically collects and analyses 

the data that is required to answer the research question (Bertram & Iben, 2014). Kothari concurs 

and accentuates that “a research design is the conceptual structure for collection and analysis of 

data in a manner that aims to combine relevance to the research purpose with economy in 

procedure” (Kothari, 2004, p. 48). Cohen et al., (2018) echo this view and expound that:  

Producing knowledge includes, inter alia: a rigorous and coherent research design that 
demonstrates fitness for purpose; appropriate sampling, methodology and instrumentation; 
transparency, usefulness and validity; scholarly and scientific merit; significance and 
advancement of the field (e.g. substantively, conceptually, methodologically); scientific 
value; risk assessment and minimisation; and transparency.” (p. 29)  
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This study sought to investigate the subjective understanding and interpretations that are the 

experiences of the participants concerning the use of GeoGebra applets as a visualisation tool in 

the teaching of calculus. Key to the study involved drawing on the judgment and inferences of the 

participants’ engagement with the GeoGebra software and applets and their individual and their 

joint understanding of information as I interacted with them for six months.  

This research project involved an in-depth study of six lecturers as they interacted with the 

GeoGebra software in their preparation and presentation of lessons on four calculus cycles in three 

TEIs. The training sessions I had with the participants on the use of GeoGebra in their respective 

TEIs accorded me an opportunity to interact with them and thereby establish a mutual and 

professional relationship. The intervention was done in the classrooms when the lecturers 

implemented their lessons using GeoGebra applets on derivative and integral calculus topics.  

I adopted a cyclic approach for the research design. The research design unfolded in four cycles, 

where each cycle was determined by a topic of the calculus curriculum. The cycles were ‘slope of 

a tangent on a curve’,l imits from differential calculus, Riemann sum and area between curves 

from integral calculus i.e.  

Cycle 1: Slope of a Tangent on a Curve 

Cycle 2 Limits: 

Cycle 3: Riemann Sum 

Cycle 4: Area between Curves 

Each cycle consisted of three stages: planning, implementation and reflection, as shown in Figure 

3.1 below 
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Figure 3.1: Stages of each calculus cycle 

 

Stage 1: Planning 

In this stage, the two lecturers and I in each TEI planned four lessons based on each cycle. We 

then manufactured a GeoGebra applet for each cycle.  

Stage 2: Implementation 

Each of the two lecturers from each institution conducted two lessons with the aid of the applets, 

one on differentiation and the other on integration to the same group of students in their respective 

TEIs. The total number of lessons in all the three institutions was therefore twelve. I observed and 

video recorded each of the twelve lessons. Video recordings of the lessons generated the data for 

the study. 

Stage 3: Reflection  

I split the reflection stage into two parts: 

(a) Stimulated Recall Interviews 

Using the stimulated recall interview, each lecturer and I analysed their lesson according to my 

analytical framework. Video recordings of the lessons generated data for the study. 

  



85 
 

(b). Enabling and constraining factors  

In this part, each lecturer and I reflected on the enabling and constraining factors of using 

GeoGebra as a visualisation tool to enhance the teaching of calculus, based on the cycle that was 

taught. Refinement of each cycle informed the planning of the next cycle.  

Each of these three stages were repeated for the three groups of lecturers where Group 1 was: 

Lecturer 1 and Lecturer 2 in in TEI 1; Group 2: Lecturer 3 and Lecturer 4 in TEI 2; and Group 3: 

Lecturer 5 and Lecturer 6 in TEI 3.  

3.4.1 The Teaching and Learning of Mathematics with GeoGebra (TLMG) project 

This qualitative case study underpinned in the interpretive paradigm, was undertaken with a 

broader goal of designing GeoGebra applets and instructional materials on various mathematical 

topics in the context of a project called ‘Teaching and Learning Mathematics with GeoGebra 

(TLMG) project’, among teachers and lecturers in Zambia. 

The findings of this study may inform policy, guide and provide a basis to design appropriate 

instructional materials for the consolidation of the TLMG project for quality teacher professional 

development in the use of GeoGebra for mathematics teachers, with a view to incorporating 

GeoGebra in the Zambian teacher education curriculum. It is envisioned that the TLMG project 

can also be used as a springboard to establish the Zambian mathematics education community in 

the International GeoGebra Institute, (IGI), which incorporates a global network of students and 

teachers, that fosters support for learning, improvements and innovations in mathematics 

education.  

3.4.2 The Pilot Study 

Pilot studies can serve as prior research, but with more focus on the researcher’s concerns and 

theories. They can be designed specifically to test ideas and methods and explore their 

implications. Kothari (2004) argues that many features of the research design cannot be rigorously 

determined without exploratory research. It is therefore advisable to conduct a pilot study before 

a study is undertaken as it helps, among other things, to reveal the weaknesses of the data collection 

instruments. A pilot study highlights the weaknesses of the instruments and also of the methods 

and techniques.  

https://www.geogebra.org/institutes
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For my pilot study, I conducted a training workshop for three mathematics lecturers who were not 

part of my study sample, at the institution where I am based, starting with the basic use of 

GeoGebra. My experience of using GeoGebra provided a guide to identify the actions and 

responses of lecturers when they used the technological tools. Initially, some lecturers experienced 

challenges in using the technological tools and lacked confidence, but after a number of trials, their 

confidence and ability improved. I then worked with them following the stages as outlined in the 

research design in Section 3.4 above and administered the pilot test by asking lecturers to present 

lessons based on calculus cycles 

The insights gained from the pilot project helped me to refine the analytical framework and sharpen 

my data gathering and analysis instruments. Cresswell (2014) put forth that “there is often a fine 

line between questions being too detailed or too general., therefore a pilot test of the questions on 

a few participants can usually help one to decide which ones to use” (p. 226). Suffice therefore to 

say that before using the data collection instruments, it is always advisable to conduct a pilot study 

for testing, reviewing, editing and adapting the instruments.  

3.4.3 The Research Instruments 

As soon as I was granted the ethical clearance approval from Rhodes University and the six 

participants gave consent to take part in my research project, my field work immediately 

commenced. I engaged with the lecturers during the GeoGebra training sessions to familiarise 

them with the GeoGebra tools and how to use the software. My data collection schedule was 

determined by completion of the training session in each of the three TEIs. I used multiple 

techniques to gather data from the participants. These were: interviews, focus group discussions, 

observations, and audio and video recordings.  

Cohen et al. (2018) affirm that case studies accept and recognise that there are different variables 

that operate in a single case. Therefore, there is a need to use more than one tool for data collection 

in order to capture the implications of the variables. In view of this, and to add to the validity of 

this study, I triangulated the data. Data was collected from six lecturers in three TEIs in Zambia 

through interviews, focus group discussions and observations over a period of six months at three 

TEIs. I used interviews and observation protocols (see Appendix C) during the data collection 

process. The study drew on the constructs of constructivism – the umbrella theoretical 

frameworkand those of TPACK and TAM – that underpin this study (see Appendix C).  
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3.5 DATA ANALYSIS 

According to Newby (2014), data analysis is an activity to enable “data to release the information 

we need to answer our research question” (p. 395). It is through data analysis that people make 

sense of the data and also communicate the essence of its revelations. The process involves 

explaining and organising the data from the participants’ perspective, accounting for categories, 

noting themes, regularities and patterns (Cohen et al., 2018). Newby (2014) suggested four stages 

of generic protocol of qualitative analysis: preparing the data, identifying basic units of data, 

organising data and interpreting data.  

For an analysis to be considered an accurate representation of what transpired during the course of 

the study, the different methods with which data was collected must agree with each other and this 

emerges through a process of data triangulation. An analytical framework provides a guide to 

organisation of data to be collected and how to analyse it (Cohen et al., 2018). The analytical 

framework is used to identify information that is useful for analysis, from that which may be 

discarded. The analytical framework tools in Appendices C guided the data analysis.  

Data, collected from video recordings of observations of the lecturers’ lessons, consisted of two 

data sets: observation data and interview data, which I analysed separately. I initially analysed the 

observation data using the video recordings of each of the lecturers’ lessons, based on the analytical 

tools generated from the constructs of the enabling theoretical frameworks of TAM and TPACK. 

Teachers require TPACK to understand how to effectively use technology to present concepts in 

constructivist approaches. Additionally, as espoused in the TAM constructs, teachers’ attitudes 

and beliefs about technology are important factors in making decisions to integrate technology into 

teaching (Hew & Brush, 2007). 

The analysis of the interview data was done in three stages based on the three research questions 

that guided my study. Each lecturer and I analysed the interview data using the respective video 

recordings of the lessons in a stimulated recall environment. Stimulated recall (Gass & Mackey, 

2009) is an introspective research technique where participants’ cognitive processes can be 

investigated. Participants report on their thoughts on task interactions while viewing the video and 

by listening to their audio recordings in order to elicit data. The analysis of the interview data was 

done thematically.  
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The focus of the analysis was on gaining the lecturers’ insights on each of the following research 

goals:  

 lecturers’ use of GeoGebra as a visualisation tool to teach calculus to pre-service students 

to enhance conceptual understanding; 

 the perceptions and experiences of lecturers in using GeoGebra as a visualisation tool to 

teach calculus in TEIs; and 

 the enabling and constraining factors of using GeoGebra in the teaching and learning of 

mathematics.  

3.5.1  Analytical Framework 

The umbrella theoretical framework for this study is constructivism (Fosnot & Perry, 2005; Piaget, 

1967). The study also drew on two key theoretical models on the integration and adoption of ICT 

in teaching and learning: TPACK, (Mishra & Koehler, 2006) and technology acceptance model 

(TAM) (Davis, 1989). These theoretical perspectives, coupled with Kilpatrick’s two strands of 

mathematical proficiency, conceptual understanding and procedural knowledge, (Kilpatrick et al., 

2002), offered insights into the factors that constituted the analytical framework (see Appendices 

C). An analytical framework provides a guide to organisation of data to be collected and how to 

analyse it (Cohen et al., 2018). The analytical framework is used to identify information useful for 

analysis from that which may be discarded. 

I fully transcribed and reviewed all the verbatim data from various sources. The data was then 

organised by assigning codes using my analytical framework. While qualitative research 

orientations may differ operationally and theoretically relative to managing the data collected, each 

employs a unique method for organising and coding the data. Coding in qualitative research 

comprises processes that enable the data collected to be categorised and thematically organised, 

thus providing an organised basis for the construction of meaning. (Williams & Moser, 2019). 

Coding methods employ procedures that uncover themes that embed the data, thereby suggesting 

thematic direction toward categorising data through which meaning can be conveyed, codified and 

presented. Coding, therefore, is an important structural operation in qualitative research, that 

enables data analysis and subsequent steps to achieve the purpose of the study. 
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Qualitative research embraces a description of its analytic framework. This provides a rationale 

that justifies coding decisions with well-defined steps. According to Stenfors et al. (2020), the 

researcher’s ability to perform analysis that develops a novel conceptual framing is evident of 

rigorous qualitative research. 

A description of the coding of the analytical rubrics developed from the TPACK, TAM and 

constructivist constructs is presented. It focused on the tasks utilised in the study that were 

designed to investigate the lecturers’ actions and responses to the tasks, as they interacted with the 

students. 

I identified the following codes for this the research: visualisation processes, TPACK, TAM, 

mathematics proficiency, prior knowledge and multiple representation. This implies that the 

lecturers’ responses and observed actions were classified according to the codes itemised above. 

The coding structure was developed in line with the literature which facilitated the reorganisation 

of my data and extraction of the information to answer the research questions. I therefore came up 

with the following broad indicators for each codes: for visualisation of concepts, the code is yellow 

(VC), and the observable indicators under this code are: visualisation processes (VP 1)and use of 

sliders and dragging, USD 1.  

For the TPACK constructs, the code is TPACK and the colour is green. The observable indicators 

are: CK1 - content knowledge; PK1 – pedagogical knowledge; TK1 – technical knowledge; PCK 

1 – pedagogical content knowledge; TPK 1 – technical pedagogical knowledge; TCK 1 – technical 

content knowledge; and TPACK 1 – technical pedagogical content knowledge.  

For the TAM constructs, the code is TAM, and the colour is pink. The observable indicators are: 

EU 1 – easy to use; AU 1 – actual use; and ITUI 1 - intention to use ICT.  

For the constructs of mathematics proficiency, the code is MP and the colour is red. The observable 

indicators are CU1 – Conceptual Understanding and PF 1 – Procedural Fluency. The analytic 

framework (see Appendix C) displays how the deconstruction of the tasks by a description of the 

rubric was used to qualify the responses to each task. The analytic rubrics were designed to capture 

analytic framework evidence. 
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3.6 VALIDITY AND RELIABILITY 

While it is appreciated that it may not be possible to completely eliminate bias in social science 

research, a good design generally endeavours to minimise bias and maximise the validity and 

reliability of the data collected and analysed. I triangulated my data by employing different 

methods of data collection to ensure validity. The methods included workshops with students and 

orientation lessons with participants, interviews, observations, video and voice recordings, 

worksheets, field notes and reflective interviews. Employing this wide variety of data collection 

sources enabled me to gain a thorough, objective and in-depth understanding of the dimensions of 

the study. According to Rule and John (2011) triangulation is “the process of using multiple 

sources and methods to support propositions or findings generated in a case study” (p. 109).  

Triangulation is considered as a means to achieve rigorous, quality research, from a diversity of 

sources, to strengthen the validity of the assertion or findings, to eliminate the bias or inaccuracy 

that may possibly be introduced by relying on a single source (Rule & John, 2011). Cohen et al. 

(2018) echo this and state that “triangulation is the researcher’s attempt to understand the richness 

and complexity of human behaviour within a phenomenon, from different standpoints” (p. 256). 

Triangulation, therefore, reduces bias, verifies the integrity of participants’ responses and enhances 

various dimensions of a phenomenon.  

Case studies employ multiple techniques of data collection. Multiplicity of data sources in a case 

study is encouraged as it provides rigorous (theoretically, empirically and grounded) evidence that 

supports the triangulation of results (Cobb et al. (2015). In their advocacy for the use of multiple 

sources to ensure validity, Yin (2014) and Onwuegbuzie and Leech (2007) argued that the sources 

of evidence of data should measure what they are supposed to measure. In my quest to collect 

robust and rich data in this study, I therefore triangulated my data collection process to enhance 

both reliability and validity of the data and the results.  

Validity, in education research, is the process of collecting data accurately that reflects the aspects 

that they are meant to measure (Newby, 2014, p. 129). Reliability, on the other hand implies that 

the outcomes of measurement are stable over time, on the assumption that other factors remain the 

same. These factors are key to objectivity in a study, in the sense that that a researcher’s judgement 

is dispassionate – implying that if the same study were to be conducted by another disinterested 

researcher using the same evidence, they would reach the same conclusion.  
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Validity of research therefore requires careful consideration. Cohen et al. (2018) affirm that 

validity and reliability of data are essential components to rigorous research and have an important 

effect on the on the authenticity of research and the interpretation of the data. The quality or 

trustworthiness of a research study is a strong indicator of its reliability (Merriam et al., 2007). For 

the validity and reliability of my study, I adopted different strategies as outlined below.  

Merriam et al. (2007) outlined four major principles that validity and reliability in qualitative 

research is derived from:  

 the nature of interaction between the researcher and the participants;  

 triangulation of data; 

 the interpretation of perceptions; and 

 descriptions to make the researcher’s conclusions sensible.  

To ensure validity and reliability in my study and make my study trustworthy, I adhered to the 

above principles, by employing various strategies.  

As alluded to in Section 3.4 above, the training sessions I had with the participating lecturers in 

their respective TEIs on the use of GeoGebra, accorded me an opportunity to interact with them, 

and henceforth establish a mutual and professional relationship. I encouraged them to relax and 

feel free as they interacted with the software and I reassured them that the challenges they 

encountered as they began to use the software were normal, and that in due course they would gain 

confidence. The training workshops were structured and timed in a manner that before the lecturers 

could use the software in a class with students, they had to reach an accepted level of expertise on 

the use of the software. The workshops focussed on basic use of GeoGebra, with a focus on 

calculus topics. Their knowledge of calculus content, and basic knowledge of computer use 

provided extra confidence. I also encouraged them to interact among themselves and work 

collaboratively. Ndlovu et al. (2013) acknowledge that working collaboratively in professional 

communities with constant engagement in reflective practice can help develop common identities 

and overcome lack of confidence. As is the case with most qualitative case studies, I triangulated 

my data collection process.  

Triangulation, according to Ramsook (2018), is a method of ensuring that qualitative research is 

less subjective and more objective, thus making it more scientific. A researcher can gain 



92 
 

confidence when they employ more than one method of data collection, and generate results that 

correspond (Cohen et al., 2000). Credibility of research can therefore be enhanced through 

triangulation. In line with the rationale of triangulation, I collected my data through document 

analysis, interviews, focus group discussions, observations, videos and recordings. These various 

methods of data collection enabled me to get detailed insights into the lecturers’ engagement with 

differential and derivative calculus applets in GeoGebra. Use of multiple cases, observes Farquhar 

et al. (2020), is considered an appropriate strategy for enhancing the validity of a research study.  

Some of the participants in the study my colleagues as we interacted during professional meetings. 

Despite this, my rapport with the participants was purely professional and I encouraged them to 

give their honest views. I ensured that this relationship did not mitigate against any issues of 

positionality and I ensured that our relationship did not in any way influence their opinions. Being 

fully aware that the integrity of the research is determined to a large extent by the authenticity of 

data, I informed the participants that giving an honest and correct account of the events regarding 

the situation was cardinal to research. Ethical issues related to research relations, according to 

Denzin and Giardina (2017), could be overcome through collaboration in participatory approaches 

to research, where the roles of both research participants and the researcher are respected. 

Throughout the course of my research project, I adhered to the rules and standards of Rhodes 

University Education Department and the Rhodes University Ethical Standards Committee, and 

upheld the institution’s professional, academic and integrity standards. The authentic data that I 

collected provided a basis for my findings, and my analysis was not based on my assumptions and 

opinions, but on my empirical work. 

3.7 ETHICAL CONSIDERATIONS 

Ensuring validity and reliability in qualitative research involves conducting the investigation in an 

ethical manner (Creswell & Cresswell, 2017). By coincidence, this study was conducted during 

the period of transition when Rhodes University was introducing the new online ethical clearance 

system. The university’s Higher Degrees Ethics Committee’s (RUHDEC) gatekeeping 

requirements required every researcher to apply online for ethical clearance, through the Rhodes 

University Ethical Review Application system, which I did. In addition to obtaining the ethical 

clearance, (see Appendix A), I observed all the other Rhodes University ethical protocols for 

conducting research. I also obtained clearance letters from other gatekeepers, viz: the respective 
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principals of each of the three TEIs (see Appendix A); and the consent letters from each of the six 

lecturers who participated in the study (see Appendix B).  

I communicated to the participants all the information that could influence their choice to take part 

in the research project and informed them what the research was all about. According to the British 

Educational Research Association (BERA), the initial step in obtaining consent for researchers is 

to ensure that participants understand the process that they are engaging in, why their participation 

is needed, how the findings will be reported and who will use the research findings (BERA, 2011). 

I made it explicitly clear to the participants that they had the right to withdraw their participation 

at any time without any consequences. Their identity and institutions would remain anonymous as 

pseudonyms were used in the write up. The data collected was used for research purposes only and 

will at all times be kept confidential. It will only be shared with my supervisor and with the Rhodes 

University Ethics Department. upon request.  

The audio and video recordings and all other information that came into my custody by virtue of 

this research project has been kept strictly secure at all times and will not become a part of 

participants’ records. All identifying information was deleted as soon as the data was collected. 

The hard copies of the data have been securely kept under lock and key and the soft copies have 

been stored with a strong password. The recordings were coded and transcribed with no means of 

tracing them to the participants. The data will be destroyed after five years in accordance with the 

Rhodes University Ethics department regulations 

Connelly (2013) surmises that a researcher should “obtain informed consent from potential 

research participants; minimise the risk of harm to participants; protect their anonymity and 

confidentiality; avoid using deceptive practices; and give participants the right to withdraw the 

research” (p. 13). 

I explained to the principals and the lecturers the potential benefits that may accrue from taking 

part in the research. There was potential for participants to adopt innovative instructional practices 

in their teaching of calculus. They could also enrich their knowledge and skills in integrating 

technology in teaching and learning mathematics. The research could also guide and provide a 

basis for participants to contribute to the design of appropriate instructional materials for the 

consolidation of the Teaching and Learning Mathematics with GeoGebra (TLMG) project. This 

could contribute to quality teacher professional development in the use of GeoGebra for 
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mathematics lecturers and teachers, with a view to incorporate GeoGebra in the Zambian teacher 

education Curriculum. 

3.8 CHALLENGES ENCOUNTERED IN DATA COLLECTION  

As alluded to in Section 3.7, this study was undertaken during the period of transition when Rhodes 

University was introducing the new online ethical clearance system. This entails that every student 

is obliged to apply online for ethical clearance, prior to commencement through the university’s 

Higher Degrees Ethics Committee (HDEC). The gatekeeping conditions require every researcher 

to apply online for ethical clearance.  

However, the HDEC’s gatekeeping requirements subjected me to a bureaucratic and rigorous 

process and took a considerable period. The application process was intricate and had some 

technological hitches. Despite interventions from my supervisor to expedite the process, the whole 

process took around six months. This had drastic negative implications on my data collection 

process, as appointments with my participants had to be adjusted., By the time the ethical clearance 

letter was ready, lecturer 4 at TEI B informed me that his students had gone on student teaching 

practice (STP), and would only return to campus the following term. 

The advent of the Coronavirus (COVID-9), further compounded the problem. In Zambia, in an 

effort to control the spread of COVID -19, all learning institutions were ordered by the government 

to close on 20 March 2020 and all citizens advised to observe self-isolation (Sintema, 2020).  

Around mid-March 2020, the Zambian government through the Minister of Health 

announced at a press briefing that all schools, colleges and universities would close 

indefinitely on Friday, 20 March 2020 amid fears of the Coronavirus (COVID-19) outbreak 

that had reportedly ravaged most parts of China, United States of America, Italy, Spain and 

other parts of Europe and Africa. (Sintema, 2020, p. 1) 

This inevitably implied that I had to put my whole data collection process on hold. 

During the same period, I was supposed to travel from Zambia to Namibia on five different 

occasions, and on multiple occasions to Rhodes University, in South Africa, to meet my supervisor 

for contact sessions, but this could not materialise as travel restrictions had been introduced as a 

result of COVID-19. This robbed me opportunities to interact physically with my supervisor and 

engage with him in areas where I needed guidance. As a recourse to this, we engaged virtually 



95 
 

from time to time. When the COVID-!9 situation improved, I was able to go out into the field and 

collect data, but I had to make a lot of adjustments from the initial plan.  

A challenge that I generally encountered among the participants was locating the right construction 

tool on the GeoGebra interface. Furthermore, once the construction tool had been identified, the 

other challenge was how to use that tool. This was apparent in components of cycles that required 

a relatively high number of steps. This resulted in taking more time than anticipated to complete a 

session.  

3.9 CONCLUSION 

This chapter presented a discussion of the methodology used to execute this qualitative case study. 

The methods used to collect data and the analytical frameworks for the case study data were 

presented. I also discussed the measures that I undertook to ensure the validity and reliability of 

the research study, and the ethical measures that were undertaken to ensure the protection of the 

rights of research participants.  
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CHAPTER FOUR: ANALYSIS AND DISCUSSIONS OF LECTURERS’ 
ENGAGEMENT WITH GEOGEBRA APPLETS 

 

4.1 INTRODUCTION 

The data being analysed in this chapter was collected through interviews, focus group discussions, 

lesson observations, and audio and video recordings. The data was analysed based on the analytical 

tools generated from the constructs of the enabling theoretical framework models of TAM, 

TPACK and mathematics proficiency. This helped me to describe and explore individual cases 

and obtain insightful information about my participants’ interactions with GeoGebra.  

The analysis consists of two parts: the vertical and the horizontal analysis. For each lesson 

presented by the lecturers, I present a vertical analysis, followed by a horizontal analysis. In the 

vertical analysis I analyse how each lecturer interacted with their applet during their lesson 

presentation. In the horizontal analysis I analyse across all six participating lecturers, basing my 

analysis on each of the four cycles, in consideration of their views, for the purposes of answering 

the three research questions. Similarities and differences in the participants’ views are presented 

and discussed. Codes that I used to identify the participants were as follows: Lecturer 1‘s views in 

the interview on line 3 for example, is coded as IL1L3 (I for interview, L1 for Lecturer 1, L3 for 

line 3), and similarly Lecturer 5’s views in the interview on line 29 is coded as IL5L29. Similarly, 

lecturer 6’s view in the focus group discussion on line 8 is coded as FGD L6L8. 

I transcribed the recorded interviews verbatim, coded the responses of the participants according 

to the common themes that emerged, and then cross-checked them for consistency and 

commonalities. The themes were reviewed and categorised again for emerging sub-themes. Data 

from the interviews are presented in a narrative form, and the interpretation is presented in the 

discussion. This data accurately recorded the general views of the participants. Field note excerpts 

from the researcher’s perspective supplemented the data.  

The goal of this study was to investigate lecturers’ experiences and perceptions of incorporating 

GeoGebra as a visualisation tool to teach calculus to undergraduates in TEIs in Zambia. It also 

investigated the factors that enabled and constrained participating lecturers’ adoption of this 

technology into their teaching.  
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My cyclical approach adopted for the research design unfolded in four cycles, where each cycle 

was determined and characterised by a topic of the calculus curriculum. I used the same order as 

in the first paragraph of Section 4.2 below. There were two lecturers from each of the three TEIs. 

Each lecturer conducted two lessons from the four cycles with the aid of GeoGebra applets, to the 

same group of students in their respective TEIs. The two lecturers in each of the three TEIs and I 

planned the lessons and then created a GeoGebra applet for each cycle.  

I observed and video recorded each of the six lessons. These video recordings of the lessons 

generated the data for my study. As outlined in the methodology chapter, each cycle consisted of 

three stages: planning, implementation and reflection. I analysed each cycle of the calculus topics 

by analysing my classroom observations of the teacher educators. The data collected from video 

recordings of observations of the lecturers’ lessons consisted of two data sets: observation data 

and interview data.  

My research design is underpinned by a case study methodology. The following narrative analysis 

documents how each of the participating lecturers interpreted and used the calculus cycles as they 

interacted with GeoGebra applets. Where necessary, the narrations are interspersed with excerpts 

of interviews and screen shots of the applets used.  

In Chapter 3, I outlined the observable indicators of the lecturers’ teaching activities based on 

TPACK and TAM, which formed the core of my analytical framework, I also used Kilpatrick et 

al.’s (2002) first two strands of mathematics proficiency – conceptual understanding and 

procedural knowledge. The details of my analytical framework tools that guided the data analysis 

are in Appendix C. The analytical framework is used to identify information useful for analysis 

from that which may be discarded (Cohen et al., 2018).  

The codings and observable indicators have been explained in detail in the methodology chapter 

(Chapter 3). These observable indicators enabled me to obtain more insights into the lecturers’ 

engagement and interpretation with the applets in order to present a detailed account. The reflective 

interview data was used to affirm or contradict the lecturers’ actions and communication during 

the lesson presentations. 
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In addition, the visualisation processes, outlined in Chapter 2 in the literature review, supplement 

the analytical framework tool to facilitate a deep analysis of the lecturers’ interaction with the 

applets. The relevant applets and diagrams generated by the lecturers to provide more clarity are 

referred to as figures, whereas screen capture video clips are referred to as screenshots.  

4.2 A BRIEF OUTLINE OF EACH OF THE CYCLES TAUCHT 

The lessons taught by each of the six lecturers were based on four cycles of the calculus curriculum 

at TEIs: The slope of the tangent, limits, the area above and below the 𝑥 -axis, and the Riemann 

sum. Each lecturer and I collaboratively designed all the applets that were used in the lesson 

presentations in each of the four cycles.  

4.3  VERTICAL ANALYSIS 

4.3.1 Lecturer 1  

4.3.1.1 The slope of the tangent - brief description of the lesson and how the applets were  

      used 

Lecturer 1 presented the cycle – the slope of the tangent (Cycle 1). In this presentation, the lecturer 

discussed how the secant could be used to promote conceptual understanding, (CU 1), of finding 

the slope of a tangent line on a curve, with a view to exploring the limit process and the definition 

of the derivative. As shown in Applet 1.1 in Figure 4.1, the lecturer introduced the lesson with the 

function 2( )f x x and a tangent at P  on the curve, using the prior knowledge of the slope of the 

straight line, from coordinate geometry.  

