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Abstract

INTRODUCTION: Verbal fluency tasks are common in Alzheimer’s disease (AD)

assessments. Yet, standard valid response counts fail to reveal disease-specific seman-

ticmemorypatterns.Here,we leveragedautomatedword-property analysis to capture

neurocognitive markers of AD vis-à-vis behavioral variant frontotemporal dementia

(bvFTD).

METHODS: Patients and healthy controls completed two fluency tasks. We counted

valid responses and computed each word’s frequency, granularity, neighborhood,

length, familiarity, and imageability. These features were used for group-level dis-

crimination, patient-level identification, and correlations with executive and neural

(magnetic resonanance imaging [MRI], functionalMRI [fMRI], electroencephalography

[EEG]) patterns.

RESULTS: Valid responses revealed deficits in both disorders. Conversely, frequency,

granularity, and neighborhood yielded robust group- and subject-level discrimination

only in AD, also predicting executive outcomes. Disease-specific cortical thickness pat-

terns were predicted by frequency in both disorders. Default-mode and salience net-

work hypoconnectivity, and EEG beta hypoconnectivity, were predicted by frequency

and granularity only in AD.

DISCUSSION: Word-property analysis of fluency can boost AD characterization and

diagnosis.

KEYWORDS

electroencephalography,machine learning, neurodegeneration, neuroimaging, semanticmemory,
word properties

Highlights

∙ We report novel word-property analyses of verbal fluency in AD and bvFTD.

∙ Standard valid response counts captured deficits and brain patterns in both groups.

∙ Specific word properties (e.g., frequency, granularity) were altered only in AD.

∙ Such properties predicted cognitive and neural (MRI, fMRI, EEG) patterns in AD.

∙ Word-property analysis of fluency can boost AD characterization and diagnosis.

1 BACKGROUND

As a complement to core learning and recall tests, Alzheimer’s disease

(AD) assessments typically include verbal fluency tasks.1 Participants

have 1 min to produce words that begin with a given sound (phone-

mic fluency) or belong to a given category (semantic fluency).2 These

tasks, especially in the semantic condition, reveal early and preclini-

cal deficits3 which predict anatomo-functional brain dysfunctions.4,5

Moreover, they are brief, inexpensive, and massively available,6 high-

lighting their potential to reveal scalable ADmarkers.

Yet, performance is usually established by counting valid words—

the sum of acceptable responses.1,7 This standard scoring approach

is blind to each word’s linguistic features, precluding insights on

which aspects of semantic memory are most affected.1 Also, it lacks

diagnostic specificity, as it yields systematic deficits in other disor-

ders, such as behavioral variant frontotemporal dementia (bvFTD).8

Indeed, beyond core sociobehavioral deficits, word retrieval is often

compromised in bvFTD.9 Furthermore, standard scoring fails to cap-

ture disease-differential neurocognitive disruptions. For example, valid

responses correlate with executive outcomes10 and frontotemporal

alterations11–13 in AD, but also in bvFTD.14 Finally, valid responses are

derived subjectively from inconsistent criteria, compromising compa-

rability and generalizability.15

These issues may be overcome through word-property analysis.

Each response can be decomposed into quantitative lexical vari-

ables, revealing word-selection patterns during semantic memory

search.1,16 For instance, word frequency is abnormally high in AD.1

This variable predicts global Mini-Mental Status Examination scores17

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13472 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [20/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:adolfo.garcia@gbhi.org


FERRANTE ET AL. 3

and might capture executive dysfunction, a predictor of dementia

severity affected in most AD patients.18 Specific executive deficits

(e.g., poor inhibition) may disfavor the retrieval of low-frequency

words (whose access increases inhibitory demands to suppress more

accessible items).19 Moreover, frequency correlates with key neural

vulnerabilities of AD,20,21 including the volume of temporo-parietal,

fronto-cingulate, and insular regions (measured via magnetic reso-

nance imaging [MRI])22,23 and connectivity along the default-mode,

salience, and executive networks (captured via fMRI).23

Also, persons with AD exhibit reduced semantic granularity, choos-

ing conceptually coarse over specific words (flower instead of rose).16

This pattern could reflect memory and/or executive dysfunction (e.g.,

reduced abstraction capacity) as well as abnormal fMRI connectiv-

ity along temporal regions21 associated with conceptual precision.24

Furthermore, AD patients might favor words with many phonologi-

cal neighbors—items with similar phoneme sequences, such as house

relative to mouse.25 Indeed, as participants consider candidate words,

those with several neighbors would be primed by activation of several

shared phonemes.25 This would facilitate retrieval, biasing patients’

word choices given their difficulty navigating semantic memory.

Two further points merit consideration. First, specific word prop-

erties are associated with electroencephalography (EEG) connectivity

in the beta (13–30 Hz) range,26 which is distinctly altered in AD.27

Second, semantic memory subdomains are more affected in AD than

in bvFTD patients, whose deficits seem confined to specific cat-

egories, such as socio-emotional concepts.28 Thus, word-property

analysis could yield syndrome-differential anomalies across multiple

modalities.

Here we report word-property analyses of fluency outcomes in

AD and bvFTD patients, compared with healthy controls (HCs). We

counted valid responses and extracted distributional features of fre-

quency, granularity, and phonological neighborhood, as well as com-

plementary properties (length, familiarity, and imageability). In each

patient sample, we examined which features yielded robust group-

level and subject-level disease discrimination. Also, we examined

whether sensitive word properties correlated with executive skills as

well as structural (MRI), hemodynamic (functional MRI [fMRI]), and

electrophysiological (EEG) brain alterations. We employed scalable

automated methods and supervised machine learning —algorithms

that capture complex patterns in multivariate datasets andweigh each

feature’s contribution to disease detection.29

We predicted that both patient groups would produce fewer valid

responses than HCs, but that only AD patients would be discriminated

by responses’ frequency, granularity, and/or neighborhood. Moreover,

we anticipated that such properties would correlate with executive

outcomes and disease-specific structural (MRI) and functional (fMRI,

EEG) disruptions. In all cases, we examinedwhether predicted patterns

differed between phonemic and semantic fluency.

