
Physics Letters B 841 (2023) 137906

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Schwinger mechanism for gluons from lattice QCD

A.C. Aguilar a, F. De Soto b, M.N. Ferreira c, J. Papavassiliou c, F. Pinto-Gómez b, 
C.D. Roberts d,e,∗, J. Rodríguez-Quintero f

a University of Campinas - UNICAMP, Institute of Physics “Gleb Wataghin”, 13083-859 Campinas, São Paulo, Brazil
b Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, E-41013 Sevilla, Spain
c Department of Theoretical Physics and IFIC, University of Valencia and CSIC, E-46100, Valencia, Spain
d School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
e Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China
f Department of Integrated Sciences and Center for Advanced Studies in Physics, Mathematics and Computation, University of Huelva, E-21071 Huelva, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2022
Received in revised form 19 March 2023
Accepted 7 April 2023
Available online 12 April 2023
Editor: A. Ringwald

Keywords:
Continuum Schwinger function methods
Emergence of mass
Gluons
Lattice Schwinger function methods
Quantum chromodynamics
Schwinger mechanism of gauge boson mass 
generation

Continuum and lattice analyses have revealed the existence of a mass-scale in the gluon two-point 
Schwinger function. It has long been conjectured that this expresses the action of a Schwinger 
mechanism for gauge boson mass generation in quantum chromodynamics (QCD). For such to be true, 
it is necessary and sufficient that a dynamically-generated, massless, colour-carrying, scalar gluon+gluon 
correlation emerges as a feature of the dressed three-gluon vertex. Working with results on elementary 
Schwinger functions obtained via the numerical simulation of lattice-regularised QCD, we establish with 
an extremely high level of confidence that just such a feature appears; hence, confirm the conjectured 
origin of the gluon mass scale.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The fact that Poincaré-invariant quantum gauge field theories 
can support the dynamical generation of a gauge-boson mass was 
first demonstrated sixty years ago [1,2]. In that case – quantum 
electrodynamics with massless fermions in D = 2 spacetime di-
mensions, QED2 – a mass scale is already present, viz. the coupling, 
e, has mass-dimension one; and the “photon” acquires a mass 
mγ = e/

√
π as a consequence of the dynamical generation of a 

pole in the dimensionless vacuum polarisation scalar. This is to-
day referred to as the Schwinger mechanism (of gauge boson mass 
generation). Referring to the usual Coulomb potential, which is lin-
ear in two dimensions, this gauge boson mass is often interpreted 
as an expression of very effective charge screening by a count-
able infinity of massless fermion+antifermion pairs that ensures 
the interactions between separated external charges are exponen-
tially suppressed [3, Sec. 4.1]. In fact, the fermions that appear in 
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the defining Lagrangian of QED2 vanish in solving the theory, being 
absorbed in the generation of the massive “photon”.

Similar statements hold for QED3: the charge-squared carries 
mass dimension one; but since that theory is not exactly solv-
able, only approximate numerical results are available. Neverthe-
less, interactions between external charges are screened because 
a dynamically generated pole appears in the gauge boson vacuum 
polarisation [4–8].

Likewise for D = 3 quantum chromodynamics (QCD3). As with 
all such D = 3 models, QCD3 is super-renormalisable, but it is a 
priori plagued by infrared instabilities. However, they may plausi-
bly be cured by the dynamical generation of a gauge-boson mass 
via the Schwinger mechanism [9, Ch. 9]: this mass is also pro-
portional to the gauge coupling squared. Studies of gauge boson 
mass generation in QCD3 have provided valuable insights, e.g., Refs. 
[10,11].

D = 4 quantum field theories, in general, and quantum chromo-
dynamics (QCD), in particular, are different because, absent Higgs 
boson couplings, the classical Lagrangian is scale invariant: there 
are no intrinsic mass scales. Nevertheless, the possibility that a 
Schwinger mechanism is active in QCD was conjectured forty years 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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Fig. 1. Separation of the three-point gluon Schwinger function into a pole-free com-
ponent plus a possibly nonzero part that exhibits a longitudinally-coupled simple-
pole structure. Undulating lines are gluons, filled circles are amputated vertices, and 
the double-line is the propagator of the putative massless colour-carrying scalar 
gluon+gluon correlation.

ago [12] and soon thereafter supported by a numerical simulation 
of lattice-regularised QCD (lQCD) [13].

