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Abstract 12 

Climate, competition and site conditions are the main drivers controlling annual secondary 13 

growth in tree species. These factors do no act independently on tree growth, but by means of 14 

interactions, resulting in mediated interactive effects. For example, the stress gradient 15 

hypothesis postulates alleviated interspecific competition under limiting spatial (site) or 16 

temporal (climate) resources. According to this, models predicting annual growth and yield for 17 

a given forest should consider these issues in their formulation. In this study, we present a 18 

modelling approach based on using data from permanent plots and dendrochronological 19 

analysis in order to describe annual tree growth in pure, even-aged stands of Pinus pinea L. in 20 

the Spanish Northern Plateau, a highly limiting environment due to its Mediterranean 21 

continental climate. Our method is based on identifying the different sources of variability by 22 

means of a multilevel linear mixed model, and thereby identifying the potential covariates 23 

explaining observed variability at the different spatiotemporal scales. Our results indicate that 24 

site related factors such as site index or dominant height exert a greater influence on annual 25 

secondary growth than size-symmetric competition. In addition, we found that the controlling 26 

influence of water stress is greater than that of temperatures on tree growth. Furthermore, our 27 

results allow evidence to be identified for the stress gradient hypothesis in temporal 28 

intraspecific interactions, since trees exposed to a higher degree of competition tend to grow 29 

more than expected in dry periods. In contrast, the effect of competition on growth, on average, 30 

tends to be aggravated at very poor sites. Finally, our modelling approach allows us to conduct 31 

growth and yield simulations under different climate scenarios at different spatial scales, 32 

providing results which point to significant decreases in timber and cone production under the 33 

more severe scenarios, which can be alleviated through more intensive silviculture.     34 

Highlights 35 

• Site conditions exert larger influence over growth than competition 36 

• Secondary growth in Pinus pinea is mainly controlled by water stress 37 

• Effect of competition on growth is alleviated on extreme dry years  38 

• Under future climate scenarios a significant decrease of production is expected  39 

Keywords 40 
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Multilevel mixed model, climate sensitive model, size-symmetric competition, stress gradient 41 

hypothesis, adaptive silviculture   42 

Introduction 43 

Climate, competition and site conditions are among the main drivers defining spatiotemporal 44 

patterns of variability in annual secondary growth of tree species (Madrigal-González and Zavala, 45 

2014). Site conditions – fertility, soil water holding capacity, soil depth, aspect and slope, as well 46 

as mean values for rainfall, temperature or irradiance - determine the potential maximum 47 

growth for a given tree, and characterize the pattern of spatial variability between stands, blocks 48 

or forests. Furthermore, current annual climatic conditions determine aspects such as annual 49 

net carbon assimilation and evapotranspiration, which in turn can lead to greater resource 50 

availability for processes such as respiration, reproduction, leaf production, primary and 51 

secondary growth. Competition plays a double role: (i) competition determines the limitation or 52 

regulation of the access of a subject tree to limited resources – light, water or nutrients - due to 53 

neighbouring effects (Linares el al. 2010, Contreras et al. 2011), thus defining the patterns of 54 

resource availability and spatial differences in growth between individuals from the same stand; 55 

and (ii) competition mediates the effect of site and/or climate on growth and other forest 56 

dynamics processes as recruitment (Wang et al. 2016). As regards the latter, the general theory 57 

postulates that negative plant-plant interactions – including competition – increase in resource-58 

limiting environments (Tilman 1988, Gómez-Aparicio et al. 2011; Sánchez-Salguero et al. 2015). 59 

On the other hand, the commonly cited stress gradient hypothesis (Bertness and Callaway, 1994; 60 

Callaway and Walker, 1997) postulates that association with neighbours can provide benefits 61 

under more unfavourable conditions, resulting in a shift from negative to positive interactions 62 

across a benign to harsh environmental gradient.  Although the two theories seem 63 

contradictory, this apparent contradiction can be understood if we assume that competition is 64 

responsible for long-term growth trends along resource availability gradients (Canham et al. 65 

1994), while in the short-term, annual variation in growth can be controlled by a shift from 66 

competition to facilitation in very restrictive annual conditions (Armas and Pugnaire, 2005). It 67 

should be noted that while general theories of competition among plants have considered 68 

intraspecific as well as interspecific factors, much of the evidence supporting the stress gradient 69 

hypothesis has centred on interspecific interactions. However, recent studies have focused on 70 

the importance of positive intraspecific plant-plant interactions in driving population dynamics 71 

(Eränen and Kozlov, 2008; Gimeno et al., 2015), some evidence even pointing to the existence 72 

of intraspecific facilitation between conspecific individuals of the same cohort (Fajardo and 73 

McIntire, 2011; McIntire and Fajardo, 2011).  74 

Regulation of intraspecific and interspecific competition through thinning is one of the main 75 

elements of forest management. Forest management planning requires models that accurately 76 

predict the growth of a given stand under different management schedules. In this context, the 77 

functions, routines or submodels describing secondary growth (diameter or basal area 78 

increment) provide the main “engine” in forest growth and yield models. However, while forest 79 

models commonly assess the impact of competition and site characteristics on growth and yield, 80 

the potential impact of climate has been largely ignored. Two basic assumptions underlie this 81 

lack of attention to climatic impacts: (i) interannual variability in environmental drivers such as 82 

rainfall or temperature is compensated over the set of years commonly used as a step in growth 83 

projections (5-10 years); and (ii) despite short-term variability in these drivers, there are no 84 

trends for long term change, thus, past environmental conditions will remain constant in the 85 

future.  86 
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The abovementioned assumptions may not hold true under current scenarios of climate change 87 

uncertainty. Evidence of recent changes in forest dynamics and productivity associated with 88 

climate change has been reported in various studies (Sarris et al. 2007, Macias et al. 2006). In 89 

addition, it has been shown that the occurrence of a single extreme-climatic event – such as a 90 

severe summer drought or a heat wave -  can have a long-lasting negative impact on forest 91 

growth and dynamics (Peñuelas et al. 2001), not necessarily compensated by subsequent 92 

favourable years (de-Dios-García et al. 2015). Negative effects of climate change on forest 93 

growth and productivity are expected to be especially dramatic in Mediterranean ecosystems, 94 

where Global Climate Models predict increments in air temperature, more frequent heat-waves, 95 

severe and more recurrent drought episodes, and a general decrease in precipitation (IPCC, 96 

2013). In this context, negative impacts on forest growth dynamics and productivity are likely to 97 

be aggravated. 98 

Adaptation of forests to these changing scenarios requires predictive models that assess and 99 

compare different management alternatives under different climate scenarios, as well as the 100 

potential impacts on the provision of ecosystems services. Therefore, models to support forest 101 

management should be sensitive to both climate and management practices (Ameztegui et al., 102 