2 METHODS

The study’s methods are summarized in Figure 1.

RESEARCH INCONTEXT

1. Systematic review: We reviewed verbal fluency stud-

ies in Alzheimer’s disease (AD) and related disorders

through PubMed and Google Scholar searches. The vast

majority of studies restricted their analyses to valid

response counts. Only a few considered the properties

of words produced, and none integrated inferential and

machine learning analyses of such features alongside cor-

relations with multimodal neuroimaging measures. The

word-property approach was noted for its capacity to

reveal specific aspects of semantic memory deterioration

in AD. All relevant works were duly cited.

2. Interpretation: Our findings show that word-property

analysis can boost standard verbal fluency assessments

by revealing markers of AD that are absent in behav-

ioral variant frontotemporal dementia and which predict

cognitive and multimodal (magnetic resonance imaging

[MRI], functional MRI [fMRI], electroencephalography

[EEG]) outcomes.

3. Future directions: This approach should be further vali-

dated in larger cohorts and additional disorders (to test

their systematicity and specificity) and in longitudinal

designs (to assess their usefulness to predict disease

progression).

2.1 Participants

The study comprised 91 native Spanish speakers with normal or

corrected-to-normal hearing and vision, namely: 32 persons with AD,

32 with bvFTD, and 27 HCs (Figure 1A1). This sample size reaches a

power of 0.97 (Supplementarymaterial 1). Participants were recruited

in three centers from theMulti-PartnerConsortium toExpandDemen-

tia Research in Latin America (ReDLat) following unified procedures.30

As in previous research,31 each patient group was matched with HCs

for sex, handedness, age, and education (Table 1).

Persons with AD were diagnosed by expert neurologists follow-

ing clinical criteria from the National Institute of Neurological and

CommunicativeDiseases and Stroke aswell as the Alzheimer’s demen-

tia and Related Disorders Association.32,33 They lacked functional

autonomy and exhibited predominant temporo-parietal atrophy (Sup-

plementarymaterial 2). Persons with bvFTDwere diagnosed following

current criteria.34 They all exhibited socio-behavioral impairments as

defined by caregivers35 and predominantly frontotemporal atrophy,

involving insular and cingulate cortices (Supplementary material 2).

Results from the Montreal Cognitive Assessment (MoCA)2 and the

INECO Frontal Screening (IFS) battery (Supplementary material 3)36

revealed that both patient groups had moderate cognitive impair-

ment and executive dysfunction (Table 1). Diagnoses were supported

by extensive neurological, neuropsychiatric, and neuropsychological
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4 FERRANTE ET AL.

F IGURE 1 Experimental design. (A) Data set. (A1)We recruited persons with AD and bvFTD as well as healthy controls. (A2) Participants
producedwords starting with /p/ (phonemic fluency) or denoting animals (semantic fluency), and completed standard cognitive assessments
(MoCA and IFS). (A3) Data for analysis was obtained through (i) the classic approach (number of valid responses) and (ii) our word-property
approach (where eachword is decomposed into six variables, each characterized via seven distributional features). (B) Comparison and
classification. (B1) Valid responses and themean value of eachword property were compared between each patient group andHCs via 2× 2mixed
effects ANCOVAs (with the factors “group” and “task”, covarying for sex, age, and education) and Tukey’s HSD test for post-hoc comparisons. (B2)
Logistic regressions were run for eachword property and for their combination to classify between each patient group andHCs. (C) Prediction of
neurocognitive outcomes. Themean of eachword property yielding significant group differences was correlated with executive outcomes (C1) as
well as with cortical thickness, resting-state fMRI connectivity, and resting-state EEG connectivity (C2). AD, Alzheimer’s dementia; ANCOVA,
analysis of covariance; AUC, area under receiver operating characteristic curve; bvFTD, behavioral variant frontotemporal dementia; fMRI,
functional magnetic resonance imaging; HSD, honestly significant difference; HC, healthy control; IFS, INECO Frontal Screening;MoCA,Montreal
Cognitive Assessment
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FERRANTE ET AL. 5

TABLE 1 Participants’ sociodemographic and cognitive profiles.

Pairwise comparisonsPersons

with AD

N= 32

Persons

with

bvFTDN= 32

Healthy

controls

N= 27

Statistics

(all groups) Groups Estimate p-Value

Sociodemographic profiles

Sex (F:M) 18:14 17:15 19:8 – AD-HCs 0.72 0.40a

bvFTD-HCs 1.18 0.28a

Handedness (L:R) 3:23 0:25 1:19 – AD-HCs 0.06 0.80a

bvFTD-HCs 0.01 0.91a

Years of age 75.75 (5.63) 68.87 (7.81) 72.30 (7.34) F= 7.70 p< 0.001b AD-HCs 1.90 0.11c

bvFTD-HCs -1.87 0.12c

Years of education 11.63 (4.20) 13.20 (5.01) 13.59 (3.78) F= 1.72 p= 0.19b AD-HCs -1.72 0.16c

bvFTD-HCs -0.34 0.92c

Cognitive profiles

MoCA 15.41 (4.98) 17.92 (7.61) 25.70 (3.27) F= 25.92 p< 0.001b AD-HCs -6.95 < 0.001c

bvFTD-HCs -5.12 < 0.001c

IFS 14.41 (4.96) 15.66 (7.37) 21.43 (3.06) F= 13.38 p< 0.001b AD-HCs -4.90 < 0.001c

bvFTD-HCs -3.88 0.002c

Note: Data presented as mean (SD), except for sex and handedness. (a) p-Values calculated via chi-squared test (χ2). (b) p-Values calculated via independent
measures ANCOVA; (c) p-Values calculated via Dunnett’s test.
Abbreviations: AD, Alzheimer’s dementia; bvFTD, behavioral variant frontotemporal dementia; HC, healthy control; IFS, INECO Frontal Screening; MoCA,

Montreal Cognitive Assessment.

examinations.28,35 No patient reported a history of other neurological

disorders, psychiatric conditions, primary language deficits, or sub-

stance abuse. HCs were recruited through an outreach program and

invitations to patients’ eligible caregivers. These participants had no

background of neuropsychiatric disease or alcohol/drug abuse and,

based on a neurological interview, theywere confirmed to be function-

ally autonomous and cognitively preserved, with MoCA scores above

the local cutoff of 21.37 Across the three groups, all participants com-

pleted the neuropsychological, neuroimaging, and EEG assessments in

amean span of less than amonth.