The idea has since been refined [14–18]. It is now known that 
a Schwinger mechanism is active if, and only if, a special type of 
longitudinally-coupled, negative-residue, simple-pole structure is 
dynamically generated in the three-gluon vertex. Our focus, herein, 
is a demonstration, exploiting numerical results from lQCD, that 
just such a feature appears. This being the case, then [19–21]: a 
gluon mass-scale is generated; the Landau pole is eliminated; and 
QCD is rendered infrared complete. These are some of the conse-
quences of emergent hadron mass (EHM) in the Standard Model 
[17,18,22–27], the verification of which is being sought in an array 
of experimental programmes [28–35].

2. C(r2): keystone of Schwinger mechanism

Following Refs. [1,2,12], the natural place to begin a discus-
sion of a dynamically generated gluon mass is the gluon two-point 
Schwinger function (q2 P q

μν = δμνq2 − qμqν ):

�μν(q) = P q
μν

1

q2[1 + �(q2)] =: P q
μν �(q2) . (1)

Landau gauge is used because it is a fixed point of the renormali-
sation group [36, Ch. IV] and readily implemented in lQCD [37]. Of 
course, gauge covariance of Schwinger functions ensures that all 
expressions of EHM in physical observables are independent of the 
gauge used for their elucidation.

The dimensionless gluon self energy (vacuum polarisation), 
�(q2) in Eq. (1), may be obtained by solving the gluon gap equa-
tion, depicted, e.g., in Ref. [18, Fig. 1].1 Two of the five self-energy 
diagrams (d1,4) involve the three-gluon vertex, which we write in 
the following form:

I�αμν(q, r, p) = �αμν(q, r, p) + Vαμν(q, r, p) . (2)

In our conventions, all momenta flow into the vertex, r is the in-
loop momentum, so q + r + p = 0 – see Fig. 1.

As highlighted by Fig. 1, Eq. (2) separates this Schwinger func-
tion into two pieces, viz. �αμν , which is the pole-free part that is 
usually considered, plus a (possibly) nonzero component that pos-
sesses a longitudinally-coupled simple-pole structure

Vαμν(q, r, p) = qα

q2
δμνC1(q, r, p) + . . . , (3)

where the ellipsis denotes analogous terms involving rμ/r2, pν/p2, 
required by Bose symmetry, and other contributions that are either 
subleading on q2 � 0 or eliminated by the active gluon-propagator 
projections. Notably, Bose symmetry of the three-gluon vertex also 
entails [42] C1(q, r, p) + C1(q, p, r) = 0 ⇒ C1(0, r, −r) = 0; hence,

1 Matter fields are omitted because, even when perturbatively massless, their im-
pact on gauge boson mass generation is practically negligible [21,38–41].
2

C1(q, r, p)
q2�0= 2q · r C(r2) + O(q2) , (4a)

C(r2) := ∂C1(q, r, p)

∂ p2

∣∣∣∣
q=0

. (4b)

The scalar function in Eq. (4b) is the keystone for a realisation of 
the Schwinger mechanism in QCD, playing a dual role: C(r2) is 
both

(a) the amplitude associated with dynamical generation of a 
massless colour-carrying scalar gluon+gluon correlation;

(b) and the displacement function that quantifies modifications of 
the Ward identities satisfied by �αμν(q, r, p), the pole-free 
part of the three-point gluon Schwinger function, in the pre-
sence of longitudinally-coupled massless poles.

We tacitly assume throughout that BRST symmetry [36, Ch. II] re-
mains a feature of the solution of QCD so that all fully-dressed 
Schwinger functions satisfy their associated Slavnov-Taylor identi-
ties (STIs).

Pursuing property (b) further, it was recently demonstrated [42]
that the displacement function can be expressed entirely in terms 
of elements that enter into the STI satisfied by I �αμν :

C(r2) = Lsg(r
2) − F (0)

{
W(r2)

r2
�−1(r2) + Z̃1

d�−1(r2)

dr2

}
. (5)

Here: the soft-gluon form factor, Lsg , expresses dynamics con-
tained in a specific projection of the three-gluon vertex,

P r
μμ′ P−r

νν ′�αμ′ν ′(0, r,−r) = 2Lsg(r
2)rα P r

μν , (6)

and may be extracted, e.g., from lQCD results for the momen-
tum space three-gluon Schwinger function 〈Aa