.  
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Figure 4.1: Applet 1.1, Tangent line through point P 

  

The point P  was marked on the function 
2( )f x x , and a tangent to the curve drawn with P at 

the point of tangency. The lecturer asked the students about their views on finding the gradient of 

a straight line (CK 1), when only one point was known. This concept was discussed with the 

assumption that the students were familiar with the idea of finding the tangent of a straight line 

using the formula 2 1

2 1

y ym
x x





. The challenge in the applet above was that only one point, P , was 

known, so that the formula for the slope of the straight line could not be applied directly, as it 

required two points 1, 1( )x y and 2, 2( )x y .  

 

Applet 1.1 was modified by introducing another point Q on the curve, such that the line PQ  is a 

secant with the point Q as a point of estimate as shown in Figure 4.2, Applet 1.2. Using a slider, 

(USD 1), the point Q could be moved closer and closer to P . As the lecturer moved the point Q

close to P , he asked the students what they observed about the secant line in relation to the tangent 

line.  
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Since there were now two points – P  and Q on the curve, it was possible to find the slope of the 

secant line PQ . The slope of the secant line is approximately the slope of the tangent, though the 

values will vary significantly due to the difference in the alignment of the tangent and the secant. 

 

Figure 4.2: Applet 1.2 – Secant line PQ and the tangent line at point P 

For the estimate to be better, the estimation point Q has to move closer to the point of tangency, 

P , as shown in Figure 4.3, applet 1.3, below.  

Using the slider, the lecturer moved the estimation point closer to P as shown in Figure 4.3, Applet 

1.3. The Applet 1.3 shows an estimate point R getting closer to P . With the new point R  as the 

point of estimate, the lecturer illustrated how the secant line PR aligned more to the tangent line 

(TPK 1). As the lecturer dragged the point R to P , she asked the students to observe (VP1) what 

was happening to the values of the slopes of the secant line PR and that of the tangent line, as 

shown in the algebra view of the GeoGebra interface. Of interest to note, was that as the lecturer 

was dragging the point R to P , the students could see the secant line aligning to the tangent line, 

and the value of the slope simultaneously changing (MR1), and getting closer to that of the tangent 

line.  
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It was observed that the secant line PR was a better estimate of the tangent line, since the point 

R  was closer to the point P . It was also noticed that as the estimation point moved (VP1) closer 

to the point of tangency, the secant line was aligning more to the tangent line, implying that the 

slope of the secant line was getting closer to that of the tangent line. This became more evident 

when the estimation point got closer and closer to the point of tangency as shown Figure 4.1 in 

Applet 1.4.  

 

Figure 4.3: Applet 1.3 – Secant line PR  and the tangent line at point P  

In Applet 1.4, Figure 4.4, the new point of estimate, S gets closer and closer to P , with the secant 

line, PS , almost overlapping the tangent line. The lecturer showed that the values of the slopes 

of the secant line PS and that of the tangent became equal.  
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Figure 4.4: Applet 1.4 – secant line and the tangent line at point 

  



103 
 

With reference to Figure 4.4, the lecturer then proceeded as follows:  

 

Figure 4.5: Deriving the slope of tangent line at point from that of the secant line 

  

If we let the distance from the origin to the 𝑥coordinate be 𝑥, and the distance from 𝑥- coordinate 

to the estimation point be h , then the 𝑥 coordinate of the original estimation point Q  is x h . 

This implies that the corresponding y - coordinate of x h  is ( )f x h .  

The lecturer went on further to discuss that since there were now two points on the curve whose 

coordinates were (𝑥, ( )f x ) and ( x h , ( )f x h , the slope of the secant line could be found, 

((PF)), and its value would approximately be equal to that of the slope of the tangent. Thus, from 

the concept that the slope of the straight line is given by the change in y divided by the change in 

𝑥, this would be given by: 

 
( ) ( )f x h f x

x h x
 

 
, which simplifies to 

( ) ( )f x h f x
h

 
 

The slope of this secant line is approximately equal to the slope of the tangent. But as we drag the 

estimation point closer to the point of tangency (TCK 1), what happens to h ? (Refer to Figure 4.5, 

Applet 1.5,).  
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As the estimation point moves closer and closer to the point of tangency, h  gets smaller and smaller 

(infinitely small). Therefore, taking the limit as h  approaches zero, gives  

0

( ) ( )lim
h

f x h f x
h

 
, and the approximated slope of the tangent becomes the exact slope.  

Thus, taking the limit as h  approaches zero, implies that h  will be arbitrarily small. This makes the 

two points (the point of tangency and the estimation point) to be arbitrarily close. As a matter of 

fact, they become infinitely close, implying that the estimate becomes exact because the two points 

are infinitely close, and we therefore get the exact slope of the tangent line. This limit is essentially 

the definition of the tangent line and the definition of the derivative, implying that the derivative 

is the slope of the tangent line.  

As I observed the lesson, I noted down the following: 

An interesting point is how close can you move P to Q , and when do you stop? 

What happens when P and Q coincide, then PQ ceases to be a secant, instead, it 

becomes a point (We cannot make Q equal to P , because we need two points to 

make a line). How close can one point get to another without becoming one point? 

Between any two points, there is a gap, and within that gap, you can fill it with 

another point. So, the idea behind calculus is that we can get Q so close to P , that 

there is literally no difference between a secant and a tangent. They can get so close 

such that the secant line is the same as the tangent line. If we let Q get closer and 

closer to P , the secant will be identical to the tangent (approximately equal to the 

tangent). The idea of being very close (closer and closer to is the limit –the idea of 

Q being closer to P , but not touching P is the idea of the limit. As Q gets closer 

to P , the secant line more closely approximates to the tangent line. (FN 1)                                                                                      

To further visualise the concepts that have been discussed above, the lecturer asked the students 

to solve the following problem first without the aid of the software, and then with the aid of 

GeoGebra. 

Find the slope on the curve 3 27 11 9( )
20 20 10

f x x x x   , at the point where x =1 
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Solution 

221 22 9'( )
20 20 10

f x x x    

'(1)f = 1.25 

The lecturer then worked out the same question with the aid of GeoGebra as shown in Applet 1.5, 

Figure 4.6).  

 

Figure 4.6: Applet 1.5: Finding the slope of the tangent using GeoGebra 

4.3.1.2 Interview with Lecturer 1 

Lecturer 1 had not interacted with GeoGebra prior to the commencement of this study. She had, 

however, taught calculus in TEIs for over ten years. After interacting with the software, she felt 

that GeoGebra was helpful to both students and lecturers, especially from the visual perspective. 

She observed that: 

Okay when we come to the use of GeoGebra to explore the concept of limit it was quite 

interesting because when we are finding the gradient, we mostly just take the change in y, 

the change in x without looking typically at the limiting factor towards that gradient point 

(PCK 1). But when we used GeoGebra, it was giving us a clear indication of how when we 
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get to a particular point, how the gradient of that particular curve or that line, giving us 

that figure so the visualisation was quite clear when using the concept of GeoGebra. The 

fact that the visual aspect (VP 1) is brought into the lesson, students are able to understand 

better). The aspect of limit, the limiting process, so, when you are saying this value, or 

those small changes, along the x – axis and the y – axis, the aspect of approaching zero, 

so that can be seen (VP 1). Because from the conventional way, the traditional method, 

when you just say, it is approaching zero, it is abstract, it is not seen, so, where is it 

approaching zero, so if you go to GeoGebra, those lines, red and blue colours of the 

tangent line and the secant sine in the GeoGebra applet there is that movement (VP 1), 

either way, it’s going towards zero, until it reaches zero, so that is the difference, the seeing 

aspect. (VP1) (IL9L7)  

She elaborated that in her lesson presentation, GeoGebra was very useful (AU1) in reinforcing the 

concept of first principle of differentiation, as the learners were able to understand the concept of 

the derivate and how the formula for first principles was arrived at (TPK 1). She explained that as 

h  was approaching zero (VP1), the concept of the limit is not very easy to explain without the 

visualisation features of GeoGebra, because as h  was reducing, this gradient for PQ  was getting 

closer to the gradient at the tangent line. So, without a good visualisation, even when you illustrate 

it on the board, it is not very clear, but that with GeoGebra, she was able to demonstrate the 

gradient very precisely to the students (EU 1) and they were able to see the line getting closer and 

closer to the tangent, until it coincided with the tangent line (VP).  

She added that:  

I think there, GeoGebra, it being a software that I can say is practical in such a way that, if 

we are talking about, maybe, moving the secant line, from its original position, it can move 

like, it can visually move, as we are moving sliders (USD 1), so there I found it to be very 

easy, (EU 1), when explaining the slope of tangent using the secant, to the students, it was 

something that we could see, (VP 1), and it was very easy (EU 1). I would say the concepts 

when using this tool, GeoGebra, provide a clear link on how to develop the gradient at a 

point because the moment this line is, the imaginary point is coming closer, (VC 1), to the 

point where we want to draw the gradient from, it gives that clear indication as you get into 
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action so the secant providing that extra view, (MR 1), of how to draw the tangent at a 

certain point of the, tangent, yes. (IL1L14)  

She added that it was very easy (EU 1) to grasp the concept of how 𝑃 was moving to Q, because 

GeoGebra clearly demonstrated the effect when 𝑃 was moving towards 𝑄 (VC 1) and how the 

secant was transforming into the tangent, so it was easy to visualise and see what was happening. 

It was all about seeing it move and observing the effect it was causing – in other words, it was easy 

to see.  

She elaborated that GeoGebra, if used properly (TPACK 1) as a visualisation tool (VC 1) on the 

concept of the slope, can clarify the concept accurately and clearly. She explained that GeoGebra 

enables the students to understand (CU1) how the gradient occurs, especially when they can see 

the way the two points (𝑃 and 𝑄) move closer (VC 1) to each other. This enables learners to 

understand why the gradient of the tangent is equal to the gradient of the curve at a particular point 

(PCK 1). Unlike when conventional and manual methods are used (such as chalk-and-board 

methods which are often difficult to use to produce accurate diagrams), GeoGebra produces very 

accurate and precise representations to visualise concepts effectively. She explained:  

…so the focus was on how the secant was moving (VP 1) towards the tangent at a 

particular point. Because when you have two points on the secant, as one point is drawing 

closer to the other one, the secant inclines to the tangent (TPK 1), so they were able to see 

how as the gap between P and Q is being closed up, or should I say the gap between two 

points is being closed up. The students were able to see how the secant, that passes through 

those two points gets reduced to the tangent (CK1). So since they were able to see that, 

and to understand how the secant is being used to find the slope of the tangent. The fact 

that the visual aspect (VP 1) is brought into the lesson, and students are able to understand 

better (CU1), then they will be motivated to do more (ITUI 1). If anything, they will even 

come up with their own areas of concern. Like if you tackle specific areas of concern and 

they have interaction with the software (AU 1), they can explore and get to those points 

that you didn’t touch as a teacher. (IL1L6) 

During the FGD, lecturer 2 asserted: 



108 
 

Okay, the...okay GeoGebra brought out the concept so clear, (CU1), because when you 

want to introduce the problem of the tangent to the learners and when you are just using 

the board sometimes it’s not very clear for them to see that point Q  is approaching point 

P  and that h  is reducing but with the GeoGebra application, I think it clearly showed us 

(VP 1) how h  decreases as it approaches zero (TPK 1), so that the gradient of the secant 

is closer to the gradient of the tangent, and therefore, solving the tangent problem. (PF1) 

(FGD L1L7)  

Lecturers in the FGD had this to say: 

We know quite alright that once we integrate the curve at a particular point, what we are 

getting is the gradient. (CK1). Now with this one we are able to locate the actual point 

using this software GeoGebra. We are able to locate the point at the same time (MR1) we 

are able to draw the tangent at that particular point without any problem (EU1). Then once 

the tangent is drawn, then we can even come up with another point within the curve then 

from there we can do some movement of a point, (VP 1), towards if it is Q towards P, then 

even there we are able to visualise. Unlike a situation whereby we just solve without seeing. 

Just like I indicated earlier on. Once you attach the two calculations plus the aspect of 

vision, then the whole process is complete. This part will help us, one do the calculations 

(PF1), and at the same time learners are able to see. If we say this line will move closer to 

this, we are able to see. (VP 1) (FGD L4L93) 

When asked to elaborate in the FGD, lecturer 4 recounted that the software enhanced the concept 

of the slope of the tangent where the point Q  moved to point P  so visually that one was able to 

see what was happening to the secant as it was almost becoming a tangent. He added that when it 

was almost a tangent then you knew (CK) that the gradient of the secant was almost the same as 

that of a tangent, as opposed to simply talking in abstract terms. Seeing the movement really 

enabled the students to understand the concept (CU 1) and it would be retained in their minds since 

they saw it actually happening (VP1). 
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4.3.2 Lecturer 2 

4.3.2.1 Limits - brief description of the lesson and how the applets were used 

Lecturer 2 taught Cycle 2 on limits. He started his lesson by emphasising that students generally 

find the concept of limits very challenging, but stressed that limits form the fundamental basis of 

calculus and it was therefore very important to have an intuitive understanding (CU1) of the 

concept of the limit function in the study of calculus. In this cycle, the lecturer explored the limit 

of a function using GeoGebra. In mathematics, a limit is the sequence or value that a function 

approaches as the input gets closer to some value (Muhtadi et al., 2018). Limits are absolutely 

essential to calculus and mathematical analysis, and are used to define continuity, integrals, and 

derivatives.  

In this cycle, the applet that was used to explore the concept of the limit of the function was to  

evaluate the limit of the function 
2 6

3
x x

x
 


 as x  approached 3. In his presentation, the lecturer  

asked the students about the methods that they could use to evaluate the above limit. 

The lecturer, working collaboratively with the students, proceeded as follows: 

Evaluate: ( )f x = 
3

lim
x

 
2 6

3
x x

x
  
 

 
 

By direct substitution of 𝑥 for 3 in 𝑓(𝑥), the function is undefined, as division by zero has no 

solution. The lecturer asked the students about any alternative methods of evaluating the limit in 

such a case.  

The lecturer discussed with the students that in such a scenario, it is possible to evaluate the limit 

by plugging into the function a value close to the number 𝑥 is approaching (in such a case, values 

close to 3). In this case, numbers close to 3 but not exactly 3, for instance 2.999 or 3.001, were 

considered, and the value obtained was close to 5. Notice that as you get closer and closer to 3, the 

limit approaches 5. We can therefore say that the limit of the function ( )f x  as 𝑥 approaches 3, is 

equal to 5. This technique works for any limit, as long as you plug in a number that is very close 

to the given number, but not exactly that number, if the limit exists, it is going to converge to a 

certain value. However, at times, you have to use other techniques to find the solution.  
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One such method is the factor method as worked out below:  

2

3

6lim( )
3x

x x
x

 

 3

3

2)( 3)lim(
( 3)

lim( 2)

3 2
5

x

x

x x
x

x





 




 

 



 

Therefore 
2

3

6lim( )
3x

x x
x

 


= 5. This implies that when 𝑥 approaches 3, the function value of 𝑓(𝑥) 

approaches 5.  

Using the GeoGebra applets, the lecturer presented the lesson to the students as follows:  

 

Figure 4.7: : Applet 2.1 – Limit function in algebra view and graphic view 

On the graph of ( )f x , as shown in Applet 2.1, Figure 4.6, in the GeoGebra interface, two points 

were selected: L , on the left hand side of 3x  , (3) , and R , on the on the right hand side of 

3x  , (3+) of 𝑓(𝑥) and their coordinates simultaneously appeare (MR1), in the algebraic view. As 

the points L  and R were dragged towards 3 using the sliders (USD 1), it was observed that at the 
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point where 𝑥 = 3, the function was not defined, but as the point approached 3 from either side, 

the function values approached 5.  

On the same applet, the same concept was further investigated using the spreadsheet (MR1). The 

spreadsheet was used to explore values of the function as 𝑥 approached 3 from either side. The 

lecturer took values of 𝑥 from 2.9 to 3,04 to obtain the values close to 3 from either side. The 

corresponding values of 𝑓(𝑥) were obtained by the spreadsheet function as shown in Figure 4.7 in 

the Applet 2.2. 

 

Figure 4.8: Applet 2.2 – Limit function in algebra view, graphic view and in spreadsheet view 

 

In the spreadsheet view the function is not defined when 𝑥 = 3, but the function values were 

approaching 5, as 𝑥 approached 3 from either side.  

On the same applet, the limit of the same function was evaluated using the CAS option under the 

‘view’ tab as shown in Applet 1.3, Figure 4.3.  
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Figure 4.9: Applet 2.3 – Limit function in algebra view, graphic view, spreadsheet view and in CAS 

 

The above applets indicate that the lecturer explored the concept of the limit in multiple ways 

(MR1): graphically, algebraically, by using spreadsheets and using CAS.  

4.3.2.2 Interview with Lecturer 2 

The lecturer acknowledged that from his interaction with GeoGebra, he discovered that the 

concept of limits could be explored in multiple ways (MR1), viz: algebraic, graphic, and with 

spreadsheets.  

He emphasised that it was very clear (CU1) when using the applets that when 𝑥 was equal to 3, 

the function 𝑓(𝑥) was not defined. However, when 𝑥 was very close but less than 3 (for instance 

when 𝑥 was 2.97. 2.98 and 2.99), the values of 𝑓(𝑥) were 4.97. 4.98 and 4.99 respectively – all 

very close to, but less than 5. On the other hand, when the values very close to but greater than 3 

were considered (for instance 3.03, 3.02 and 3.01), the values of 𝑓(𝑥) were 5.04, 5.03 and 5.01 – 

all close to, but greater than 5.  

Lecturer 2, reflected:  
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Teaching of calculus, I think it has not been easy because when you look at calculus, mainly 

we teach that topic in abstract. Most of the issues we explain when for example, the issue 

of limits, you say okay this is approaching a certain figure but meanwhile we end up 

substituting the actual figure (PF1). So to explain certain concepts, we explain those 

concepts based on issues that are abstract. There I would say GeoGebra helps. There, we 

never used to know what was transpiring or happening when 𝑥 is approaching any number. 

We were just taking it by faith that it just happens like that but GeoGebra was able to iron 

out all those doubts, (CU1), yes. Also, I was able to know that, oh!, this is the way things 

are, not the way we were taught, yes, it became so easier (EU1), in the sense that 

visualisation, you are able to see (VP1), how it is changing, not by calculating, to say, no, 

we now approaching 3, using various methods (MR1) (IL2L43)  

During the FGD, Lecturer 6, elaborated:  

This one, (pointing to the image on the laptop) equally enhanced (CU1) in a way that 

instead of just suggesting numbers and calculating in abstract (PF1), one is able to see 

(VP1), that as one point is moving towards the other you are seeing what is happening to 

the coordinates (MR1), so that you see the values, you are able to see, the number that they 

are approaching right from the left and from the right, so that in the end it becomes easy 

even to tell that oh, the limit is this one because from both ends the number that has been 

approached is this, one is seeing the values as they are changing. (VP1) (FGDL6L119)  

A common view among the interviewees was that a number of calculus concepts could be better 

illustrated using the GeoGebra software (TPACK 1), than by the conventional method (PF1).. This 

is underscored by one participant during the FGD, who explained: 

I think I can start, personally I have been teaching calculus for quite a long period of time 

when it comes to teaching of calculus, there are areas which we teach in abstract (PF1). I 

can give an example of limits. You may teach learners that for example you take a certain 

figure for example as numbers are approaching 3 they will not reach 3, but when it comes 

to the actual solving you are solving a problem under limit, you substitute the same 3 which 

you said numbers cannot reach 3. So when it comes to explanation, you cannot give the 

correct explanation as to why numbers cannot reach 3 but you are substituting 3. So in 

short what I am saying is, the way we teach calculus, there are some concepts which we 
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teach in abstract we just explain, you cannot really show, showing becomes difficult but 

there are some concepts which we when it comes to oh differentiate and people will take it 

that way of course without diagrams. There are some which we draw those simple ones but 

there are some again which we cannot demonstrate like the issue of approaching a certain 

figure we can’t demonstrate you can demonstrate but not really reaching the point as we 

saw on the software (TPACK 1). As you are using the app we will be able to move the 

points (USD1), and there it will help us even explain (CU1) how the limit in the formula of 

the first principle comes about as it approaches. So there is that visualisation (VP 1), One 

is able to see how all the coordinates that are involved are changing and how actually the 

limiting value is arrived at. (MR1) (FGD 1L2 L11)  

He went on to clarify that when you just compute limits (PF1) using conventional methods, you 

will obtain the solution, but it does really show the conceptual understanding (CU1) of limits. 

However, when now you use GeoGebra (TPACK 1), he added, you are able to create sliders 

(USD1), move points and really see (VP1) where the limits are approaching the required value, 

thus relating the abstract concept to the concrete one.  

In the FGD, Lecturer 5 pointed out that:  

When you are using the concept in abstract (PF1), the learners wouldn’t really see the 

approach you make, but now when you are using GeoGebra (TPACK1), even when you 

are saying we are approaching from the left or we are approaching from the right they will 

be seeing the values (VP1), getting closer to what the correct value, especially with the use 

of the sliders (USD 1), that was quite good providing mathematical reasoning towards that 

particular limiting value to the left or to the right. (FGD 1L20)  

Lecturer 2 further asserted that the use of the software worked in such a manner that instead of just 

suggesting numbers and calculating in abstract (PF1), one was able to see the points moving, the 

values of the 𝑥and y coordinates changing and simultaneously (MR1), see the number that is 

being approached, from both the left and the right (VP1).  

Underscoring his view, he clarified: 

That one for me it will greatly help learners. One, when it comes to the points( for example 

when you talk of limits), I will cite an example of first of all the first principle. Where you 
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have a point, of course you can name it and you have another point, then as this point is 

moving closer to the other point of course not reaching the actual point. When it comes to 

GeoGebra, you are able to see that physically (VP 1) that this point is moving but it is not 

reaching this point. Now when it comes to the real teaching of limits, we don’t show that, 

we just explain that this is approaching this either from the left or the right but it will not 

reach this (PF1). Now graphically (VP1), under this software we were able to see and I 

will ensure that I will be able to teach learners using this and they will not forget. Usually 

when we are teaching limits, we just teach it in a… I can say a robotic way (PF1), even if 

we can come up with that table where you enter the value of x to get the f(x) as a number, 

as taking the number approaching that value and those a bit up. You will discover that it 

takes time actually for learners to calculate. Using the app, GeoGebra, it will be time 

saving actually (EU1) and it will also give them a skill, not just the knowledge but also the 

skill to work with the app, a computer skill yeah. (TK 1) (IL2L10) 

He further explained that as he was presenting the lesson on limits, GeoGebra enabled him to 

focus on the movement of points (VP1), while the corresponding changes were being observed on 

the interface by students. He emphasised that what was so interesting, was that he could 

demonstrate synchronously the limit approaching the required value from both the left and the 

right, thereby bringing in the visualisation aspect (MR1).  

He stressed: 

For the limits I would say that in most cases if you are talking of limits without this software 

(TPACK 1), it is actually in abstract(PF1). But for this one the way the table showed us 

(VP1) in spreadsheets, when the sliders were being dragged, we were able to see as h was 

approaching 3, from both the left and the right, the limit was approaching 5. I don’t think 

this would be easy to illustrate using chalk and talk. (IL2L15)  



116 
 

4.3.3 Lecturer 3 

4.3.3.1 Area above the 𝒙 − 𝐚𝐱𝐢𝐬 and below the 𝒙 − 𝐚𝐱𝐢𝐬 − brief description of the lesson and 

how the applets were used 

Lecturer 3 taught the area above and below the 𝑥 axis in Cycle 3. In this cycle, the focus was on 

how to use GeoGebra applets to explore the concept of area bounded by the curve, with one part 

above and the other below the 𝑥 axis.  

Before using the GeoGebra applets, the lecturer presented his lesson using the conventional 

method. He emphasised that given a function 𝑦 and asked to find the area, in integration, that 

function y is considered to be 𝑓(𝑥), thus: 

dAy
dx

 , which implies that 

b

a
A ydx   = ( ) ( )A b A a  

( )
b

a
A f x dx   

He explained that finding the integral of a function entails finding its area.  

He then gave an example as follows: 

Find the area under the curve 𝑦 = 𝑥(𝑥 − 1)(𝑥 − 2), between 𝑥 = 0 and 𝑥 = 2. 

The lecturer asked the students what method they thought could be appropriate to find the solution. 

The students responded that the function needed to be integrated first, and then substitute the lower 

and upper limits, and then find the difference. They foumd zero as the solotion and the lecturer 

asked them about their views on area having a value of zero. With help of the lecturer, they realised 

that  they needed to first find the area from 0x  , to 1x  , and then from 1x  to 2x  . With 

participation from the students, he proceeded as follows:  

( )
b

a
A f x dx   

2

0
( 1)( 2)A x x x dx    
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2 3 2

0
( 3 2 )A x x x dx     = 

1 3 2

0
( 3 2 )x x x  

   -- 
2 3 2

1
( 3 2 )x x x  

   dx 

14
3 2

04
xA x x
 

   
 

  The lecturer worked out the first part as shown below and in figure 4.10, and 

asked students to work out the rest.                            

14
3 2

04
xA x x
 

   
 

=  
1 1 1 0
4

 
   

 
= 

1
4

square units 

The lecturer then illustrated the work above using GeoGebra as follows:  

 

Figure4.10: Applet 3.1: Estimating area bounded by a curve between 0 and 1, for a cubic function 

The lecturer gave the second example based on the applet prepared:  

Find the area between the curve. 𝑦 = 𝑠 from 𝑥 = 0 to 𝑥 = 2𝜋 

The lecturer asked the students for their views about finding the solution. One student suggested 

that the first thing was to find the integral of the given function (PF1). The lecturer responded that 

if he had to go by what one of the students had suggested, he would proceed as follows:  
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2

0
sinA xdx



   

 
2

0
cosA x 

   

   cos 2 cos0A      

 1 ( 1)
0

A
A
   


 

The lecturer asked the students about their views on the value of area being 0. He then suggested 

that the same question be explored using the GeoGebra applet as shown in Applet 3.2, Figure 4.11.  

 

Figure4.11: Applet 3.2. Estimating area bounded by a curve between 0 and Pi, below and above 

the 𝒙 - axis 

He emphasised that the area to be calculated in the Applet 3.2, was the one bounded by the curve 

and the 𝑥 axis, from 𝑥 = 0 to 𝑥 = 2𝜋. Referring to the earlier calculation, he asked the students 

how the area could be 0, when the graph was covering space above and below the graph. He 

pointed out that this was where the visual aspect (VP 1), played an important role, and emphasised 

that in problems involving area under the curve, a sketch was very necessary, especially in cases 

where it involved parts above and below the 𝑥 axis. He then proceeded to find the areas using the 
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software and picked the integral function in the input bar ’Function, start value, end value’. So, in 

the illustration in Figure 4.12, Applet 3.3, he used the start value 0, and the end value 2  and he 

obtained 0: 

 

Figure 4.12: Applet 3.3. Estimating area bounded by a curve between 0 and 2 pi showing area zero square 
units 

He asked the students why this was the case, and they responded that the intervals needed to be 

separated, from 0 to  , and then from  to 2  (PCK 1). He then used the GeoGebra tool ‘start 

value’ 0 and the ‘end value’  , then in the next part used the start value of  and end value 2
, to obtain the area 4 square units as shown in Figure 4.12, Applet 3.3.  
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Figure 4.13: Applet 3.3. Estimating area bounded by a curve between 0 to 𝝅 and 𝝅to 2 𝝅, showing an area of 

four square units 

For the area under the 𝑥- axis, the value indicates negative 2. Lecturer 3 clarified that this was because the 

area was below the 𝑥 - axis and therefore its absolute value should be considered, which was 2 in 

this case, making the total area four square units. He emphasised that in such cases, it was 

necessary to separate the intervals, as failure to do so will result in erroneously obtaining 0 as the 

area.  

4.3.3.2 Interview with Lecturer 3 

Lecturer 3 presented the calculus cycle on area under the curve, with a specific focus on a curve 

that had one part above and the other part below the 𝑥-axis. He pointed out that from his experience, 

students faced some challenges in conceptualising (CU1) the area under the curve, especially when 

it involves one part above and the other below the 𝑥 − 𝑎𝑥𝑖𝑠. He said the challenges mostly arose 

from having to deal with ‘negative’ or ‘zero’ area. The lecturer explained that after his interaction 

with GeoGebra, (TPACK 1) he realized that the software could enhance the students’ 

understanding CU1) of the area under the curve. He elaborated that it was for this reason that he 

suggested questions that would give values of zero and a negative value when the upper and lower 

limits were directly substituted in the integral function.  
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He commented: 

I think there the enhancement was that when we looked at the area under the curve, and the 

software GeoGebra which was used (TCK 1). Initially, when we are finding the area during 

the traditional method, we just calculate, for example, we just integrate, and we will fuse in 

our limits, and we get the exact area (PF1). But in that case, I found it to be very easy (EU 

1), in such a way that after the area has been identified with the limits that were given, 

maybe it is just a matter of clicking, and it clearly shows you the portion which you – actually 

there is accurate measurement of the area there. It can be a bit difficult if you have plotted 

using your free hand and using a ruler, but there, the actual area was clearly visible. (VP 

1) (IL3L8) 

4.3.4 Lecturer 4 

4.3.4.1 The Riemann sum - brief description of the lesson and how the applets were used 

Lecturer 4 taught cycle 4 on the Riemann sum. The focus in this cycle was to estimate the area 

under the curve using the lower and upper sums. The question used to develop the concept was as 

follows: Find the area under the curve 2( )f x x , between x = 0, and x  =3. Of course, this can 

easily be calculated algebraically (PF 1), by definite integral using the algebraic formula as 

follows: 

3 2

0
x dx , to obtain 

3

3
x 

 
 

 and get 9 square units.  