2017). In addition, forest management under scenarios of climatic uncertainty require flexible 103 

tools that can integrate and evaluate the impact of a single climatic event over the subsequent 104 

years. Hence, the temporal scale of the models should be downscaled, at least to an annual 105 

scale. Finally, forest models should be able to assess the effect of spatial variability on site 106 

conditions at the spatial scale  (block, stand, forest) required by the managers.  107 

The inclusion of climate in forest models can be approached from different perspectives. Process 108 

based models describe physiological-based processes such as photosynthesis, respiration or 109 

evapotranspiration as a response to climate drivers (Makela et al. 2010). The sound physiological 110 

basis of these models permits their generalization to changing scenarios, having been widely 111 

used to identify the potential response of forests to climate change on forest productivity at 112 

very detailed temporal scales (ranging from minutes to days). However, they require detailed 113 

ecological and physiological data for accurate calibration, which limits their range of 114 

applicability. In addition, while widely valid for large-scale global assessment of forest 115 

productivity, their predictive capacity at typical management scales (forest unit, blocks) is lower 116 

in comparison to traditional empirical approaches, since between-site differences, tree-level 117 

interactions and management practices are not considered in such detail (Ashraf et al. 2015). 118 

Finally, the main output from process-based models is net primary production, which should 119 

therefore be translated into above and belowground biomass production. In this regard, 120 

detailed outputs of other ecosystem services are lacking in process-based models or are 121 

computed through empirical functions.  122 

A second approach for constructing climate-sensitive models is based on using climate attributes 123 

as predictors of site index, which is the site productivity indicator of typical empirical growth and 124 

yield models (e.g. Bravo-Oviedo et al. 2008, Crookston et al. 2010, Sharma et al. 2015). While 125 

this approach can be valid for matching long-term changes in productivity, it has important 126 

limitations for predicting the growth response to interannual climate variations and contributes 127 

to propagating the error through the different models involved (Trasobares et al. 2016).  128 

A final approach – presented in this study – is to integrate climate drivers as explanatory 129 

covariates into empirical growth and yield models (Linares et al. 2010, Manso et al. 2015, 130 

Trasobares et al. 2016). These models – sometimes known as semi-empirical models – will retain 131 

the beneficial characteristics of empirical models in terms of accuracy of predictions at different 132 
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forest scales, easy integration of site and competition effects, inputs commonly measured in 133 

forest inventories, sensitivity to management options and detailed outputs matching managers’ 134 

requirements. In addition, given the climate sensitivity of the model, this approach allows us to 135 

predict forest evolution within the range of climate conditions for which the model was 136 

constructed. In this regard, while traditional growth and yield empirical models rely on the 137 

assumption that “past environmental drivers remain constant” the proposed approach assumes 138 

that “past responses to environmental drivers remain constant”. The construction of this type 139 

of model requires repeated measurements of growth at the temporal scale, which can be 140 

obtained from permanent plots (Manso et al. 2015, González-García et al. 2015), stem analysis 141 

(Sharma et al. 2015), dendrochronological data (Martín-Benito et al. 2008, Linares et al. 2010) 142 

or a combination of different methods (Fernández de Uña et al., 2015), as well as detailed 143 

climate data at the same or lower temporal scales. 144 

The aim of this study was to construct a climate sensitive empirical tree level model for 145 

predicting annual basal area increment in pure stands of Pinus pinea L. in the Spanish Northern 146 

Plateau. Due to its aridity, the region conforms one of the ecological limits for the species, thus 147 

the effect of drought and increasing temperature on growth is expected to be more severe in 148 

this area (Macias et al. 2006). Significant declines in timber (Pardos et al. 2015) and cone 149 

production (Mutke et al. 2005, Calama et al. 2016), as well as phenomena of local extinction are 150 

expected under more severe climate scenarios. Much effort has been devoted to modelling 151 

growth, yield and dynamics for the species (Calama et al. 2017), including the construction of a 152 

management oriented integrated tree-level model and simulator (PINEA2, Calama et al. 2007), 153 

which is climate insensitive (except for the cone production submodule). In addition, although 154 

the process-based model PICUS was calibrated to the characteristics of the species in the region 155 

(Pardos et al. 2015), its use in practical management at forest scale is limited and it lacks a 156 

specific cone production submodule.  157 

Data for constructing the model were obtained by combining repeated measurements from 158 

permanent plots and dendrochronological data. The new model is constructed as a multilevel 159 

linear mixed model, in order to account for different levels of spatiotemporal correlation among 160 

the observations. The process of model construction allows us to identify the main drivers 161 

affecting growth and to describe the relationships linking climate, competition and growth. The 162 

annual basal area increment model was therefore integrated within the general model for the 163 

species (PINEA2) and used to simulate the expected changes in volume, biomass stock and cone 164 

production under different climate scenarios and management alternatives. Our main 165 

hypotheses were (i) tree level competition and stand stocking are the key drivers influencing 166 

basal area increment; (ii) annual basal area increment is more influenced by rainfall regime and 167 

water stress than by extremely cold / hot temperatures;  (iii) positive interactions can 168 

overwhelm competition between conspecifics in very dry years as well as in limiting 169 

environments, in line with the stress gradient hypothesis extended to intraspecific interactions; 170 

(iv) we expect a severe decline in timber, biomass and cone production under more severe 171 

climate scenarios, which can be alleviated by the application of a more intense thinning regime 172 

and extending the rotation length.  173 

Material  174 

• Study region 175 

The Northern Plateau of Spain is a plain defined by the Basin of the Duero River, and which has 176 

two main differentiated units: sandy areas, at an average altitude of 700 – 750 m and limestone 177 
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plains, at an altitude over 800-850 m. Within the region, Pinus pinea covers more than 60,000 178 

ha, mainly in the province of Valladolid. Lithological differences have resulted in different soil 179 

types. Sandy soils present a very high sand content (> 90%) and very low water holding capacity 180 

(WHC<100 mm), while soils in the limestone area, with a percentage of clay and lime over 40-181 

50% , reach WHC values of > 250 mm. With respect to the climate conditions, the Northern 182 