α(0)Ab
μ(r)Ac

ν(−r)〉
[43,44]; �(r2) is defined in Eq. (1); the ghost two-point func-
tion has been expressed as D(q2) = −F (q2)/q2, so F (q2) is the 
ghost dressing function, which satisfies F (0) ∈ (0, ∞); Z̃1 is the 
ghost-gluon vertex renormalisation constant, whose Landau gauge 
properties are discussed elsewhere [45]; and

W(r2)

r2
rρδμν = ∂ Hμν(r,q, p)

∂qρ

∣∣∣∣
q=0

+ . . . , (7)

where Hμν is the ghost-gluon scattering kernel – see Fig. 2, and 
the ellipsis indicates terms that do not contribute to Eq. (5).

A precise determination of W(r2) from available lQCD results 
is a primary goal of our study because this enables calculation of 
the displacement function.

Three of the four functions appearing in Eq. (5) are known with 
good precision from contemporary analyses of lQCD results [46], 
viz. Lsg(r2), F (r2), �(r2); so that reliable fits and associated uncer-
tainties are available – see Refs. [43, Fig. 5], [44, Figs. 4, 5]. This is 
crucial because modern lQCD results for the gluon two-point func-
tion, �(k2), also reveal the presence of a gluon mass scale [47–52], 
but the lattice regularised theory is agnostic about its origin. Thus, 
if one can use lQCD results alone to determine C(r2) < 0, then 
all practitioner-dependent bias is eliminated and the source of the 
gluon mass is unambiguously identified as the Schwinger mechan-
ism. (The negative sign, viz. C(r2) < 0, ensures a positive gluon 
mass-squared scale.)

The remaining quantity in Eq. (5), W(r2), cannot be obtained 
directly from lQCD results. Therefore, Ref. [42] worked with a com-
bination of lQCD output and an STI-inspired model for one primary 
element in the analysis to arrive at a lQCD-constrained form for 
W(r2). Using that to complete Eq. (5), a C(r2) < 0 result was 
obtained whose form is in fair agreement with a solution of the 
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Fig. 2. Dyson-Schwinger equation for the ghost-gluon scattering kernel, Hμν(q, r, p): undulating lines are gluons, dotted lines are ghosts, and an open circle on such a line 
indicates a dressed-propagator; filled blue circles are amputated ghost-gluon vertices, the filled red circle is the analogous three-gluon vertex, and filled-ovals are scattering 
matrices.
related Bethe-Salpeter equation. Herein, we go further by exploit-
ing new lQCD results [53] that can indirectly be used to determine 
W(r2).

3. Dyson-Schwinger equation for W(r2)

Working from Eq. (7), one can derive an expression for W(r2)

in terms of the solution of the Dyson-Schwinger equation (DSE) 
for the ghost-gluon scattering kernel, drawn in Fig. 2. Owing to 
transversality of the gluon two-point function, the ghost momen-
tum, q, factors out of its radiative correction, enabling one to write 
[45]

Hμν(q, r, p) = Z̃1δμν + qρ Kμνρ(r,q, p) ; (8)

hence, using Eq. (7),

W(r2) = 1
3 rρ P r

μν Kμνρ(r,0,−r) . (9)

It is worth recalling that Kμνρ(r, 0, −r) is ultraviolet finite and its 
finite renormalisation is detailed in Ref. [54]. Now, W(r2) is readily 
obtained from the DSE solution.

There are three terms on the right-hand side of Fig. 2. The third, 
h3
μν , has been shown to contribute less than 2% to the DSE’s solu-

tion [55]. Hence, we neglect it hereafter, writing

W(r2) =W1(r
2) +W2(r

2) , (10)

where W1,2(r2) are the contributions from h1,2
μν , respectively.