The solutions worked out by some of the students on paper are shown below:  
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Figure 4.14: Screenshot 4.1: Solution worked out by a student on Riemann sum cycle 

 

Figure 4.15: Screenshot 4.2: Solution worked out by a student on Riemann Sum cycle 

The lecturer asked the students for their views on alternative methods of how they could calculate 

the area under the curve (PCK 1). The responses included making squares, trapeziums or rectangles 
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under the curve, then calculating the area and finding the sum of all the shapes under the curve. 

Then using GeoGebra, he used the construction tools for upper and lower sums. 

4.3.4.2 Estimating area using the lower sum 

Using the lower sum and the slider tools (USD1), rectangles were created under the curve, with 

the number of rectangles set to 𝑛, where 𝑛 ranged from 1 to 50, as shown in Figure 4.15, Applet 

4.1. The slider tool is one feature of GeoGebra that can be used to decrease or increase the number 

of objects by dragging it back and forth. It is more effective than having a fixed quantity, as it can 

easily be used to make the necessary adjustments to a diagram without necessarily starting from 

scratch.  

 

Figure 4.16: Applet 4.1. Finding the area under a curve using Riemann sum 

Setting 𝑛 to 6 on the slider, the applet with six rectangles was created as shown in Figure 4.16, 

Applet 4.2 below: 
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Figure 4.18: Applet 4.2: Estimating area under the curve using the lower sum with six rectangles 

The lecturer then asked the students to compare the area found by the lower sum method to that of 

the actual area. The students were asked to give reasons for their answers. The difference in the 

value of the approximated area and the actual area was attributed to the gaps in the rectangles in 

the lower part of the curve (TPK).  

Using the slider tool (USD 1), the lecturer increased the number of rectangles to fifteen, as shown 

in the Applet 4.3 in Figure 4.18.  
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Figure 4.19: Applet 4.3: Estimating area under the curve using the lower sum with fifteen rectangles 

With the increased number of rectangles, it was discovered that the approximated area was closer 

to the actual area as the sizes of the gaps on the top of rectangles was significantly reduced. The 

value of the approximated area was very close to the actual area, but still less than the actual area 

at 8.12 square units. As the term lower sum implies, the gaps in the rectangles are on the lower 

part of the curve on top of the rectangles (CK). It was noted that as the number of rectangles below 

the curve increased, the more the value of the estimated area became close to, but still less than, 

the actual area for the lower sum.  

4.3.4.3 Estimating area using the upper sum 

The lecturer also investigated the area under the curve using the upper sum as shown in Figure 

4.18, Applet 4.4.  
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Figure 4.20: Applet 4.4: Estimating area under the curve using the upper sum method 

The lecturer illustrated Applet 4.4 showing ten rectangles below the curve (VP1). It was discovered 

that unlike in the lower sum method (where there were some gaps on top of the rectangles), in the 

upper sum method, some parts of the rectangles overlapped (protruded) on the upper part of the 

curve. The lecturer asked the students what they observed about the estimated area compared to 

the actual area. The observation was that the estimated area was close but higher than the actual 

area. This was attributed to the parts that overlapped the curve on top of the rectangles (CK1).  

By adjusting the value of 𝑛 on the slider to 31, the number of rectangles increased (VP1) to 31 as 

shown in Figure 4.18, Applet 4.5.  
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Figure 4.21: Applet 4.5: Estimating area under the curve using the upper sum method with an increase in the 
number of rectangles 

With the increased number of rectangles, it was observed that the estimated area (9.44 square units) 

was very close to the actual area (9 square units).  

4.3.4.4 Interview with Lecturer 4 

The lecturer reflected that it was interesting and easy (EU 1) to explore the concept of the area 

under the curve, using the Riemann sum with the GeoGebra software, compared to the 

conventional method. He reflected that using the conventional method involves a lot of unwieldy 

work as one is required to draw a number of trapeziums or rectangles, and when changing the 

quantity of shapes drawn, one has to erase the whole diagram and draw it afresh. In addition to 

accuracy and prompt feedback, the slider tool of GeoGebra makes it easier to visualise (VP1), 

adjustments in a more concrete manner. Lecturer 4 : 

It also made the students understand that the more rectangles you have, the more accurate 

the result (PK1). When we had fewer rectangles below the curve, for example two or three, 

the value obtained for the area was not close to the actual area, so we were able to see that 

in order to get an accurate result, you need to have more rectangles, so that there are fewer 

cut offs. (IL4L59)  
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GeoGebra made the concept of area very clear. The use of sliders to increase or reduce the number 

of rectangles when calculating the area under the curve made it easier and simpler (TPK 1). During 

the lecturer’s lesson presentation on the cycle of the Riemann sum, it was observed that when he 

increased the number of rectangles in the applet, the area under the curve was closer to the actual 

area and when he decreased the number of rectangles under the curve, the estimated area became 

less and less accurate. 

He said:  

Very good. There we say, when those rectangles were created, we just draw the bigger 

ones, and we say as we increase the number of rectangles, the area becomes as closer as 

possible, it is not easy to see because you can’t draw so many using chalk and board, but 

with what we saw with GeoGebra (TPACK 1), although it didn’t eventually come to the 

same, but we could see that the area was, the lower was 6.2 and the upper one was 6.7. So 

it is very easy (EU 1) to visualise) that (VCP1. They would actually see that the results are 

bounded – he upper sums, and the lower sums – so it will be clear to understand that these 

are the lower Riemann integrals, these are the upper Riemann integrals. (IL3L9) 

Asked further what he meant by not eventually coming to the same, he explained that there were 

some differences in the value of area in the decimal part. This was the result because the lecturer 

did not use the tool under the options tab, ‘Rounding off”, to increase the number of decimal 

places.  

In the Focus Group Discussion, Lecturer 1, pointed out: 

This one, is equally… was quite very helpful, because by simply considering the limits or 

the boundaries you find maybe people have different answers and sometimes you may not 

even be able to justify the answer (PF1). But this software (TPACK) was able to show 

(VP1) how close one will be by say increasing the number of rectangles or so, so that the 

answer actually…, you are able to see, that the more you increase the closer you are to the 

answer than just saying okay, let me just take between three or four rectangles or so, you 

find that that way you may not be certain but with this one. one is able to be to tell with 

certainty that definitely that the answer should be very close to what is shown on the graph. 

(FGDL1L151) 
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The lecturer summed it up by waying that when using the Riemann’s sum method in the GeoGebra 

interface, the focus was on the number of rectangles that would be formed under a particular curve. 

For both the lower and upper sum, the goal was to have as many rectangles as possible so as to get 

as close as possible to the actual answer, and reduce the amount of space that remained uncovered 

under the graph (CK1).  

4.3.5 Lecturer 5 

4.3.5.1 Area above the the 𝒙 − 𝐚𝐱𝐢𝐬 and below the 𝒙 − 𝐚𝐱𝐢𝐬 - brief description of the lesson 

and how the applet was used 

The cycle that ecturer 5 presented to the pre-service student teachers was on the slope of the tangent 

(Cycle 1) – the same one that was presented by Lecturer 1. Unlike Lecturer 1 whose focus was on 

investigating the slope of the tangent using a secant, the focus in Lecturer 5’s presentation was to 

explore the relationship between the graph of the original function ( )f x  and its derivative '( )f x

. His focus was that while GeoGebra’s construction tools could simultaneously generate (MR1) 

the graph of the derivative and the corresponding function, the students may not grasp the 

underlying concept (CU1) that connects the graph of ( )f x  to that of '( )f x . To explore this 

concept, the lecturer gave the following activity to his students:  

Given the function 𝑓(𝑥) = 𝑥3 + 2𝑥2 − 1, find the slope of ( )f x , at the point where 𝑥 = −2, 𝑥 =

−1, 𝑥 = 0, 𝑥 = 1 and 𝑥 = 2. Use your results to draw the graph of '( )f x .  

The students worked out the questions on paper as follows: 
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Figure 4.22: Investigating the relationship between graphs of 𝒇(𝒙) and of 𝒇’(𝒙) 

Some students, for instance the group that worked out the question as depicted in Screenshot 5.1, 

faced a challenge in working out the question. They erroneously substituted the values of 𝑥 x  

directly in 𝑓(𝑥) before finding the first derivative and then substitute in '( )f x . However, other 

groups, such as the one depicted in Screenshot 5.2 below, worked it out correctly with the help of 

a sketch (VC 1), thus incorporating the notion of visualisation.  

The lecturer then worked out the question as follows: 

𝑓(𝑥) = 𝑥3 − 𝑥 − 1 

 𝑓′(𝑥) = 3𝑥2 − 1 

Thus: 𝑓′(−2) = 3(−2)2 − 1 = 11 𝑓′(−1) = 3(−1)2 − 1 = 2 

 𝑓′(0) = 3(0)2 − 1 = −1 

 𝑓′(1) = 3(1)2 − 1 = 2 

 𝑓′(2) = 3(2)2 − 1 = 11 (PF1) 

  

After substituting the integer values of 𝑥 from -2 to 2, he obtained the following coordinate points: 

(-2, 11), (-1, 2), (0, -1), (1, 2), and (2, 11). A group of students made a sketch of the graphs of 

'( )f x  and ( )f x  as shown in Screenshot 5.2 below.  



131 
 

 

Figure 4.23: Screenshot 5.2 : Investigating the relationship between graphs of 𝒇′(𝒙) and of 𝒇(𝒙) 

The lecturer further probed the students to comment on the connection that they observed between 

the two graphs ( )f x and '( )f x . The students had challenges and the lecturer proceeded by first 

drawing the graph of ( )f x using GeoGebra as follows:  
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Figure 4.24: Applet 5.1: Investigating the relationship between graphs of 𝒇(𝒙) and of 𝒇’(𝒙) 

Having drawn the graph of ( )f x , the lecturer constructed a tangent on the curve and found the 

slope of the tangent at point P , as shown in Applet 4.24 He went on further to explain that the 

derivative is the slope of the tangent at a point on the curve, and the slope at P , where 𝑥 is 1, 

'(1) 2f  . This implies that the slope on the curve where 𝑥 is 1 (the abscissa), is 2, and 

coincidentally, 2 is the y coordinate (the ordinate) where𝑥 is 1, which gives the point (1,2). He 

then asked the students to test the rest of the points and it was established that the value of '( )f x

corresponded to the value of the slope (TCK 1) and PCK 1), which was also the same value as the 

y coordinate. He elaborated that this concept could be used to plot the graph of the derivative 

using the conventional method, and by tracing using GeoGebra as shown in Figure 4.22 below, in 

Applet 5.2. 
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Figure 4.25: Applet 5.2: Investigating the relationship between graphs of f(x) and of f’(x) - 1 

After creating a slider called 𝑎, for ( )f x , to obtain a general point P  on the curve, the lecturer 

let ( , ( ))P a f a , constructed a tangent at P , and then found the slope at point P . To create a 

general point on the derivate, he set Q =( x ( P ), s)), having set 𝑠 as the slope of the tangent at P

. Then, moving the slider between its minimum and positive values, the graph of the derivative 

was traced, using the trace construction tool (TPACK 1). 

It was observed that for ( )f x and '( )f x , the 𝑥 coordinates for P were the same (as can be seen in 

Applet 5.2), where Q is directly above P , but the y coordinates for ( )f x and '( )f x , were 

different (CK 1). He encouraged students as they worked on activities on differentiation, to draw 

graphs (VP 1) of functions of their corresponding derivatives, as this may enhance their 

understanding of concepts (CU1).  

To further illustrate the concept –being aware that students were very familiar with the idea that 

the derivative of sine 𝑥 is cosine 𝑥 – the lecturer asked the students to use GeoGebra to trace the 

result. The illustration included the following, shown in Figure 4.23 and 4.24, Applet 5.3a and 

5.3b.: 
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Figure 4.26: Applet 5.3a - Investigating the relationship between graphs of f(x) and of f’(x) - 2 

 

 

Figure 4.27: Applet 5.3b: Investigating the relationship between graphs of f(x) and of f’(x) - 3 
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4.3.5.2 Interview with Lecturer 5  

The interviewees expressed a variety of perspectives on the concept of the derivative. Lecturer 5 

narrated:  

Usually, as you are introducing the derivative function, we usually draw a kind of a 

diagram like that which we just drew, in abstract (PF1). Learners don’t even appreciate 

what we are doing. But if we can draw using GeoGebra, they are able to see exactly (VP 

1) how a tangent line is drawn, where it is coming, how the graph of the function relates 

to the graph of the derivative. All those (MR1) and then it will give them a picture, (VP1) 

on how the derivative will come out or is done, because in our teaching, we normally just 

differentiate, and it ends there, without really knowing how that particular concept was 

arrived at. (IL5L7) 

The lecturer reflected that unlike the GeoGebra construction tool of differentiating (Derivative 

<Function>) which gave the derivative of a function directly (VP1), the aspect of tracing provided 

more insight into the concept of the derivative. He further acknowledged that prior to his 

interaction with the software, he had hardly investigated the relationship between a function and 

its derivative (PF1), and he rarely brought in the visual aspect of graphs. Most of the work was 

merely done procedurally and in an abstract manner (VP1). He explained that from the applet of 

( )f x and '( )f x , it was apparent to the students that when a cubic function whose degree is 3, is 

differentiated, its degree decreased by one, to that of a quadratic function whose graph is a parabola 

(CK). The students were able to see all these on one GeoGebra interface (MR1). In the FGD, 

Lecturer 6 noted:  

First of all, I will acknowledge that this GeoGebra is probably the best in the teaching of 

calculus. It has come at a point when I think I introduced the topic of calculus I think a 

week ago and some of the concepts which I had difficulty teaching were made simple (EU 

1). So since the topic is not yet complete I will ensure that I familiarise with this software 

even some of the parts which I taught I will ensure that I will be able to show the learners. 

Of course, there are some concepts which I explained but I was not satisfied but I will be 

able to of course to invite my learners and show them what I meant by saying the derivative 

is the slope of the tangent at a point on the curve (PCK). The issue of the derivative, how 
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it is done (TPK), so to me, this one is a very good software which all of us who are teaching 

mathematics must embrace. (FGDL6L209)  

Echoing this view, Lecturer 5, acknowledged that: 

That experience in the lesson, where, instead of going straight away to finding the 

derivative (PF1), we had to differentiate through the method of tracing (TPK), really 

helped me and the students conceptualise derivatives better (CU1). For me, I think, it’s the 

best tool for me I can say because it will give the know-how (PCK 1) for both the lecturer 

and the learner on how things are done and how they came up because as we are using it 

we will be able to see how things are done and I can also recommend that going forward 

this tool should be introduced in the teaching of mathematics especially calculus and other 

topics such as functions and many others. (FGD 3L5)  

In the FGD, Lecturer 5 summed up that a number of calculus concepts could be better illustrated 

using the GeoGebra software than by the conventional method.  

4.3.6 Lecturer 6 

4.3.6.1 Area above the 𝒙 −axis and below the 𝒙 −axis – brief description of the lesson and 

how the applet was used 

Just as Lecturer 3, Lecturer 6 presented Cycle 3 on the area above and below the 𝑥 −axis. However, 

Lecturer 6’s approach was different. After asking the students the question: ‘Find the area between 

the curve iny s x from 𝑥 = 0 𝑡𝑜 𝑥 = 2𝜋′, in the conventional method, he asked each student to 

explain what each answer represented (PCK 1). Some of the working done by students is presented 

in Screenshots 6.1 and 6.2 below: 
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Figure 4.28: Screenshot 6.1a: Finding the area below and above the 𝒙 -axis 

 

Figure 4.29: Screenshot 6.1b: Finding the area below and above the 𝒙 -axis 

As shown in Screenshots 6.1a and 6.1b, most of the students’ methods in working out the question 

resulted in 0 and 1 as solutions (PCK1). The lecturer asked the students to explain the two solutions 
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in relation to the meaning of the term ‘area’ (CU1). After some hesitation from the students, he 

reminded them that area can be defined as the space occupied by a flat shape or the amount of 

space taken up by a 2D shape. In view of this he asked them to give a justification for the answer 

0. He went on further to explore with them that if they considered the sketches that they had made, 

would it be logical to have an answer 0? 

The lecturer clarified that while the first solution may not necessarily be correct, it was however, 

a valid answer. From the visual aspect (VP 1) of the question, it was evident that it would not 

mathematically be correct to claim that the space covered could be zero square units, when the 

diagram shows that there is space covered above and below that 𝑥 –axis (CK1). He emphasised 

the importance of visualisation in such questions, as it enhances the understanding of the question. 

Figure 4.27 illustrates the work that was erroneously done one of the participants during 

preparation with me.  

 

Figure 4.30: Applet 6.2: Area below and above the 𝒙 –axis prepared for students 

After discussing the question, the lecturer correctly worked out the solution and prepared the applet 

as shown in Figure 4.27, Applet 6.2 above, to obtain the solution of four square units.  
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4.3.6.2 Interview with Lecturer 6 

Lecturer 6 explained that the GeoGebra applet clearly illustrated (VP1) the sine graph from the 

origin to 𝜋 above the 𝑥-axis, and from 𝜋 to 2𝜋 below the 𝑥 −axis.The graphic view showed that 

space had been covered, but without the visual features of GeoGebra and going directly into 

computation, students were getting solutions such as -1 and 0, which were not mathematically 

valid considering the concept of area. He stressed that getting the solution zero indicates that no 

space is covered, but when it is made visual by GeoGebra it reveals that space is occupied. 

Interestingly, as the lecturers and I were preparing the applet on this cycle, some lecturers obtained 

-1 and 0 as solutions. When asked to justify their answers, they explained that such solutions could 

have been avoided had they worked out the question by using a visual aspect.  

Lecturer 6 stressed: 

Usually, as you are introducing the derivative function, we usually draw a kind of a 

diagram like that which we just drew in abstract (PF1). Learners don’t even appreciate 

what we are doing. But if we can draw using GeoGebra, they are able to see exactly (VP1) 

how a tangent line is drawn, where it is coming from, then the secant and all those and 

then it will give them a picture (VC1) on how derivative will come out or is done. This one 

was quite interesting, because without visualisation you can’t easily see the scope (CU1) 

at which you are finding the area because as much as we are looking at area we are 

interested to look at the space a particular object is covering. So the areas without 

GeoGebr, (TPACK1), you can just think of because the limits up and all have already been 

provided. I can quickly do the calculus part to integrate and get the solution (PF1), but 

with GeoGebra it was giving us a clear picture (VP1). There is this portion of the graph 

and then there is another potion of the graph so that consideration was quite vivid. 

(IL6L12)  

He elaborated that GeoGebra actually shows us (VC 1) the diagram of the shaded parts of the areas 

to be calculated, so it is therefore easy (EU 1) for the learners who see the actual parts that are 

being discussed.  

Lecturer 6 stressed:  
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It gave us the two curves and to me it was very easy to justify the answer that was given 

(CU1).It showe (VP1), that the curve is both above the x-axis and below, so the two, even 

the limits were easily noted from there. When we solved without visualising (PF1), we had 

a challenge, because of the computation process it brought some of us to zero because 

there was -1 and +1, but when we visualise, that is when we saw that actually there was 

area which was covered – area – space was occupied, so it was occupied above the x-axis 

and below the x-axis, hence after visualising, that is when it made sense that there is area 

below and above, with limits. I mean not taking the full limits but from 0 to 𝜋, then 𝜋 to 2 

𝜋 and it gave us now the correct answer which was 4, yes 2 + 2 is 4 so the other one without 

visualising, we didn’t take the absolute value of area and we found a negative area which 

was not correct. It was easier (EU 1, to understand. It makes teaching very easy because 

certain concepts being taught are visualised. (IL6L12) 

In the FGD, Lecturer 5 further explained that: 

This one was quite interesting, because without visualisation, you can’t easily see the scope 

(CU1) at which you are finding the area because as much as we are looking at area we 

are interested to look at the space a particular object is covering (VP1). So the areas 

without GeoGebra (TPACK), you can just think of because the limits up and down all have 

already been provided. I can quickly do the calculus, part to integrate and get the…, but 

with GeoGebra it was giving us a clear picture (VP1). There is this portion of the graph 

and then there is another potion of the graph so that consideration was quite vivid. 

((FDGL5L304) 

Lecturer 6 summed up with the observation:  

Technology simplifies matters (EU1), that is in teaching when you want to explain a concept 

technology will help you to visualise (VP1) that concept to the learners and GeoGebra is 

that tool which we can use to explain these concepts in several topics, calculus and these 

other topics geometry, algebra, statistics. GeoGebra can easily make learners understand 

a concept. (FGD L6L74)  
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4.4 HORIZONTAL ANALYSIS  

In this section, data was analysed across the cases to obtain deeper insights into the lecturers’ 

experiences and perceptions of incorporating GeoGebra as a visualisation tool to teach calculus to 

pre-service teachers in TEIs. The factors that enabled or constrained the lecturers’ adoption of 

technology in teaching and learning mathematics were also analysed. This was done by presenting 

a summary of the analysis by considering the emerging themes of the similarities and differences, 

from the perspectives of the six participants. This horizontal analysis was done with reference to 

my analytical framework and the three research questions of this study: 

• How can GeoGebra be used as a visualisation tool to teach calculus to pre-service student 

teachers in TEIs to enhance conceptual understanding? 

• What are the perceptions and experiences of lecturers in using GeoGebra as a visualisation 

tool to teach calculus in TEIs in Zambia?  

• What are the enabling and constraining factors of using GeoGebra in the teaching and 

learning of mathematics?  

 

4.4.1 Research question 1: How can GeoGebra be used as a visualisation tool to teach 
calculus to pre-service student teachers in TEIs to enhance conceptual 
understanding? 

A variety of perspectives were expressed among the participants on this question, but a recurrent 

theme was a sense among the interviewees that GeoGebra was an extremely vital tool to both 

students and lecturers in the teaching and learning process of mathematics, in that the visualisation 

features of GeoGebra provided a strong link between the abstract nature or theoretical part of 

mathematics, to the practical aspects. The following sentiments were shared by the participants: 

I would say it’s a very important tool that every teacher and learner should use because 

just teaching maths on its own without providing the visual aspect doesn’t add up so I 

would say it’s a very important skill that each learner even staff should have in 

mathematics. (IL3L13)  

The visualisation features of GeoGebra in the teaching and learning of mathematics, 

provides some form of reality, whereby instead of just concentrating on abstract thinking, 

you bring to the learners the real situation – they can also see it. Actually, it gives them the 
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idea to see how things come up, yeah, and how it is done in real life, hands on and some 

sort of mind zone. (IL1L7)  

Visualisation is like using a real object to present something to the learners where they are 

also going to put their hands, mind on that particular activity. We say when you do, when 

you are involved you remember but when you just hear, it becomes difficult to recall so 

visualisation brings in the realities of teaching in a classroom situation. It consolidates the 

abstract knowledge that we want to put forward to the students. (IL3L12)  

Visualisation on its own is very key when it comes to the teaching of mathematics, because 

once learners see, I think they cannot forget. Unlike a situation where you’re just taught, 

because when they see I think they will be able to assimilate and they will be able to 

understand that concept easily. It helps learners to really see how the concept came about 

and the idea behind it because they will be able to see if you move a point from here to that 

point they will be able to see and follow through. (FGD 1L21) 

I think it helps the learners to consolidate the concept as they hear whether it is the gradient 

or so then they now see the actual graph and all that it becomes easier for them when it 

comes to just the theoretical aspect so they are able to link, to relate to be convinced that 

really this is the result. (Il5L15) 

The lecturers also emphasised the importance of adequate training for them to be able to effectively 

use GeoGebra as a visualisation tool to teach calculus to pre-service student teachers. They pointed 

out that training in the use of the software, coupled with the knowledge of the subject matter in 

calculus, were absolutely vital for them to effectively teach with the software. They felt that 

ongoing training would be of great help. One of the participants clarified:  

Yes, training is very necessary. I say so because I managed to deliver a lesson using the 

software, the moment I was introduced or exposed to the software, I was just given the 

basics, but with the interest, I had to explore, I managed to build on the basics that I was 

given and I found it very interesting to explore, once you know the basics, you can build 

on the foundation to explore it. (IL2L13) 

Another lecturer articulated that:  
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The information that I can share is I don’t know whether it is possible to or in your personal 

capacity to facilitate this kind of training on a larger scale, so that lecturers can be trained 

from few selected colleges across the country, so that it can maybe actually be adopted as 

a teaching tool in colleges. I don’t know whether you can facilitate, or whether you can 

sell the idea to the Ministry of Education since colleges of education are under Ministry of 

Education so that the powers that be may adopt this idea and see how they can actually 

implement this process, where you become one of the facilitators to improve on the results. 

(IL4L13)  

This resonates with the sentiments of Koehler et al. (2017) (mentioned in the literature review in 

Chapter 2), that strategies that are required to better prepare future teachers for learning and 

teaching in the 21st Century, should take cognisance of teacher training in technology integration.  

From their experience with the software, the participants felt that the incorporation of ICT in the 

teaching of mathematics should be one of the topics in teacher training and GeoGebra should be 

one of the components. They however, suggested that GeoGebra should be used to reinforce the 

conventional method of teaching calculus. A calculus topic should first be taught in the traditional 

method, and then GeoGebra could be used to emphasise, or used side by side, to clarify and verify 

the concepts, so as to enhance the learning process.  

It should be used alongside the usual conventional method, so that the students can have 

both GeoGebra and the ordinary way of learning so that they understand better. (FGD 

L2L10)  

Lecturer 2 responded that in the teaching of calculus to pre-service student teachers, GeoGebra 

should be used as a resource for innovation and for accuracy. It should also be used to facilitate 

the link between abstract and concrete concepts by virtue of its visualisation features.  

Generally, we just teach things in abstract, but with the use of GeoGebra in the teaching 

process, students will be able to see what is actually happening because as we say, 

mathematics is a practical subject, they have to see, the practical aspect of it, in this case 

which is the use of GeoGebra. Yes, we have already said that GeoGebra helps both 

teachers and learners through visualisation and also and can also be used as a checking 
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tool. To verify your solution, so if teachers in learning institutions can be introduced to this 

app, then I think it would make their work easier when they go in the field (IL2L119).  

Lecturer 6 outlined that in the teaching of calculus, one of the reasons that people say mathematics 

is difficult, is its abstract nature. GeoGebra has the potential to make those mathematics concepts 

visual that are not easily understood by the learners. She added that it is an aid that enhances 

learning and can be seen graphically. 

She stated:  

I think the role of visualisation…, there is an enhancement especially in what may seem to 

be abstract when explaining. It brings on board, the aspect of appreciating what is being 

talked about. Because I remember when I was introducing differentiation, first of all, I 

began by displaying the ordinary, ehh, the traditional method. I drew the X o Y plane, and 

I drew the curve, the parabola, a curve just like that, then I also had to draw the secant 

line, just like that. So I explained the traditional way, but the moment, because I had 

already prepared it on my GeoGebra application, but the moment I finished explaining the 

traditional way and beamed it to the class, I could even see them now getting the actual 

concept of what I was saying, ooh, so this is what you meant! I think visualisation there 

brings in an appreciation of seeing what may seem to be abstract and the memory there is 

enhanced very much, they may not forget, they find it difficult to forget about the concept. 

(IL2L6) 

This view is in line with the observation by Toptaş et al. (2012) in the literature review in Chapter 

2, who indicated that examples of visualisation of mathematics concepts included 2D or 3D 

physical manipulatives, graphs, diagrams and pictures.  

Lecturer 3 responded that GeoGebra should be used in a manner that would make calculus 

concepts go beyond the theoretical perspective. He elaborated that GeoGebra should be used to 

illustrate calculus concepts such as limits, and gradient of a line at a point on the curve, so as to 

make students ‘see’ what is being talked about. He added that this would improve learning because 

students would actually visualise and see what is happening rather than merely learning it in an 

abstract fashion. 
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The role of visualising is actually to make it easy to follow than just listening to somebody 

saying this is what will happen when you do this, this is what will happen, when you do 

that, but if you able visualise it, it enhances your understanding. Okay, visualisation helps 

the learners to fully understand unlike using the traditional method, this will help learners 

visualise, they will get to have that picture to visualise, maybe, you are using an app, a 

software, let’s say for instance, you are teaching them on differentiation from first 

principles, if you are using the ordinary method, they won’t really understand the concept, 

but once you use that projection with GeoGebra, they will visualise and it will stick in their 

memory. (IL8L3)  

Lecturer 6 reported that GeoGebra could be used to encourage exploration of calculus concepts 

by first solving questions using the traditional method, then bringing in the features of GeoGebra. 