2.2 Fluency tasks

All participants completed phonemic and semantic fluency tasks

(Figure 1-A2), requiring them to utter as many words as they could say

starting with the phoneme /p/ and belonging to the category “animals”,

respectively. Thesewere administered in counterbalanced fashion by a

certified neuropsychologist, in a silent testing room, always before the

MoCA and the IFS battery (no further tests were included in these ses-

sions). Following standard procedures,2 participants were given 1 min

per fluency task and instructed not to produce proper names, numbers,

repetitions, words from the same family, or morphological variations

of the same word. Instructions were provided orally, including exam-

ples of invalid responses. Responses were audio-recorded, transcribed

by one examiner, and then checked by another. The few cases of dis-

crepancy were settled by a third examiner. Unintelligible words were

discarded.

2.3 Standard approach

Based on the standard approach, performance was measured as the

number of valid responses (Figure 1-A3, left inset). Words that did not

comply with the instructions were framed as invalid. Individual scores

for each task were computed as the total number of valid responses.

2.4 Word-property approach

For theword-property approach, each responsewas analyzed in terms

of six variables (Figure 1-A3, right inset).Weused the EsPal database38

to derive each word’s frequency (logarithmic frequency per million),

phonological neighborhood (number of words obtained upon substi-

tuting, adding, or omitting a phoneme), length (number of phonemes),

familiarity (from 1: not familiar to 7: highly familiar), and imageabil-

ity (from 1: not imageable to 7: highly imageable). EsPal is the largest

psycholinguistic database for Spanish, based on information from

300 million written tokens for corpus-based variables (e.g., frequency,

phonological neighborhood, length) and normative data from native

speakers for subjective variables (e.g., familiarity, imageability). Specif-

ically, we used Python to create an ad-hoc script that automatically

accessed the EsPal website, uploaded a file containing each word pro-

duced, and retrieved the corresponding values. Then, to calculate each

word’s granularity, we used Python’s NLTK library39 to access Word-

Net, a hierarchical graph of nodes leading from the highest hypernym

(“entity”) to progressively more specific concepts (e.g., “animal”, “dog”,

“bulldog”).16 Granularity is defined as the number of nodes between a
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6 FERRANTE ET AL.

wordand its related “entity” (e.g., bin-3words are closer to “entity” than

bin-10words, the former indicatingmore general concepts).

Words with no value in any given property were ignored. Com-

parisons of such missing data yielded non-significant effects of group

and group-by-task interactions for every property in each group pair

(all p-values > 0.06), corroborating data comparability across groups

(Supplementarymaterial 4). Finally, to maximally exploit our multivari-

ate approach, as in previous research,40 each property was analyzed in

terms of seven distributional features, namely:mean,median, standard

deviation, minimum, maximum, skewness, and kurtosis (Figure 1-A3,

right inset).

2.5 Behavioral data analysis

2.5.1 Group-level discrimination

The features described above were statistically compared between

(a) persons with AD and HCs, and (b) persons with bvFTD and HCs

(Figure 1-B1). In each case, valid responses and themean value of each

word property (across all valid and invalid responses) were compared

between groups via mixed effects analyses of covariance (ANCO-

VAs), with “group” as between-subjects factor, “task” as within-subject

factor, and sex, age, and years of education as covariates. Post-hoc

comparisons for significant interaction effects were performed via

Tukey’s honestly significant difference (HSD) tests. Alpha levels were

set at < 0.05. Effect sizes were calculated through partial eta squared

(ηp2) tests for main and interaction effects, and through Cohen’s d

for post-hoc pairwise comparisons. To ensure that results were not

driven by specific data trimming procedures, we replicated all anal-

yses upon excluding (i) invalid responses (as defined above) and (ii)

outlier responses (beyond 3 SDs from the mean of the participant’s

group). ANCOVAs and post-hoc tests were performed on Pingouin

v.0.5.1,41 and effect sizes calculations on G*Power v.3.1.42 Boxplots

were created on R’s ggplot2 library.

2.5.2 Subject-level discrimination

To explore the usefulness of the word-property approach for proba-

bilistic subject-level discrimination, we ran machine learning analyses

to classify between each patient group and HCs (Figure 1-B2). For

each pair, we ran a separate classifier considering the distributional

features of each word property and then another one combining all

features (n = 42), in a fully multivariate setting. The former strategy

revealed the individual contribution of each property upon including

all of its statistical features, whereas the latter provided an integrative

classification score in a fully multivariate setting. Importantly, classi-

fiers were fed exclusively with word-property features, without any

accompanying clinical, neuropsychological, or neuroimaging measure.

In each case, data were randomly divided into five folds for stratified

cross-validation, preserving the proportion of labels per group,43 with

four folds used for training and one for testing. Values for each fea-

ture were normalized using the min-max method43 and missing data

per participant were imputed using K-Nearest Neighbors using uni-

form weights and K = 5. We used a logistic regression classifier with

default hyperparameter values, a robust method capturing neuropsy-

chological andpsycholinguistic patterns indementia44 (Supplementary

material 5). This method models probabilities based on a logistic func-

tion to smoothly limit the output score from 0 to 1, as recommended

for feature-to-sample ratios similar to ours.45 Classifier performance is

reported as mean and SD obtained upon 1000 iterations with different

random partitions of the data. Over the course of the 1000 iterations,

the absolute values of each feature coefficient were calculated for a

feature importance analysis. All analyses were performed on Python

3.9 and the Scikit-learn (https://scikit-learn.org/) package. Radar plots

and boundary decision plots were created with the Plotly library on R

and Python, respectively.