The ghost-gluon vertex in Fig. 2 is related thus to the ghost-
gluon scattering kernel:

�ν(r,q, p) = rν B1(r,q, p) + pν B2(r,q, p) = rμHμν(r,q, p) ,

(11)

where, at tree-level, B1(r, q, p) = 1, B2(r, q, p) = 0 [56]. Using Eq. 
(11) in Fig. (2), one obtains

W1(r
2) = 1

2 g2 Z̃1

∫
d4k

(2π)4 �(k2)D(k2)D(t2)(r · k)

× B1(t,−k,−r)B1(k,0,−k)

[
1 − (r · k)2

r2k2

]
, (12a)

W2(r
2) = − 1

2 g2 Z̃1

∫
d4k

(2π)4 �(k2)�(t2)D(t2)

× B1(t,0,−t)IW(t2,k2, t2) , (12b)

where g is the strong coupling constant and t = k + r.
The hitherto undetermined elements in Eq. (12b) are (i) the 

contribution to W(r2) from the three-point gluon Schwinger func-
tion, which appears as �abc (p, −k, p −k) in the h2

μν term of Fig. 2, 
νβγ

3

and (ii) the ghost-gluon vertex function B1. Regarding (i), with ar-
guments and indices translated into the elementary form of the 
defining equation, Fig. 1, and implementing q → 0 ⇒ p → −r, then 
one is working with

IW(r2,k2, t2) = 1
2 (k − r)γ �̄ααγ (−r,−k,k + r) , (13)

where [57–59]

�̄αμν(q, r, p) = P q
αα′ P r

μμ′ P p
νν ′ I�α′μ′ν ′(q, r, p) . (14)

The remaining element, B1, is discussed in Ref. [44]. It may be 
obtained by solving a coupled pair of DSEs: that for the ghost-
gluon vertex and the DSE for the ghost two-point function. The 
kernels of these equations involve two functions known already 
from lQCD analyses – �, D; and �̄αμν in Eq. (14), which must be 
determined. Solving this pair of DSEs returns Z̃1, B1.

It is worth stressing that only the transverse projection of the 
three-gluon Schwinger function plays a role in determining W. For 
future reference, we record the tree level result:

I0
W(q2,r2, p2) = 1

2p2q2r2

[
4q2r2 −

(
p2 − q2 − r2

)2
]

×
[

3q2r2 − 1

4

(
r2 − q2 − p2

)(
q2 − r2 − p2

)]
. (15)

4. Completing the kernel of the DSE for W(r2)

We follow two paths to determining IW . The first – M1 – re-
lies entirely on lQCD. Specifically, the transverse projection of the 
three-gluon Schwinger function is directly accessible:

g�̄αμν(q, r, p) = Gαμν(q, r, p)

�(q2)�(r2)�(p2)
, (16)

where all elements in the ratio are obtained from simulations of 
the momentum space Schwinger functions

Gαμν(q, r, p) = 1
24 f abc〈Aa

α(q)Ab
μ(r)Ac

ν(p)〉 , (17a)

�(q2) = 1
24δab P q

μν〈Aa
α(q)Ab

μ(−q)〉 . (17b)

A result for IW(r2, k2, t2) follows immediately upon evaluating Eq. 
(13) using lQCD estimates of �̄αμν . We employ the lattice points 
obtained in Ref. [53]: four sets of 2000 configurations generated 
on lattices with size (L/a)4 = 324 at bare couplings β = 5.6, 5.8, 
6.0, 6.2 so that a/fm = 0.236, 0.144, 0.096, 0.070, respectively, us-
ing the scale setting procedure in Ref. [46].

As noted above, we adopt an asymmetric momentum subtrac-
tion renormalisation scheme [43,44], with renormalisation point 
ζ = 4.3 GeV. Regarding lQCD results for IW , this proceeds by not-
ing that
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Fig. 3. Upper panel – A. Estimates for the ratio ĪW in Eq. (20), plotted as a function of 
the planar variable s2 = (q2 +r2 + p2)/2 and obtained from lQCD results on all avail-
able configurations satisfying the kinematic constraints θqr , θrp, θpq ≤ 5π/6, where 
q ·r =: √q2r2 cos θqr , etc., and a(β)q, a(β)r, a(β)p ≤ π/2. The open five-pointed stars 
are lQCD results for Lsg(s2) in Eq. (6). Lower panel – B. ĪW plotted as a function of 
(θrp, θqp) at s = 3.0 GeV2 – red points, top plateau; s = 2.0 GeV2 – olive points, 
next to top; s = 1.5 GeV2 – orange points, middle; s = 1.0 GeV2 – pink points, next 
to bottom; s = 0.5 GeV2 – blue points, bottom plateau.

IW(q2,q2,0) = −6q2Lsg(q
2) , (18)

having used Eq. (6); hence, both functions renormalise in the same 
way, i.e.,

Iren
W (q2, r2, p2) = Z3IW(q2, r2, p2) , (19)

where Z3Lsg(ζ
2) = 1. Moreover, the renormalised gluon and ghost 

two-point functions are defined such that �−1(ζ 2) = ζ 2 and 
F (ζ 2) = 1. The latter entails F (0) = 2.88 [43].