He elaborated that: 

When you look at its accuracy for instance, you might find that students feel much better if 

there is a problem, they solve that problem and then you have a reference point, to tell 

whether or not you have found the correct solution, so in an event that students are exposed 

to GeoGebra, they can be doing their solving in the traditional way, and by virtue of 

GeoGebra being able to confirm if the solution is correct and its accuracy. I think that can 

be a steering wheel to say, they will be using this whenever a student is dealing with 

calculus, it will be easier for them to refer to GeoGebra even without necessarily looking 

for somebody who knows the actual way of solving it. (IL6L10)  

This conforms with what is outlined in the literature review that as students engage in problem 

solving, they can use GeoGebra to visualise their ideas, confirm or falsify their assumptions and 

to obtain immediate feedback. 

GeoGebra should be used in a manner that lessens the focus on formulas, but rather in a manner 

that promotes understanding of concepts. He gave an example that lecturers normally find it a 

challenge to illustrate the meaning of calculus concepts such as ‘delta’ or ‘change’ when using the 

conventional method. The use of GeoGebra, he added, through its visualisation characteristics, 

would help illustrate the meaning of these concepts and hence enhance understanding. This is in 

line with the observation by Sabella and Redish (2007), who noted that a number of students 

enrolled in HEI calculus classes tended to acquire superficial and incomplete understanding of 
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basic concepts of calculus, due to teaching practices that emphasise rote, algorithmic drilling and 

manipulative learning. 

Another participant was of the view that students should be given a lot of challenging calculus 

tasks that require use of GeoGebra. This, in his view, would encourage students to use the software 

frequently, and since young people are often very keen on using ICTs, they would most likely 

discover a lot of things on GeoGebra on their own. 

Ummh, to start with, the learning process itself when using that software as I experienced 

it was quite encouraging. You could find learners on their own may even start exploring 

other things which they may not even been taught, the way I saw when we were trying to 

find the derivative itself, a learner may be encouraged to practice some more examples in 

the process they will learn more things. (IL4L7)  

The participants also brought in the aspect of access to the software. They felt that more access to 

the software on reliable computers for both lecturers and students would facilitate the use of 

GeoGebra as a visualisation tool to teach calculus. As noted by lecturer 5: 

Okay, I think in order to help learners explore mathematical concepts, it would be good to 

give them access to the software, let us say for example, at a school in the computer lab, 

we install the software on those computers, so that learners may have access because some 

of them may have no computers where they are coming from and things like that, so we 

can encourage the learners, we can train them, then also encourage them to continue using 

the same software from the lab, and also those who are able to do it from home, that is also 

fine. By them doing it on their own, it would really help them because that would be like 

hands on. (IL15L11) 

This is in agreement with Ertmer et al. (2012) who identified school level barriers as lack of 

effective training to solve the technical problems and lack of access to resources. The participants 

emphasised that the visualisation characteristics of GeoGebra enhanced understanding. Use of 

GeoGebra through its visualisation features can be used to enhance the understanding of the 

application of calculus concepts in real life, as well as understanding the definition of the limit and 

the derivative. Lecturer 5 articulated:  
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So, the enhancement is through visualisation. So, they are able to see, the limit is one thing 

that is very difficult to understand because you don’t see it. How is it coming to zero? So 

the movement of the straight line towards zero, that helps. The emphasis is on the 

enhancement of the learning process, to make the learners learn actively, especially when 

it comes to graphing, especially calculus requires a lot of graphs. But if they see it visually 

using GeoGebra, that will really help them to understand calculus at secondary school, 

and at tertiary, it can also actually help to enhance the teaching, even to us as lecturers, it 

is very helpful. (IL5L11) 

4.4.2 Research question 2: What are the perceptions and experiences of lecturers in using 
GeoGebra as a visualisation tool to teach calculus in TEIs in Zambia?  

On the issue of perceptions and experiences of lecturers in using GeoGebra as a 

visualisation tool, the aspect of using the software judiciously was one of the emerging 

themes. Lecturer 6 remarked:  

That depends on how the lecturer or the teacher interacts with the software, because the 

software is eh….a very good software and so it can enhance the teaching of calculus 

because calculus has an algebraic abstract part which is brought into light if it is done 

geometrically, so when there is that combination, the abstract ideas from algebra to the 

geometrical functions, if there is that combination, since the app (application) caters for 

both, it can bring out the visual aspect of calculus. (IL1L9) 

Contrary to the earlier suggestion by some participants, lecturer 3 argued that the software should 

not be merely used in a manner to extend the traditional way of teaching by using it simply to 

verify or prove solutions, but rather in a manner that enhanced conceptual understanding. He added 

that this could be achieved by making effective use of the visualisation features of GeoGebra. This 

aligns with the views of Jelatu et al. (2018) who cautioned stakeholders against using technology 

for its own sake. It was observed that in most learning institutions, typical uses of technology 

tended to simply complement conventional teaching, instead of making underlying changes to the 

teacher-centered instructional paradigms. 

Based on their interaction with GeoGebra in their training as they prepared to present their lessons 

and during their lesson presentations, the lecturers’ experience was that there was a need for more 

sensitisation for both students and lecturers, especially on the use of the software on topics other 
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than calculus. They explained that the sensitisation was necessary for both, considering that the 

software is currently hardly used in TEIs or in secondary schools. It would accord pre-service 

students an opportunity to acquire the knowledge and skills of how to use the software before they 

graduate, and impart the skills to their learners. They added that when people became more 

competent in the use the of the software, the more effectively they would apply it in calculus and 

other mathematics topics. Lecturer 3 reflected: 

I think what should be done is that more lecturers and students of mathematics should be 

sensitised on GeoGebra, that is my view, because it is very useful. Like I said in the 

beginning, myself, the only time that I began using it was when I was sensitised by you 

(referring to the researcher), now if more lecturers are sensitised, then I think that would 

be better for the teaching of mathematics. (IL3L14)  

Lecturer 4 narrated that the teaching of calculus in TEIs generally lacked the element of application 

and it was mostly abstract. He elaborated that such teaching did not foster the understanding of 

concepts but rather promoted memorisation. His experience of teaching calculus with GeoGebra 

was that visualisation helped to concretise concepts of an abstract nature.  

Generally, the experiencee with students is that when they are dealing with calculus, when 

we are doing the introductory part, that part which involves limits, they are not very 

comfortable, even proving by First Principles. Usually they have a problem, when they are 

using the formula, they just multiply the power by that (coefficient and subtract 1 from the 

power), they have no issues. But again, when it comes to application, they have a lot of 

issues. Eeh, I have discovered that it is so much of theory, the way we have actually been 

teaching calculus, students actually rely on memorising than understanding the concepts. 

(IL3L2)  

This view was underscored by Lecturer 2, who responded: 

Ok, my experience is that actually, students sometimes say calculus is very difficult and so 

on and so forth, and I have seen that in my teaching, most of my students have found 

calculus one of the difficult topics, where the performance in calculus hasn’t been as good 

as other topics. Most teachers do not dwell so much on the application of calculus, and 

they don’t even draw the curves showing that when they are differentiating, this is what is 
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happening and all that, that is my experience, so many people find it difficult to understand 

what is this dy dx, what is this integral? (IL15L2)  

This view aligns with the views of Little (2009) who reiterated that the use of the computer as a 

tool for performing the procedures of calculus and algebra could free students to explore 

applications. It further resonates with the views of Machromah et al. (2019), that teaching the 

application of derivatives and integrals with the help of Geogebra has                                                              

the potential to impact positively on students’ achievement as regards their conceptual knowledge 

(FGD L1L10).  

It was also noted that GeoGebra is a software that is easy to use and gives instant feedback. The 

use of GeoGebra entails teaching and learning mathematics through hands-on activities and 

visualising what one is doing, which enhances the learning process and promotes conceptual 

understanding. Lecturer 1 suggested that its use should be encouraged and broadened. He 

emphasised:  

Yes, it must, that’s what is being encouraged nowadays, instead of just using the computer 

to record marks (laughs), it should be used to teach, so it is something that must be done, 

and this is one very good software. Many times, people have told us, use ICT, but how do 

we use it? But here is a tool, if we have so many such tools, then, incorporation will be 

easier, but instead of just saying incorporate, but there is nothing to incorporate, but this 

is one example of something very beautiful. (IL1L15) 

Lecturer 3 was of the view that there was a need to include other tools in the GeoGebra application 

so as to accommodate other components of calculus as well as other mathematics topics. 

Aaah, yes, because some other topics, you cannot solve them using GeoGebra, so there are 

tools which are lacking, if it can be beefed up, I don’t know if this is all, or you just picked 

what was appropriate for this activity. (IL3L14)  

Lecturer 2 asserted that GeoGebra was the best technological tool he had so far encountered as 

regards the teaching and learning of mathematics in general and calculus in particular, that he 

could use to visualise concepts and easily but accurately draw diagrams.  

He recounted:  
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One, it is the best tool for me I can say, because it will give the know-how for both the 

lecturer and the learner on how things are done and how they came up because as we are 

using it, we will be able to see how things are done and I can also recommend that going 

forward, this tool should be introduced in the teaching of mathematics especially calculus 

and other topics such as functions and many others. My experience after going through 

GeoGebra was that I was very happy to use is it because it makes my work easier. When I 

am teaching calculus or any other topic it will help me to easily draw diagrams, export 

them to word and also use them to solve certain problems and also visualise certain 

concepts so that learners can easily grasp the concept. My perceptions have really been, I 

would say the expectations have been that without the provision of GeoGebra, it has not 

been easy personally to bring out calculus concepts to students with the visual aspects but 

this time around, with the package of GeoGebra it has given me another dimension on how 

to address certain features of calculus and geometry on this totally. (IL2L43)  

A common view among the interviewees was that GeoGebra enhanced better understanding of 

calculus concepts when compared to the conventional method of presenting calculus. In the FGD, 

it was disclosed that: 

To me, GeoGebra enhances understanding on the part of the learners because when we 

are looking at the ordinary way of presenting, much of the work is in abstract, but now if 

you apply this, if you embrace this tool GeoGebra in teaching, certain concepts are quite 

vividly seen. Even when you are talking about a limit for example, you are able to see how 

things are done, if you are using a secant you are able to see how the gradient is coming 

up. So the application is quite handy and also other than that, even for the students and the 

teachers, it simplifies work, and it motivates them to explore calculus concepts. Most of the 

explanation can be done just through representation and that can be done by the students, 

it is easy to use – that is my experience. Moreover, calculus encompasses many topics in 

mathematics, so the introduction to the use of GeoGebra will really suffice because many 

mathematics concepts are explained using calculus. (FGD 3L74) 

Lecturer 1 laid emphasis on the instructiveness of the software, and the aspect of giving confidence 

to the teacher. She claimed that as she interacted with GeoGebra during her lesson presentations, 

she discovered it was possible for students to learn a lot by themselves and even in situations where 
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they faced challenges, each construction tool was designed in such a way that hints of how to go 

about finding solutions were provided. She added that the software instilled confidence in the user, 

as it could also be used to verify solutions.  

4.4.3 Research question 3: Enabling and constraining factors of using GeoGebra in the 
teaching and learning of mathematics  

4.4.3.1  Enabling factors 

The findings revealed that the respondents were of the opinion that there were a number of enabling 

factors for using GeoGebra in the teaching and learning of mathematics.  

In almost all cases, lecturers viewed GeoGebra as a motivating factor for students during problem 

solving. Lecturer 4 responded: 

First, GeoGebra motivates students, they actually like things happening. ICT is actually 

the in thing for students, and so if you can use it as regularly as possible, I am sure everyone 

will be very happy, there will be more learning than when they are just listening to you 

explaining and may not do very well. But ICT motivates them. That part is very good for 

them, we have seen even when you are just writing notes on PowerPoint, just the screen 

and they are writing something, it motivates them than when you are just writing on the 

board, or you are dictating and they are writing. (IL11L5) 

Closely linked to the factor of motivation, were interest in and attitude to using ICTs. A variety of 

perspectives were expressed that interest in and a positive attitude to the use of ICTs would 

encourage lecturers to use technology in their teaching.  

Echoing this view, another participant added that the best motivator for every teacher or lecturer 

is to make students understand, and this is one of the major reasons for using teaching aids. So, if 

we have a tool such as GeoGebra that is capable of helping students understand concepts more 

clearly, it means it is more motivating.  

Lecturer 3 explained that when he was presenting his lesson using the applets, the students 

exhibited a lot of interest in their responses, they looked motivated and that in itself, according to 

him, would encourage lecturers to use GeoGebra as a motivating factor for the learners. 
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This view is acknowledged by İsleyen and Sivin-kachala (2019), who claimed that the computer 

is widely used as a teaching aid in mathematics in order to enhance students’ self-confidence and 

self-motivation.  

The motivation factor resonates with the constructivist approach of student-centredness observed 

by Mokhtar et al. (2013) and Takači et al. (2015), that student-centred approaches in general have 

been shown to enhance motivation in learning mathematics and to learn mathematics and realise 

its applicability. Additionally, TAM provides meaningful information on the link between 

intention and motivation to integrate technology in the teaching and learning process from a 

constructivist perspective. GeoGebra was seen as a tool that provided accurate solutions and saved 

time. Lecturer 5 pointed out:  

Yes I strongly believe GeoGebra should be used because it is one software, as we are aware 

that the world has gone digital we are being encouraged to be resourceful, to be innovative, 

we can come up with other teaching aids but the accuracy that this technological software 

has, can, is far much better compared to others which may not be as technological in nature 

as it is. One, it saves time; two, it is accurate; and three, it actually gives the actual aspect, 

every detail that can be talked about in a particular field., it reveals, it brings out as long 

as you know how to use it. (IL5L16) 

Lecturer 6 explained that when a task is given in calculus, generally a graph or a diagram is used 

which requires time and is mostly ‘through chalk and board’, the quality of the graphs and 

diagrams are neither appealing nor accurate. However, GeoGebra is capable of drawing accurate 

diagrams and finding solutions in a very short time.  

GeoGebra saves a lot of time because when you deal with calculus, then you are usually 

dealing with functions which usually require drawings, coming up with diagrams, and that 

takes a lot of time, but with GeoGebra, just with a click of the button, a function pops up, 

you can save a lot of time, if you use the software. (IIL5L10) 

This view is supported by Marrades and Gutiérrez (2000), who argued that GeoGebra takes care 

of time-consuming constructions such as graphs, with accuracy and minimal effort. They 

elaborated that by using tools like sliders and drag-and-drop tools, students can easily construct 

variations of a graphical representation that can be used to generalise and explore concepts, and 

allow learners and teachers more time to concentrate on mathematical processes in the lessons. 
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On the issue of accuracy, Lecturer 1 had a different view from the other participants, as he observed 

that:  

Well for lecturers, it may be relative because the accuracy in higher mathematics is not 

really a factor, or it is not the focus, the focus is on deriving solutions. (IL1L6)  

Another enabling factor that emerged, was that GeoGebra was cheap. The respondent implied that 

it is a free, open-source software (a non-commercial software) which does not require any license 

fees. Additionally, it runs offline, so it does not require internet connectivity, considering the high 

cost of bandwidth in Zambia. Lecturer 5 substantiated his claim: 

This software does not require internet and it is easily accessible so one will really be 

motivated to start applying it, use it because it is very accessible and very easy to use. I 

think that these factors can motivate one to use this technology. (IL5L49) 

The visualisation feature of GeoGebra was also identified as an enabling factor. Lecturer 4 

observed:  

With the visual aspect of GeoGebra, it is easy to enhance the understanding of concepts, 

the teaching and learning of mathematics will be real, it is like people are visualising what 

is happening …it is easier for a lecturer or teacher to use GeoGebra in order for the 

learners to understand. because they will clearly be seeing what is happening. (IL14L8) 

He stressed that the use of GeoGebra strengthened the understanding of the concepts, can be used 

for proving and verification, and since it is interactive and exciting, it catches learners’ attention.  

Lecturer 5 echoed this view, stating: 

Technology simplifies matters that is in teaching when you want to explain a concept, 

technology will help you to visualise that concept to the learners and GeoGebra is that tool 

which we can use to explain these concepts in several topics, calculus and these other 

topics, geometry, algebra, statistics, GeoGebra can easily make learners understand a 

concept. (IL5L20)  

These findings are in line with the findings of Heid and Edwards (2001), Hohenwarter and Jones 

(2007) and Kaput and Roschelle (2013), who reiterated that the systematic use of the visualisation 

features of GeoGebra could help students to explore, solve problems, receive prompt feedback 
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and to engage in reasoning. Kadunz, in agreement with this view, summed up by stating that “One 

of the most powerful and widely recognised didactical components of dynamic mathematics 

software is visualisation” (1998, p. 198).  

Availability of resources and the knowledge of how to use it were also cited as enabling factors.  

I think the availability of laptops and computers and also the knowledge with some training. 

(IL1L12)  

Lecturer 4 clarified that one needs to have a computer, because without the resources, learning 

with this software would be very difficult. So the computer is the main resource. Farjon et al. 

(2019) acknowledged the factor of availability of resources and expertise by observing that 

countries had invested substantially in terms of money, resources, expertise and research to 

integrate technology into education, in a bid to make the classroom environment more conducive 

to enhanced learning and teaching. 

Other recurrent themes among the participants on enabling factors were the availability of 

resources and the knowledge and skill to utilise them. It was pointed out in a FGD that: 

Institutions need to actually supply the required equipment. I have seen that in most cases 

in these institutions it simply says use this and at the end those equipment are not provided, 

looking at the situation of COVID-19, that we had, when we closed the schools and colleges 

we were told to offer lessons online, but in the actual sense very few of us or let me say 

some of us did not have that equipment and the data to actually use in that area. I feel that 

institutions should come in and provide these materials. When the equipment is available, 

then we need to ensure that as lecturers, we familiarise ourselves on the use of the software. 

(FGD L72)  

Another enabling factor that was identified with regard to the use of GeoGebra was verification 

of solutions. Lecturer 3 elaborated: 

When you use GeoGebra, you can easily check, verify, even before presenting to your 

students, you can verify, test, your findings, so that as you go to the learners, you are well 

versed with what you are going to present, that is one factor. (IL3L115)  
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Keeping up with modern digital global trends was cited as an enabling factor. The participants 

indicated in the FGD that the education sector in general, and mathematics education, cannot lag 

behind in technological advancement, and therefore, this in itself provides impetus for lecturers to 

integrate technology in their teaching. Lecturer 3 in the FGD expressed that: 

When you check at what is happening globally, all sectors, let me say all fields starting 

from talk time, marketing, are incorporating in their work in technology, so there is no way 

we who are in education and to be specific our area which is mathematics can lag behind. 

Even ourselves we are supposed to move so the use of those apps will definitely help us 

move to another level. Moreover, the coming in of COVID-19, has taught us something to 

say, with the help of technology learning can continue. Because as we are talking of 

GeoGebra, this one is self-tutoring of some sort, it can be done using the app and others 

will be able to get the concepts on their own. (FGD 3L98)   

4.4.3.2 Constraining factors 

A lack of computers and expertise to use them effectively were cited as some of the major 

constraints of using GeoGebra in the teaching and learning of mathematics. Lecturer 2 pointed out 

that:  

Resources, are a challenge, we do not have many computers, we only have one lab in the 

institution, each department, if it has to be successful, it must have its own lab, computer 

lab, where students can go at their own free time, probably also practice and then they can 

be there any time with their teacher. (IL2L4) 

Underscoring this view, Lecturer 6 added:  

Lack of computers, because in schools let me not talk of colleges, in schools we don’t allow 

phones (among students), now we know that this app can only work when you have your 

phone or a laptop but you will find that most schools even colleges we don’t have a stocked 

library where we have so many computers and to learners some of the phones they have, 

are not smart phones, so sometimes it’s very difficult and you cannot force matters they 

are poor, they cannot manage. Those are some of the factors that can discourage lecturers 

from using ICTs (IL6L81). 
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This view is echoed by Atchoarena (2016), who acknowledged that teacher education in Zambia 

faces a number of challenges. The challenges cited were a lack of facilities and resources, weak 

capacity and qualifications of staff in TEIs, and weak utilisation of ICT due to inadequate 

knowledge. The Zambian (MoE, 2010, p. 36)), underscored this view, stating that qualified human 

resources, infrastructure and teaching and learning materials still remained the main challenges in 

most TEIs.  

The findings further revealed that the use of GeoGebra, within the existing curriculum, which was 

examination oriented, was a challenge. This was attributed to a tendency by lecturers to focus more 

on completing the syllabus at the expense of engaging students in constructivist approaches to 

learning – a practice that requires more time. In fact, the factor of time, despite being classified as 

an enabling factor by some participants, was also cited as a constraining factor by other 

participants. This was attributed to the fact that preparing a lesson to be taught in a GeoGebra 

environment required a lot of time.  

Lecturer 4 lamented: 

Ummh…the only thing I can comment is, it’s time consuming and our syllabuses are bulky 

also, even with just talking and writing on the board we are not completing the syllabus, 

but however, it can still be used as I said when a specialised lab to the department is 

available, the learners can go there, whenever they feel like and practice. The issue of time, 

because, when a software is just introduced, it’s new, so, somebody needs a lot of time to 

practice and understand the gadgets, because this one, it will be like a teaching aid, okay, 

and then you need to fully understand it and that needs a lot of time. Now, if you look at 

the overload of time that we have, we may not have sufficient time to spend on practising 

so that you become perfect in the application of that), so we are looking at the time factor. 

(IL4L14)  

Inability to use the GeoGebra software effectively, and using it in topics other than calculus were 

also identified as constraining factors. In his response, Lecturer 6 commented:  

Let me say, some apps on the GeoGebra software, they are like, if you do not know how to 

use them, it might be difficult, yes, they are there, but how do you use them? That is where 

most of the challenge is. Like, let’s say for instance, you want to find the turning points, 
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there is a tool on top there, which you can use, but if you are not too conversant on how to 

use that, you might end up getting wrong information. So, I would say, it is lack of 

knowledge if lecturers are not trained well, it can hinder their use of ICT in teaching. 

(IL6L79)  

 Lecturer 3 lamented that the challenge he had was finding the right tools and avoiding clicking on 

several tool icons until he found the correct one.  

The participants further revealed that it was a challenge to use GeoGebra in calculus topics that 

required application, in a manner that would motivate students. Lecturer 5 elaborated:  

I think ….it may not be easy for me maybe to manipulate the software especially when it 

comes to the questions on applications, those applications about speed, distance, velocity, 

volume, increment, decrease, changes. I may lack the skill to manipulate the GeoGebra, or 

the software may not have some of the things I need, otherwise if it was beefed up, and if it 

had so many functions, it would be very useful. (IL5L107)  

He went on further to note that GeoGebra would not be used to explore some calculus components 

such as product and quotient rules, implicit differentiation and other mathematics topics, such as 

speed, velocity and acceleration. There was therefore a need, he added, to equip GeoGebra with 

other features that would make it more versatile. He felt that visualisation of the aforementioned 

concepts in a GeoGebra environment would greatly enhance students’ understanding.  

This view is in line with the observation by Little (2011), that the use of technology is not a panacea 

for challenges encountered in calculus teaching and learning. He observed that the software could 

not replace the need for learners to master certain algebraic processing skills. He further pointed 

out that certain aspects of teaching and learning calculus, such as differentiation techniques (the 

product, quotient and chain rules), which are naturally algebraic in nature, were less likely to be 

enhanced by interactive geometry.  

The other inhibiting factors that were brought out by the participants, were resistance to change 

and attitude. It was argued that human beings generally tend to resist change, and that some 

lecturers had a negative attitude towards the integration of ICT into the teaching and learning 

process. Lecturer 2 reaffirmed: 
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Ummh, one..., maybe you know people, a human being always tends to resist change, that 

could be one of the factors, then maybe the other one could be lack of facilities, it could be 

another inhibiting factor, you know some institutions, may not have those facilities like 

what we discovered yesterday that the institution had no projector which has a provision 

for HDMI cable, the other factor could be just attitude, some lecturers may not just have 

positive attitude towards ICT (IL2L120) 

Ruggiero and Mong (2015), in affirmation to these sentiments, reiterated that teacher-level barriers 

included resistance to change and lack of confidence, while school level barriers included a lack 

of effective training to solve the technical problems and lack of access to resources. The literature 

also attests that teachers’ attitudes towards ICTs have a strong influence on the acceptance of the 

usefulness of ICTs in their lessons, and has a strong bearing on whether teachers would integrate 

ICTs into their lessons (Teo, 2011; Huang & Liaw, 2005). On the other hand, TAM recognises 

attitude as one of the its major constructs, where it contends that the attitude of the user towards 

use of technology for teaching and learning is critical. Hew and Brush (2007) concurred with this 

view and elaborated that changing attitudes and beliefs about technologies was an important factor 

and should take precedence in teachers’ ability to integrate technology into teaching. 

Issues related to attitude and lack of confidence were particularly prominent in the interview data. 

Lecturer 1argued that: 

I feel it is negative attitude on the part of teachers. We don’t want to seriously engage into 

use of technology maybe because of our background, some of us feel, ah no, I will make 

mistake I feel I wouldn’t do a good job so you just give yourself a position to say I can’t do 

it so that attitude is what is discouraging us. (IL1L49)  

In the FGD, Lecturer 2 concurred with Lecturer 1, recounting:To add on, lack of confidence 

where you are not properly trained so you can’t have confidence as some students may be 

better than you in ICT. So the lack of confidence maybe due to lack of training, and 

interaction with these gadgets. (FGDL2 L109)  

Lecturer 5 laid emphasis on institutional support, stating: 

If say there isn’t support from management in institutions by availing gadgets like laptops, 

and beamer, (projectors), if those are not provided then that becomes a discouragement to 
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the lecturers. So it is the availability of the same gadgets and resources that can be used. 

If they are made available, then that would be fine but if they are not, if management of the 

institutions do not support then it would be a discouragement. (IL5L58)  

It was pointed out that even though GeoGebra is a free open-source software, the cost of laptops 

and smartphones was on the higher side. In the FGD, Lecturer 5 affirmed: 

So the other thing is that the cost attached to the gadgets that we use – for example phones, 

computers and so on. You would find that practically speaking even us as lecturers, it’s 

very difficult for us to come up with some very good laptops, worse with our students who 

are coming from various negative economically homes. The cost, because you find that you 

want to present this lecture but now, are they going to afford a smartphone? So the costs 

attached to these will also inhibit the proper presentation because sometimes you find that 

yes, class let us now do hands on activity, let’s use a laptop out of eighty you have five, is 

that going to be a success or a flop? So that’s why I am emphasising on the cost of the 

gadget. (IL5L66) 

4.5 CONCLUSION 

This chapter articulated the findings and discussion of the data. This was done with reference to 

the analytical framework and the research questions of the study and by considering the common 

themes in the views of the participants. A brief outline of how each of four cycles was taught was 

presented. This was followed by the vertical and horizontal analysis. In the vertical analysis, a case 

by case analysis of how each lecturer interacted with the software was done, while in the horizontal 

analysis, the analysis was done across all cases.  
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 
 

5.1 INTRODUCTION 

This final chapter consolidates the findings of the study with reference to the research questions, 

the methodology and the theoretical frameworks. It further interrogates the significance of the 

study and its limitations, and makes recommendations for further research. The chapter concludes 

with personal reflections on the study. It is envisaged that the results of this study will significantly 

contribute to the enhancement of incorporating the use of GeoGebra in the teaching and learning 

of mathematics in general and calculus in particular, and identify areas for further research.  

5.2  REVISITING THE RESEARCH GOALS AND QUESTIONS 

Six lecturers – two from each of the three TEIs in Zambia – took part in this case study research. 

The participants developed GeoGebra applets based on four calculus cycles and presented lessons 

to student teachers in their respective TEIs. The main goal of my study was to investigate the use 

of GeoGebra as a visualisation tool, by lecturers to teach calculus in TEIs to pre–service teachers 

in Zambia, to enhance conceptual understanding. In order to accomplish this goal, the study aimed 

to answer the following three questions: 

• How can GeoGebra be used as a visualisation tool to teach calculus to pre-service student 

teachers in TEIs to enhance conceptual understanding? 

• What are the perceptions and experiences of lecturers in using GeoGebra as a visualisation 

tool to teach calculus in TEIs in Zambia?  

• What are the enabling and constraining factors of using GeoGebra in the teaching and 

learning of mathematics?  

