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Abstract 

In this work, an infrared thermography setup is proposed to measure the in-plane thermal 

diffusivity of (an)isotropic samples that are moving at constant velocity, as it is the case of in-

line production or in-line quality control processes in factories. The experiment consists in 

heating the moving sample with a focused laser spot, which remains at rest, and recording the 

surface temperature by an infrared camera. An analytical expression for the surface temperature 

of the moving sample has been obtained. By analyzing the surface temperature in logarithmic 

scale, three simple linear relations are obtained, whose slopes give the thermal diffusivity in the 

direction of the sample movement and in the perpendicular direction. These three linear 

methods, which are not disturbed by heat losses by convection and radiation, are valid for both 

opaque and semitransparent samples. Measurements performed on calibrated samples confirm 

the validity of the methods, which are also valid when the sample is at rest and the laser spot 

scans its surface at constant velocity, the so-called “flying spot” technique. 
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1. Introduction 

 

Heat propagation in steady-state conditions is governed by thermal conductivity, 

whereas dynamic situations are described by thermal diffusivity, which measures the speed of 

propagation of heat inside a material during changes of temperature with time [1]. Accordingly, 

the precise knowledge of the thermal diffusivity of materials is crucial in understanding 

dynamic processes in thermal engineering. During the last decades, many experimental setups 

have been proposed to measure the thermal diffusivity of a wide variety of materials and shapes: 

bulk, thin films on substrate, free-standing films, filaments, etc. (see Ref. (2) for a recent 

review). In all these setups, the specimen under study remains at rest.  

In this work, we propose, using infrared (IR) thermography, to measure the in-plane 

thermal diffusivity of (an)isotropic samples that are moving at constant velocity. This mimics 

the real case of in-line production or in-line quality control processes in factories, where 

heterogeneities, i.e. local changes in the properties, must be detected in real time, without 

stopping the production chain. In this configuration, the sample surface is heated by a focused 

CW laser beam while the surface temperature is recorded by an IR video camera. We have 

obtained an analytical expression for the surface temperature field of the moving sample. By 

analyzing this temperature distribution in natural logarithmic scale, three simple linear relations 

are found, from which the thermal diffusivity can be obtained in a straightforward way, i.e. 

avoiding delicate multiparametric fittings.  

To check the ability of the three methods to measure the in-plane thermal diffusivity of 

moving samples we have performed measurements on calibrated samples covering a wide range 

of thermal diffusivities (from insulators to good thermal conductors).  

It is worth noting that these methods can be directly applied when the sample remains 

at rest and the laser spot scans the sample at constant velocity. This configuration, known as 

Flying Spot infrared thermography, was proposed by Kubiak [3] and has been developed by 

several research groups to detect cracks in a fast manner [4-11].  

 

2. Theory 

 

Let us start considering an anisotropic sample illuminated by an extremely brief (Dirac) 

pulse laser of energy Qo and Gaussian profile of radius a (at 1/e2). We make the Cartesian 

reference frame coincide with the principal axes of this anisotropic slab. We consider heat 
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losses by convection and radiation from the sample surface. The surface temperature rise above 

the ambient is given by [12] 
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where ( )A t  takes the following values depending on the optical properties and thickness of 

the sample: 
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Here  is the energy fraction absorbed by the sample, is the optical absorption 

coefficient of the sample at the laser wavelength,  is the effective absorption coefficient to the 

detected IR wavelengths (3 to 5 m), D is the thermal diffusivity,  is the thermal effusivity,  

is the density, c is the specific heat and L is the thickness. We assume that the surface 

temperature rise is small, so the heat rate dissipated from the surface can be considered as a 

linear function of the temperature, where h is the linear coefficient of heat losses. Subscripts 

x,y,z stand for the thermal properties along the principal axes. 

Now we consider the same anisotropic sample moving to the right along the x-axis at 

constant velocity v, while a CW laser of power Po and Gaussian profile of radius a (at 1/e2) 

remains at rest, as it is shown in Fig. 1. The laser is switched on at t = 0. The surface temperature 

at time t is given by the convolution integral of Eq. (1) 
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 Note that at this point we have not established yet the meaning of thermally thick and 

thin in the case of a moving sample. This point will be clarified at the end of section 3.1. 
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Fig. 1. Front surface of an anisotropic sample moving to the right at constant speed v, while the laser 

spot is at rest.  

 

 

3. Three methods to measure the thermal diffusivity 

 

 In this section we are proposing three methods to measure the thermal diffusivity of a 

sample that is moving at constant velocity, by analysing the surface temperature in logarithmic 

scale. The three methods are valid once the steady-state has been established. The solution of 

the surface temperature field obtained from the convolution integral Eq. (3) permits a precise 

determination of the time needed to attain a thermal steady-state, tc, as a function of the sample 

velocity. This is calculated as follows: for a given pair of v and D values we calculate the surface 

temperature for increasing times until the difference with respect to infinite time is smaller than 

0.1%. These calculations are performed for a circle of 1 cm of radius around the laser spot. This 

is due to the fact that the field of view of our IR camera with a microscope lens is around 1 cm 

× 0.8 mm (see Section 4). Actually, tc increases as the area that is monitored is enlarged. Figure 

2 shows the values of tc versus the sample velocity calculated for four materials covering a wide 

range of thermal diffusivities, from thermal insulators (D = 0.1 mm2/s) to good thermal 

conductors (D = 100 mm2/s), using a = 0.1 mm and h = 0. As can be observed, this critical time 

decreases as the sample velocity rises and as the thermal diffusivity decreases. As these methods 

are addressed to study large surfaces in short times, we employ velocities v ≥ 2 cm/s. For these 

velocities, the steady-state is reached in a few seconds, even for the most conducting samples.  

y 

x 
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Fig. 2. Calculations of the time needed by the sample to reach the steady-state, tc, as a function of the 

sample velocity. Four materials, whose thermal diffusivity is given in mm2/s, are studied.  