We plot our lattice result for Iren
W (q2, r2, p2) in Fig. 3A, depicted 

via the ratio

ĪW(q2, r2, p2) = Iren
W (q2, r2, p2)/I0

W(q2, r2, p2) . (20)

The ratio in Fig. 3A is plotted as a function of the symmetric, 
plateau variable s2 = (q2 + r2 + p2)/2. Evidently and importantly, 
as observed elsewhere [53,60]:

ĪW(q2, r2, p2) = Lsg(s2) , (21)

within statistical precision. This fact is emphasised by Fig. 3B, 
which depicts ĪW(q2, r2, p2) at fixed values of s2 as a function 
of the direction cosines (θrp, θqp): there is no statistically signifi-
cant dependence on the angles. Hence, one may interpret Eq. (21)
as delivering a sound approximation for Iren

W (q2, r2, p2); namely, 
the contribution to W from the three-gluon Schwinger function is 
4

Fig. 4. Comparison between lattice results for IW(q2, r2, θqr) (dense points – colour 
coded as in Fig. 3A) and our neural network predictor function (coloured surfaces), 
with θqr = π/2 chosen for this illustration. (Recall q + r + p = 0, so the dependence 
on p2 can be replaced by that on θqr .)

reliably given by a product of the Bose-symmetric function Lsg(s2)

with the tree-level result, Eq. (15), in which all angular depen-
dence resides. This approximation defines our second path – M2 – 
to determining IW .

In order to employ M1, one requires a smooth interpolation of 
the lQCD results drawn in Fig. 3A. Direct interpolation is unsuitable 
because those results are (a) irregularly distributed on the momen-
tum domain, having been obtained on four different lattices, and 
(b) noisy. Fitting is also unfavourable, given that one is working 
with a function of three variables, which makes it difficult to iden-
tify an optimal function form.

To avoid these issues, we chose to employ a machine learning 
approach, training a neural network so as to obtain a continuous 
predictor function. The algorithm is simple. Beginning with the 
335,628 lQCD points in Fig. 3A, we randomly selected one-third 
as the training set. Feeding that set to the Mathematica routine 
“Predict”, with the “NeuralNetwork” option, we thereby obtained 
the desired predictor function. The fidelity of the predictor func-
tion was gauged via comparisons with the remaining two-thirds of 
the points (223,752): in no case did the predictor-function value 
differ by more than one standard-deviation from a test value. The 
accuracy and smoothness of the predictor function is illustrated by 
Fig. 4.

It is worth stressing that the soft-gluon form factor, Lsg , is a 
smooth function of one variable; thus, the M2 approximation, Eq. 
(21), can be implemented via straightforward interpolation with-
out recourse to a machine learning algorithm.

In Fig. 5 we display the relative difference between the M2 
approximation to IW(q2, r2, θqr) defined by Eq. (21) and the M1 
neural network predictor generated from lQCD output for this 
quantity. On a broad neighbourhood of the diagonal (q2 = r2), they 
agree within 1%; and the agreement is better than 10% on almost 
the entire domain. Large relative discrepancies only exist far from 
q2 = r2, where lattice results are sparse – presenting a challenge 
for the neutral network approach – and the value of IW is small, 
wherefore even a negligible absolute error may map into a large 
relative error owing to the small denominator.

Having once more confirmed the planar degeneracy property 
of the three-gluon Schwinger function [53,60], we employ it in the 
calculation of B1, thereby, herein, updating the analysis of Ref. [44]. 
Specifically, akin to Eq. (13), one writes

�̄αμν(q, r, p) = Lsg(s2)P q
αα′ P r

μμ′ P p
νν ′

× [(q − r)ν ′δα′μ′ + (r − p)α′δμ′ν ′ + (p − q)μ′δα′ν ′ ] (22)
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Fig. 5. Using Eq. (21) as the definition of an approximation to ĪW(q2, r2, θqr), this 
image represents its relative accuracy in comparison with the neural network pre-
dictor generated from lQCD output for ĪW(q2, r2, θqr).

and completes the kernels of the B1 DSEs using the lQCD results 
already discussed for each element involved. Subsequently solving 
those DSEs, using the asymmetric momentum subtraction renor-
malisation scheme, with renormalisation scale ζ = 4.3 GeV [43,44], 
we find Z̃1 ≈ 0.9333(75) and a solution for B1 that reproduces all 
available lQCD results [44,61,62].