2.5.3 Correlations with cognitive outcomes

To estimate whether the standard and the word-property approaches

could capture disease-specific executive outcomes, the participants’

mean value in each variable yielding significant group effects was cor-

related with their global IFS scores (Figure 1-C1). To increase variance

and statistical power, as in previous neurocognitive studies,46 these

analyses were conducted collapsing each patient groupwith HCs. Cor-

relations were performed with Spearman’s indices, correcting for the

number of correlations per analysis via the false discovery rate (FDR)

method. Correlation analyses were performed on R (v.1.4.1717).

2.6 Analysis of neural patterns and
brain-behavior correlations

2.6.1 Neuroimaging

Data acquisition

MRI and fMRI recordings were obtained from 20 persons with AD and

18 with bvFTD, all matched with 20 HCs for sex, handedness, age, and

education (Supplementary material 6). Recordings were performed in

three scanners, with minimally varying parameters (Supplementary

material 7). Acquisition center was introduced as a covariate in all neu-

roimaging analyses. During the fMRI session, participants were asked

to not to think about anything in particular and to remain still, awake,

andwith eyes closed.

Structural imaging: Preprocessing and analysis

Participants’ cortical thickness was estimated via surface-based

morphometry. Preprocessing and analysis were performed with

CAT12 (http://www.neuro.uni-jena.de/cat), based on SPM12

(https://www.fil.ion.ucl.ac.uk/spm/) on MATLAB R2021a. Prepro-

cessing steps followed CAT12 guidelines (http://www.neuro.uni-

jena.de/cat12/CAT12-Manual.pdf). First, images were segmented

and normalized based on a surface and thickness estimation. Second,
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cortical thickness images were resampled and smoothed employing a

12-mm kernel. Third, hemisphere images were merged to obtain a sin-

gle cortical thickness image per subject. Finally, sample homogeneity

and orthogonality were quality-checked.

Patients’ atrophy was estimated by comparing their cortical thick-

ness with that of HCs via ANCOVAs, controlling for acquisition center.

Then, with standard SPM12 module calling CAT12 functions, multiple

regressions were run to test for correlations between each signifi-

cant verbal fluency measure and cortical thickness, again controlling

for acquisition center (Figure 1-C2, left inset). These analyses were

performed collapsing each patient group with HCs to increase sam-

ple size, data variance, and statistical power, as per.31 Both analyses

were corrected by the threshold-free cluster enhancement (TFCE)

method,47 running on the TFCE toolbox (http://www.neuro.uni-jena.

de/tfce), which is an extension of SPM12. By taking raw statistics

from the images and producing a transformed output image in which

the voxel-wise values reflect the number of cluster-like features, this

method circumvents the arbitrary selection of a hard threshold for

cluster estimation. Also, as it relies on permutation testing, TFCE is

robust against spurious results due to multiple comparisons.47 We

performed 5000 permutations. The alpha level was set at p < 0.05,

FDR-corrected.

Functional imaging: Preprocessing and analysis

Preprocessing was performed on the Data Processing Assistant for

Resting-State fMRI (DPARSF v.6.1)48 software, calling Statistical Para-

metrical Mapping 12 (SPM12) and resting-state fMRI Data Analysis

Toolkit (RESTv.1.8)49 functions. To ensure thatmagnetization achieved

a steady state, we discarded the first five volumes of each recording

before preprocessing. First, images were slice-time corrected, refer-

enced to the middle slice of each volume, and realigned to the first

scan to correct for head movements. Second, images were normal-

ized to the MNI space employing the Echo-Planar Imaging template

provided by SPM. Third, bandpass filtering (0.01–0.1 Hz) and smooth-

ing (8-mm full-width-at-half-maximum isotropicGaussian kernel) were

applied. To reduce the confounding effects of physiological andmotion

artifacts, six motion parameters, white matter, cerebrospinal fluid, and

global signals were regressed. White matter and cerebrospinal fluid

masks were derived from the tissue segmentation of the subjects’ T1

recording in native space. Finally, motion parameters were obtained

from the realignment step and matched between each patient group

andHCs (Supplementarymaterial 8).

As in previous works,46 bilateral seeds were established to evalu-

ate the functional connectivity of the default-mode network (seeds:

posterior cingulate cortices), the salience network (seeds: dorsal ante-

rior cingulate cortices), the executive network (seeds: superior frontal

gyri), and the semantic network (seeds: ventral anterior temporal

lobes), all relative to the rest of the brain. Connectivity maps were

averaged for each network to obtain connectivity strength values,

based on the weighted Symbolic Dependence Metric (wSDM).50 This

validated, non-linearmetric captures the local and global temporal fea-

tures of the blood-oxygen-level-dependent (BOLD) signal by weighing

a robust copula-based dependence measure by symbolic similarity.50

For details, see Supplementarymaterial 9.

The functional connectivity patterns of each patient group were

estimated by comparisons with HCs via ANCOVAs, controlling for

acquisition center. Then, associations between each significant verbal

fluency measure and each network yielding connectivity differences

were examined via partial correlation analyses, again controlling for

acquisition center (Figure 1-C2, middle inset). As for cortical thickness,

analyses were performed collapsing each patient group with controls

to increase sample size, data variance, and statistical power.31 Pear-

son’s or Spearman’s partial correlation tests were applied depending

on the variables’ normal or non-normal distribution, respectively, as

shown by Shapiro-Wilk test results. All comparisons and correlations

were FDR-corrected at p< 0.05.

2.6.2 Exploratory EEG analyses

Data acquisition

Sixteen persons with AD, 11 with bvFTD, and 14 HCs completed a

10-min resting-state EEG protocol.28 These sub-samples remained

sociodemographically matched (Supplementary material 10). Partici-

pants were instructed not to think about anything in particular while

keeping still, awake, and with eyes closed. High-density EEG record-

ings were acquired with a Biosemi-active-two 128-channel system

(Amsterdam, NLD) at a sampling rate of 1024Hz.