Plateau is a relatively homogeneous territory, characterized by a Mediterranean continental 183 

climate, with very low precipitation (average annual rainfall: 440 mm, ranging from 220 - 620 184 

mm), summer drought (average rain of 54 mm between July-September) and cold winter 185 

temperatures (average annual temperature 11.7-13.7 ºC, minimum absolute temperature 186 

below -10 ºC). These forests have been managed since the end of 19th century, the objectives of 187 

this management being to guarantee soil protection and optimize cone and timber production, 188 

resulting in pure, even-aged stands.  189 

• Network of permanent plots 190 

In 1996, INIA-CIFOR, in cooperation with the forest services of Valladolid installed a network of 191 

permanent plots in pure even-aged stands of Pinus pinea within the studied region. The network 192 

included 141 circular plots, with variable radius, including a fixed number of 20 trees. Plots were 193 

selected so as to cover the whole range of site conditions, stand stocking and ages identified 194 

within the region, attempting to achieve a uniform spatial distribution. Plots were located in 195 

public forests, and were selected in forests blocks that had not been altered over at least the 196 

previous ten years.  197 

At plot installation, diameter at breast height, total height, crown diameter, height to crown 198 

base and tree coordinates were measured for all the trees within the plot. In a subsample of two 199 

trees per plot, total age was determined by extracting cores at stump height with a Pressler 200 

increment borer. These cores were used to backdate information and predict the state of trees 201 

and plots in 1991, five years prior to installation (see Calama and Montero, 2005, for further 202 

details). Plots were reinventoried in 2001, 2008 and 2016.  203 

Throughout the 20 year- monitoring period, the silviculture applied in the plots has been similar 204 

to that applied in the adjacent forest, consisting mainly of low thinnings, as those described for 205 

the Business as Usual (BAU) alternative in the Case studyk section. When a thinning treatment 206 

was applied in a plot, the date and trees extracted were recorded. During this period several 207 

plots (22) were removed from the experiment, due to illegal harvesting, excessive thinning, 208 

forest fires, land use change and budget restrictions.    209 

• Reconstructing annual increment data  210 

During the 2008 and 2016 inventories, two radial increment cores per tree were extracted 211 

perpendicularly at breast height (1.30 m) from a subset of two to four trees per plot. Cores were 212 

oven dried at 35ºC for one week, mounted on wooden slides and polished using sand paper of 213 

different grain sizes. After being processed, samples were scanned and ring width was measured 214 

with a resolution of 0.01 mm using Lignovision 1.37 software (Rinntech, Heidelberg, Germany). 215 

The two series from the same tree were averaged and cross dating was then performed visually 216 

using standard methods, comparing tree ring series with the master series proposed for the 217 

species in the region (Natallini et al. 2016). The total number of sampled trees was 234 in 2008 218 



6 
 

and 300 in 2016. Trees cored in 2008 were not resampled in 2016, thus, on average; two to six 219 

individual tree-ring series were available per plot.  220 

Annual series of tree ring growth were then transformed into annual series of tree growth rate 221 

by dividing the observed radial increment in year i among total radial increment for a given 222 

period. We considered the four inter-inventory periods: 1991-1995; 1996-2001; 2002-2008 and 223 

2009-2015. In a second step, we checked for synchrony in the tree growth rates among cored 224 

trees from the same plot, by means of Pearson’s correlation coefficient. If significant synchrony 225 

was detected, we constructed an annual series of plot growth rate by averaging individual tree 226 

growth rate series from the plot. Finally, this average plot growth rate series was used to 227 

calculate annual individual tree diameter increment from all the non-cored trees, by multiplying 228 

the expected annual growth rate by the diameter increment observed in the trees during the 229 

analyzed period (difference in dbh measured between two consecutive inventories). See figure 230 

1 for more details of the process.  231 

Figure 1. Reconstruction of annual increment data for all the trees in a plot inventoried in 1996 and 2008 232 

This approach is based on two assumptions, (i) the rate of annual diameter increment over bark 233 

is equivalent to the rate of annual radial increment under bark, and (ii) the existence of 234 

synchrony in annual growth rate series among the sampled trees in the plot implies synchrony 235 

among all the trees within the plot. After discarding the data from the six plots showing no 236 

pattern of between-tree synchrony, evident measurement errors and deficiencies in increment 237 

cores (broken samples), the final number of valid annual diameter increment records was 28622, 238 

obtained from 1634 trees  in 113 plots, covering 25 years (from 1991 to 2015). ANOVA test 239 

showed no significant differences between discarded and remaining plots in terms of site index 240 
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(p-value: 0.2305), basal area (p-value 0.1994), Reineke’s stand density index (p-value 0.0669) or 241 

age (p-value: 0.1248).  242 

Methods 243 
 244 

• Response variable 245 

Annual diameter increment for tree i within plot j in year k (DIijk, cm) was transformed into 246 

annual basal area increment (BAIijk, cm2):  247 

𝐵𝐴𝐼𝑖𝑗𝑘 =  
𝜋

4
[𝐷𝐼𝑖𝑗𝑘

2 + 2𝐷𝐼𝑖𝑗𝑘𝑑𝑏ℎ𝑖𝑗𝑘−1] 248 

Where dbhijk-1 represents diameter at breast height for the ith tree within the jth plot at the end 249 

of the k-1th year. Annual basal area increment was then log transformed in order to attain 250 

normality and reduce heterocedasticity in the variance. The logarithmic transformation of 251 

annual BAI – log(BAI)ijk – was therefore used as response variable in the analysis.  252 

• Explanatory covariates 253 

Spatiotemporal variation in the response variable is explained by means of different covariates 254 

acting at different levels: 255 

Plot level attributes 256 

- Maturation: plot dominant height, mean squared diameter per plot (dg) , crown 257 

cover (projected surface of the crowns divided per plot area), stand age 258 

- Stocking: number of stems/ha (N), basal area (BA), Reineke’s stand density index 259 

(SDI), defined as 260 

- 𝑆𝐷𝐼 = 𝑁 (
𝑑𝑔

25
)

1,605
 261 

- Productivity: site index, defined as the expected plot dominant height at a stand age 262 

of 100 years, computed according to the model by Calama et al. (2003)  263 

Tree level attributes 264 

- Tree size: diameter at breast height (dbh) and section at breast height (g), referred 265 

to the beginning of the growth period 266 

- Distance independent competition indices: ratio dbh / dg, ratio g / mean tree section 267 

per plot, basal area of the trees larger than the subject tree (BAL). As we aimed to 268 

construct a new module for PINEA2 model, which is a distance-independent one, we 269 

didn´t evaluate distance-dependent competition indices. 270 

Logarithmic, root and inverse transformation of these variables were also evaluated as potential 271 

predictors.  272 

Climate attributes 273 

- Rainfall: monthly, seasonal and annual precipitation, computed from the 1st October 274 

of the year before increment. Selection for this date aims to cover the whole 275 

hydrological year, when rainfall starts to fill up water soil reserves after summer 276 

drought. Apart from monthly precipitation, we evaluated the cumulative sum of 277 

precipitation fallen in periods covering different months (e.g. from February to May) 278 
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- Temperature: monthly, seasonal, mean annual temperature, and mean values of 279 

maximum and minimum temperatures, covering the whole hydrological year. As in 280 

the previous paragraph, the average values of temperature computed for periods 281 

covering different months were also evaluated.  282 

Monthly series for rainfall and temperature were obtained from the most complete 283 

meteorological data for the region, from the meteorological station at Valladolid (41° 39' 8'' N - 284 