5. Strength of lattice signal for Schwinger mechanism

There is no Schwinger mechanism in QCD if C(r2) = C0(r2) ≡
0; and one readily finds, using Eq. (5), that such an outcome re-
quires

W(r2) =W0(r
2) = r2�(r2)

[
Lsg(r2)

F (0)
− Z̃1

d�−1(r2)

dr2

]
. (23)

Thus, the strength of any lattice signal for the Schwinger mechan-
ism may be measured with respect to these null results.

In order to determine C(r2), one must first evaluate W(r2) =
W1(r2) +W2(r2) using Eq. (12). We complete this calculation as 
follows.

(i) Knowledge is required of �(k2), D(k2), Lsg(s2), and I(r2, k2,

θrk), B1(r2, k2, θrk) on (k2, θrk) ∈ (0, ∞) ⊗ (0, π).
(ii) For �(k2), D(k2), Lsg(s2), we use the fits to lQCD results 

described in Refs. [43,44], each of which was deliberately 
constructed so as reproduce the appropriate one-loop per-
turbative behaviour at ultraviolet momenta.

(iii) I(r2, k2, θrk) was determined above using two methods for 
the analysis of lQCD output – M1 and M2. The analysis 
showed that a reliable approximation to the lQCD results is 
provided by Eq. (21), i.e., M2 is reliable.

(iv) B1(r2, k2, θrk) is obtained by solving a coupled pair of DSEs: 
those for the ghost-gluon vertex and the ghost two-point 
function. The relevant kernels involve �(k2), D(k2) – see (ii); 
and �̄αμν , which is obtained using Eq. (22) – again, see (ii).

(v) Setting g2(ζ = 4.3 GeV)/[4π ] = 0.27 [63], our result for 
W(r2) is displayed in Fig. 6. The uncertainty bands are ex-
plained next.

When using Eq. (21), one must propagate the lQCD statistical 
error on Lsg(s2) into an uncertainty on W(r2). Following Ref. [42], 
that may be achieved by introducing
5

Fig. 6. W(r2) calculated from Eqs. (10), (12) using lQCD-based inputs for every ele-
ment, as described following Eq. (23) – solid blue curve. An upper bound on the 
W(r2)-impact of systematic uncertainty in Lsg (s2) introduced by variations be-
tween the M1 and M2 approaches is indicated by the light-red band. The total 
uncertainty, which combines that systematic uncertainty with the statistical error 
discussed in connection with Eq. (24), is drawn as the blue band. Null result (no 
Schwinger mechanism), W0(r2) in Eq. (23) – points computed using the lQCD val-
ues for Lsg [43], and dashed-black curve within the green uncertainty band, drawn 
using smooth fits to the lattice values.

L±
sg(s2) = Lsg(s2) ± ε/[1 + (r2/κ2)2] , (24)

with ε = 0.08, κ2 = 5 GeV2 – values chosen to ensure that the un-
certainty on L±

sg(s2) is nowhere smaller than that associated with 
any lattice value – and reevaluating W(r2) using L±

sg(s2). Since 
it is improbable that lQCD uncertainties would lead to a uniform 
up/down shift in Lsg(s2), then this procedure establishes an upper 
bound on the associated uncertainty in W(r2). In this connection, 
it is important to recognise that all uncertainty in B1 owing to Eq. 
(22) is expressed in that associated with Z̃1.

In addition to the statistical error on Lsg , Eq. (21) introduces a 
systematic uncertainty in the result for W(r2) that can be quanti-
fied as follows. (i) In Eqs. (10), (12), restrict the integration domain 
to 

√
k2/GeV ∈ [0.3, 4.3], which is the subspace that contains al-

most all the available lQCD output for IW . (ii) Integrating only 
over this subdomain, compare the values obtained for W(r2) us-
ing Eq. (21) (M2) with those obtained using the neural network 
predictor for IW (M1). The resulting comparison is displayed in 
Fig. 7. Evidently, on almost the entire domain, the M2/M1 discrep-
ancy propagated into W(r2) is � 2.5%. It is significantly larger only 
at deep infrared momenta, which is that domain most sensitive to 
noise in IW introduced by finite lattice volume and expressed in 
the neutral network predictor. Given its origin, the exaggerated er-
ror on this domain can be neglected.