Preprocessing and analysis

Signals were band-pass filtered offline between 0.03 and 100 Hz. A

digital bandpass filter between 0.5 and 45 Hz was further applied to

remove unwanted frequency components. During recording, the refer-

encewas set as default to linkmastoids and re-referencedoffline to the

average of all electrodes.51 Bad channelswere replaced via statistically

weighted spherical interpolation method (based on all sensors).52 All

EEG signal processing steps were implemented on MATLAB software

(vR2016a) through the EEGLAB toolbox (v14.1.2).53 Signals contam-

inated with eye movements or blink artifacts were corrected with

independent component analysis54 and with a visual inspection pro-

tocol. Clean resting-state recordings were then divided into 1000-ms

segments and used for functional connectivity analysis. Importantly,

pairwise comparisons on the number of valid segments did not differ

significantly (all p-values > 0.14) between each patient group (persons

with AD:M= 418, SD= 149; persons with bvFTD:M= 368, SD= 186)

andHCs (M= 458, SD= 116).

Pairwise EEG functional connectivity values for each electrode site

were quantified with the phase-locking value (PLV) method,55 which

measures linear interactions between oscillatory signals. PLV is a mea-

sure of phase synchronization that captures the instantaneous phase

difference of two brain signals on the assumption that connected areas

generate signals whose instantaneous phases evolve together. More

specifically, PLV evaluates the spread of the distribution of phase dif-

ferences, and the connectivity estimation is linked to this spread. The
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8 FERRANTE ET AL.

narrower the distribution of the phase difference, the higher the PLV

value—which ranges between 0 (i.e., the phase of the two EEG signals

is not synchronized) and 1 (i.e., the phase of the two EEG signals is

perfectly synchronized). Functional connectivity value was computed

at the beta (13–30 Hz) frequency band. To identify disease-specific

connectivity patterns, we performed non-parametric cluster-based

permutations for independent samples,56 comparing healthy controls

to each patient group. As in previous studies,28 cluster-level statis-

tics were based on the number of connections in the largest cluster

obtained in each permutation. To identify connections that could form

significant clusters we performed two-tailed t-tests at pcon < 0.05.

Clusters with Pclus < 0.05 were considered significant. We estimated

the p-value of each cluster as the proportion of 1000 random permuta-

tions of the connectivity matrices that yielded a cluster-level statistic

greater than that of the corresponding cluster in the observed data.

Finally, given that variables were normally distributed and that

equipment and acquisition parameters were identical across centers,

we tested bivariate Pearson’s correlations between the significant

clusters’ mean connectivity and values in each word variable yielding

between-group differences in ANCOVAs (Figure 1-C2, right inset). As

in previous language research on neurodegeneration,28 we used FDR

to correct for the number of correlations per analysis.

3 RESULTS

3.1 Group-level discrimination

The standard approach revealed significantly fewer valid responses in

each patient group compared with HCs [AD: F(1,57)= 55.21, p < 0.01,

ηp2 = 0.42; bvFTD: F(1.57) = 22.66, p < 0.01, ηp2 = 0.24]. These

effects were qualified by an interaction with task in persons with AD

(MSE = 13.99, df = 57) and with bvFTD (MSE = 9.97, df = 57), both

outperformed by HCs on each task separately (all p-values ≤ 0.03)

(Figure 2-A1). For full results, see Supplementarymaterial 11.

Conversely, the word-property approach revealed differences in

personswith ADonly.Main group effectswere observed for frequency

[F(1.57) = 9.46, p < 0.01, ηp2 = 0.12] and granularity [F(1.57) = 4.63,

p = 0.03, ηp2 = 0.05], without accompanying interaction effects

(Figure 2-A2, 2-A3). Also, analysis of phonological neighborhood

revealed a group-by-task interaction (MSE = 28.36, df = 57), with post

hoc comparisons (Figure 2-A4) showing higher values for persons with

AD than HCs on the semantic task (p = 0.03, d = 0.74), and for per-

sons with AD on the semantic than on the phonemic task (p < 0.01,

d = 0.75) —an effect that was not mirrored in HCs (p = 0.97, d = 0.15).

The remaining properties yielded non-significant main effects of group

(all p-values > 0.07) and interaction effects (all p-values > 0.25). Com-

parisons of personswith bvFTD relative toHCs did not yield significant

group or interaction effects in any property (all p-values > 0.06). For

full results, see Supplementary material 11. Importantly, all these sig-

nificant and non-significant effects remained similar upon removing

invalid responses and outliers (Supplementarymaterial 12).

3.2 Subject-level discrimination

Maximal classification between persons with AD and HCs was

obtained upon considering distributional information from all word

properties (area under the curve [AUC] = 0.89 ± 0.09), with fre-

quency, granularity, and phonological neighborhood figuring promi-

nently among the top discriminating features. Compatibly, anal-

yses of individual properties revealed high discrimination based

on granularity (AUC = 0.86 ± 0.10) and phonological neighbor-

hood (AUC = 0.82 ± 0.11), followed by frequency, imageability,

and length (all AUCs > 0.70). The same multivariate classifiers

yielded lower discrimination between persons with bvFTD and HCs

(AUC = 0.62 ± 0.15). AUC scores are shown in Figure 2-B1, and

decision boundary based on features from all properties combined

are shown in Figure 2-B2. For details and top features, see Supple-

mentary material 13. An exploratory classification between AD and

bvFTD patients yielded above-chance results (AUC = 0.63 ± 0.13,

accuracy= 0.63± 0.13).

3.3 Correlations between fluency measures and
executive outcomes

Valid responses on both the phonemic and the semantic conditions

correlated with executive scores (IFS) scores in both the AD-HC and

the bvFTD-HC analyses. The threeword properties yielding significant

ANCOVA results correlated with IFS scores in the AD-HC analysis,

with higher R-values in the semantic task. These variables did not

correlate with IFS scores in the bvFTD group. See Figure 3 for details.