4° 43' 24'' W, 690 m a.s.l.), located at an average distance of 25 km from the plots (range 8.6 – 285 

52.9 km). To ensure compatibility among annual and periodic predictions, climatic variable 286 

response was standardized by subtracting the mean value for the 1991-2015 series from the 287 

observed annual value and dividing by the standard deviation. In this way, periodic predictions 288 

over an average year can be performed by fixing a value of zero for all the temporal attributes. 289 

Additionally, the standardization allows us to gain an insight into the relative importance of each 290 

temporal predictor on the response variable.  291 

 292 

• Modelling approach 293 

The basal area increment dataset includes observations recorded in repeated trees within plots 294 

in different years. Due to this spatiotemporal structure of the data, the observations coming 295 

from the same tree, plot and year tend to be more similar among them than the average. To 296 

account for this severe departure from the basic assumption of independence, we utilized a 297 

multilevel linear mixed model (MLMM), including random effects acting at tree, plot, year and 298 

plot x year scales. The basic structure for the MLMM is: 299 

𝑦𝑖𝑗𝑘 = 𝑿𝒊𝒋𝒌𝜷 + 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘 + 𝑧𝑗𝑘 + 𝑒𝑖𝑗𝑘  300 

Where 𝑦𝑖𝑗𝑘  is the observation for the response variable (log BAI) recorded in the ith tree within 301 

the jth plot in the kth year; 𝑿𝒊𝒋𝒌 represents a (1 x n) vector containing the observed values for the 302 

explanatory covariates in the ijkth observation; 𝜷 is the vector of Best Linear Unbiased estimator 303 

for the fixed parameters; 𝑢𝑖, 𝑣𝑗 , 𝑤𝑘 and 𝑧𝑗𝑘 represents the realization of the random effects 304 

acting at tree, plot, year and plot x year scales of variability, distributed following a normal 305 

distribution with mean zero and variance 𝜎𝑢
2, 𝜎𝑣

2 , 𝜎𝑤
2 , and 𝜎𝑧

2respectively; 𝑒𝑖𝑗𝑘  represents a 306 

residual term, independent realization of a normal distribution with mean zero and variance 𝜎𝑒
2. 307 

However, in subsequent steps of the model construction we evaluated alternative structures of 308 

covariance among the repeated observations recorded for the same tree, such as the 309 

autoregressive structure, in order to account for possible dependency among the residuals 𝑒𝑖𝑗𝑘. 310 

The first step in the process of model construction is to fit the basic model, entering only 311 

intercept as a fixed effect, as well as the complete set of random effects. In subsequent steps 312 

we evaluated the inclusion of covariates explaining observed variability in the following order: 313 

tree size attributes, distance-independent competition indices, plot level attributes, site index 314 

and climate variables. Preselection of the covariates was carried out by checking correlation 315 

among the empirical best linear unbiased predictors (EBLUPs) for a given level of random 316 

variability (e.g. plot) predicted in a previous step along with different explanatory covariates 317 

acting at that level (e.g. stand density, dominant height…). Since all these preliminary models 318 

show different mean structure, comparison and selection among them should be based on 319 

information criteria derived after maximum likelihood (ML) fitting. Once the final set of fixed 320 
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covariates had been selected, we then tested alternative structures of variance-covariance for 321 

the within tree dependence among observations, which are then compared in terms of 322 

Restricted Maximum Likelihood inference, which results in unbiased estimates for the variance 323 

components of the model (see Verbeke and Molenberghs, 2000, section 6.2.5 for more details). 324 

As comparisons involved nested and non-nested models we prioritized both BIC (for non-nested 325 

models) and -2LL (for nested) criteria for selecting among different models. BIC was preferred 326 

over AIC to compare non-nested models since it takes into account sample size and its 327 

application lead to more parsimonious models under large sample sizes (Dziak et al., 2010), as 328 

is our case (n = 28622).  329 

Accuracy of the model for predicting over the fitting data set was evaluated by means of 330 

goodness-of-fit statistics as Mean Error, Root Mean Squared Error and Modelling Efficiency. 331 

These statistics were computed for the conditional (including fixed effects and the predicted 332 

EBLUPs for the random effects) and the marginal (only including fixed effects), in both raw 333 

(following antilogarithmic transformation) and logarithmic scales. All the statistical analyses 334 

were carried out using SAS® 9.4.   335 

• Validation process 336 

Since no additional validation data set was available, we decided to carry out a cross-validation 337 

process. In our case, we performed 100 fittings of the model, each time randomly omitting 1% 338 

of the observations. The fitted models at each realization were then used to predict the response 339 

variable in the omitted observations. Predicted values were used to estimate prediction 340 

residuals, defined as the difference between the observed value and the predicted value using 341 

the model fitted without considering that observation (Vanclay and Skovsgaard, 1997). These 342 

residuals were then used to compute press statistics such as mean error (E), Root Mean Squared 343 

Error (RMSE) and modelling efficiency (EF). 344 

• Competition hypothesis  345 

After fitting the definitive model for BAI the remaining sources of non-explained variability were 346 

used to analyse and contrast different hypotheses concerning competition. The remaining 347 

variability at plot x year level indicates a specific pattern of annual increment response acting at 348 

plot level. The values for the EBLUPs associated with this plot x year effect can be used to test 349 

whether this specific annual pattern varies with certain plot attributes such as age, site quality 350 

or stocking, depending on the conditions of the year. In our case, based on extending of the 351 

stress gradient hypothesis to intraspecific interactions, we would expect an attenuation of 352 

competitive effects in a dry year. Thus, in a dry year, we should observe a positive relationship 353 

between the EBLUPs for the plots in that year and stocking attributes (such as basal area or 354 

stand density index), while in a moist year this relationship should be either negative or 355 

nonsignificant. This would indicate that in a dry year, basal area increment in high density stands 356 

would be greater than predicted by the fixed parameters of the model.   357 

In addition, we used the EBLUPs for the random plot effects to test whether the effect of 358 

competition is aggravated or alleviated in low productivity environments. For this purpose, we 359 

splitted plots in the data base into low quality (site index =< 12 m) and high quality (site index > 360 