It is here worth recalling Fig. 5, which shows domains where-
upon the direct M2/M1 discrepancy is � 2.5%. Fig. 7 suggests 
strongly that those domains contribute little to the value of W(r2). 
Such may have been anticipated from Ref. [42], which showed 
that the integrand in Eq. (12b) is maximal on t2 � 0, i.e., r2 = k2, 
θrk = π . On this domain, Eq. (21) is exact – see Eq. (18). The sup-
port of the integrand diminishes rapidly as t2 increases, owing to 
its �(t2)D(t2) factor. This ensures that those integration subdo-
mains on which the evaluation of IW exhibits larger uncertainties 
– deriving from the approximation and/or lQCD artefacts – con-
tribute little to the W(r2) value.

The two sources of Eq. (21)-related uncertainty in W that 
we have discussed are independent; hence, may be combined in 
quadrature. This total uncertainty is drawn as the blue band in 
Fig. 6: the systematic error (red band) dominates on r � 2 GeV, 
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Fig. 7. Relative deviation between contributions to W(r2) from the integration sub-
domain √k2/GeV ∈ [0.3, 4.3] in Eqs. (10), (12) when IW is obtained using either 
Eq. (21) or our neural network predictor function. The blue band marks the ±2.5% 
window. The inset compares true values of the two results.

Fig. 8. Result for C(r2). Solid black curve – obtained using central fit forms of lQCD 
results for the functions on the right-hand side of Eq. (5). The bracketing soft-green 
band expresses the uncertainty in this result, discussed in connection with Eq. (25). 
Dashed grey line – null result (no Schwinger mechanism): C(r2) =C0(r2) ≡ 0. The 
points represent C(r2

i ) obtained using explicit lQCD results [43] for the first term 
on the left-hand side of Eq. (5).

whereas the statistical uncertainty is most prominent on the com-
plementary domain. Notably, our lQCD calculation of W(r2) yields 
a result very similar to that displayed in Ref. [42, Fig. 8], computed 
using an algebraic Ansatz for the three-gluon Schwinger function 
[42, Eq. (B10)].

At this point, we have in hand everything needed for evaluation 
of the Ward identity displacement function, C(r2) in Eq. (5). The 
result obtained, using central fit forms for the functions involved, 
is drawn as the solid black curve in Fig. 8.2

The uncertainty in this result may be estimated by combining 
that in W(r2) – the blue band in Fig. 6 – with the statistical er-
rors on Lsg(s2). (In comparison, published errors in lQCD results 
for the gluon and ghost two-point function are negligible.) These 

2 As in perturbation theory, a careful analysis of the infrared behaviour of each 
element on the right-hand side of Eq. (5) reveals that |C(0)| < ∞, i.e., all infrared 
divergences introduced by massless ghost loops cancel amongst themselves.
6

two uncertainties are correlated because the calculation of W uses 
Lsg as input; hence, they cannot be combined in quadrature. In 
fact, there is a strong anticorrelation [42]: increasing Lsg(s2) leads 
to a reduction in W(r2) and vice versa. A conservative bound on 
the uncertainty propagated into C(r2) is therefore obtained by as-
suming maximal anticorrelation, in which case, including also the 
uncorrelated uncertainty on Z̃1,

ε2
C(r2

i )
=

[
ρi + τi

F (0)

r2
i �(r2

i )

]2

+
[
δ Z̃1

F (0)
d�−1(r2

i )

dr2
i

]2

, (25)

where: ρi is the standard deviation in the lattice point for Lsg(r2
i )

at the discrete lattice momentum values r = r2
i – see Ref. [43, Fig. 

5]; τi is the standard deviation in W(r2
i ), drawn from the blue en-

velope in Fig. 6; and δ Z̃1
= 0.0075. The soft-green band bracketing 

the solid black curve in Fig. 8 marks the extent of C(r2
i ) ± εC(r2

i ) , 
drawn using smooth interpolations of the upper and lower bound-
ary points.

Fig. 8 also displays results for C(r2
i ) obtained by using lQCD 

values for Lsg(r2
i ) [43], instead of the fit, to generate the first term 

on the left-hand side of Eq. (5). The evident, significant agreement 
between the two methods boosts confidence in the central curve 
and uncertainty band.