These questions demanded a rigorous consideration and understanding of literature on 

mathematics education from a technological perspective. Thus, in my literature review (Chapter 

2), the following concepts were key to my study: the use of information and communication 

technology (ICT) in education; visualisation; GeoGebra; calculus; mathematical proficiency; 

multiple reoresentations; constructivism; TPACK and TAM.  
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5.3  KEY RESEARCH FINDINGS 

The synopsis of the findings as they relate to the research goal and research questions based on 

each of the four calculus cycles is presented below:  

5.3.1  Summary of the Findings Related to Research Question 1 

Use of GeoGebra as a visualisation tool to teach calculus to pre-service students  

in TEIs to enhance conceptual understanding 

A number of visualisation processes were identified in the use of GeoGebra as a visualisation tool 

as lecturers taught the four calculus cycles. A synopsis of these activities is presented below: 

5.3.1.1 Visualisation Processes  

5.3.1.1.1 Link between the abstract nature of mathematics and the practical aspects 

Across all the four cycles, a key finding of the research was that the visualisation features of 

GeoGebra provided a strong link between the theoretical or abstract nature of calculus concepts 

and their practical or concrete aspects. These links were evident in all four cycles, as illustrated in 

Chapter 4. The findings of the study revealed that the inherent visual aspect of GeoGebra made it 

easy to enhance the understanding of concepts, thereby making teaching and learning of 

mathematics real, as it enabled students to visualise what was happening. As matter of fact, in this 

code, visualisation processes were the highest recorded observable indicator, followed by multiple 

representations and use of sliders (as shown in Chapter 4). The lecturers acknowledged that the 

use of GeoGebra fostered learners’ understanding because they were able to clearly see what was 

happening. 

In the first cycle, (the slope of the tangent), the links between the abstract and concrete aspects of 

calculus concepts were illustrated when sliders were used to drag the points of estimate Q , S

and R close to the point of tangency, P , on the secant. This helped to concretise the concept of 

‘one quantity approaching another’, and was also illustrated when lecturers discussed the limit 

concept of ‘ℎ approaching zero’, when the distance between the 𝑥 coordinate of P and that of Q  

became infinitely small, so the students were able to literally ‘see’ ℎ moving towards P . This 

dynamic feature of GeoGebra cannot be easily accomplished with static objects.  
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Additionally, the underlying concepts between a function and its derivative was illustrated by the 

link between their abstract and practical aspects. The participants illustrated the underlying concept 

of how the graph of the derivative relates to that of the original function with the help of the trace 

tool of GeoGebra, to visualise the process. In sum, from the lecturers’ experience of teaching 

calculus with GeoGebra, the findings generally revealed that the aspect of visualisation helped to 

concretise concepts from their abstract nature.  

In the second cycle (limits), the link between the abstract and concrete aspects of calculus concepts 

was made visual when sliders were used to drag point towards a limit. This link was further 

illustrated on the GeoGebra interface when a point was moving closer to another point as students 

observed the values of coordinates changing and approaching a certain limit. Hitt et al., (2017) 

asserted that making mathematics concepts visual is a way of transforming them into concrete 

from their abstract nature, and assists students to easily comprehend concepts. Tatar and Zengin 

(2016) reiterate that teaching calculus with dynamic software helps make the learning of abstract 

concepts easier.  

In Cycle 3, the area above and below the 𝑥-axis, the link between visual processes of abstract and 

concrete were illustrated in a number of ways. Firstly, the graph (Figure 4.12, in Section 4.3.3) ) 

of the function iny s x  from 𝑥= 0 to 𝑥= 2 , illstrated one part above the 𝑥 - axis while the 

other part was below the 𝑥- axis. This significantly helped the lecturers to explain and clarify 

between the area calculated as positive, from that calculated as negative. It also helped to justify 

why the area could not be zero as was obtained by some student-teachers, because the graph 

illustrated clearly that space was covered in the graph.  

In Cycle 4 (the Riemann sum), the focus was on estimating the area under the curve using the 

lower and upper sums. The connection between the abstract and concrete aspects of calculus 

concepts was emphasised when the slider was used to increase or reduce the number of rectangles, 

by dragging the slider back and forth. As the number of rectangles changed, students could see the 

value of the area under the curve adjusting accordingly.  

These visualisation processes help to consolidate abstract or theoretical knowledge. Haciomeroglu 

et al. (2009) raised similar sentiments that technology opens up possibilities for developing 

mathematics concepts by enabling the visualisation of the concepts to demonstrate complex 

abstract ideas clearly.  
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This is underscored by Presmeg (2014), Samuels (2010) and Gono, (2016), who alleged that visual 

presentations are necessary, especially in mathematics concepts that are abstract in nature and 

require students to consider situations which do not physically exist, as is the case with the limit 

process in calculus. The visualisation process provided students with enhanced understanding of 

mathematical concepts with an abstract and complex nature. 

Mathematics is generally built on abstract concepts (Gono, 2016), and often requires students to 

comprehend the abstract processes and concepts. The abstract nature of mathematics makes it 

challenging for students to comprehend most concepts in calculus, and the findings of this research 

indicated that visualisation process between the theoretical and practical aspects of the same 

concept enabled by GeoGebra, played an important role during lesson presentations to overcome 

this challenge. 

5.3.1.1.2 Multiple representations  

The other key finding of the study across all the cases was that the inherent visualisation features 

of GeoGebra enabled a single concept of calculus to be presented in multiple ways. The inherent 

feature of GeoGebra is that once data has been entered in the input bar, it will be illustrated 

synchronously in the algebraic and the graphic windows, so the same concepts will be illustrated 

in multiple ways hence enhancing the conceptual understanding of concepts. The concept of the 

limit function was demonstrated in multiple ways: graphically, as a spreadsheet and algebraically. 

On the other hand, other calculus concepts such as the gradient function were illustrated 

symbolically, algebraically and graphically. 

Božić et al. (2019) and Žilinskiene and Demirbilek (2015) acknowledge the potential of DGS and 

CAS that enable users to create dynamically connected multiple representations of mathematical 

concepts. This feature enabled the participants’ to flexibly switch from algebraic illustrations to 

graphic ones and vice-versa to consolidate calculus concepts.  

5.3.1.1.3 Use of sliders  

The findings revealed that the use of sliders in GeoGebra is key to expressing its visualisation 

features. It was observed that the slider tool was used prominently in all the cycles to illustrate the 

visualisation aspects. It was used to drag points, increase or reduce the number of rectangles, 

illustrate change of sign of a slope on a curve and illustrate the limit function, among others.  
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5.3.2 Summary of the findings related to Research question 2 

The perceptions and experiences of lecturers in using GeoGebra as a visualisation tool 

to teach calculus in TEIs in Zambia 

5.3.2.1 Enhancing conceptual understanding of concepts  

The findings revealed that the use of GeoGebra enhanced the understanding of concepts. This was 

attributed to the fact that in most instances, calculus was taught in an abstract manner and lacked 

the aspect of application, but the use of GeoGebra helped the practicality of calculuc to be more 

visible. It was revealed that the algebraic abstract aspect of calculus was understood better by 

understanding its connection to the corresponding geometric aspect, a feature that was aptly 

illustrated by the GeoGebra software.  

As observed by Sabella and Redish, (2007), many students enrolled in HEI calculus classes tend 

to acquire superficial and incomplete understanding of basic concepts of calculus. They attributed 

the failure to develop conceptual understanding of calculus concepts to the teaching approaches 

that emphasise rote, algorithmic drilling and manipulative learning. 

5.3.2.2 Procedural Fluency (PF1) 

Related to the construct of conceptual understanding, the study revealed that most students 

generally acquired procedural fluency in their study of calculus in HEIs and lacked conceptual 

understanding, hence the failure to apply calculus in real life situations. This, as alluded to above, 

was attributed to conventional teaching methods that emphasise rote, algorithmic drilling and 

manipulative methods. As observed in the literature review (Chapter 2), many final year 

mathematics student teachers may possess procedural knowledge but lack the conceptual 

knowledge of the mathematics required to teach concepts such as calculus. 

5.3.2.3 Using the software judiciously 

It was revealed that while it was appreciated beyond reasonable doubt that GeoGebra was a very 

useful tool in the teaching and learning of calculus, the participants felt that it should not be used 

for its own sake. They pointed out that while there were some topics in calculus in which the 

visualisation features of GeoGebra would enhance understanding, there were however other topics 

where its use would not yield the desired results. This is underscored in the literature review where 
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teachers were cautioned that technology should not just be used for its own sake, but should be 

used judiciously 

5.3.2.4 Incorporating GeoGebra in the national curriculum 

The findings revealed that a proposal should be made to the Ministry of Education to have 

GeoGebra incorporated in the Zambian curriculum at all levels of education. They attributed this 

to the fact that among the software that they had so far been exposed to, GeoGebra was one that 

they found to be user friendly and they felt could easily be successfully integrated into the teaching 

and learning process. It was for these reasons that they felt that if the government introduced it in 

schools, the chance of success was potentially high.  

5.3.2.5 Visualisation characteristics 

It was revealed that the visualisation features of GeoGebra made it conducive to a number of topics 

in mathematics. They added that since mathematics was generally perceived as a difficult subject, 

the visualisation characteristics of GeoGebra would not only enhance understanding of concepts, 

but would also provide some motivation to the students, by exposing them to approaches to 

teaching and learning other than the conventional methods.  

5.3.3 Summary of the Findings Related to Research Question Three 

5.3.3.1 Enabling Factors 

5.3.3.1.1 Adequate Training  

The findings revealed that adequate training, coupled with sufficient knowledge in calculus, were 

necessary for the effective use of GeoGebra as a visualisation tool. As acknowledged by Koehler 

et al. (2017), TPACK describes the complexities and challenges of technology integration, 

suggests strategies required to prepare future teachers for learning and teaching in the 21st Century, 

and prioritises the importance of teacher training.  

5.3.3.1.2 Ease to use  

Another key finding was that the software was affordable, easy to use, and being a free open-

source software (a non-commercial software), it did not require any license fees. GeoGebra does 

not require internet connectivity, it runs offline, and is therefore very suited to countries like 

Zambia, where the cost of bandwidth is high. It was further suggested that policy makers should 
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therefore take advantage of this and make more teachers and learners aware of the software. 

They elaborated that as well as being easy to use, the software was hands on, provided instant 

feedback, and a number of its functions could be self-taught.  

5.3.3.1.3 Motivation  

The study revealed that when students were exposed to the GeoGebra software, they exhibited a 

lot of enthusiasm and motivation to learn. It was perceived as a way of keeping up with modern 

digital global trends.  

The participants indicated that the education sector in general, and mathematics education in 

particular, could not afford to lag behind in technological advancement, and therefore, use of 

GeoGebra as a visualisation tool to teach calculus provided some impetus for lecturers to integrate 

technology in their teaching. The study further revealed that interest and attitude were major 

factors in the participants’ motivation to use GeoGebra in the teaching and learning process.  

5.3.3.1.4  Saving time and verification of solutions 

The study indicated that the use of the software saved time. It was established that students 

generally took less time to carry out calculations when using the software, compared to using 

conventional methods. As acknowledged by Heid and Edwards. (2001), GeoGebra took care of 

time-consuming procedures like drawing graphs, consequently it therefore accorded students more 

time to concentrate on other more cognitive aspects like reasoning and problem solving. This view 

is supported by Marrades and Gutiérrez (2000) who argued that GeoGebra takes care of time-

consuming constructions such as graphs, with accuracy and minimal effort.  

5.3.3.1.5 Accuracy  

The findings revealed that the accuracy the software GeoGebra offers, provided a detailed 

description of mathematics concepts, compared to conventional methods. In addition to its 

accuracy features, it also provided prompt feedback and verification of solutions, which motivated 

students to explore further and be innovative. It was also revealed that students could solve 

questions in the traditional manner and then use GeoGebra to confirm whether the solution is 

correct and accurate.  
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5.3.3.1.6 Availability of resources and expertise 

The study indicated that availability of resources was a major factor in the use of GeoGebra as a 

visualisation tool to teach calculus, and it was pointed out that the major resources were computers 

and smartphones. Countries that had made remarkable advances in integrating technology for 

enhanced learning and teaching, it was revealed, had invested substantially in terms money, 

resources, research and expertise. It was emphasised that it was only when resources were available 

that knowledge and skills could utilise them.  

5.3.3.2 Constraining Factors 

5.3.3.2.1 Lack of Resources and Expertise  

The key finding on the constraints on the use of GeoGebra as a visualisation tool across all six 

cases was lack of materials and the expertise. The study revealed that institutions lacked sufficient 

numbers of computers, the expertise and computer laboratories. All except for one TEI (0.17 

percent), the other five (83.33) had only one computer in the institution, and priority for use was 

given to students taking ICT programmes. Due to insufficient computers, students could not 

practise and familiarise themselves adequately with the software. The constraints that were 

identified included both internal and external barriers, which included a lack of qualified human 

resources, infrastructure and teaching and learning materials, still remained the main challenges in 

most TEIs. It was further revealed that in some institutions, even when resources were available, 

there was a lack of willingness to invest in ICT devices, and this was attributed to the high cost of 

ICT devices. It was pointed out that though some institutions possessed a reasonable amount of 

resources, unfortunately they were underutilised and rarely used in a manner that enhanced 

learners’ conceptual understanding, but rather to perpetuate conventional methods of teaching.  

5.3.3.2.2 Examination-oriented curriculum  

The findings further revealed that optimal use of Geogebra in the existing examination-oriented 

curriculum was a challenge. The focus by lecturers was highly skewed on completing the syllabus 

rather than on engaging students in constructivist approaches to learning, a practice that required 

more time. The factor of time, despite being classified as an enabling factor, was also cited as a 

constraining factor by other participants, as the findings revealed that lecturers felt that preparing 

and teaching a lesson in a GeoGebra environment required a lot of time.  
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5.3.3.2.3 Inability to use GeoGebra in other calculus concepts  

The study indicated that it was a challenge to use GeoGebra to explore other calculus topics, 

especially those that required application, in a manner that would motivate students. Such topics 

were identified as: product and quotient rules, implicit differentiation, speed, velocity and 

acceleration. It was felt that there was a need to equip Geogebra with other features that would 

make it more versatile, as the visualisation of these concepts in a GeoGebra environment would 

greatly enhance students’ understanding. 

5.3.3.2.4 Beliefs and Attitudes  

The findings revealed that some lecturers had a negative attitude towards the integration of ICT in 

the teaching and learning process. This was attributed to the fact that human beings generally tend 

to resist change and rather maintain their usual way of doing things. It was observed that most of 

those who resisted change, generally lacked confidence and belief that GeoGebra could be used 

as an effective teaching and learning tool. The literature attests that teachers’ beliefs and attitudes 

towards ICTs were critical and had a strong influence on their acceptance of the usefulness of ICTs 

in their lessons. It also had a strong bearing on whether teachers would integrate ICTs into their 

lessons (Van Den Beemt & Diepstraten, 2016). 

5.4 SIGNIFICANCE OF THE STUDY 

This study contributes to the current debate on visualisation of mathematics concepts and the use 

of technological devices in the teaching and learning process by various stakeholders. By 

thoroughly reviewing the literature that relates to the integration of ICT tools in the teaching 

process, it was discovered that very little research has been done in this field in TEIs in Zambia. 

Therefore, the gap in knowledge that this study addresses may contribute to literature on solutions 

to achieving good practices in the teaching calculus. The findings may also guide and provide a 

basis to design appropriate instructional materials for the consolidation of the Teaching and 

Learning Mathematics with GeoGebra (TLMG) project for quality teacher professional 

development in the use of GeoGebra for mathematics teachers, with a view to incorporating 

GeoGebra in the Zambian teacher education Curriculum. The insights gained from my data 

analysis suggest that GeoGebra has the potential to positively impact on mathematics teaching and 

learning in Zambian education institutions. I therefore argue that my research findings on teaching 

and learning with GeoGebra, as indicated in the data analysis, inform stakeholders in mathematics 
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education in Zambia about various factors involving incorporating GeoGebra in the teaching and 

learning process in education institutions. Effective integration of technology in the teaching and 

learning process requires adequate training, sufficient resources, institutional support and positive 

attitudes and beliefs about technology integration in education. My analysis of data and review of 

related literature indicates that the use of visualisation processes in the mathematics classroom has 

the potential to enhance conceptual understanding of mathematics and is therefore highly 

recommended. I therefore recommend teaching and learning practices that incorporate 

visualisation processes. It is hoped that teachers and researchers who read this thesis may gain 

insights into how GeoGebra can effectively be used as a visualisation tool for the teaching and 

learning of mathematics. While appreciating the inherent visualisation of GeoGebra, it is however 

necessary for teachers to unpack the abstract mathematical concepts and make them visible to 

students. The dynamic aspects of applets in this study emerge as a key factor in the incorporation 

of the DGS and CAS in the visualisation of calculus concepts. 

I also feel that Kilpatrick’s strands of mathematics proficiency, conceptual understanding and 

procedural fluency could be used in a complementary manner in the teaching of calculus, as they 

both play key roles.  

5.5 LIMITATIONS OF THE STUDY 

This study was designed as a case study of selected lecturers who incorporated GeoGebra in their 

lesson presentations of calculus cycles to student-teachers. The limitations of this case study 

included the small sample size, which only comprised six lecturers. The research was only 

conducted in three TEIs, and the period of data collection, six months, was relatively short.  

The scope of a case study does not generally allow its findings to be generalised to whole 

population (Yin, 2014), and therefore, the findings of this study cannot be generalised to a bigger 

population. However, the small sample size enabled me to carry out in-depth interviews with the 

participants. Therefore, though the findings of this study cannot be generalised to a bigger 

population because of the small number of research participants, the observations are in tandem 

with previous studies on DGS, such as the study by Mavani, (2020). Notwithstanding the aspect 

of non-generalisability, the use of Geogebra applets can be replicated in a wide range of 

educational settings.  
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While I managed to assist the participants in the course of the investigations, there were however, 

some Geogebra functions that I discovered along with the participants. Additionally, the study was 

conducted during the first wave of the COVID-19 pandemic, which caused a lot of disruptions in 

the academic calendar.  

5.6 IMPLICATIONS  

This research project informs various stakeholders in mathematics education. The stakeholders 

include teachers, lecturers, policy makers, curriculum designers and researchers. In view of the 

findings and discussion in Chapter 4, I suggest the following for the incorporation of technology 

in mathematics classrooms: 

5.6.1 Implications for policy makes and curriculum developers 

To enable mathematics lecturers to incorporate visualisation processes as a vital component of 

mathematics teaching, the mathematics education curriculum policy makers and developers need 

to realign the curriculum. This should include a shift from a curriculum that is largely examination 

oriented to that which includes visualisation processes and conceptual understanding of 

mathematics. This will encourage the curriculum implementers to embrace teaching approaches 

that embrace technology and in retrospect, motivate students to learn and explore In order to come 

up with an effective curriculum, it is incumbent upon curriculum developers to include various 

stake holders, especially those who implement the curriculum at various stages. In TEIs, the 

curriculum should include rigorous training in the use of technology, Geogebra, among them, in 

teaching, and not place emphasis on generic ICT education courses.  

5.6.2 Implications for further research 

The findings of this study brought to the fore that there is a lot of potential to use GeoGebra to 

teach mathematics effectively. The focus in this research was on teacher educators, or lecturers, in 

TEIs. Though the key data were generated from observations as the lecturers presented lessons to 

student teachers, the students were not part of the sample. It would be interesting to carry out 

research that would include students in the sample and get their views. Furthermore, the research 

could be extended to a larger sample size and more research sites, and include mathematics topics 

other than calculus.  
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Following the outbreak of COVID 19 which drastically disrupted the academic calendar, lecturers 

and other curriculum implementers can explore the optimal use of applets in an online platform. 

The online mode of instruction and the physical mode can be used to consolidate the initial 

initiative of the Teaching and Learning Mathematics with GeoGebra (TLMG) project for quality 

teacher professional development in the use of GeoGebra for mathematics teachers, with a view 

to incorporating GeoGebra in the Zambian teacher education curriculum. 

5.7 PERSONAL REFLECTIONS AND CONCLUDING REMARKS 

From the time l realised the interest that teachers and other stakeholders had in learning how to 

use GeoGebra at a personal level and in the teaching and learning process, I was motivated to 

explore the software. My interest grew further when I conducted an informal survey to get baseline 

data and views from teachers and lecturers. Among the responses I got in the baseline data was ‘I 

am interested in learning how to use GeoGebra, but the software is too expensive’ and two other 

respondents said ‘I have the software on my laptop but I don’t know how to use it’. The interest 

was more overwhelming, when after learning the basics which I shared with my undergraduate 

students we made presentations at the 2018 Zambia Mathematics Education Conference. This 

motivated me to conceive the Teaching and Learning Mathematics with GeoGebra (TLMG) 

project. This was done with a view of spearheading quality teacher professional development in 

the use of GeoGebra for mathematics teachers with a view of incorporating GeoGebra in the 

Zambian teacher education Curriculum. This project is still being pursued and it is my hope that 

with the eminent completion of my current studies, I will have more time to devote to the TLMG 

project. 

In a nutshell, in this study, the respondents showed a lot of enthusiasm for the project and were of 

the view that the use of GeoGebra generally enhanced the teaching and learning of calculus. They 

acknowledged that adequate training was necessary for them to use GeoGebra as a visualisation 

tool to teach calculus to pre-service students effectively. They however insisted that the training 

would be more meaningful to people when coupled with sufficient knowledge of the subject matter 

in calculus. They were in agreement that the visualisation characteristics of GeoGebra enhanced 

conceptual understanding of calculus concepts and that use of the software was motivating to both 

lecturers and students. The lecturers were also of the view that integration of ICT in the teaching 

and learning process of mathematics should be incorporated in the teacher training curriculum of 
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TEIs, and that GeoGebra should be one of the components. They suggested an approach where 

GeoGebra could be used to reinforce the conventional method of teaching calculus, where a 

calculus topic is first taught in the traditional method, and then GeoGebra is used for clarification, 

and to provide a link between abstract and concrete concepts. 

On the other hand, it was felt that the lack of resources and expertise were major hindrances in the 

use of GeoGebra to teach mathematics in TEIs. The participants were of the view that the existing 

curriculum in TEIs was more examination oriented, therefore making optimal use of GeoGebra is 

a challenge, as the focus presently is more on completing thesyllabus, thereby compelling lecturers 

to incline more to employing methods that do not engage students in constructivist approaches. 

They reiterated that teaching calculus in a GeoGebra environment required a lot of time, which 

was not feasible in the current dispensation. The participants also felt that there was a need to equip 

GeoGebra with other features that would make it more versatile.  

  

 

 

 

 

  



173 
 

REFERENCES 
 

Abaté, C. J., & Cantone, K. A. (2005). An Evolutionary Approach to Mathematics Education: 
Enhancing Learning Through Contectual Modification. Problems, Rources, and Issues in 
Mathematics Undergraduate Studies, 15(2), 157–176. 
https://doi.org/10.1080/10511970508984115 

Adarkwah, M. A. (2021). “I’m not against Online Teaching, but what about us?”: ICT in Ghana 
post Covid-19. Education and Information Technologies, 26(2), 1665–1685. 
https://doi.org/10.1007/s10639-020-10331-z 

Afshari, M., Bakar, K. A., Luan, W. S., Samah, B. A., & Fooi, F. S. (2009). Factors Affecting 
Teachers’ Use of Information and Communication Technology. International Journal of 
Instruction, 2(1), 77–104. 

Agyei, D. D., & Voogt, J. M. (2015). Pre-service Teachers’ TPACK Competencies for 
Spreadsheet Integration: Insights from a Mathematics-specific Instructional Technology 
Course. Technology, Pedagogy and Education, 24(5), 605–625. 
https://doi.org/10.1080/1475939X.2015.1096822 

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. 
Prentice-Hall. 

Ajzen, I. (1991). The Theory of Planned Behavior. Organisational Behaviour and Human 
Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T. 

Akinde, T. A. (2016). Theoretical modelling to explain lecturers’ use of educational support 
systems for teaching in university-based library schools in Nigeria: Extending the 
Technology Acceptance Model (TAM). Library Philosophy and Practice, 1. 

Akkoç, H. (2015). Formative questioning in computer learning environments: a course for pre-
service mathematics teachers. International Journal of Mathematical Education in Science 
and Technology, 46(8), 1096–1115. https://doi.org/10.1080/0020739X.2015.1031835 

Alacaci, C., & McDonald, G. (2012). The Impact of Technology on High School Mathematics 
Curriculum. Turkish Journal of Computer and Mathematics Education, 3(1), 21–34. 
https://doi.org/10.17762/turcomat.v3i1.36 

Alenezi, E. G. (2018). An Investigation of Teachers’ Beliefs and Attitudes Regarding the Use of 
Tablet Computers as a Pedagogical Tool in Teaching Practical Studies (Electricity and 
Electronics) in Kuwaiti Intermediate Schools. Doctoral thesis. University of Southampton. 

Almeida, P. (2010). Scholarship of Teaching and Learning: An Overview. The Journal of the 
World Universities Forum, 3(2), 143–154. https://doi.org/10.18848/1835-
2030/cgp/v03i02/56669 

Alt, D. (2018). Science Teachers’ Conceptions of Teaching and Learning, ICT Efficacy, ICT 
Professional Development and ICT Practices Enacted in their Classrooms. Teaching and 
Teacher Education, 73, 141–150. https://doi.org/10.1016/j.tate.2018.03.020 



174 
 

Ananiadou, K., & Claro, M. (2009). 21st Century Skills and Competences for New Millennium 
Learners in OECD Countries. OECD Education Working Papers, 41. OECD Publishing. 
http://dx.doi.org/10.1787/218525261154 

Angeli, C., & Valanides, N. (2009). Epistemological and Methodological Issues for the 
Conceptualization, Development, and Assessment of ICT-TPCK: Advances in 
Technological Pedagogical Content Knowledge (TPCK). Computers and Education, 52(1), 
154–168. https://doi.org/10.1016/j.compedu.2008.07.006 

Anthony, A., Wushishi, D. I., & Aniah, H. (2019). The Integration of Information and 
Communication Technology (ICT) into Classrom Instructional Delivery in Nigeria: 
Problems and Prospect. Annals of Technology Education Practioners Association of 
Nigeria, 2(3), 13. 

Appelbaum, P., Friedler, L. M., Ortiz, C. E., & Wolff, E. F. (2009). Internationalizing the 
University Mathematics Curriculum. Journal of Studies in International Education, 365–
381. 

Arcavi, A. (2000). Problem-driven Research in Mathematics Education, The Journal of 
Mathematical Behaviour, 19, 141–173. https://doi.org/10.1016/S0732-3123(00)00042-0 

Arcavi, A. (2003). The role of Visual Representations in the Learning of Mathematics. 
Educational Studies in Mathematics, 52(3), 215-241. 
https://doi.org/10.1023/A:1024312321077. 

Artigue, M. (2002). Learning Mathematics in a CAS Environment: The Genesis of a Reflection 
about Instrumentation and the Dialectics between Technical and Conceptual Work. 
International Journal of Computers for Mathematical Learning, 7, 245-274. 
https://doi.org/10.1023/A:1022103903080. 

Aspinwall, L., & Miller, L. D. (2001). Diagnosing Conflict Factors in calculus Through 
Students’ Writings: One Teacher’s Reflections. Journal of Mathematical Behaviour, 20(1), 
89–107. 

Atchoarena, D. (2016). Zambia Education Policy Review: Paving the way for SDG4 Education 
2030, September issue. 

Aydos, M. (2015). The Impact of Teaching Mathematics with GeoGebra on the Conceptual 
Understanding of Limits and Continuity: The Case of Turkish Gifted and Talented Students. 
Unpublished Master’s thesis. İhsan Doğramaci Bilkent Üniversitesi. 
https://acikbilim.yok.gov.tr/handle/20.500.12812/39866 

Ball, D. L., & Bass, H. (2000). Interweaving Content and Pedagogy in Teaching and Learning to 
Teach: Knowing and Using Mathematics. Multiple Perspectives on the Teaching and 
Learning of Mathematics, 4, 83–104. 

Ballagas, R., Rohs, M., Sheridan, J. G., & Borchers, J. (2004). BYOD: Bring Your Own Device. 
Proceedings of the Workshop on Ubiquitous Display Environments, Ubicomp. 
http://www.vs.inf.ethz.ch/publ/papers/rohs-byod-2004.pdf 

Bansilal, S. (2015). Exploring Student Teachers’ Perceptions of the Influence of Technology in 
Learning and Teaching Mathematics. South African Journal of Education, 35(4), 1–8. 



175 
 

https://doi.org/10.15700/saje.v35n4a1217 

Barak, M. (2017). Science Teacher Education in the Twenty-First Century: A Pedagogical 
Framework for Technology-Integrated Social Constructivism. Research in Science 
Education, 47(2). https://doi.org/10.1007/s11165-015-9501-y 

Baran, E., Chuang, H., & Thompson, A. (2011). TPACK: An Emerging Research and 
Development Tool for Teacher Educators. The Turkish Online Journal of Educational 
Technology, 10(4), 370–377. 