12 m) and checked for the existence of relationships among stocking and EBLUPs for the plot 361 

effect.  362 

• Case study 363 
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The constructed model for annual basal area increment was incorporated into the integrated 364 

model for the species, PINEA2, in order to simulate the effect of the expected climate change 365 

scenarios on growth and yield. PINEA2 is a distance-independent single tree level model 366 

constructed for pure even-aged stands pf Pinus pinea, which permitted to obtain projections on 367 

timber, biomass and cone production under different management scenario on 5-year steps. 368 

While originally climate insensitive, by substituting the initial 5 year-diameter increment 369 

function with the BAI model constructed in this study it is possible to make annual simulations 370 

of the growth and yield of the stands under different climate scenarios. More details on the 371 

model can be found in Calama et al. (2007).   372 

We simulated the evolution of a pure even-aged stand of medium-high quality (site index = 17 373 

m), from an initial stand age of 20 years, and initial stocking density 500 stems/ha. We simulated 374 

the current bussiness as usual (BAU) silviculture oriented towards cone and timber production, 375 

with a rotation length of 100 years, two thinnings from below at 30 and 45 years, leaving 250 376 

and 150 stems/ha respectively. Regeneration is carried out using the shelterwood system, which 377 

in this case consists of a seeding felling at 80 years, reducing stand density to 75 stems/ha; a 378 

single secondary felling at 90 years, leaving 25 stems/ha, and a final cutting at 100 years.  As an 379 

alternative we tested the cone-oriented schedule with an extended rotation length of 110 years, 380 

a single thinning reducing initial stocking to 150 stems/ha at 30 years, a seeding felling at 100 381 

years (leaving 75 stems/ha), a secondary felling at 105 years (leaving 25 stems/ha) and a final 382 

cutting at 110 years.  383 

These silvicultural alternatives were simulated under three different climate scenarios: a current 384 

climate scenario, based on the historical records for the 1960 – 2010 period, as well as two 385 

climate change scenarios based on IPCC R.C.P’s 4.5 and 8.5 (figure 2). Climate scenarios were 386 

obtained from the Spanish National Agency for Meteorology (AEMET, 387 

http://www.aemet.es/es/serviciosclimaticos/cambio_climat). Simulations were carried out for 388 

the 2010 – 2100 period. Outputs from the different climate scenarios were compared in terms 389 

of mean annual volume increment, average annual stocking biomass, and mean annual cone 390 

production evaluated over the whole cycle.    391 
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 392 

 393 

Figure 2. 2010-2100 series for annual rainfall (above) and mean temperature for May – June (below) based on 394 
current climate (historical) and RCP scenarios 4.5 and 8.5.  395 

Results 396 

• Model fitting 397 

After the sequential procedure of model construction (table 1), the final structure of the model 398 

included the following explanatory covariates (table 2) acting at tree or plot level: breast height 399 

diameter and its quadratic form, dominant height, the logarithm of plot basal area and site 400 

index. In addition, standardized climate related variables were entered in the model, such as the 401 

rainfall occurring during the period between 1st October-30th September of the current growth 402 
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year, and the average temperature of May and June of the year). Fixed effects included in the 403 

model explained 59%, 38% and 58% of the initial observed variability between plots, between 404 

trees within the same plot and between years, respectively. 405 

After the selection of the explanatory covariates, different structures for the variance-406 

covariance matrix of the within-tree residuals were tested, with AR(1) structure leading to the 407 

best results. By considering this covariance structure, the random tree effect was no longer 408 

significant and therefore was removed from the model. The high value for the AR(1) parameter 409 

(0.9422) indicates large temporal dependence among lagged observations from the same tree.  410 

Goodness-of-fit statistics (table 3) point to unbiased estimates for the conditional model in both 411 

raw and logarithmic scales, as well as for the raw scale in the marginal model. The observed bias 412 

in marginal response for the logarithmic scale could be related with the severe unbalance in the 413 

number of observations among year and plots. Conditional models explain 65% – 71% of the 414 

observed variability in annual BAI at tree level, while marginal models explain 31%-36% of the 415 

annual BAI. However, marginal models in raw untransformed scale accurately match the 416 

observed interannual pattern of variability in basal area increment (figure 3) and are able to 417 

mimic the growth decay in dry years (e.g. 2005 and 2012) as well as growth enhancement in 418 

moist periods (e.g. 1996-1998). Less accurate agreement among predicted-observed values 419 

identified in the last years of the series can be related with the inherent propagation of error in 420 

long term projections as well as with the effect of the intense thinning campaign carried out in 421 

the territory by the period starting in 2007-2008, which in some occasions resulted in a much 422 

more intense thinning in the surrounding environment of the plot than that applied within the 423 

plot.  424 

Figure 3. Average value of the observed and predicted values of annual BAI using marginal model in raw scale – 425 
antilogarithmic transformed - for the studied period  426 

• Validation 427 

Given the large amount of computational resources required to fit the definite model (step 17 428 

in table 1, with more than 4 hours and 45 minutes for a single run), validation of the model was 429 

carried out using model for the step 15 (table 1), with the complete structure of fixed and 430 

random effects, but without considering AR(1) residual covariance structure or REML fit. Press 431 

statistics showed slight variation if compared with the results from the fit of the definite model 432 
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(table 4), except in the case of the modelling efficiency for conditional responses. In this case it 433 

should be noted that the conditional response for the model used in validation (step 15  in table 434 

1) includes the EBLUP for a tree random effect, which was skipped in the fit of the definite model 435 

(after including an autoregressive parameter, AR1).    436 

• Evidence for competition hypothesis 437 

Throughout the whole sequential process of the model fitting, the observed random variability 438 

acting at plot x year level remains almost unchanged (table 1), indicating that the explanatory 439 

covariate does not explain the observed variability at this scale. Plot x year variability indicates 440 

the specific response in BAI of the trees in a plot for a given year, once fixed covariates, as well 441 

as random plot, tree and year effects are accounted for. This random variability can be 442 

associated with certain phenomena, the observation of which and consideration in the model 443 

are not easily achieved (e.g. local climatic vents). Correlation tests among the EBLUPs from 444 

random plot x year effects and different stocking attributes, such as Stand Density Index, 445 

revealed a pattern of shift from high competition in moister years to an attenuated effect of 446 

competition in drier years (figure 4). In particular, while in moister periods (e.g. 1996-1998, 447 