3.4 Neuroimaging results

3.4.1 Correlations between fluency variables and
cortical thickness

Distinct atrophy patterns were observed in each group, affecting

mainly temporal, parietal, and frontal regions in AD, and fronto-

insulo-temporal regions in bvFTD (Figure 4A). In the AD-HC analysis

(Figure 4B, left inset), valid responses in the phonemic task positively

correlated with cortical thickness of the left putamen, middle and pos-

terior cingulate gyri, calcarine fissure, and lingual gyrus, as well as

the right rolandic operculum (PFDR < 0.05). Regarding the semantic

task, valid responses positively correlated with the thickness of the

left middle temporal gyrus and the right superior temporal and middle

cingulate gyri (PFDR < 0.05). As regards word-property variables, fre-

quency in the semantic task negatively correlatedwith the thickness of

the left superior temporal pole as well as the right supramarginal and

middle cingulate gyri (PFDR < 0.05). No other significant correlations

were observed. For details, see Supplementarymaterial 14.

In the bvFTD-HC analysis (Figure 4B, right inset), valid responses

in the phonemic task positively correlated with the thickness of the
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FERRANTE ET AL. 9

F IGURE 2 Main results. (A) Significant group-level results, based onmixed-effects ANCOVAs, with the factors group and task, covarying for
sex, age, and education. Top-brackets indicate significant main effects of group, and bottom-brackets indicate significant pairwise differences in
interaction effects (***p< 0.001; **p< 0.01; *p< 0.05). (A1) All patient groups produced fewer valid responses than HCs. (A2-4). Significant
differences in word properties were found only for persons with AD, typified by higher frequency and lower granularity than HCs across tasks, as
well as higher phonological neighborhood in the semantic task. Noword property yielded significant differences between persons with bvFTD
relative to HCs. (B) Logistic regressions were used to classify between each patient group andHCs based on distributional information from each
word property in both tasks, and then for all properties combined. (B1) The radar plot showedmaximal discrimination between AD andHCs based
on features from all properties, with good results for each property in isolation. Classification was substantially lower between persons with
bvFTD andHCs. (B2) Output scores based on all features together revealed good detection of persons with AD andHCs using a decision boundary
of 0.5, withmarked confusion for the other group pair. Final output score per subject was obtained after averaging it over the 1000 iterations. AD,
Alzheimer’s dementia; ANCOVA, analysis of covariance; AUC, area under receiver operating characteristic curve; bvFTD, behavioral variant
frontotemporal dementia; HC, healthy control
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10 FERRANTE ET AL.

F IGURE 3 Spearman correlations between significant group-level features and cognitive outcomes. (A) Correlations for the AD-HC analysis
based on phonemic (A1) and semantic (A2) fluency outcomes revealed that IFS scores were predicted by valid responses as well as significant
word-property variables. (B) Correlations for the bvFTD-HC analysis based on phonemic (B1) and semantic (B2) fluency outcomes revealed that
IFS scores were predicted by valid responses only. Analyses used the false discovery rate (FDR) method to control for multiple correlations per
analysis. Non-significant results are shownwith a graymask. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; HC,
healthy control; IFS, INECO Frontal Screening

left anterior cingulate, precentral gyrus, middle occipital lobe, and cal-

carine fissure, as well as the right middle superior frontal gyrus, the

right parahippocampus, and the bilateral posterior cingulate gyrus and

precuneus (PFDR < 0.05). As regards word properties, frequency in

the semantic task negatively correlated with the thickness of the left

middle superior frontal as well as the posterior, middle, and anterior

cingulate gyri; the left middle and superior occipital lobes; the right

orbital middle frontal as well as the inferior, middle, and superior tem-

poral gyri; the right amygdala, parahippocampus, and putamen; and

the bilateral middle frontal gyrus, cuneus, and supramarginal gyrus

(PFDR < 0.05). No other significant correlations were observed. For

details, see Supplementarymaterial 14.

3.4.2 FMRI connectivity differences and
correlations with fluency measures

Relative to HCs, both patient groups presented hypoconnectivity in

the default-mode, salience, and executive networks (PFDR < 0.05).

No network yielded hyperconnectivity in any patient group (all PFDR
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FERRANTE ET AL. 11

F IGURE 4 Surface-basedmorphometry results. (A) Atrophy of persons with AD and bvFTD, relative to healthy controls. Reduced cortical
thickness was observed predominantly in temporo-parietal areas for AD and frontotemporal regions for bvFTD. (B) Associations between
significant fluency variables andwhole-brain cortical thickness. Valid responses in the phonemic and semantic tasks were positively correlated
with cortical thickness in various brain regions in the AD-HC and bvFTD-HC groups. In the AD-HC group, valid responses in the phonemic task
were positively correlated with cortical thickness in the left putamen, middle and posterior cingulate gyri, calcarine fissure, lingual gyrus, and right
rolandic operculum, while valid responses in the semantic task were positively correlated with thickness in the left middle temporal gyrus and the
right superior temporal andmiddle cingulate gyri. In the bvFTD-HC group, valid responses in the phonemic task were positively correlated with
thickness in the left anterior cingulate, precentral gyrus, middle occipital lobe, and calcarine fissure, as well as the right middle superior frontal
gyrus, the right parahippocampus, and the bilateral posterior cingulate gyrus and precuneus. Frequency in the semantic task was linked to cortical
thickness in both AD-HC and the bvFTD-HC groups, involving temporo-parietal and cingulate cortices in the AD-HC analysis, and frontotemporal
and cingulate cortices in the bvFTD-HC analysis. AD, Alzheimer’s dementia; bvFTD, behavioral variant frontotemporal dementia; HC, healthy
control; I, inferior; L, left; R, right; S, superior; TFCE, threshold-free cluster enhancement

values> 0.05). No other significant pairwise comparisons emerged for

any other network (all PFDR values> 0.05).

In the AD-HC analysis (Figure 5, top inset), valid responses in the

phonemic and semantic tasks positively correlatedwith connectivity of

the default-mode (phonemic: r= 0.39, PFDR = 0.04; semantic: r= 0.69,

PFDR < 0.001), salience (phonemic: r = 0.49, PFDR < 0.001; semantic:

r= 0.79, PFDR < 0.001), and executive (phonemic: r= 0.42, PFDR = 0.03;

semantic: r= 0.68, PFDR < 0.001) networks. Frequency in the semantic

task negatively correlated with connectivity along the default-mode

(r = −0.46, PFDR = 0.01) and salience (r = −0.54, PFDR < 0.001) net-

works. Finally, granularity in the semantic task positively correlated

with connectivity of the salience network (r = 0.37, PFDR = 0.04).