Becker, H. J. (2000). Findings from the Teaching, Learning, and Computing Survey: Is Larry 
Cuban right? Education Policy Analysis Archives, 8(51), 1–31. 

Becuwe, H., Roblin, N. P., Tondeur, J., Thys, J., Castelein, E., & Voogt, J. (2017). Conditions 
for the Successful Implementation of Teacher Educator Design Teams for ICT integration: 
A Delphi study. Australasian Journal of Educational Technology, 33(2), 159–172. 
https://doi.org/10.14742/ajet.2789 

Bell, A. (1993). Some Experiments in Diagnostic Teaching. Educational Studies in Mathematics, 
24(1), 115–137. http://www.jstor.org/stable/3482981 

British Educational Research Association. (2011). Emerging technologies for learning. Full- 
Report. http://www.bera.ac.uk/publications  

Berrett, B. (2012a). Administrator Insights and Reflections: Technology Integration in Schools. 
The Qualitative Report, 17(1), 200–221. 

Berrett, D. (2012b). Home News Faculty Teaching Teaching How “Flipping” the Classroom Can 
Improve the Traditional Lecture. Home News Faculty Teaching Teaching How “Flipping” 
the Classroom Can Improve the Traditional Lecture, 1–6. http://chronicle.com/article/How-
Flipping-the-Classroom/130857/ 

Bertram, C., & Iben, C. (2014). Understanding research: An introduction to reading research. 
Van Schaik Publishers. 

Bhagat, K. K., & Chang, C. Y. (2015). Incorporating GeoGebra into Geometry Learning – A 
Lesson from India. Eurasia Journal of Mathematics, Science and Technology Education, 
11(1), 77–86. https://doi.org/10.12973/eurasia.2015.1307a 

Borgatti, S. P. (1999). Elements of a theoretical framework. 
http://www.analytictech.com/mb313/elements.htm 

Bos, B. (2008). Mathematical and Cognitive Fidelity, Technology Impacting Mathematical 
Achievement. Society for Information Technology & Teacher Education International 
Conference, 1, 4404–4406. 

Božić, R., Takači, Đ., & Stankov, G. (2019). Influence of dynamic software environment on 
students’ achievement of learning functions with parameters. Interactive Learning 
Environments, 0(0), 1–15. https://doi.org/10.1080/10494820.2019.1602842 

Bransford, J., Brophy, S., & Williams, S. (2000). When Computer Technologies Meet the 
Learning Sciences: Issues and Opportunities. Journal of Applied Developmental 

http://www.jstor.org/stable/3482981
http://www.bera.ac.uk/publications


176 
 

Psychology, 21(1), 59–84. https://doi.org/10.1016/S0193-3973(99)00051-9 

Bray, A., & Tangney, B. (2017). Technology Usage in Mathematics Education Research – A 
Systematic Review of Recent Trends. Computers and Education, 1(14), 255-273. 
https://doi.org/10.1016/j.compedu.2017.07.004 

Brenner, A. M., & Brill, J. M. (2016). Investigating Practices in Teacher Education that Promote 
and Inhibit Technology Integration Transfer in Early Career Teachers. TechTrends, 60(2), 
136–144. https://doi.org/10.1007/s11528-016-0025-8 

Brooks, J. G., & Brooks, M. G. (1999). In Search of Understanding: The Case for Constructivist 
Classrooms. Alexandria: VA. Association for Supervision and Curriculum Development. 

Bu, L., Mumba, F., Henson, H., Wright, M., & Alghazo, Y. (2010). GeoGebra Integrated 
Professional Development: The Experience of Rural Inservice Elementary (K-8) Teachers. 
Proceedings of the First North American GeoGebra Conference, 117–122. 
http://www.geogebra.ir/geogebra/Files/PDF/6f422611586e49e989db07e51411c508.pdf#pa
ge=121 

Bunyi, G. W. (2013). The Quest for Quality Education: The case of Curriculum Innovations in 
Kenya. European Journal of Training and Development, 37(7), 678–691. 
https://doi.org/10.1108/EJTD-01-2013-0008 

Caglayan, G. (2014). Static Versus Dynamic Disposition: The Role of GeoGebra in 
Representing Polynomial-Rational Inequalities and Exponential-Logarithmic Functions. 
Computers in the Schools, 31(4), 339–370. https://doi.org/10.1080/07380569.2014.967632 

Caligaris, M. G., Schivo, M. E., & Romiti, M. R. (2015). Calculus & GeoGebra, an Interesting 
Partnership. Procedia - Social and Behavioral Sciences, 174, 1183–1188. 
https://doi.org/10.1016/j.sbspro.2015.01.735 

Caligaris, M., Rodríguez, G., & Laugero, L. (2015). Learning Styles and Visualization in 
Numerical Analysis. Procedia - Social and Behavioral Sciences, 174, 3696–3701. 
https://doi.org/10.1016/j.sbspro.2015.01.1101 

Carroll, J. M., & Swatman, P. A. (2017). Structured-case: A Methodological Framework for 
Building Theory in Information Systems Research. European Journal of Information 
Systems, 9(4), 235-242. https://doi.org/10.1057/palgrave.ejis.3000374 

Carver, L. B. (2016). Teacher Perception of Barriers and Benefits in K-12 Technology Usage. 
Turkish Online Journal of Educational Technology, 15(1), 110–116. 

Charles, B.-A. (2012). Factors Influencing Teachers’ Adoption and Integration of Information 
and Communication Technology into Teaching: A review of the literature. Journal of 
Education and Learning, 2(1), 136–155. https://doi.org/10.5539/jel.v2n1p32 

Chien, Y. T., Chang, C. Y., Yeh, T. K., & Chang, K. E. (2012). Engaging Pre-service Science 
Teachers to Act as Active Designers of Technology Integration: A MAGDAIRE 
Framework. Teaching and Teacher Education, 28(4), 578–588. 
https://doi.org/10.1016/j.tate.2011.12.005 

Christou, B. C., Jones, K., Mousoulides, N., & Pittalis, M. (2006). Developing the 3D Math 



177 
 

Dynamic Geometry Software : Theoretical Perspectives on Design. International Journal 
for Technology in Mathematics Education. 13, 168–174.  13. 168-174. 

Cobb, P. (1988). The Tension Between Theories of Learning and Instruction in Mathematics 
Education. Educational Pschologist, 23(2), 87–103. 

Cobb, P., Jackson, K., & Dunlap, C. (2015). Design research: An Analysis and Critique. ZDM - 
Mathematics Education, 47(6), 877–891. https://doi.org/10.1007/s11858-015-0722-3 

Cobb, P. (2016). An Exchange: Constructivism in Mathematics and Science Education. 
American Educational Research Association, June, 21–23. https://doi.org/10.2307/1176932 

Cockroft, W. (1982). Cockcroft Report (1982) Mathematics Counts. 
http://www.educationengland.org.uk/documents/cockcroft/ 

Cohen, L., Manion, L., & Morrison, K. (2018). Resarch Methods in Education (8th ed.). London: 
Routledge. 

Confrey, J. (2000). Leveraging Constructivism to Apply to Systemic Reform. Nordic Studies in 
Mathematics Education, 8(3), 7–30. 

Confrey, J., Castro-filho, J., & Wilhelm, J., (2010). Implementation Research as a Means to Link 
Systemic Reform and Applied Psychology in Mathematics Education. Educational 
Psychologist, 35(3), 179-191. https://doi.org/10.1207/S15326985EP3503_4 

Confrey, J., & Kazak, S. (2006). A Thirty-year Reflection on Constructivism in Mathematics 
Education in PME. Handbook of Research on the Psychology of Mathematics Education: 
Past, Present and Future. 305–345. 

Connelly, L. (2013). Limitation section. Medsurg Nursing, 22(5), 325–327. 

Corter, J. E., & Zahner, D. C. (2007). Use of External Visual Representations in Probability 
Problem Solving. Statistics Education Research Journal, 6(1), 22–50.  

Crawford, K. M. (2016). Developing the Whole Teacher: A Phenomenological Case Study of 
Student Teachers’ Emotional Experiences in One Teacher Education Program. Doctoral 
dissertation. http://digitalcommons.georgiasouthern.edu/curr_etd/ 

Cresswell, John, W. (2014). Research Design, Qualitative, Quantitative and Mixed Methods. 
SAGE Publications. 

Creswell, J., Klassen, A. C., Plano, V. L., & Smith, K. C. (2011). Best Practices for Mixed 
Methods Research in the Health Sciences. Bethesda (Maryland): National Institutes of 
Health, 2013, 541–545. 

Elliott. S., Hudson, B., & O'Reilly, D. (2000) Visualisation and the Influence of Technology in 
‘A’ Level Mathematics: A Classroom Investigation, Research in Mathematics 
Education, 2(1), 151-168. https://doi.org/10.1080/14794800008520074 

Creswell, J. W., & Cresswell, D. J. (2017). Research Design and Mixed Methods Quantitative. 
Qualitative, Approaches. In Sage publications. 
https://doi.org/10.3109/08941939.2012.723954 

https://doi.org/10.1080/14794800008520074


178 
 

Cristia, B. J., Ibarrarân, P., Cueto, S., Santiago, A., & Severin, E. (2020). American Economic 
Association Technology and Child Development: Evidence from the One Laptop per Child 
Program. American Economic Journal: Applied, 9(3), 295–320. 

Crompton, H., Grant, M. R., & Shraim, K. Y. H. (2018). Technologies to enhance and extend 
children’s understanding of geometry: A configurative thematic synthesis of the literature. 
Educational Technology and Society, 21(1), 59–69. 

Cuban, L., Kirkpatrick, H., & Peck, C. (2001). High Access and Low Use of Technologies in 
High School Classrooms: Explaining an Apparent Paradox. American Educational 
Research Journal, 38(4), 813–834. https://doi.org/10.3102/00028312038004813 

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of 
Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 

Davis, F. D. (1989). Perceived Usefulness , Perceived Ease of Use , and User Acceptance of. 
13(3), 319–340. 

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer 
Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–
1003. 

Dawes, M., Jones, K., Little, C., Parish, A., Lavicza, Z., Hohenwarter, M., Lu, A., Lavicza, Z., 
Hohenwarter, M., & Lu, A. (n.d.). Establishing a professional development network with an 
open-source dynamic mathematics software GeoGebra [ Ref No : G071203 ]. 1, 1–30. 

Daymon, C., & Holloway, I. (2001). Qualitative Research Methods. London: Routledge 

De Fátima D’Assumpção Castro, M., & Alves, L. A. (2007). The implementation and use of 
computers in education in Brazil: Niterói city/Rio de Janeiro. Computers and Education, 
49(4), 1378–1386. https://doi.org/10.1016/j.compedu.2006.03.002 

Denzin, N. K., & Giardina, M. D. (2017). Qualitative inquiry in neoliberal times. Qualitative 
Inquiry in Neoliberal Times, 12(1), 1–196. https://doi.org/10.4324/9781315397788 

Denzin, N. K., Lincoln, Y. S., & Giardina, M. D. (2011). Disciplining qualitative research. In 
International Journal of Qualitative Studies in Education 19(6), 769–782. 
https://doi.org/10.1080/09518390600975990 

Devi, R. (2017). Teacher Education and usage of ICT. International Journal of Research in 
Economics and Social Sciences (IJRESS), 7(8), 83–86. 
https://doi.org/10.1017/CBO9781107415324.004 

Dikovic, L. (2009). Implementing Dynamic Mathematics Resources with GeoGebra at the 
College Level. International Journal of Emerging Technologies in Learning, 4(3), 51–54. 
https://doi.org/10.3991/ijet.v4i3.784 

Dockendorff, M., & Solar, H. (2018). ICT Integration in Mathematics Initial Teacher Training 
and its Impact on Visualization: The Case of GeoGebra. International Journal of 
Mathematical Education in Science and Technology, 49(1), 66–84. 
https://doi.org/10.1080/0020739X.2017.1341060 



179 
 

Dreyfus, T., & Eisenberg., T. (1990). On difficulties with Diagrams: Theoretical Issues.  
Proceedings of the 14th Annual Conference of the International Group for the Psychology 
of Mathematics Education, 27–36. 

Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The Teacher and the 
Tool: Instrumental Orchestrations in the Technology-rich Mathematics Classroom. 213–
234. https://doi.org/10.1007/s10649-010-9254-5 

Drijvers, P., Kieran, C., & Mariotti, M. (2010). Mathematics Education and Technology-
Rethinking the Terrain, 13(January). https://doi.org/10.1007/978-1-4419-0146-0 

Drijvers, P. H. M., Monaghan, J., Thomas, M., & Trouche, L. (2015). Use of Technology in 
Secondary Mathematics : Final Report for the International Baccalaureate. 
http://dspace.library.uu.nl/handle/1874/315455 

Dubinsky, E., Zazkis, R., & Dautermann, J. (1996). Coordinating Visual and Analytic Strategies: 
A Study of Students ’ Understanding of the Group D4. Journal for Research in 
Mathematics Education, 27(4), 435–457. 

Edwards, B., & Ward, M. B. (2008). The role of mathematical definitions in mathematics and in 
undergraduate mathematics courses. In M. Carlson & C. Rasmussen (Eds.), Making the 
Connection: Research and Teaching in Undergraduate Mathematics Education, (pp. 223-
232). Mathematical Association of America. 
https://doi.org/10.5948/UPO9780883859759.018 

Engelbrecht, J., Harding, A., & Potgieter, M. (2005). Undergraduate students performance and 
confidence in procedural and conceptual mathematics. International Journal of 
Mathematical Education in Science and Technology, 36(7), 701–712. 
https://doi.org/10.1080/00207390500271107 

Englund, C., Olofsson, A. D., & Price, L. (2017). Teaching with Technology in Higher 
Education : Understanding Conceptual Change and Development in Practice. Higher 
Education Research & Development ISSN:, 36(1), 73–87. 
https://doi.org/10.1080/07294360.2016.1171300 

Ernest, P. (1994). Social Constructivism and the Psychology of Mathematics Education. In P. 
Ernest (Ed.), Constructing Mathematics Knowledge: Epistemology and Mathematics 
Education, Studies in Mathematics Education Series 4. (pp. 62–72).  

Ernest, Paul. (2006). The philosophy of mathematics and mathematics education. International 
Journal of Mathematical Education, https://doi.org/10.1080/0020739850160505 

Ertmer, P. A. (2005). Teacher Pedagogical Beliefs: The Final Frontier in Our Quest for 
Technology Integration? Educational Technology Research & Development 53(4), 25–39.  
https://doi.org/10.1007/BF02504683. 

Ertmer, P. A., & Newby, T. J. (2013). Constructivism : Comparing Critical Features From an 
Instructional Design Perspective. Performance improvement Quarterly, 6(4), 50–72. 
https://doi.org/10.1002/piq 

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012). 
Teacher beliefs and Technology Integration Practices: A critical relationship. Computers & 



180 
 

Education, 59(2), 423–435. https://doi.org/10.1016/j.compedu.2012.02.001 

Escuder, A. (2013). Middle School Teachers’ Usage of Dynamic Mathematics Learning 
Environments as Cognitive Instructional Tools. Unpublished Doctoral thesis. Florida 
Atlantic University. 

Eteokleous, N. (2008). Evaluating Computer Technology Integration in a Centralized School 
System. Computers and Education, 51, 669–686. 
https://doi.org/10.1016/j.compedu.2007.07.004 

Farjon, D., Smits, A., & Voogt, J. (2019). Technology Integration of Pre-Service Teachers 
Explained by Attitudes and Beliefs, Competency, Access, and Experience. Computers and 
Education, 130, 81–93. https://doi.org/10.1016/j.compedu.2018.11.010 

Farquhar, J., Michels, N., & Robson, J. (2020). Triangulation in industrial qualitative case study 
research: Widening the scope. Industrial Marketing Management, 87(February), 160–170. 
https://doi.org/10.1016/j.indmarman.2020.02.001 

Ferla, J., Valcke, M., & Schuyten, G. (2009). Student models of learning and their impact on 
study strategies. Studies in Higher Education, 34(2), 185–202. 
https://doi.org/10.1080/03075070802528288 

Fosnot, C. T., & Perry, R. S. (2005). Constructivism: A Psychological Theory of Learning. 
Constructivism: Theory, Perspectives, and Practices, 0(28). 
http://rsperry.com/fosnotandperry.pdf 

Fox, R. (2010). Constructivism Examined. Oxford Review of Education, 27(1), 23-35 
https://doi.org/10.1080/03054980125310  

Furner, J. M., & Marinas, C. A. (2007). Geometry Sketching Software for Elementary Children: 
Easy as 1,2,3. Eurasia Journal of Mathematics, Science and Technology Education, 3(1), 
83–91. https://doi.org/10.12973/ejmste/75376 

Galbraith, P., Renshaw, P., & Geiger, V. (2001). Integrating Technology in Mathematics 
Learning: What Some Students Say. Technology, July, 238–247. 

Gardner, V., Joubert, M., Barrett, A. M., & Tikly, L. (2018). Approaches to Strengthening 
Secondary STEM & ICT Education in Sub-Saharan Africa. Bristol: University of Bristol 

Gass, S. ., & Mackey, A. (2009). Stimulated Recall Methodology in Second Language Research. 
In The British Journal of Psychiatry, 111(479). Lawrence Erlbaum Associates Inc. 
https://doi.org/10.1192/bjp.111.479.1009-a 

Gilakjani, A. P., Leong, L., & Ismael, H. N. (2013). Teachers’ Use of Technology and 
Constructivism. International Journal of Modern Education and Computer Science, 5(4),  
49-63 https://doi.org/10.5815/ijmecs.2013.04.07   

Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E. 
Pehkonen, & G. Törner (Eds.), Beliefs: A Hidden Variable in Mathematics Education? (pp. 
59-72). Kluwer Academic Publishers,  Netherlands. 

Gono, E. N. (2016). The Contributions of Interactive Dynamic Mathematics Software in Probing 



181 
 

Understanding of Mathematical Concepts: Case study on the Use of GeoGebra in Learning 
the Concept of Modulus Functions. Unpublished Doctoral thesis. The University College, 
London.  

Goodwin, D., & Webb, M. A. (2014). Comparing Teachers’ Paradigms with the Teaching and 
Learning Paradigm of Their State’s Teacher Evaluation System. Research in Higher 
Education Journal, 25, 1–12.  

Goos, M. (2014). The Mathematics Teacher in the Digital Era. In The Mathematics Teacher in 
the Digital Era, 2. https://doi.org/10.1007/978-94-007-4638-1 

Goos, M., & Bennison, A. (2008). Teacher Professional Identities and the Integration of 
Technology into Secondary School Mathematics. Australian Association for Research in 
Education, 2(3), 14 - 29 

Gray, L., Thomas, N., & Lewis, L. (2010). Teachers’ Use of Educational Technology in U.S. 
Public Schools: 2009. National Center for Educational Statistics. 59(6). 
https://doi.org/10.1080/00325481.1976.11714391 

Griqua, R. M. (2019). An Investigation into the Use of Visualisation Processes as a Teaching 
Strategy to Enhance Number Sense. Unpublished Doctoral thesis. Rhodes University, 
Grahamstown. 

Gronseth, S., Brush, T., Ottenbreit-Leftwich, A., Strycker, J., Abaci, S., Easterling, W., Roman, 
T., Shin, S., & van Leusen, P. (2010). Equipping the Next Generation of Teachers: 
Technology Preparation and Practice. Journal of Digital Learning in Teacher Education, 
27(1), 30–36. https://doi.org/10.1080/21532974.2010.10784654 

Gueudet, G., & Trouche, L. (2011). Mathematics Teacher Education Advanced Methods: An 
Example in Dynamic Geometry. ZDM Mathematics Education, 43, 399–411. 
https://doi.org/10.1007/s11858-011-0313-x 

Gülbahar, Y. (2007). Technology Planning : A Roadmap to Successful Technology Integration in 
Schools. Computers and Education, 49(4), 943–956. 
https://doi.org/10.1016/j.compedu.2005.12.002 

Gurung, A. (2019). Effectiveness of constructivism in mathematics learning. Unpublished 
Doctoral thesis. Tribhuvan University, Nepal. 

Haciomeroglu, E. S., Bu, L., Schoen, R. C., & Hohenwarter, M. (2009). Learning to Develop 
Mathematics Lessons with GeoGebra. MSOR Connections, 9(2), 24–26. 

Haciomeroglu, E. S., Aspinwall, L., & Presmeg, N. C. (2010). Contrasting Cases of Calculus 
Students’ Understanding of Derivative Graphs. Mathematical Thinking and Learning, 
12(2), 152–176. https://doi.org/10.1080/10986060903480300 

Haciomeroglu, E. S., & Haciomeroglu, G. (2020). Performance of Students with Different 
Learning Preferences in Traditional First Semester Calculus. International Journal of 
Progressive Education, 16(4), 204–212. https://doi.org/10.29329/ijpe.2020.268.13 

Hadjerrouit, S. (2019). Investigating the Affordances and Constraints of simreal for 
Mathematical Learning: A Case Study in Teacher Education. Proceedings of the 11th 



182 
 

International Conference on Computer Supported Education, 2, 27–37. 
https://doi.org/10.5220/0007588100270037 

Harrington, R. A., Driskell, S. O., Johnston, C. J., Browning, C. A., & Niess, M. L. (2019). 
Technological Pedagogical Content Knowledge: Preparation and Support of Mathematics 
Teachers. In I. Management Association (Ed.), TPACK: Breakthroughs in Research and 
Practice (pp. 324-346). IGI Global. https://doi.org/10.4018/978-1-5225-7918-2.ch016 

Hashemi, N., Abu, M. S., Kashefi, H., Mokhtar, M., & Khadijeh, R. (2015). Designing Learning 
Strategy to Improve Undergraduate Students’ Problem Solving in Derivatives and Integrals: 
A Conceptual Framework. Eurasia Journal of Mathematics, Science and Technology 
Education, 11. 227-238. https://doi.org/10.12973/eurasia.2015.1318a 

Hayes, D. N. A. (2007). ICT and Learning : Lessons from Australian Classrooms. Computers 
and Education, 49, 385–395. https://doi.org/10.1016/j.compedu.2005.09.003 

Hegedus, S. J., & Kaput, J. J. (2004). An Introduction to the Profound Potential of Connected 
Algebra Activities: Issues of Representation, Engagement and Pedagody. Proceeding of the 
28th Conference of the International Group for the Psychology of Mathematics Education, 
3, 129–136. 

Heid, M. K., & Edwards, M. T. (2001) Computer Algebra Systems: Revolution or Retrofit for 
Today's Mathematics Classrooms?, Theory Into Practice, 40(2), 128-136, 
https://doi.org/10.1207/s15430421tip4002_7 

Hennessy, S., Ruthven, K., & Brindley, S. (2005). Teacher Perspectives on Integrating ICT into 
Subject Teaching: Commitment, Constraints, Caution, and Change. Journal of Curriculum 
Studies, 37(2). https://doi.org/10.1080/0022027032000276961 

Herrington, A., & Herrington, J. (2008). Authentic Learning Environments in Higher Education 
British Journal of Educational Technology, 39(4). https://doi.org/10.1111/j.1467-
8535.2008.00870_23.x 

Hew, K. F., & Brush, T. (2007). Integrating Technology into K-12 Teaching and Learning: 
Current Knowledge Gaps and Recommendations for Future Research. Educational 
Technology Research and Development, 55(3), 223–252. https://doi.org/10.1007/s11423-
006-9022-5 

Hiebert, J. (1999). Relationships Between Research and the NCTM Standards. Journal for 
Reasearch in Mathematics Education, 30(1), 3–19. https://doi.org/10.2307/749627 

Hitt, F., Saboya, M., & Cortés, C. (2017). Task Design in a Paper and Pencil and Technological 
Environment to Promote Inclusive Learning: An Example with Polygonal Numbers. In G. 
Aldon, F. Hitt, L. Bazzini, & U. Gellert (Eds.). Mathematics and Technology. Advances in 
Mathematics Education. (pp. 57–74). Springer, Cham. https://doi.org/10.1007/978-3-319-
51380-5_4 

Hohenwarter, M., & Fuchs, K. (2004). Combination of Dynamic Geometry, Algebra and 
Calculus in the Software System GeoGebra. 2002 (July). Computer Algebra Systems and 
Dynamic Geometry Systems in Mathematics Teaching Conference, 
http://www.geogebra.org/publications/pecs_2004.pdf. 

https://doi.org/10.5220/0007588100270037
https://doi.org/10.4018/978-1-5225-7918-2.ch016


183 
 

Hohenwarter, M., & Jones, K. (2007). Ways of Linking Geometry and Algebra: The Case of 
Geogebra. Proceedings of the British Society for Research into Learning Mathematics, 
126–131. 

Hohenwarter, M., & Lavicza, Z. (2013). The Strength of the Community: How GeoGebra can 
Inspire Technology Integration in Mathematics Teaching. Mathematics Statistics and 
Operational Research  Connections, 9(2), 3–5.  
https://doi.org/10.11120/msor.2009.09020003 

Hohenwarter, M., Preiner, J., & Yi, T. (2007). Incorporating GeoGebra into Teaching 
Mathematics at the College Level. Proceedings of the International Conference on 
Technology in Collegiate Mathematics (ICTCM), 1–7. www.pearsoned.com/events-and-
webinars/ictcm/archive/ 

Hollebrands, K. F., Conner, A., Smith, R. C., Conner, A., & Smith, R. C. (2017). The Nature of 
Arguments Provided by College Geometry Students With Access to Technology while 
Solving Problems. Journal for Research in Mathematics Education 41(4), 324-350. 

Houghton, C., Casey, D., Shaw, D., & Murphy, K. (2013). Rigour in qualitative case-study 
research. Nurse Researcher, 20(4):12-7. https://doi.org/10.7748/nr2013.03.20.4.12.e326. 

Hsieh, Y., Lin, Y., & Hou, H. (2015). International Forum of Educational Technology & Society 
Exploring Elementary-school Students’ Engagement Patterns in a Game- Based Learning 
Environment. Educational Technology & Society, 18(2), 336–348. 

Huang, H. M., & Liaw, S. S. (2005). Exploring Users’ Attitudes and Intentions Toward the Web 
as a Survey Tool. Computers in Human Behavior, 21(5), 729–743. 
https://doi.org/10.1016/j.chb.2004.02.020 

Hur, J. W., Shannon, D., & Wolf, S. (2016). An Investigation of Relationships Between Internal 
and External Factors Affecting Technology Integration in Classrooms. Journal of Digital 
Learning in Teacher Education, 32(3), 105–114. 
https://doi.org/10.1080/21532974.2016.1169959 

Inan, F. A., & Lowther, D. L. (2010). Factors Affecting Technology Integration in K-12 
Classrooms: A path model. Educational Technology Research and Development, 58(2), 
137–154. https://doi.org/10.1007/s11423-009-9132-y 

İsleyen, T., & Sivin-Kachala, J. (2019). White Paper: How WritingCity Aligns with Curriculum 
Standards, Research, and Expert Opinion on Elementary Writing Programs. Interactive 
Education Design Systems. New York, 5 - 26 

Jaworski, B. (2006). Theory and Practice in Mathematics Teaching Development: Critical 
Inquiry as a Mode of Learning in Teaching. Journal of Mathematics Teacher Education, 9, 
187–211. https://doi.org/10.1007/s10857-005-1223-z 

Jaworski, B. (2010). Challenge and support in undergraduate mathematics for engineers in a 
GeoGebra medium. MSOR Connections, 10(1). 

Jelatu, S., Sariyasa, & Ardana, I. M. (2018). Effect of GeoGebra-aided REACT strategy on 
understanding of geometry concepts. International Journal of Instruction, 11(4), 325–336. 
https://doi.org/10.12973/iji.2018.11421a 

https://doi.org/10.7748/nr2013.03.20.4.12.e326


184 
 

Jonassen, D. H. (2019). Thinking Technology: Toward a Constructivist Design Model. 
Educational Technology Publications, Inc. Thinking, 34(4), 34–37. 

Jones, K., Lavicza, Z., Hohenwarter, M., Lu, A., Dawes, M., Parish, A., & Borcherds, M. (2009). 
BSRLM Geometry Working Group: Establishing a Professional Development Network to 
Support Teachers using Dynamic Mathematics Software GeoGebra. Proceedings of the 
British Society for Research into Learning Mathematics, 29(1), 97–102. 
http://eprints.soton.ac.uk/66395/ 

Joo, Y. J., Park, S., & Lim, E. (2018). Factors Influencing Preservice Teachers’ Intention to Use 
Technology: TPACK, Teacher Self-efficacy, and Technology Acceptance Model. 
Educational Technology and Society, 21(3), 48–59. 