2000-2001, 2006-2008), the relationship between plot x year EBLUPs and stocking tends to be 448 

nonsignificant or significantly negative, in drier periods (1992, 2005, 2009-2013) this correlation 449 

tends to be significant and positive. This means that in drier years we observe positive values 450 

for the plot x year EBLUPs in denser plots, and negative values in low density plots, while the 451 

opposite trend is observed under moister conditions. Hence, in drier years, trees in denser plots 452 

tend to grow more than predicted by the model. A detailed analysis permits to identify a 453 

significant negative relation between the correlation coefficient plot x year EBLUP – stocking 454 

and annual rainfall (Spearman’s rank coefficient of correlation = - 0.4223, p-value 0.0355), as 455 

well as significant difference (p-value: 0.0290) between the mean value of the correlation 456 

coefficient plot x year EBLUP – stocking between moist (r = 0.1191) and dry (r=-0.0111) years). 457 

Figure 4. Interannual variation in the correlation coefficient between annual plot x year EBLUP and plot Stand 458 
Density Index, and relation with annual rainfall (* p-value <0.05, ** p-value < 0.01, *** p-value < 0.0001) 459 

Focusing on the interactive effect between competition and site once the common effect of 460 

competition in the model is discounted, we observed that in low quality plots (site index =< 12 461 

m) there remains a pattern of significant negative correlation between the EBLUP for plot 462 
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random effect and Reineke’s Stand Density Index. Thus, in very dense, low quality plots, trees 463 

tend to grow less than predicted by the model (figure 5), while in medium and high quality plots, 464 

no remnant relationships with stocking density are found.    465 

 466 

Figure 5. Relation between EBLUP for plot random effect and plot Stand Density Index in low quality plots (Site 467 
Index =< 12 m)  468 

• Case study: impact of climate change  469 

Simulations reveal a severe impact of climate change on mean annual increment, average stock 470 

of standing biomass and mean cone production, although somewhat alleviated in the case of 471 

the cone-oriented silviculture alternative (figure 6). Climate scenario RCP 4.5. results in a 472 

decrease of 27% - 30% in mean annual increment (m3 ha-1 year-1), while the decrease in RCP 8.5 473 

reaches 37% - 38% in comparison to current climate conditions. As regards the average stock of 474 

standing biomass, expected decreases under RCP 4.5. are about 30% for both silvicultural 475 

alternatives, while the decrease is 38%-41% under RCP 8.5. In all cases, smaller decreases are 476 

associated with the cone oriented alternative schedule. In the case of cone production, even 477 

greater decreases due to climate change, as well as the mitigating effect of cone oriented 478 

silviculture, are predicted.  Under RCP 4.5. and RCP 8.5.,  BAU schedule results in decreases of 479 

44% and 52% in mean cone production in comparison to the current climate, while alternative 480 

silviculture results in decreases of 29% and 37%. In addition, it should be noted that for the 481 

period 2010 – 2100, under current climate conditions, alternative silviculture was always better 482 

than BAU in terms of mean annual increment, stocking biomass and cone production.  483 

 484 

  485 
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Figure 6. Effect of business as usual and alternative silvicultures and climate scenarios (current, RCP 4.5 and 8.5) on 486 
mean annual increment (a), annual cone production (b) and average standing biomass (c). Mean values for 2010 – 487 
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2100 simulation period.  488 

Discussion and Conclusions  489 

• Factors driving secondary annual growth in Pinus pinea 490 

Our results provide evidence that the secondary growth in Pinus pinea forests is a process which 491 

displays large variability at different spatial and temporal scales (Natalini et al. 2016). The initial 492 

decomposition of the observed variability (model 1 in table 1) reveals that pure spatial effects 493 

(plot and tree) account for 53.7% of the variability, with temporal effects (year, plot x year and 494 

tree x year residual) accounting for the remaining 46.3%. This fact highlights the importance of 495 

considering patterns of temporal variation in the studies focusing on tree growth and dynamics 496 

(del Río et al. 2014). In addition, the balance among the different temporal scales at which 497 

variability is shown reflects the fact that a common temporal response at regional scale (e.g. to 498 

a climate event) does not exist alone, but that there is a need to consider the effect of climate 499 

and other abiotic events, such as shifts in site productivity, on plant-plant interactions at 500 

different spatial scales (Coomes and Allen, 2007; Looney et al. 2016).  501 

Throughout the sequential procedure of model construction we aimed to identify the different 502 

factors explaining observed variability at the different scales. Focusing on between-tree 503 

variability, tree size – defined by tree diameter at breast height – influences basal area 504 

increment, showing a positive relationship up to a maximum basal area increment for very large 505 

dbh (trees over 90 cm), a common pattern in forest tree species (Gómez-Aparicio et al. 2011).  506 

However, this positive effect of increasing tree size is attenuated at stand level by the negative 507 

effect of dominant height – a proxy of the joint effect of tree maturity and average tree size in 508 

pure even-aged stands – over basal area increment. This result reflects that target tree size and 509 

stand ageing exert a strong influence over individual tree growth (Madrigal-González and Zavala, 510 

2014), and this influence may change during stand development, from positive during younger 511 

stages to neutral at maturity (Foster et al. 2014, Ruiz-Benito et al. 2015).  512 

Competition is directly represented in the model through stand basal area, which outperformed 513 

other stand-level parameters– such as Stand Density Index or number of stems/ha – and 514 

distance independent tree-level competition indices – such as BAL or the ratio between target 515 

tree dbh and mean squared diameter. Structural uniformity of pure even-aged stands, low 516 

stocking density and homogeneity in the applied silviculture can explain the superiority of stand-517 

level competition indices over tree-level ones (Gea-Izquierdo and Cañellas, 2009). Our findings 518 

also support the existence of size-symmetric competition (Schwinning and Weinwe, 1998) in this 519 

type of forests where water (belowground competition) is the main limiting resource and, given 520 

the homogeneity of tree sizes in these even-aged stands, tree size acts as a proxy of competition 521 

and the outcome of long-term tree-tree interactions (Looney et al. 2016). This correlated effect 522 

between individual competition and target tree size may underlie our finding in this study that 523 

competition exerts a smaller influence on individual tree growth than other factors such as size 524 

or dominant height (figure 7, Looney et al. 2016), therefore, our first hypothesis that tree-level 525 

competition is the main driver of annual tree growth is not supported.  526 

Our results point to a significant growth response to climate, as expected in this type of 527 

Mediterranean continental ecosystem (Madrigal-González and Zavala, 2014). Total rainfall 528 

occurring during the period between October of the previous year to September of the current 529 

growth year, as well as mean temperature in May and June are the main climatic factors driving 530 

secondary growth in Pinus pinea. As expected, we detected a positive relationship between 531 

rainfall and growth, extending over time as far back as the precipitation occurring during the 532 
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previous autumn and winter seasons. Similar findings have been reported in previous studies on 533 

dendroecological growth-climate relationships for the species (Mazza et al. 2014, Natalini et al. 534 