No other significant correlations emerged (Supplementary

material 15).

In thebvFTD-HCanalysis (Figure5, bottom inset), valid responses in

the phonemic and semantic tasks positively correlatedwith connectiv-

ity of the salience network (phonemic: r= 0.49, PFDR = 0.01; semantic:

r = 0.55, PFDR < 0.001). No other significant correlations emerged

(Supplementarymaterial 15).

3.4.3 EEG connectivity differences and
correlations with fluency measures

Relative to controls, persons with AD presented predominantly

bilateral occipito-parieto-central hypoconnectivity in the beta band

(Pcluster-corrected = 0.01) (Figure 6A). Conversely, persons with bvFTD

showed no significant functional connectivity differences. In the AD-

HC analysis (Figures 6B,C), the beta cluster correlated positively with

valid responses in the phonemic (r = 0.57, PFDR = 0.004) and semantic

(r= 0.71, PFDR < 0.001) tasks, as well as with the responses’ frequency

(r = − 0.6, PFDR < 0.001), granularity (r = 0.38, PFDR = 0.03), and
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12 FERRANTE ET AL.

F IGURE 5 Resting-state fMRI connectivity results. Brain networkmasks plotted on brain templates reflect comparison of connectivity
between patients and healthy controls in the default-mode, salience, executive, and semantic network, colored by the effect size of the difference
(Cohen’s d). Both patient groups presented hypoconnectivity in the default-mode, salience, and executive networks. Semicircles around brain
templates reflects correlations between networks’ connectivity strength and fluencymeasures, with asterisks indicating the p-value (***p< 0.001;

**p< 0.01; *p< 0.05) and color indicating correlation strength (Pearson’s or Spearman’s Rho, as required by data distribution). In the AD-HC
analysis, valid responses in the phonemic and semantic tasks positively correlated with connectivity of the default-mode, salience, and executive
networks. Frequency in the semantic task negatively correlated with connectivity of the default-mode and salience networks. Granularity in the
semantic task positively correlated with connectivity of the salience network. Last, in the bvFTD-HC analysis, valid responses in the phonemic and
semantic tasks positively correlated with connectivity of the salience network. AD, Alzheimer’s dementia; bvFTD, behavioral variant
frontotemporal dementia; fMRI, functional magnetic resonance imaging; HC, healthy control; n.s., non-significant difference

phonological neighborhood (r = − 0.42, PFDR = 0.02) in the semantic

task; everyother correlation for theAD-HCanalysiswasnot significant

(all PFDR values > 0.09). No correlations were performed for persons

with bvFTD given their null connectivity differences relative to HCs.

For full results, see Supplementarymaterial 16.

4 DISCUSSION

We aimed to identify discriminatory markers of AD, vis-à-vis bvFTD,

through multivariate word-property analysis of verbal fluency. While

standard scores (based on valid responses) revealed deficits in both

patient groups, the word-property approach revealed selective alter-

ations for AD in frequency, granularity, and phonological neighbor-

hood. Likewise, word-property data yielded robust subject-level clas-

sification only for persons with AD, mainly driven by such properties.

These, in turn, predicted executive outcomes exclusively in AD. Also,

valid responses correlated with widespread atrophy of, and fMRI con-

nectivity among, disease-sensitive regions in AD and bvFTD, as well as

with EEG beta connectivity in AD. Conversely, word-property features

yielded more fine-grained correlations with atrophy in AD and bvFTD,

alongside selective correlations with fMRI and EEG beta connectiv-

ity in AD. These findings carry theoretical and clinical implications, as

discussed next.

As expected, the standard approach revealed deficits in AD, but

also in bvFTD. This pattern corroborates that valid response counts

are sensitive but not highly discriminative across neurodegenerative

disorders.8 Conversely, the word-property approach revealed selec-

tive anomalies for AD. Unlike persons with bvFTD, persons with AD

produced significantly more frequent and less granular responses

across tasks, alongside words with more phonological neighbors in

the semantic task. During word search, then, persons with AD seem

to distinctly favor the most accessible spaces of semantic memory,

comprised of highly used1,57 and conceptually unspecific16 items with

phonologically common structures.25 Indeed, a preference for easily

retrievable words has been identified as a cognitive trait that typifies

people at risk for AD and that differentiates them from those with

other neurodegenerative conditions.1,16,57 Thus, word-property anal-

ysis of fluency seems to offer clinical information that escapes the

standard approach.
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FERRANTE ET AL. 13

F IGURE 6 Resting-state EEG connectivity and correlation results. (A) Topoplot showing phase locking values (PLV) connectivity differences
between persons with AD and healthy controls in the beta range (13–30Hz). (B) Scatterplots showing significant Pearson correlations between
mean PLVs in the significant cluster sensors for the semantic fluencymeasures. (C) Scatterplot showing significant Pearson correlation between
mean PLVs in the significant cluster sensors for the phonemic fluencymeasure. AD, Alzheimer’s dementia; EEG, electroencephalography

The discriminatory value of word-property analysis is reinforced

by machine learning results. Distributional features of all six word

properties yielded low classification of persons with bvFTD vis-à-

vis HCs. Contrariwise, they afforded robust identification of persons

with AD, surpassing outcomes frommachine learning analyses of valid

responses in the same population.58 This result was driven by fre-

quency, granularity, and phonological neighborhood, which yielded

good classification even when framed in isolation. Frequency and

granularity, indeed, emerged as key discriminatory variables in recent

machine learning studies on AD.16,57 Accordingly, word-property anal-

ysis, and these variables in particular, are not only sensitive toADat the

group level, but also at the probabilistic subject level.