Juan, J., Sánchez, C., & Alemán, E. C. (2011). Computers & Education Teachers ’ Opinion 
Survey on the Use of ICT Tools to Support Attendance-based Teaching. Computers & 
Education, 56(3), 911–915. https://doi.org/10.1016/j.compedu.2010.11.005 

Kadunz, G. (1998). Bemerkungen zur visualisierung. Beiträge Zum Mathematikunterricht, 335–
338. 

Mhlolo, M. K., & Schafer, M. (2013). Consistencies far beyond chance: An analysis of learner 
preconceptions of reflective symmetry. South African Journal of Education, 33(2), 1–17. 
https://doi.org/10.15700/saje.v33n2a686 

Kaleli-Yilmaz, G. (2015). Prospective teachers’ views on the integration of history mathematics 
in mathematics courses. Australian Journal of Teacher Education, 40(8), 132–148. 

Kalina, C. J., & Powell, K. . (2009). Cognitive and Social Constructivism: Developing Tools for 
an Effective Classroom. Education, 130(2), 241–250. 

Kaptelinin, V. (2005) The Object of Activity: Making Sense of the Sense-Maker, Mind, Culture, 
and Activity, 12(1), 4-18, https://doi.org/ 10.1207/s15327884mca1201_2 

Kaput, J., Hegedus, S., & Lesh, R. (2007). Technology Becoming Infrastructural in Mathematics 
Education. Foundations for the Future in Mathematics Education, 173–192. 

Kaput, J. J., & Roschelle, J. (2013). The Mathematics of Change and Variation from a Millennial 
Perspective: New Content , New Context, 13–26. https://doi.org/10.1007/978-94-007-5696-
0 

Kastberg, S. & Leatham, K. (2005). Research On Graphing Calculators at the Secondary Level: 
Implications for Mathematics Teacher Education. Contemporary Issues in Technology and 
Teacher Education, 5(1), 25-37. Waynesville, NC: Society for Information Technology & 
Teacher Education. 

Kay, R.H. & Knaack, L. (2008). Evaluating the learning in learning objects, Open Learning: The 
Journal of Open, Distance and e-Learning, 22(1), 5-28, DOI: 10.1080/02680510601100135 

Kendal, M., & Stacey, K. (2003). Tracing Learning of Three Representations with the 
Differentiation Competency Framework. Mathematics Education Research Journal, 15(1), 
22–41. https://doi.org/10.1007/BF03217367 



185 
 

Khalil, M., Farooq, R. A., Çakiroglu, E., Khalil, U., & Khan, D. M. (2018). The Development of 
Mathematical Achievement in Analytic Geometry of Grade-12 Students through GeoGebra 
Activities. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 
1453–1463. https://doi.org/10.29333/ejmste/83681 

Khan, R. (2017). Technological Concerns of Education: Quality Enhancement. International 
Journal of Research in Economics and Social Sciences, 7(11), 20–29. 

Kilpatrick, J., Swafford, J., & Findell, B. (2002). Adding it up: Helping Children Learn 
Mathematics. Center for Education, National Research Council, National Academy Press: 
Washington, DC. https://doi.org/10.17226/9822. 

Kim, K. M., & Md-Ali, R. (2017). Geogebra: Towards Realizing 21st Century Learning in 
Mathematics Education. Malaysian Journal of Learning and Instruction, Special issue, 93–
115. https://doi.org/10.32890/mjli.2017.7799 

Kimmons, R., & Hall, C. (2018). How Useful are our Models? Pre-Service and Practicing 
Teacher Evaluations of Technology Integration Models. TechTrends, 62(1), 29–36. 
https://doi.org/10.1007/s11528-017-0227-8 

Koehler, J., Mishra, P., Kereluik, K., Shin, T., & Graham, C. (2014). The Technological 
Pedagogical Content Knowledge Framework. Handbook of Research on Educational 
Communications and Technology: Fourth Edition, 1–1005. https://doi.org/10.1007/978-1-
4614-3185-5 

Koehler, M. J., Mishra, P., & Cain, W. (2017). What is Technological Pedagogical Content 
Knowledge (TPACK)? Journal of Education, 193(3), 13–19. 
https://doi.org/10.1177/002205741319300303 

Kolb, A. Y., & Kolb, D. A. (2019). Learning Styles and Learning Spaces: Enhancing 
Experiential Learning in Higher Education. Academy of Management, Learning & 
Education, 4(2), 193-212. https://www.jstor.org/stable/40214287 

Konold, C., & Lehrer, R. (2008). Technology and Mathematics Education: An Essay in Honor of 
Jim Kaput. In L. D. English (Ed.), Handbook of International Research in Mathematics 
Education (2nd Edition). New York: Routledge, 1976, 49–72. 
papers3://publication/uuid/AD949C0B-470D-4544-A21D-EFC5ABDEB31F 

Konyalioglu, A. C. (2008). Effectiveness of Visualization Approach on Student’s Conceptual 
Learning. Journal of Qafqaz University, 24(June), 245–249. 

Konyaloglu, A. C., Işik, A., Kaplan, A., Hizarci, S., & Durkaya, M. (2011). Visualization 
Approach in Teaching Process of Linear Algebra. Procedia – Social and Behavioral 
Sciences, 15, 4040–4044. https://doi.org/10.1016/j.sbspro.2011.04.410 

Kopcha, T. J., Ottenbreit-Leftwich, A., Jung, J., & Baser, D. (2014). Examining the TPACK 
Framework through the Convergent and Discriminant Validity of Two Measures. 
Computers and Education, 78, 87–96. https://doi.org/10.1016/j.compedu.2014.05.003 

Kothari, C. R. (2004). Research Methodology Methods and Techniques. New Age International 
Pubishers. 



186 
 

Kozma, R. B., & Andersen, R. E. (2002). Qualitative Case Studies of Innovative Pedagogical 
Practices Using ICT. Journal of Computer Assisted Learning, 18(4), 387–394. 
https://doi.org/10.1046/j.0266-4909.2002.00250.doc.x 

Kriek, J., & Stols, G. (2018). Teachers’ Beliefs and their Intention to use Interactive Simulations 
in their Classrooms. South African Journal of Education, 30(3), 439–456. 
https://doi.org/10.15700/saje.v30n3a284 

Kurtuluş, A., & Uygan, C. (2010). The Effects of Google SketchUp-based Geometry Activities 
and Projects on Spatial Visualization Ability of Student Mathematics Teachers. Procedia - 
Social and Behavioral Sciences, 9, 384–389. https://doi.org/10.1016/j.sbspro.2010.12.169 

Lagrange, J. B. (2005). Curriculum, Classroom Practices, and Tool Design in the Learning of 
Functions through Technology-aided Experimental Approaches. International Journal of 
Computers for Mathematical Learning, 10(2), 143–189. https://doi.org/10.1007/s10758-
005-4850-7 

Lawless, K. A., & Pellegrino, J. W. (2007). Professional Development in Integrating Technology 
Into Teaching and Learning: Knowns, Unknowns, and Ways to Pursue Better Questions and 
Answers. Review of Educational Research, 77(4), 575–614. 
https://doi.org/10.3102/0034654307309921 

Lawrence, J. E., & Tar, U. A. (2018). Factors that influence teachers’ adoption and integration of 
ICT in teaching/learning process. Educational Media International, 55(1), 79–105. 
https://doi.org/10.1080/09523987.2018.1439712 

Lee, H., & Hollebrands, K. (2008). Preparing to Teach Mathematics: An Integrated Approach to 
Developing Technological Pedagogical Content Knowledge. Contemporary Issues in 
Technology and Teacher Education 8, 326–341.  

 
Lee, H. S., Hollebrands, K. F., & Wilson, P. H. (2015). The Use of Research-Based Methods and 

Materials for Preparing to Teach Mathematics with Technology. In A. Rogerson, (Ed.), 
  Proceedings of the Ninth International Conference on Mathematics Education in a 
Global Community. (pp. 383–388). 

Lerman, S. (1989). Constructivism, Mathematics and Mathematics Education. Educational 
Studies in Mathematics, 20(2), 211-223., 20(2), 211–223. 

Li, Q., & Ma, X. (2010). A Meta-Analysis of the Effects of Computer Technology on School 
Students’ Mathematics Learning. Educational Psychology Review, 22(3), 215–243. 
https://doi.org/10.1007/s10648-010-9125-8 

Lim, P. C., & Wang, L. (2016). Blended learning for quality higher education: Selected case 
studies on implementaiton from Asia-Pacific. www.unesco.org/bangkok 

Little, C. (2009). Interactive Geometry in the Classroom: Old Barriers & New Opportunities. 
Mathematics in School, 38(2), 9–11. 

Little, C. (2011). 13 Approaches to Calculus Using Geogebra. Mathematics in School, 21(2), 
191–204. 

Liu, C. C., & Chen, I. J. (2016). Evolution Of Constructivism. Contemporary Issues in 



187 
 

Education Research, 3(4), 63.–66 https://doi.org/10.19030/cier.v3i4.199 

Lowrie, T., & Kay, R. (2001). Relationship between visual and nonvisual solution methods and 
difficulty in elementary mathematics. Journal of Educational Research, 94(4), 248–255. 
https://doi.org/10.1080/00220670109598758 

Lowther, D. L., Inan, F. A., Strahl, J. D., & Ross, S. M. (2008). Does technology integration 
“work” when key barriers are removed? Educational Media International, 45(3), 195–213. 
https://doi.org/10.1080/09523980802284317 

Luhamya, A., Bakkabulindi, F. E. K., & Muyinda, P. B. (2017). Integration of ICT in teaching 
and Learning: A Review of Theories. Makerere Journal of Higher Education, 9(1), 21. 
https://doi.org/10.4314/majohe.v9i1.T 

Lunenberg, M., Ponte, P., & van de Ven, P. H. (2007). Why shouldn’t Teachers and Teacher 
Educators Conduct Research on thier Own Practices? An Epistemological Exploration. 
European Educational Research Journal, 6(1), 13–24. 
https://doi.org/10.2304/eerj.2007.6.1.13 

Machromah, I. U., Purnomo, M. E. R., & Sari, C. K. (2019). Learning Calculus with GeoGebra 
at College. Journal of Physics: Conference Series, 1180(1). https://doi.org/10.1088/1742-
6596/1180/1/012008 

Mahir, N. (2009). Conceptual and procedural performance of undergraduate students in 
integration. International Journal of Mathematical Education in Science and Technology, 
40(2), 201–211. https://doi.org/10.1080/00207390802213591 

Mainali, B. R., & Key, M. (2008). Using Dynamic Geometry Software GeoGebra in Developing 
Countries: A Case Study of Impressions of Mathematics Teachers in Nepal. International 
Journal for Mathematics, 12, 1–16. 

Malambo, P. (2020). Pre-service Mathematics Teachers’ Nature of Understanding of the Tangent 
Function. Journal of Research and Advances in Mathematics Education, 5(2), 105–118. 
https://doi.org/10.23917/jramathedu.v5i2.10638 

Malambo, P., & van Putten, S. (2019). Dysfunctional Functions: The Case of Zambian 
Mathematics Education Students. Eurasia Journal of Mathematics, Science and Technology 
Education 15(1), 1–10. https://doi.org/10.29333/ejmste/99510 

Maloney, J., Rusk, N., Burd, L., Silverman, B., Kafai, Y., & Resnick, M. (2004). Scratch: A 
Sneak Preview. Proceedings - Second International Conference on Creating, Connecting 
and Collaborating Through Computing, February, 104–109. 
https://doi.org/10.1109/C5.2004.1314376 

Manchishi, P. C., & Mwanza, D. S. (2016). Teacher Preparation at the University of Zambia: Is 
Peer Teaching Still a Useful Strategy? International Journal of Humanities, Social Sciences 
and Education, 3(11), 88–100. https://doi.org/10.20431/2349-0381.0311012 

Margaret, O. I., & Happiness, I. U. (2019). Model College Entrance Examination Scores as 
Predictors of Students’ Performance in Junior Secondary Certificate Examination in 
Mathematics and English Language in Abia State, Nigeria. American Journal of 
Educational Research, 7(6), 392–397. https://doi.org/10.12691/education-7-6-3  



188 
 

Marrades, R., & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning 
geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1–
3), 87–125. https://doi.org/10.1023/A:1012785106627 

Maslin, M. (2007). Technology Acceptance Model and E-learning. 12th International 
Conference on Education, Sultan Hassanal Bolkiah Institute of Education, May, 1–10. 
Brunei Darussalam  

Masrom, M., Ismail, Z., Ahmad, R., & Taherdoost, H. (2009). Proceedings of the 3rd 
International Conference on Informatics and Technology, 2009. 2–6. 

Mavani, D. P. (2019). An Analysis of how Visualisation Capabilities in Dynamic Geometric 
Software Develop Meaning-Making of Mathematical Concepts in Selected Grade 11 
Learners. Unpublished Doctoral thesis. Rhodes University, Grahamstown. 

Mavani, B. D. (2020). A Critical Analysis of How the Potential of Dynamic Geometry Software 
as a Visualisation Tool may Enhance the Teaching of Mathematics. Unpublished Doctoral 
thesis. Rhodes University, Grahamstown. 

Mavani, D., Mavani, B., & Schäfer, M. (2018). A Case Study of Two Selected Teachers as they 
Integrated Dynamic Geometry Software as a Visualisation Tool in Teaching Geometry. 
African Journal of Research in Mathematics, Science and Technology Education, 22(3), 
297–307. https://doi.org/10.1080/18117295.2018.1522716 

Mbalamula, Y. (2016). Role of ICT in Teaching and Learning: Influence of Lecturers on 
Undergraduates in Tanzania. Advances in Research, 8(3), 1–11. 
https://doi.org/10.9734/air/2016/30283 

McCulloch, A. W., Hollebrands, K., Lee, H., Harrison, T., & Mutlu, A. (2018). Factors that 
Influence Secondary Mathematics Teachers’ Integration of Technology in Mathematics 
lessons. Computers and Education, 123, 26–40. 
https://doi.org/10.1016/j.compedu.2018.04.008 

Meagher, M., & Edwards, M. T. (2011). Preservice Teachers’ Experiences with Advanced 
Digital Technologies: The Interplay between Technology in a Preservice Classroom and in 
Field Placements. Contemporary Issues in Technology and Teacher Education, 11(3), 243–
270. 

Merriam, S., Caffarella, S. R., & Baumgartner, L. M. (2007). Learning in Adulthood (3rd ed.). 
Josssy-Bass. 

Miller, H. R., & Upton, D. S. (2008). Computer Manipulatives in an Ordinary Differential 
Equations Course: Development , Implementation , and Assessment. Journal of Science 
Education and Technology, 17(2), 124–137. https://doi.org/10.1007/s10956-007-9058-2 

Mishra, P., & Koehler, M. (2006). Technological Pedagogical Content Knowledge: A 
Framework for Teacher Knowledge. Teachers College Record 108(6). 
https://doi.org/10.1111/j.1467-9620.2006.00684.x 

Mishra, P., & Koehler, M. J. (2009). What Is Technological Pedagogical Content Knowledge? 
Teachers College Record, 9, 1017–1054. https://doi.org/10.1016/j.compedu.2010.07.009 



189 
 

Mokhtar, M. Z., Tarmizi, R., Ayub, A. F. M., & Nawawi, M. D. H. (2013). Motivation and 
Performance In Learning Calculus Through Problem-Based Learning. International Journal 
of Asian Social Science Special, 3(9), 1999–2005. 

Mudaly, V., & Rampersad, R. (2010). The role of Visualisation in Learners’ Conceptual 
Understanding of Graphical Functional Relationships. African Journal of Research in 
Mathematics, Science and Technology Education, 14(1), 36–48. 
https://doi.org/10.1080/10288457.2010.10740671 

Mueller, J., Wood, E., Willoughby, T., Ross, C., & Specht, J. (2008). Identifying Discriminating 
Variables Between Teachers who Fully Integrate Computers and Teachers With Limited 
Integration, Computers & Education, 51, 1523–1537. 
https://doi.org/10.1016/j.compedu.2008.02.003 

Muhtadi, D., Wahyudin, K., Kartasasmita, B. G., & Prahmana, R. C. I. (2018). The Integration of 
technology in teaching mathematics. Journal of Physics: Conference Series, 943(1). 
https://doi.org/10.1088/1742-6596/943/1/012020 

Mulenga, I. M., & Luangala, J. R. (2015). Curriculum Design in Contemporary Teacher 
Education: What Makes Job Analysis a Vital Preliminary Ingredient? International Journal 
of Humanities Social Sciences and Education, 2(1), 39–51. www.arcjournals.org 

Murray, J., & Male, T. (2005). Becoming a Teacher Educator: Evidence from the Field, 
Teaching and Teacher Education, (21), 125–142. https://doi.org/10.1016/j.tate.2004.12.006 

Mvududu, N. H., & Thiel-Burgess, J. (2012). Constructivism in Practice: The Case for English 
Language Learners. International Journal of Education, 4(3), 108–119. 
https://doi.org/10.5296/ije.v4i3.2223 

Myers, M. (2000). Qualitative Research and the Generalizability Question: Standing Firm with 
Proteus Qualitative Research and the Generalizability Question: Standing Firm. The 
Qualitative Report, 4, 1-9. https://doi.org/10.46743/2160-3715/2000.2925.  

Narayan, S. (2016). The Paradigm Role of ICT for Behavioral and Educational Psychology: The 
Case of Developing Countries. International Journal of Information and Education 
Technology, 6(4), 301–307. https://doi.org/10.7763/ijiet.2016.v6.704 

National Council of Teachers of Mathematics. (2000). Principles and standards for school 
mathematics. Reston, VA: NCTM 

Ndlovu, M., Wessels, D., & de Villiers, M. (2013). Competencies in Using Sketchpad in 
Geometry Teaching and Learning: Experiences of Pre-service Teachers. African Journal of 
Research in Mathematics, Science and Technology Education, 17(3), 231–243. 
https://doi.org/10.1080/10288457.2013.848536 

Nedaei, M., Radmehr, F., & Drake, M. (2021). Exploring Undergraduate Engineering Students’ 
Mathematical Problem-Posing: The Case of Integral-Area Relationships in Integral 
Calculus. Mathematical Thinking and Learning. 
https://doi.org/10.1080/10986065.2020.1858516 

Newby, P. (2014). Research methods for Education. London: Routledge. 
https://doi.org/10.31826/9781463209674-001 

https://doi.org/10.7763/ijiet.2016.v6.704


190 
 

Newby, K. V., Wallace, L. M., & French, D. P. (2012). How do young adults perceive the risk of 
chlamydia infection ? A qualitative study. British Journal of Health Psychology, 17(1),144–
154. https://doi.org/10.1111/j.2044-8287.2011.02027.x 

Niess, M. L. (2011). Investigating TPACK: Knowledge Growth in Teaching with Technology. 
Journal of Educational Computing Research, 44(3), 299–317. 
https://doi.org/10.2190/ec.44.3.c 

Nobre, C. N., Rezende, M., & Meireles, G. (2016). The Use of Geogebra Software as a Calculus 
Teaching and Learning Tool. Informatics in Education, 15(2), 253–267. 
https://doi.org/10.15388/infedu.2016.13 

Noor-Ul-Amin, S. (2013). An Effective use of ICT for Education and Learning by Drawing on 
Worldwide Knowledge , Research, and Experience: ICT as a Change Agent for Education. 
Department Of Education University of Kashmir, 1(1), 1–13. 

O’Neill, M., Booth, S., & Lamb, J. (2018). Using NvivoTM for Literature Reviews: The Eight 
Step Pedagogy (N7+1). Qualitative Report, 23(13), 24–39. 

Oberdick, B. (2015). Thoughtfully Incorporating Technology into your Instruction with the Help 
of TPACK. LOEX Quarterly, 42(2), 4–6. 
http://commons.emich.edu/loexquarterly/vol42/iss2/3/ 

Ocal, M. F. (2017). The Effect of Geogebra on Students’ Conceptual and Procedural 
Knowledge : The Case of Applications of Derivative. Higher Education Studies, 7(2), 67–
78. https://doi.org/10.5539/hes.v7n2p67 

Oldknow, A. (2009). ICT bringing mathematics to life and life to mathematics. The Electronic 
Journal of Mathematics & Technology, 3(2). 

Olivier, A. (1989). Handling pupils’ misconceptions. Presidential address delivered at the 
Thirteenth National Convention on Mathematics, Physical Science and Biology Education, 
Pretoria, 3 - 7 July 1989. 

Olofson, M. W., Swallow, M. J. C., & Neumann, M. D. (2016). TPACKing: A Constructivist 
Framing of TPACK to Analyze Teachers’ Construction of Knowledge. Computers and 
Education, 95. https://doi.org/10.1016/j.compedu.2015.12.010 

Olsson, J. (2017). GeoGebra, Enhancing Creative Mathematical Reasoning. Unpublished 
Doctoral thesis. http://dx.doi.org/10.13140/RG.2.2.35210.67525 

Onwuegbuzie, A. J., & Leech, N. L. (2007). Sampling Designs in Qualitative Research: Making 
the Sampling Process More Public. 12(2), 238–254. The Qualitative Report, 12(2), 238-254. 
https://doi.org/10.46743/2160-3715/2007.1636 

Orton, T., & Roper, T. (2008). Science and Mathematics: A Relationship in Need of 
Counselling? Studies in Science Education, 35(1), 123-153. 
https://doi.org/10.1080/03057260008560157 

Ottenbreit-Leftwich, A., Liao, J. Y. C., Sadik, O., & Ertmer, P. (2018). Evolution of Teachers’ 
Technology Integration Knowledge, Beliefs, and Practices: How Can We Support 
Beginning Teachers Use of Technology? Journal of Research on Technology in Education, 



191 
 

50(4), 282–304. https://doi.org/10.1080/15391523.2018.1487350 

Özgün-Koca, S. A., & Meagher, M. (2012). Birth of a Virtual Manipulative. North American 
GeoGebra Journal, 1(1), 27–32. 

Özkaya, M., Öcal, M. F., & Konyalioglu, A. C. (2016). Visualization in Solving Inequality 
Questions: Case of Pre-Service Mathematics Teachers. Journal of Education and Human 
Development, 5(4), 119–137. https://doi.org/10.15640/jehd.v5n4a12 

Özmantar, M. F., Akkoç, H., Bingölbali, E., Demir, S., & Ergene, B. (2010). Pre-Service 
Mathematics Teachers’ Use of Multiple Representations in Technology-Rich Environments. 
Eurasia Journal of Mathematics, Science & Technology Education, 6(1). 

Palincsar, A. S. (1998). Social Constructivist Perspectives On Teaching And Learning. Annual 
Review of Psychology, 49, 345–375. https://doi.org/10.1146/annurev.psych.49.1.345 

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). 
Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method 
Implementation Research. Administrative Policy on Mental Health, 42, 533–544. 
https://doi.org/10.1007/s10488-013-0528-y 

Pantziara, M., & Philippou, G. (2007). Students’ Motivation and Achievement and Teachers’ 
Practices in the Classroom. Proceedings of the 31 Conference of the International Group 
for the Psychology of Mathematics Education, 4(October), 57–64. 

Patton, M. Q. (2002). Two Decades of Developments in Qualitative Inquiry: A Personal, 
Experiential Perspective. Qualitative Social Work, 1(3), 261–283. 
https://doi.org/10.1177/1473325002001003636 

Pelgrum, W. J. (2001). Obstacles to the Integration of ICT in Education: Results from a 
Worldwide Educational Assessment. Computers and Education, 37(2), 163–178. 
https://doi.org/10.1016/S0360-1315(01)00045-8 

Petko, D., Prasse, D., & Cantieni, A. (2018). The Interplay of School Readiness and Teacher 
Readiness for Educational Technology Integration: A Structural Equation Model. 
Computers in the Schools, 35(1), 1–18. https://doi.org/10.1080/07380569.2018.1428007 

Pettigrew, J., & Shearman, D. (2014). Developing interactive mathematical visualisations. 
Rhetoric and Reality: Critical Perspectives on Educational Technology. Mathematics 
Education Support Hub, University of Western Sydney. 

Pfeiffer, C. (2017). A study of the Development of Mathematical Knowledge in a GeoGebra- 
Focused Learning Environment. Unpublished Doctoral thesis. Stellenbosch University. 

Piaget, J. (1967). Biology and knowledge. Edinburgh: Edinburgh University Press 

Plomp, T., Pelgrum, W. J., & Law, N. (2007). SITES2006 – International comparative survey of 
pedagogical practices and ICT in education. 83–92. https://doi.org/10.1007/s10639-007-
9029-5 

Popkewitz, T. S. (2019). Dewey, Vygotsky, and the Social Administration of the Individual: 
Constructivist Pedagogy as Systems of Ideas in Historical Spaces Administration of the 



192 
 

Individual. American Educational Research Journal, 35(4), 535–570. 

Preiner, J. (2008). Dynamic Mathematics Software to Mathematics Teachers: the Case of 
GeoGebra. In Dissertation in Mathematics Education, Faculty of Natural Science 
University of Salzburg. 

Presmeg, N. (2006). Semiotics and the “Connections” standard: Significance of Semiotics for 
Teachers of Mathematics. Educational Studies in Mathematics, 61(1–2), 163–182. 
https://doi.org/10.1007/s10649-006-3365-z 

Presmeg, N. (2014). Visualization and Learning in Mathematics Education. In Encyclopedia of 
Mathematics Education (pp. 636–640). https://doi.org/10.1007/978-94-007-4978-8_161 

Prestridge, S. (2017). Examining the Shaping of Teachers’ Pedagogical Orientation for the Use 
of Technology. Technology, Pedagogy and Education, 26(4), 367–381. 
https://doi.org/10.1080/1475939X.2016.1258369 

Quick, J., & Hall, S. (2015). Part Two: Qualitative research. Journal of Perioperative Practice, 
25(7–8), 129–133. https://doi.org/10.1177/1750458915025007-803 

Ramsook, L. (2018). A Methodological Approach to Hermeneutic Phenomenology. 
International Journal of Humanities and Social Sciences, 10(1), 14–24. 
http://ijhss.net/index.php/ijhss/ 

Rasslan, S., & Tall, D. (2002). Definitions and Images for the Definite Integral Concept. 
Proceedings of the 26th Conference of the International Group for the Psychology of 
Mathematics Education, 4, 89–96. 

Reid, S. (2002). The integration of information and communication technology into classroom 
teaching. Alberta Journal of Educational Research, 48(1), 30–46. 

Reis, Z. A. (2010). Computer supported mathematics with Geogebra. Procedia - Social and 
Behavioral Sciences, 9, 1449–1455. https://doi.org/10.1016/j.sbspro.2010.12.348 

Ridgway, J. (2016). Vygotsky, informatics capability, and professional development. Leading 
Edge, 35(4), 378–379. https://doi.org/10.1190/tle35040378.1 

Roblyer, M. D., & Doering, A. H. (2015). Integrating Educational Technology into Teaching.  
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 6the edition, 53(9). 
Pearson Education Limited.  

Rogness, J. (2011). Mathematical Visualization. Journal of Mathematics Education at Teachers 
College, 2, 1–8. 

Rosdi, A. M., Khalid, F., & Rasul, M. S. (2020). Factors Influencing the Formation of Teacher 
Professional Identity in Technology Integration. Journal of Educational and Social 
Research, 10(5), 1–12. https://doi.org/10.36941/JESR-2020-0082 

Rösken, B., Hoechsmann, K., & Törner, G. (2007). Pedagogies in Action: The Role of 
Mathematics Teachers’ Professional Routines. Paper presented at the 100th Anniversary of 
ICME, Rome (5–8 March 2008). 

Rösken, B., & Katrin, R. (2006). A Picture Is Worth a 1000 Words – The Role of Visualization 



193 
 

In Mathematics Learning. 4, 457–464. In J. Novotná, H. Moraová, M. Krátká, & N. 
Stehlíková (Eds.). Proceedings 30th Conference of the International Group for the 
Psychology of Mathematics Education, 4, (pp. 457–464). Prague: PME.  

Ross, J. A., & Bruce, C. D. (2009). Student achievement effects of technology-supported 
remediation of understanding of fractions. International Journal of Mathematical 
Education, 40(6), 713-727. https://doi.org/10.1080/00207390902971999 

Ruggiero, D., & Mong, C. J. (2015). The Teacher Technology Integration Experience: Practice 
and Reflection in the Classroom. Journal of Information Technology Education: Research, 
14(2015), 161–178. 

Rule, P., & John, V. (2011). Your guide to case study research. Van Schaik. 

Ruthven, K. (2014). Frameworks for Analysing the Expertise That Underpins Successful 
Integration of Digital Technologies into Everyday Teaching Practice. In A. Clark-Wilson, 
O. Robutti, & N. Sinclair, (Eds.), The Mathematics Teacher in the Digital Era, 2, pp. 373–
393. https://doi.org/10.1007/978-94-007-4638-1_16  

Sabella, M. S., & Redish, E. F. (2007). Student Understanding of Topics in Calculus. University 
of Maryland Physics Education Research Group.  