2015, 2016). These findings reveal the importance of winter recharge of deeper layers in these 535 

sandy soils, which will act as the main water input for tree growth during the next spring season 536 

(Campelo et al. 2006). Moreover, in evergreen conifers the positive response to autumn and 537 

winter rainfall points to a dependency on the photosynthetic reserves produced during this 538 

period (Baldocchi et al. 2010), in which, despite freezing temperatures, there is no winter 539 

dormancy (Pardos et al 2010). On the other hand, the observed negative relationship between 540 

May-June temperatures and secondary growth has previously been observed in the species 541 

(Natalini et al. 2016), as well as in other Mediterranean pines (Martin-Benito et al. 2013). These 542 

result must be interpreted not only as a pure thermal effect preventing net assimilation and increasing 543 
respiration at elevated temperatures (Calama et al. 2013) but also as an indirect drought effect due to 544 
increased evapotranspiration in critical months for higher net photosynthetic rates, which in the species 545 

occurs in late May and June. . Taking into account this interdependence among increasing 546 

temperatures and decreasing water availability, the observed higher sensitivity of growth to 547 

drought than to temperatures (figure 8), as previously reported for other Mediterranean species 548 

(Gómez-Aparicio et al. 2011, Sánchez-Salguero et al. 2015), points to a clear dependence of 549 

growth in water stress, what is in accordance with our second hypothesis.  550 

 551 

Figure 7. Dependence of BAI on Dominant Height and Basal Area, for an average tree with dbh = 25 cm, growing 552 
on a stand with site index=18 m, under average conditions of annual rainfall (442 mm) and May-June temperature 553 
(17.4 ºC). Grey scales represent values of BAI.  554 
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 555 

Figure 8. Dependence of BAI on May-June temperatures and Annual rainfall for an average tree with dbh = 25 cm, 556 
growing on a 50 years old stand with Basal Area = 20 m2 ha-1, Site index = 16 m. Grey scales represent values of BAI.   557 

• Effects of environmental gradients on tree competition 558 

Our results indicate that once we discount the effect of the main factors driving tree growth, 559 

there is still a pattern of remnant unexplained response of the species to competition, varying 560 

along spatial and temporal gradients. We observed (figure 5) a more negative response to 561 

competition in low site quality stands. This finding is in accordance with general theories 562 

postulating that competition increases when resources are more limiting (Tilman, 1988). 563 

However, this differential effect is only evident in very low quality stands, generally located in 564 

more arid areas with shallow and very poor sandy soils, resulting in severe, permanent scarcity 565 

of nutrients and available soil for root development.  566 

We detected a shift in the climate – competition relationships from moist (1996-2001) to dry 567 

(2009 – 2014) periods (figure 4), resulting in a significantly attenuated effect of competition in 568 

the drier period, indicating than in those conditions BAI tend to be larger than that predicted by 569 

the model. Again, this result is in accordance with the proposed stress gradient hypothesis 570 

postulating more frequent positive interactions under harsher conditions (Bertness and 571 

Callaway, 1994). The validity of this hypothesis has been evidenced when evaluating 572 

interspecific interactions, as in the case of the increased biomass production on different species 573 

growing in mixed forests (del Río et al. 2014), or the attenuated effect of warmer-induced shift 574 

of tree-lines inmixed stands (Liang et al. 2016). Our results suggest that this theory may be valid 575 

for intraspecific interactions (Eränen and Kzlov, 2008; García-Cervigón et al. 2013, Svanfeldt et 576 

al. 2017), and that positive interactions can even exist among conspecific individuals of the same 577 

cohort (McIntire and Fajardo, 2011).  578 

Our findings give partial support to our third hypothesis, since we observe a shift to positive 579 

interactions between conspecifics in very dry years but not under very limiting environments, 580 

where competition dominates. These apparently contradictory results can be interpreted by 581 

assuming a long-term baseline response of an aggravated effect of competition in those 582 

environments where resource availability is highly limiting (as evidenced in multiannual studies, 583 

e.g. Gómez-Aparicio et al. 2011). Meanwhile, in the short term (annual), the balance of plant 584 

interactions may shift to positive as a response to temporal changes in resources such as water 585 
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availability, resulting in more stressful conditions (Armas and Pugnaire, 2005). In this regard, 586 

water influences interactions not only because of its scarcity but also because of its variability 587 

over time and the unpredictability of rainfall events. Under these conditions of non-permanent 588 

resource limitation, it is assumed that for positive interactions to occur, the presence of 589 

neighbours must directly increase the availability of the limiting resource (Maestre et al. 2009, 590 

Svanfeldt et al. 2017). In the case of monospecific Pinus pinea forests, where we detected that 591 

water shortage is the main limiting factor for growth, certain density dependent mechanisms 592 

favouring water availability in very dry years could be related to the ability for root fusion by 593 

spontaneous graftage (anastomosis, Mutke et al. 2012), permitting deeper ground layers to be 594 

explored and favouring mychorrizal actitvity. In addition, close neighbours in Pinus pinea forests 595 

tend to maximize light interception by forming a single, umbrella like deep crown. This effect 596 

would also result in a reduction of the irradiance reaching the forest soil, and a reduction in 597 

water losses due to evapotranspiration (Fajardo and McIntire, 2011).  598 

• Expected impacts of climate change 599 

Simulations carried out after including the constructed annual BAI model in the integrated 600 

model and simulator PINEA2 reveal severe decreases in mean annual increment, total stocking 601 

biomass and cone production under more extreme climate scenarios. As previously stated 602 