It is now possible to quantify the significance of our C < 0
result as measured against the null hypothesis (no Schwinger me-
chanism): C(r2) =C0(r2) ≡ 0. Consider, therefore

χ2 =
nr∑

i=1

[C(r2
i ) −C0(r2

i )]2

ε2
C(r2

i )

, (26)

where the sum runs over the nr = 515 values of ri ∈ [0.3, 4.3] GeV, 
for which the uncertainty in our result for C(r2) is known. This 
evaluates to χ2 = 2 630. Consequently, the probability that our 
lQCD result for the displacement function is consistent with the 
null hypothesis is

PC0 =
∞∫

χ2=2 630

dxχ2
PDF(515, x) (27a)

= �(n/2,χ2/2)

�(n/2)

∣∣∣∣χ
2=2 630

n=515
= 7.3 × 10−280 , (27b)

where we used χ2
PDF(2n, 2x) = xn−1 exp(−x)/(2n�[n]).

It is worth reiterating that in arriving at this result we used 
lQCD input for the following functions (a) �(k2), D(k2), Lsg(s2)

and (b) I(r2, k2, θrk). Quantities in group (a) were obtained from 
one set of lattice ensembles, and may be statistically correlated, 
and that in (b) from a different set. Importantly, however, the over-
all uncertainty in our result is dominated by the uncertainties in 
the uncorrelated lQCD inputs for Lsg(s2) and I(r2, k2, θrk); and, 
throughout, we have been careful to propagate errors using con-
servative prescriptions. Thus, everything possible has been done 
to ensure Eq. (27) is robust. Moreover, even if the uncertainty on 
every value of C(r2

i ) were increased by 98%, i.e., practically dou-
bled, the probability that our result could be consistent with the 
null hypothesis (no Schwinger mechanism) would still be less than 
1/[1,000,000].

We note that the preceding analysis omits an assessment of 
the error introduced by neglecting h3

μν in the DSE for the ghost-
gluon scattering kernel, Fig. 2. Consider, therefore, that the null 
hypothesis is confirmed if, and only if, Eq. (23) is satisfied, i.e., 
W(r2) =W0(r2). This “null W′′ is represented by the points in 
Fig. 6, which were computed using the lQCD values for Lsg in 
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Ref. [43], and also the dashed-black curve within the green uncer-
tainty band, drawn using smooth fits to the lattice values. Using 
Eqs. (5), (23) and carefully treating uncertainty correlations, it is 
readily established that the χ2 value for the W =W0 hypothe-
sis is also given by Eq. (26) and the associated realisation prob-
ability by Eq. (27). Now, since any contribution from h3

μν to the 
ghost-gluon vertex is less than 2% [55], then it cannot affect this 
probability, viz. neglecting h3

μν has no measurable impact.
In closing this section it is worth stressing that should an alter-

native origin for the gluon mass scale be proposed, then, without 
artifice, it must simultaneously explain and reproduce the Ward 
identity displacement function in Fig. 8, which, as we have shown, 
is a feature of QCD. Failing that, then the viability of the alternative 
may reasonably be challenged.

6. Conclusion

Working solely with lattice-QCD results for (a) the ghost 
two-point Schwinger function, ghost-gluon vertex, and gluon 
two-point function [44], and (b) the gluon three-point func-
tion [43,53], we calculated the Ward identity displacement func-
tion C [Fig. 8]. Were C ≡ 0, then gluons could not acquire 
a mass via the Schwinger mechanism. On the other hand, a 
C(r2) < 0 result signals that the gluon three-point function pos-
sesses a longitudinally-coupled, simple pole structure associated 
with a dynamically-generated, massless, colour-carrying, scalar 
gluon+gluon correlation; and this is necessary and sufficient to 
ensure that gluons acquire a (momentum-dependent) mass dy-
namically via the Schwinger mechanism. Our analysis reveals that 
the C ≡ 0 result is excluded with p-value p = 1 −7.3 ×10−280 [Eq. 
(27)], i.e., with p-value unity by any reasonable assessment. One 
may therefore conclude that a Schwinger mechanism is active in 
QCD, leading to the emergence of a gluon mass-scale through the 
agency of a dynamically-generated pole in the gluon three-point 
function. A continuing effort is underway to expose measurable 
consequences of these phenomena.
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