Correlations with executive outcomes corroborated the selective

sensitivity of word-property features to AD. Whereas valid responses

correlatedwith IFS scores in all groups in both tasks, criticalwordprop-

erties did so almost exclusively for persons with AD. As IFS scores

decreased, AD participants favored words with higher frequency, less

granularity, and more phonological neighbors. That is, the greater

the executive deficits, the greater the reliance on easily retrievable

items.17,25 These correlations emerged exclusively for the seman-

tic task, reinforcing the relevance of word-property analysis to tap

into canonical dysfunctions of AD, namely, lexico-semantic processing

deficits.59 Note that frequency in the semantic task was also associ-

ated with IFS scores in bvFTD. This reinforces the link between higher

frequency and executive dysfunction, as both groups presented dysex-

ecutive symptoms. Different executive domains could underlie this

pattern. For example, inhibitory demands are higher for low than for

high-frequency items,19 arguably because retrieval of low-frequency

words requires suppressing competing words that are more consol-

idated through daily use. While the restricted score ranges of IFS

subtests preclude robust correlations with executive sub-skills, this

conjecture could be tested in further dementia studies. Be that as it

may, word-property patterns seem not only useful for discriminating

groups and individuals with AD, but also for capturing the severity of

their executive symptoms.

Additional insights were provided by correlations with MRI mea-

sures. Valid responses were associated with the thickness of disease-

sensitive regions in both the AD-HC and the bvFTD-HC analyses.

Phonemic fluency was linked to temporal, frontal, and cingulate areas

typically compromised in both syndromes,11–14,60 while semantic flu-

ency was associated with temporal regions in the AD-HC analysis. On

the other hand, frequency in the semantic taskwas the onlyword prop-

erty linked to cortical thickness in these two groups. In the AD-HC

analysis, such correlationsmainly involved temporo-parietal and cingu-

late cortices implicated in semantic memory selection and retrieval.61

Conversely, the correlations observed in the bvFTD-HC analysis pre-

dominantly implicated frontotemporal and cingulate cortices, which

play a crucial role in executive function and general cognitive outcomes

and are frequently impaired in bvFTD.62 Note that partly similar sub-

strates have been reported for frequency in previous research,22,23
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14 FERRANTE ET AL.

suggesting that both domain-specific (semantic) and domain-general

(e.g., executive) functions are taxed depending on how common words

are. Our results extend such findings, suggesting that this prop-

erty may capture different neurocognitive patterns in each dementia

type.

Interestingly, correlations between word properties and fMRI con-

nectivity did reveal disease-specific patterns in AD. As in previous

works, both patient groups presented hypoconnectivity of the default-

mode, salience, and executive networks.21,63,64 Valid responses in

the phonemic and semantic tasks correlated with disruptions along

the three altered networks in AD and exclusively with the salience

network in bvFTD. Crucially, however, word-property features cap-

tured network disruptions only in the case of AD. Specifically, fre-

quency correlatednegativelywith connectivity along thedefault-mode

and the salience networks (mirroring previous results in healthy

participants65), while granularity correlated positively with salience

network connectivity. Reduced connectivity of these networks in

AD has been associated with cognitive decline21 and lexico-semantic

outcomes.28 Our results extend such findings by revealing that

lower connectivity along such networks disfavors retrieval of less

accessible words, as postulated by network accounts of cognitive

effort.66

Finally, word-property anomalies were also selectively associated

with EEG patterns in persons with AD. This group exhibited reduced

bilateral occipito-parieto-central connectivity in the beta band as com-

pared to HCs, mirroring previous results.28,67 Such hypoconnectivity

also differentiated them from persons with bvFTD, who exhibited

preserved beta connectivity.68 Moreover, across AD patients, beta

connectivity correlated with valid responses in both tasks and, more

crucially, with frequency, granularity, and phonological neighborhood

in the semantic task. In line with previous works,27,69 we propose that

beta alterations are critically related to word retrievability costs dur-

ing semanticmemory search, offering newneurocognitive insights into

AD. More generally, this novel finding reinforces the sensitivity of lexi-

cal features to disease-specific neural disruptions, while informing the

thriving agenda of EEG research on neurodegeneration.51

Our results bear clinical implications. Verbal fluency tasks

are widely used to assess AD, other neurodegenerative

disorders,1,3,8,10,12,13,16,60 and relevant phenomena, such as cog-

nitive reserve.70 Yet, standard scoring diminishes their potential

for revealing disease-differential markers. Conversely, abnormal

word-property features are present in AD but seemingly absent in

bvFTD, another form of dementia. Such features enable group- and

subject-level identification of AD, while capturing relevant cognitive

and multimodal brain signatures. Importantly, our word-property

approach is objective and automated, so that it could be implemented

in clinician-friendly apps offering relevant data capture, processing,

and analysis capabilities.71,72 In particular, our approach retrieves

information from all of the participants’ responses, avoiding human

decisions on response validity—a challenging issue, given the lack

of unified criteria to that end.15 Thus, although specific technical

skills may be required for its clinical use, our approach may allow

repurposing verbal fluency data by targeting the properties rather

than the number of responses provided.

Notwithstanding its contributions, our study presents some limita-

tions. First, although the sample sizewas similar to or larger than those

of other studies,8,16 replications should be conducted with more par-

ticipants. Second, this shortcoming preventedus fromsubdividing each

group into phenotypes. Future works might explore the consistency of

our findings across amnesic, executive, and behavioral presentations

of AD. Third, sociodemographic differences between AD and bvFTD

precluded direct between-group comparisons, which could be pursued

with strategically selected samples. Fourth, our protocol lacked mea-

sures of socio-cultural profiles known to modulate neuropsychological

performance,73 inviting further research targeting relevant domains,

such as socioeconomic status. Last, since responses to one condi-

tion (e.g., semantic fluency) may be influenced by the instructions

of the previous one (e.g., phonemic fluency),74 future works could

examine word-property patterns when task order is systematically

manipulated.

In sum, unlike standard scoring, word-property analysis of ver-

bal fluency seems to reveal disease-differential markers of AD

across behavioral and neurocognitive dimensions. The lack of disease-

specificity of fluency outcomes, then, may not be a consequence of

the task, but of its canonical analysis approach. Further applications

of this framework could inform the global quest for equitable, scalable,

discriminatorymarkers of AD.75
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