(Calama et al. 2016, Pardos et al. 2015), cone production is much more sensitive to changing 603 

climatic conditions than biomass production, indicating a preferential allocation to vegetative 604 

growth rather than to reproduction structures under harsher conditions. The results of the 605 

simulations mainly agree with those obtained after applying the process-based model PICUS to 606 

the same species and environmental conditions (Pardos et al. 2015), hence supporting the utility 607 

of the proposed empirically based modelling approach. In addition, these results are in 608 

accordance with the expected impacts simulated for other Mediterranean forests, pointing to 609 

severe reductions in biomass increment, timber production, wild forest products and/or other 610 

ecosystem services associated with the more severe climate scenarios. In the case of Pinus pinea 611 

forests, our results indicate that this negative effect of climate can be partially alleviated through 612 

more intensive silviculture consisting of heavier as well as earlier thinnings along with extended 613 

rotation length (García-Güemes and Calama, 2015).    614 

• Validity of the approach 615 

Our modelling approach, based on incorporating both climate and spatially explicit drivers as 616 

explanatory covariates into an empirical growth and yield model permits us to recognise the 617 

main factors explaining annual secondary growth in Pinus pinea. In addition, our approach relies 618 

on splitting and identifying the different sources of unexplained variability by means of a 619 

multilevel linear mixed model, allowing us to evaluate potential shifts in competition patterns 620 

depending on the availability of spatially and temporally varying resources. Finally, given the 621 

empirical formulation of our model, it allows simulations to be carried out under different 622 

climate and management scenarios. Our results support the growing body of evidence that shifts 623 

in plant–plant interactions are correlated not only with changes in stress across spatial scales 624 

but also with changes in stress conditions (such as temperature and moisture) across temporal 625 

scales (Sthultz et al. 2007, García-Cervigón et al. 2013). In this regard, our results reveal the 626 

importance of considering different spatial and temporal scales when analysing the intensity 627 

and sign of the response to competition under specific environmental conditions (Soliveres et 628 

al. 2010) and when constructing predictive models to provide support for forest management.  629 
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Table 1. Sequential procedure for model selection  

Where dbh: diameter at breast height; BA: basal area; N : number stems per ha; SDI: Reineke´s stand density index; Hdom: dominant height; SI: Site index; pp_STD: standardized annual rainfall; Tmed_5_6STD: 

standardized mean temperature for May and June; ML: maximum likelihood; REML: restricted maximum likelihood; AR(1): order one autoregressive parameter  

 Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Random 
Effects 

Plot 0.1725 0.2528 0.2623 0.2557 0.1857 0.2013 0.2740 0.1299 0.1109 0.1101 0.1171 0.1183 0.0705 0.0704 0.0706 0.0724 0.0699 

Tree 0.1490 0.0953 0.0930 0.0942 0.0928 0.0927 0.0931 0.0926 0.0923 0.0923 0.0923 0.0923 0.0922 0.0922 0.0923 0.0923 ns 

Year 0.0961 0.0959 0.0973 0.0967 0.0987 0.0976 0.0986 0.1000 0.1019 0.1038 0.1011 0.1004 0.1070 0.0549 0.0409 0.0462 0.0474 

Plot X Year 0.0878 0.0940 0.0959 0.0949 0.0933 0.0927 0.0954 0.0942 0.0904 0.0893 0.0897 0.0896 0.0895 0.0895 0.0895 0.0895 0.0756 

AR(1)                 0.9433 

Residual 0.0932 0.0914 0.0913 0.0913 0.0912 0.0912 0.0913 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0911 0.1995 

Fixed effects 

Intercept μ μ μ Μ μ μ μ μ μ μ μ μ μ μ μ Μ μ 

Tree 
 dbh dbh dbh dbh dbh dbh dbh dbh dbh dbh dbh dbh dbh dbh Dbh dbh 

  dbh2 1 / dbh dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 dbh2 

Stand 

    BA SDI log(N) Hdom Hdom Hdom Hdom Hdom Hdom Hdom Hdom Hdom Hdom 

        1/BA log(BA) 1/SDI log(SDI) log(BA) log(BA) log(BA) log(BA) log(BA) 

            SI SI SI SI SI 

Climate 

             pp_STD pp_STD pp_STD pp_STD 

              Tmed_5
_6STD 

Tmed_5
_6STD 

Tmed_5
_6STD 

Fitting Method ML ML ML ML ML ML ML ML ML ML ML ML ML ML ML REML REML 

Information 
Criteria 

BIC 24501 23555 23530 23548 23437 23434 23531 23399 23297 23273 23290 23289 23237 23225 23223 23248 -15711 

-2LL 24472 23522 23492 23510 23394 23391 23489 23356 23250 23225 23243 23242 23184 23169 23162 23224 -15734 
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Table 2. Parameter estimates for the definitive model (step 17 in table 1) 

 

 Estimate Std error t-statistic p-value 

Intercept 1.6319 0.1622 9.82 <0.0001 

dbh 0.07028 0.00527 13.6 <0.0001 

dbh2 -0.0004 0.00006 -6.21 <0.0001 

Hdom -0.07577 0.00901 -8.41 <0.0001 

Log(BA) -0.2937 0.03123 -9.41 <0.0001 

SI 0.06172 0.00965 6.4 <0.0001 

pp_STD 0.2009 0.04619 4.35 <0.0001 

Tmed_5_6STD -0.1186 0.04539 2.61 0.009 
 

Where dbh: diameter at breast height; BA: basal area; Hdom: dominant height; SI: Site index; pp_STD: standardized annual rainfall; 

Tmed_5_6ST: standardized mean temperature for May and June; STD error: Standard error of the parameter estimate; t-statistic: t 

statistic for the parameter estimate; p-value: level of significance for the parameter estimate 

 

 

Table 3. Goodness of fit statistics for definitive model (step 17 in table 1) 

  E p-value Obs Pred EF(%) RMSE 

Log 
scale 

Conditional 0.0010 0.6726 2.7487 2.7476 70.92 0.4147 

Marginal -0.0615 <0.0001 2.7487 2.8102 36.11 0.6148 

Raw 
scale 

Conditional 0.0225 0.6807 20.4419 20.4193 64.95 9.2831 

Marginal 0.0010 0.9891 20.4419 20.4408 30.63 13.0610 
Where E: mean error value; p-value: level of significance for E; Obs and pred refer to observed and predicted values for the response 

variable; ED: modelling efficiency; RMSE: root mean square error; Conditional refers to predictions achieved including EBLUPs for 

the random parameters; Marginal refers to predictions achieved not including EBLUPs for the random parameters 
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Table 4. Press evaluation statistics (computed over model for step 15 in table 1, not 

considering AR1 autoregressive parameter and fitted using Maxmimum Likelihood method) 

 

  E p-value Obs Pred EF(%) RMSE 

Log 
scale 

Conditional 0.0005 0.8059 2.7493 2.7488 82.13 0.3252 

Marginal -0.0623 <0.0001 2.7493 2.8116 36.32 0.6141 

Raw 
scale 

Conditional 0.0034 0.9422 20.4486 20.4453 75.11 7.7832 

Marginal -0.0426 0.5858 20.4486 20.4912 28.54 13.1888 

  
Where E: mean error value; p-value: level of significance for E; Obs and pred refer to observed and predicted values for the response 

variable; ED: modelling efficiency; RMSE: root mean square error; Conditional refers to predictions achieved including EBLUPs for 

the random parameters; Marginal refers to predictions achieved not including EBLUPs for the random parameters 
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