Salomon, A. (2006). Computing Teaching and Learning in HEI’s Using Constructivism. 
Proceedings of the Advances in Computing and Technology, The School of Computing and 
Technology 1st Annual Conference, 2006, 30–34. 

Samuels, J. (2010). The use of Technology and Visualisation in Calculus Instruction. Doctoral 
thesis. Columbia University. https://www.learntechlib.org/p/119631/ 

Sang, G., Valcke, M., Braak, J. van Tondeur, J., & Zhu, C. (2011). Predicting ICT Integration 
into Classroom Teaching in Chinese Primary Schools: Exploring the Complex Interplay of 
Teacher-related Variables, June, 160–172. https://doi.org/10.1111/j.1365-
2729.2010.00383.x 

Scherer, R., Siddiq, F., & Tondeur, J. (2019). Computers & Education: The technology 
acceptance model (TAM ): A Meta-Analytic Structural Equation Modeling Approach to 
Explaining Teachers’ Adoption of Digital Technology in Education. Computers & 
Education, 128(0317), 13–35. https://doi.org/10.1016/j.compedu.2018.09.009 

Schoenfeld, A. H. (1989). Explorations of Students’ Mathematical Beliefs and Behavior. Journal 
for Research in Mathematics Education, 20(4), 338–355. 

Sedig, K. & Sumner, M. (2015). Characterizing Interaction with Visual Mathematical 
Representations. International Journal for Computers in Mathematical Learning 11, 1–55 
https://doi.org/10.1007/s10758-006-0001-z   

Shaw, P. (2018). Pre-service Education Students’ Application of Visualisation Strategies to solve 
Mathematical Word Problems. Unpublished Doctoral thesis. University of Fort Hare, East 
London. 

Sherman, M. (2014). The Role of Technology in Supporting Students’ Mathematical Thinking: 
Extending the Metaphors of Amplifier and Reorganizer. Contemporary Issues in 

https://doi.org/10.1007/978-94-007-4638-1_16
https://doi.org/10.1007/s10758-006-0001-z


194 
 

Technology and Teacher Education, 14(3), 220–246. 

Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational 
Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189x015002004 

Simsek, A., & Clark-Wilson, A. (2018). Teacher Knowledge for Teaching Geometric Similarity 
with Technology: A Review of Literature. Mathematics Education in the Digital Age, 249–
256. http://www.math.ku.dk/english/research/conferences/2018/meda 

 

Sintema, E. J., & Phiri, A. P. (2018). An Investigation of Aambian Mathematics Student 
Teachers’ Technological Pedagogical Content Knowledge (TPACK). Journal of Basic and 
Applied Research International, 24(2), 70-77. 
https://www.ikprress.org/index.php/JOBARI/article/view/4087 

Sintema, E. J. (2020). Effect of COVID-19 on the Performance of Grade 12 Students: 
Implications for STEM education. Eurasia Journal of Mathematics, Science and 
Technology Education, 16(7), 1–6. https://doi.org/10.29333/EJMSTE/7893 

Snyder, T. D., de Brey, C., & Dillow, S. A. (2016). Digest of Education Statistics 2015, 51st 
Edition. NCES 2016-014. National Center for Education Statistics, 1–1042. 
https://archive.org/details/ERIC_ED570993 

Soylu, A., de Causmaecker, P., & Desmet, P. (2009). Context and adaptivity in pervasive 
computing environments: Links with software engineering and ontological engineering. 
Journal of Software, 4(9), 992–1013. https://doi.org/10.4304/jsw.4.9.921-1013 

Stenfors, T., Kajamaa, A., & Bennett, D. (2020). How to … assess the quality of qualitative 
research. Clinical Teacher, 17(6), 596–599. https://doi.org/10.1111/tct.13242 

Stols, G., & Kriek, J. (2011). Why don’t all maths teachers use dynamic geometry software in 
their classrooms? Australasian Journal of Educational Technology, 27(1), 137–151. 

Suárez-Rodríguez, J., Almerich, G., Orellana, N., & Díaz-García, I. (2018). A Basic Model of 
Integration of ICT by Teachers: Competence and Use. Educational Technology Research 
and Development, 66(5), 1165–1187. https://doi.org/10.1007/s11423-018-9591-0 

Summit, R., & Rickards, T. (2013). A constructivist approach to mathematics laboratory classes. 
Proceedings of the 9th DELTA Conference on Teaching and Learning of Undergraduate 
Mathematics and Statistics, (pp. 190–198). 

Takači, D., Stankov, G., & Milanovic, I. (2015). Efficiency of learning environment using 
GeoGebra when calculus contents are learned in collaborative groups. Computers and 
Education, 82, 421–431. https://doi.org/10.1016/j.compedu.2014.12.002 

Tall, D. O. (2009). Dynamic Mathematics and the Blending of Knowledge Structures in the 
Calculus. ZDM - International Journal on Mathematics Education, 41(4), 481–492. 
https://doi.org/10.1007/s11858-009-0192-6 

http://www.math.ku.dk/english/research/conferences/2018/meda


195 
 

Tall, D., Smith, D., & Piez, C. (2008). Technology and Calculus. In M. K. Heid and G. M. 
Blume (Eds.), Research on Technology and the Teaching and Learning of Mathematics, 
Volume I: Research Syntheses, (pp. 207-258). 

 
Tarmizi, R. A. (2010). Visualizing Students’ Difficulties in Learning Calculus. Procedia - Social 

and Behavioral Sciences, 8, 377–383. https://doi.org/10.1016/j.sbspro.2010.12.053 

Tatar, E., & Zengin, Y. (2016). Conceptual Understanding of Definite Integral with GeoGebra. 
Computers in the Schools, 33(2), 120–132. https://doi.org/10.1080/07380569.2016.1177480 

Tearle, P. (2003). Enabling Teachers to use Information and Communications Technology for 
Teaching and Learning Through Professional Development: Influential Factors. Teacher 
Development, 7(3), 457–472. https://doi.org/10.1080/13664530300200222 

Tekin, N., Kepceoğlu, İ., İpekoğlu, A., & Bülbül, A. (2021). Analysis of the Mathematical 
Thinking Levels of Individual and Team Athletes in Terms of Different Variables. 
International Journal of Psychology and Educational Studies, 8(2), 148–157. 
http://dx.doi.org/10.52380/ijpes.2021.8.2.403 

Teo, T. (2011). Factors Influencing Teachers’ Intention to Use Technology: Model development 
and test. Computers and Education, 57(4), 2432–2440. 
https://doi.org/10.1016/j.compedu.2011.06.008 

Teo, T., & Milutinovic, V. (2015). Modelling the Intention to Use Technology for Teaching 
Mathematics Among Pre-service Teachers in Serbia. Australasian Journal of Educational 
Technology, 31(4), 363–380. https://doi.org/10.14742/ajet.1668 

Tømte, C., Enochsson, A. B., Buskqvist, U., & Kårstein, A. (2015). Educating online student 
teachers to master professional digital competence: The TPACK-framework goes online. 
Computers and Education, 84. https://doi.org/10.1016/j.compedu.2015.01.005 

Tondeur, J., Keer, H., van Braak, J., & van Valcke, M. (2008). ICT Integration in the Classroom: 
Challenging the Potential of a School Policy, 51, 212–223. 
https://doi.org/10.1016/j.compedu.2007.05.003 

Tondeur, J., Braak, J., van Sang, G., Voogt, J., Fisser, P., & Ottenbreit-Leftwich, A. (2012). 
Computers & Education: Preparing Pre-service Teachers to Integrate Technology in 
Education: A Synthesis of Qualitative Evidence. Computers & Education, 59(1), 134–144. 
https://doi.org/10.1016/j.compedu.2011.10.009 

Tondeur, J., van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2017a). Understanding the 
Relationship between Teachers’ Pedagogical Beliefs and Technology Use in Education: A 
Systematic Review of Qualitative Evidence. Educational Technology Research and 
Development, 65(3), 555–575. https://doi.org/10.1007/s11423-016-9481-2 

Tondeur, J., Pareja Roblin, N., van Braak, J., Voogt, J., & Prestridge, S. (2017b). Preparing 
Beginning Teachers for Technology Integration in Education: Ready for take-off? 
Technology, Pedagogy and Education, 26(2), 157–177. 
https://doi.org/10.1080/1475939X.2016.1193556 

Tondeur, J., Aesaert, K., Prestridge, S., & Consuegra, E. (2018). A Multilevel Analysis of What 

http://dx.doi.org/10.52380/ijpes.2021.8.2.403


196 
 

Matters in the Training of Pre-Service Teacher’s ICT Competencies. Computers and 
Education, 122, 32–42. https://doi.org/10.1016/j.compedu.2018.03.002 

Tondeur, J., Scherer, R., Baran, E., Siddiq, F., Valtonen, T., & Sointu, E. (2019). Teacher 
Educators as Gatekeepers: Preparing the Next Generation of Teachers for Technology 
Integration in Education. British Journal of Educational Technology, 50(3), 1189–1209. 
https://doi.org/10.1111/bjet.12748 

Toptaş, V., Çelik, S., & Tugce Karaca, E. (2012). Improving 8th Grades’ Spatial Thinking 
Abilities Through a 3D Modeling Program. Turkish Online Journal of Educational 
Technology, 11(2), 128–134. 

Topuz, F., & Birgin, O. (2020). Developing teaching materials supported with geogebra for 
circle and disc subject at seventh grade. Elementary Education Online, 19(3), 1–17. 
https://doi.org/10.17051/ilkonline.2020.735184 

Trgalová, J., Clark-Wilson, A., & Weigand, H.-G. (2018). Technology and Resources in 
Mathematics Education. Developing Research in Mathematics Education, 142–161. 
https://doi.org/10.4324/9781315113562-12 

Trouche, L. (2016). Didactics of Mathematics: Concepts, Roots, Interactions and Dynamics from 
France. In: Tools and Mathematics. Mathematics Education Library, 110. (pp. 219–256). 
Springer, Cham. https://doi.org/10.1007/978-3-319-02396-0_10 

Trust, T. (2018). 2017 ISTE Standards for Educators: From Teaching With Technology to Using 
Technology to Empower Learners, 34(1), 1-3, 
https://doi.org/10.1080/21532974.2017.1398980 

Uerz, D., Volman, M., & Kral, M. (2018). Teacher Educators’ Competences in Fostering Student 
Teachers’ Proficiency in Teaching and Learning with Technology: An Overview of 
Relevant Research Literature. Teaching and Teacher Education, 70, 12–23. 
https://doi.org/10.1016/j.tate.2017.11.005 

Umugiraneza, O., Bansilal, S., & North, D. (2018). Exploring Teachers’ Use of Technology in 
Teaching and Learning Mathematics in KwaZulu-Natal schools. Pythagoras, 39(1), 1–13. 
https://doi.org/10.4102/pythagoras.v39i1.342 

UNESCO. (2015). Integratating ICT in Education - A Collective Case Study of Six Asian 
Countries. UNESCO: Bangkok. 

Van Den Beemt, A., & Diepstraten, I. (2016). Teacher perspectives on ICT: A learning ecology 
approach. Computers and Education, 92–93, 161–170. 
https://doi.org/10.1016/j.compedu.2015.10.017 

Van Voorst, C. (1999). Technology in mathematics teacher education. Knowledge Creation 
Diffusion Utilization. Teacher Education, https://doi.org/10.1007/978-94-010-0273-8_13. 

Venkatesh, V., & Davis, F. D. (2016). A Theoretical Extension of the Technology Acceptance 
Model : Four Longitudinal Field Studies. Management Science, 46(2), 186–204. 
https://doi.org/10.1287/mnsc.46.2.186.11926 

Venkatesh, V., Davis, F. D., & Morris, M. G. (2007). Dead Or Alive? The Development, 

https://doi.org/10.1007/978-94-010-0273-8_13


197 
 

Trajectory And Future Of Technology Adoption Research. AIS Educator Journal, 8, 267-
286. https://doi.org/10.17705/1jais.00120 

Verillon, P., & Rabardel, P. (1995). Cognition and Artifacts: A Contribution to the Study of 
Though in Relation to Instrumented Activity. European Journal of Psychology in 
Education, 10(1), 77–101.  

Veřmiřovský, J. (2018). The Importance of Visualisation in Education. 
http://weinoe.us.edu.pl/sites/weinoe.us.edu.pl/files/36_the_importance_of_visualisation.pdf 

Villarreal, E., & Borba, Æ. M. C. (2010). Collectives of Humans-with-media in Mathematics 
Education: Notebooks , Blackboards , Calculators , Computers and … notebooks 
throughout 100 years of ICMI. ZDM Mathematics Education 42, 49–62. 
https://doi.org/10.1007/s11858-009-0207-3 

Von Glasersfeld, E. (1987). The construction of knowledge: Contributions to conceptual 
semantics. Intersystems Publications: CA. 

Vongkulluksn, V. W., Xie, K., & Bowman, M. A. (2018). Computers & Education: The Role of 
Value on Teachers’ Internalization of External Barriers and Externalization of Personal 
Beliefs for Classroom Technology Integration. Computers & Education, 118, 70–81. 
https://doi.org/10.1016/j.compedu.2017.11.009 

Vygotsky, L. (1994). The Vygotsky reader. Blackwell. 

Wachira, P., & Keengwe, J. (2011). Technology Integration Barriers: Urban School Mathematics 
Teachers Perspectives. Journal of Science Education and Technology, 20(1), 17–25. 
https://doi.org/10.1007/s10956-010-9230-y 

Wang, Q. (2008). A generic model for guiding the integration of ICT into teaching and learning 
and learning. Innovations in Education and Teaching International, 45(4), 411-419. 
https://doi.org/10.1080/14703290802377307 

Wanjala, M. M. S. (2016). Information Communication Technology Pedagogical Integration in 
Mathematics Instruction among Teachers in Secondary Schools in Kenya. Journal of 
Education and Practice, 7(2), 66–73. 

Wertsch, J. V., & Rupert, L. J. (1993). The Authority of Cultural Tools in a Sociocultural 
Approach to Mediated Agency. Cognition and Instruction, 11(3–4), 227–239. 
https://doi.org/10.1080/07370008.1993.9649022 

Williams, C. (2007). Research methods. Journal of Business and Ecnomic Research, 5(3), 65–
72. https://doi.org/10.4324/9780203978672 

Williams, E. N., & Morrow, S. L. (2009). Achieving trustworthiness in qualitative research: A 
pan-paradigmatic perspective. Psychotherapy Research, 19(4–5), 576–582. 
https://doi.org/10.1080/10503300802702113 

Williams, M., & Moser, T. (2019). The Art of Coding and Thematic Exploration in Qualitative 
Research. International Management Review, 15(1), 45–55. 

Wilson, P. S., Cooney, T. J., & Stinson, D. W. (2005). What Constitutes Good Mathematics 



198 
 

Teaching and How it Develops: Nine High School Teachers’ Perspectives. Journal of 
Mathematics Teacher Education, 8(2), 83–111. https://doi.org/10.1007/s10857-005-4796-7 

Wilson, S., & Thornton, S. (2002). To heal and enthuse: Developmental bibliotherapy and pre-
service primary teachers’ reflections on learning and teaching mathematics. Mathematics 
teacher Education and Devepment, 1(2),  36–44. 

Wright, V., & Wilson, E. (2011). Teachers’ Use of Technology: Lessons Learned from the 
Teacher Education Program to the Classroom. Southern Eastern Region Association of 
Teacher Ediucators Journal, 20(2), 48–60. 
http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ959529 

Yin, R. K. (2014). Case Study Research Design and Methods. (5th ed.). Thousand Oaks, CA: 
Sage. https://doi.org/10.3138/cjpe.30.1.108 

Zambia, Examination Council of Zambia. (2014). 2014 Examinations Performance Report.  
General Performance Analysis. Lusaka: Government Printers 

Zambia. Examination Council of Zambia. (2015). 2015 Examinations Performance Report: 
General Performance Analysis. Lusaka: Government Printers 

Zambia. Examination Council of Zambia. (2020). 2020 Examination Performance Review 
Report School Certificate School Certificate. Lusaka: Government Printers 

Zambia. Ministry of Education, Science, Vocational Training and Early Education. (2013). 
Zambian Education Curriculum Framework. Lusaka: The Curriculum Development Centre.  

Zambia. Ministry of Communications and Transport. (2006). National Information and 
Communication Technology Policy Process in Developing Countries. In Frameworks for 
ICT Policy. https://doi.org/10.4018/9781616920128.ch014 

Zambia. Ministry of Education. (1996). Educating Our Future. National Policy on Education. 
Lusaka: Hohenwarter Government Printers. 

Zambia. Ministry of Education. (2010). Education Sector National Implementation Framework 
III: 2011 - 2015. June 2010. Lusaka: Government printers. 

Zazkis, D. (2016). On Transitions Between Representations: The Role of Contextual Reasoning 
in Calculus Problem Solving. Canadian Journal of Science, Mathematics and Technology 
Education, 16(4), 374–388. https://doi.org/10.1080/14926156.2016.1190042 

Zbiek, R. M. M., Heid, K., Blume, G. W., & Dick, T. P. (2007). Research on Technology in 
Mathematics Education: A Perspective of Constructs. In F. K. Lester (Ed.), Second 
handbook of research on mathematics teaching and learning (pp. 1169–1207). 

Zengin, Y., Furkan, H., & Kutluca, T. (2012). The Effect of Dynamic Mathematics Software 
GeoGebra on Student Achievement in Teaching of Trigonometry. Procedia - Social and 
Behavioral Sciences, 31(2011), 183–187. https://doi.org/10.1016/j.sbspro.2011.12.038 

Zientek, L. R. (2007). Preparing high-quality teachers: Views from the classroom. American 
Educational Research Journal, 44(4), 959–1001. 
https://doi.org/10.3102/0002831207308223 



199 
 

Žilinskiene, I., & Demirbilek, M. (2015). Use of Geogebra in Primary Math Education in 
Lithuania: An Exploratory Study from Teachers’ Perspectives. Informatics in Education, 
14(1), 129–144. https://doi.org/10.15388/infedu.2015.08 

Zimmermann, W., & Cunningham, S. (1991). Visualization in teaching and learning 
mathematics. Mathematical Association of America. 

Zulnaidi, H., & Syed Zamri, S. N. A. (2017). The Effectiveness of the GeoGebra Software: The 
Intermediary Role of Procedural Knowledge On Students’ Conceptual Knowledge and 
Their Achievement in Mathematics. Eurasia Journal of Mathematics, Science and 
Technology Education, 13(6), 2155-2180. https://doi.org/10.12973/eurasia.2017.01219a 

 

 

 

 

 

 

 

 

 

 

 

 



200 
 

APPENDIX A – Ethical Clearance 

 
 

 

  



201 
 

Request for Permission to conduct research 

  



202 
 

 



203 
 

 

Access letter requesting permission to conduct research 

 

Gate keeper permission 

 

 

 

 

 

 

 

 

 

 

 

 



204 
 

APPENDIX B 

Participants’ Concert Letters  

Lecturer 1 

 



205 
 

  



206 
 

 



207 
 

Lecturer 2 

 

  



208 
 

 

  



209 
 

 

 

  



210 
 

Lecturer 3 

 



211 
 

 

  



212 
 

 

  



213 
 

Lecturer 4 

 



214 
 

  



215 
 

 

 

  



216 
 

Lecturer 5 

 



217 
 

  



218 
 

  



219 
 

Lecturer 6 

 

 

  



220 
 

  



221 
 

 

  



222 
 

 

APPENDIX C 

Survey for baseline data on lecturers’ awareness and use of GeoGebra 
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Lecturers’ interview instrument 

 

Interview Questions for Lecturers in Teacher Education Institutions 

The Incorporation of GeoGebra as a visualisation tool to teach calculus in Teacher 
Education Institutions: The Zambian Case 

The interviewees will be welcomed and encouraged to be honest about their responses and 
explain their views as much as possible. Where necessary, I will probe their responses 

All identifying information will be deleted as soon as all data has been collected.  

Personal data 

Name of the institution…………………………Gender: Male (√ ) Female ()  

Cycles taught……………………………………………………………………………………. 

Teaching experience: 0 – 5 years ( ),6-10 years ( ),11-15 ( ), 11-15 years ( ) Above 15 years (√) 

1. (a) Have you ever used computer software before in teaching mathematics? If so, which 
one(s) and how did you use it/them? 
(b) What are your experiences about teaching calculus to students in Teacher Education 

Institutions? Explain your answer? 
2. From your experience, which areas do students in TEIs find challenging in calculus? 

Which ones do they find easy? What do you think could be the reason for this? 
3. What do you think is the role of visualisation in teaching mathematics? 
4. In your presentation of calculus lessons to students, how did you use GeoGebra to  

(a) visualise calculus concepts? 
(b) enhance conceptual understanding of calculus concepts? 

5. How did the use of GeoGebra facilitate your teaching of calculus? 
6. How did you use GeoGebra applets to visualise mathematics concepts? 
7. What did you find challenging in your use of GeoGebra applets in teaching calculus? 
8. Based on the calculus lessons you presented, what do you think was advantageous  

and what do you think was disadvantageous about the use of GeoGebra in your teaching? 
9. (a) How did GeoGebra, as a visualisation tool, enhance your teaching of each of the 

calculus concepts: 
(i) Limits (ii) Slope of the curve (iii) Riemann Sum (iv) Area between Curves 

(b) Which concepts in the above Calculus topics were enhanced by the use of GeoGebra  
applets in your teaching? Give reasons for your answer. 

10. How did you use GeoGebra applets to encourage students explore calculus concepts? 
11. From your experience of interacting with GeoGebra, how do you think GeoGebra can be 

used effectively to teach calculus to enhance conceptual understanding? 
12. Do you feel GeoGebra has improved your understanding of the calculus concepts 

discussed and made your teaching easier? Explain your answer? 
13. From your experience of teaching with GeoGebra applets, what factors do you think  



224 
 

(a) can encourage lecturers to use GeoGebra in their teaching? 
(b) inhibit teachers from using GeoGebra in their teaching?  

14. Was the training on use of GeoGebra prior to your interaction with students adequate for 
you to teach with the aid of the software. Explain 

15. (a) In which ways do you think the use of GeoGebra made your explanations of calculus 
concepts clear to the students? 
(b) Explain the challenges if any, that you encountered when designing the applets and 

when using the applets to conduct your lessons. 
16. In your view, what do you think should be done to make effective use of GeoGebra as a 

visualisation tool in the teaching of mathematics in general and calculus in particular? 
17. Do you think GeoGebra should be used as a visualisation tool to teach mathematics in 

genera and calculus in particular in TEIs? Give reasons for your answer 
18. Is there any information that you would like to share with me related to this interview that 

I have not captured in my questions? 
End 
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Analytical Framework  

Construct Code Definition Observable 
Indicators 

The Lecturer: 

Rubric for 
Indicators 

Visualising 
Processes 

 

 

 

 

 

 

 

 

 

VP  Using GeoGebra 
applets to visualise 
calculus concepts 

  

Knowledge of 
generating visuals 
appropriate to the 
calculus concept 
being discussed  

VP1: Uses applets 
generated to 
visualise calculus 
concepts 
appropriately  

 

 

Visualisation 
links one calculus 
concept to another  

and connecting 
mathematics to 
real- life 
situations 

Exhibits thorough 
knowledge of 
limit, slope of 
tangent, Riemann 
Sum and area 
between curves 
using  

 USD  

Use of sliders 
and dragging 

Sliding and 
dragging of 
objects on 
Calculus graphs 
and diagrams 

 

USD 1: Uses 
sliders and 
dragging to show 
effect of change 
of parameters on 
calculus graphs  

and diagrams 

 GeoGebra tools 
in lessons with 
ease 

Lecturer 
visualises how 
movement of 
sliders and 
dragging of points 
on a GeoGebra 
applet results in 
different graphs 

E.g. Uses sliders 
to visualise 
movement of 
points, increase or 
reduction of 
number of 
rectangles using 
Riemann Sum  

Calculates the 
limit, slope of 
tangent, Riemann 
Sum and Area 
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between Curves 
suing concept on 
a GeoGebra 
applets with ease 

 Multiple 
Representation 

Ability to represent 
the same concept in 
many forms.  

(MR 1) Using the 
GeoGebra interface 
to show the same 
calculus concept in 
multiple ways from 
a constructivist 
perspective  

Lecturer visualises 
the same concept 
symbolically, 
algebraically and 
graphically 

Technological 
Pedagogical 
Content 
Knowledge 
(TPACK) 

TPACK1 Knowledge 
required by 
teachers to 
integrate 
technology into 
their teaching  

 

 

TPACK1: Uses 
GeoGebra to 
visualise and 
foster conceptual 
understanding of 
various calculus 
concepts 

 

Knowledge of 
what makes 
concepts difficult 
or easy to learn 
and how 
technology can 
help redress some 
of the problems 
that students face. 

Knowledge of 
how technologies 
can be used to 
build on existing 
knowledge and to 
develop new ideas  

 Content 
Knowledge 
(CK 1) 

Knowledge about 
the subject matter of 
the cycle 

CK1: Applies 
calculus concepts 
to real situations 
and other contexts 

and Sequences 
concepts logically 

 

Thorough 
knowledge of the 
content of a 
calculus cycle 

 Pedagogical 
Knowledge 
(PK) 

Knowledge about 
methods and 
processes of 
teaching 

PK1: Uses 
methods that 
engage students 
actively 

Addressing the 
worthwhile nature 
of mathematics 
with appropriate 
pedagogy. 
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PK12: Uses 
methods that 
include 
assessment during 
lessons and good 
class management  

Shows connection 
of calculus 
concepts in 
algebraic and 
geometric 
windows using 
virtual 
manipulatives 

 

 TK1 

Technological 
Knowledge 
(TK) 

Knowledge about 
various 
technologies  

TK1: Uses 
GeoGebra tools 
skillfully and 
effectively 

 

Introducing and 
illustrating 
technology in the 
context of 
meaningful 
content-based 
activities 

Uses GeoGebra 
tools skillfully 
during the lesson 

 PCK1 

Pedagogical 
Content 
Knowledge  

Content 
knowledge that 
deals with the 
teaching process  

PCK 1: Uses 
teaching 
approaches 
appropriate to the 
content 

 

Helping students 
discover 
mathematics 
concepts by 
taking advantage 
of the software 
capacities  

Uses GeoGebra 
visualisation 
characteristics to 
show calculus 
concepts in 
multiple 
representations 

 

 TCK 

Technological 
Content 
Knowledge  

Knowledge of 
how technology 
can create new 
representations for 
specific content  

TCK 1: Use of 
GeoGebra to 
teach calculus 
content. 

Incorporating 
various 
representations of 
mathematical 
concepts.  
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TCK 12: Shows 
same concept in 
multiple 
representations. 

TCK 12: Use 
GeoGebra to 
visualise calculus 
concepts. 

Knowledge of 
how technologies 
afford particular 
representations 
and flexibility in 
navigating across 
them. 

Knowledge of the 
manner in which 
the subject matter 
can be changed by 
the application of 
technology. 

 

 TPK1 

Technological 
Pedagogical 
Knowledge.  

Knowledge of 
how various 
technologies can 
be used in 
teaching. 

TPK 1: Uses 
GeoGebra to 
promote 
conceptual 
understanding of 
concepts. 

Taking advantage 
of technological 
capabilities to 
enhance 
competence in 
teaching and 
learning. 

Understanding 
that a range of 
tools exist for a 
particular task 

Ability to choose 
a tool based on its 
fitness and 
strategies for 
using the tool’s 
affordances 

ability to apply 
pedagogical 
strategies for use 
of technologies 
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TAM ITUI 1 

Intention to 
use ICT  

Willingness to use 
technology in the 
teaching process.  

ITUI 1: Prepares 
all necessary 
materials for 
GeoGebra lesson. 

Enthusiasm in the 
use of GeoGebra 

 AU 1 

Actual Use 

Use of technology 
in the teaching 
process. 

AU 1: Presents 
lessons with 
GeoGebra 
software. 

Making timely 
decisions on how 
and when to use 
technology 
appropriately in 
mathematics 
classrooms. 

Uses GeoGebra 
software where it 
is necessary. 

 EU 1 

Easy to use 

Use of technology 
in an easier way 

EU 1Deminstrates 
use of GeoGebra 
easily 

 

EU 1Deminstrates 
use of GeoGebra 
prudently in an 
easy manner 

 

Mathematics 
Proficiency 

(CU1) 
Conceptual 
Understanding  

Use technology to 
learn calculus 
concepts with 
understanding, and 
not superficially 

(CU 1). Use 
GeoGebra to 
connect new 
calculus concepts to 
prior knowledge 

(CU 1) Use 
GeoGebra to 
provide a link 
between abstract 
and concrete 
aspects of the same 
concept 

 

 

 