 

 

Next, we present calculations of the surface temperature field when the steady-state has 

been stablished. We show in Fig. 3a the isotherms of Ln(T) for an anisotropic sample (Dx = 4 

mm2/s, Dy = 1 mm2/s, z = 3000 Ws0.5m-2K-1) moving to the right at v = 2 cm/s. The sample is 

heated by a 1 W laser beam of radius a = 0.2 mm, which remains at rest. Calculations are 

performed for negligible heat losses (h = 0). In Fig. 3b we show the transverse profiles of Ln(T) 

at different longitudinal distances from the laser spot. As can be observed, the central profile (x 

= 0) is almost linear, but the shape changes as x increases, in such a way that the transverse 

profiles become parabolas at long distances from the laser spot. Finally, in Fig. 3c we show the 

central longitudinal profile (y = 0) of Ln(T). Note the strong asymmetry of this profile in front 

of and behind the laser spot.  

In the following we will propose three methods to measure the thermal diffusivity that 

are based on the analysis of the shape of the central transverse profile, the central longitudinal 

profile and the transverse parabolas. All of them lead to simple linear relations, which have the 

advantage of avoiding complex and delicate multiparametric fittings.  

It is worth noting that, according to the relativity principle, the three methods are also 

valid in the experimental configuration where the sample remains at rest while the laser is 

moving at constant velocity along a straight line onto the sample surface. This is the so-called 

“flying spot” infrared thermography, which in recent years has raised the interest of the IR 

thermography community for quantitative characterization of large surfaces [10,11].  
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Fig. 3. (a) Calculations of the contour plots of the natural logarithm of the surface temperature for an 

anisotropic sample (Dx = 4 mm2/s, Dy = 1 mm2/s) heated by a 1 W laser beam of radius a = 0.2 mm 

and h = 0, when the steady-state has been stablished. The sample is moving at v = 2 cm/s. (b) 

Transverse profiles of Ln(T) at several longitudinal distances, x, from the laser spot. (c) Central 

longitudinal profile (y = 0) of Ln(T). 

 

 

3.1 The “central transverse profile” method 

 

 Fig. 4a shows the calculations of the central (x = 0) transverse profile of the natural 

logarithm of the surface temperature using Eq. (3) for the same anisotropic sample as in Fig. 3, 

with a = 0 and in the absence of heat losses (h = 0). Two cases are considered. (a) If the material 

is opaque and thick, we have found that the natural logarithm of the temperature multiplied by 

the transverse distance, Ln(Ty), behaves linearly as a function of the transverse distance, y. (b) 
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If the material is an opaque and thin sample, or is transparent, the natural logarithm of the 

temperature multiplied by the square root of the transverse distance, Ln(Ty0.5), is a linear 

function of the transverse distance.  The origin of the difference lies in the fact that the 

expression of the surface temperature for opaque and thick samples shows an additional 1/ t  

factor with respect to both opaque and thin and transparent samples, as can be observed in Eqs. 

(2). The slope (m) of these straight lines is related to the sample velocity and the transverse 

thermal diffusivity, Dy, through the simple formula:  

2 y

v
m

D
  .            (4) 

 In order to check the influence of heat losses on the central transverse profile, we have 

performed calculations for several values of the heat losses coefficient. Although realistic 

values of h at room temperature range from 6-10 Wm-2K-1, we have checked that this profile 

remains unaffected for h values as high as 100 Wm-2K-1. We have also analyzed the effect of 

the laser spot radius on the linear behavior of the central transverse profiles. In Fig. 4b we show 

Calculations performed for the same thermally thick material as in Fig. 4a. As can be observed, 

far away from the laser spot the linearity is kept with the same slope given by Eq. (4). This 

conclusion is also valid for opaque and thin or transparent samples. Accordingly, the thermal 

diffusivity along the transverse direction with respect to the sample movement can be obtained 

in a simple manner using Eq. (4). 
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Fig. 4. (a) Calculations of the central transverse profile of Ln(Ty) for an opaque and thick sample 

(black curve) and Ln(Ty0.5) for an opaque and thin sample or a transparent sample (red curve). 

Calculations have been performed for the same anisotropic sample as in Fig. 3 with a = 0 and h = 0. 

(b) Effect of the laser spot radius on the central transverse profile for opaque and thick samples. 
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On the other hand, the linear behavior shown in Fig. 4a allows defining the thermal 

diffusion lengths () along the transverse directions with respect to the laser movement as the 

distance with respect to the laser spot for which Ln(Ty) decreases by a factor e. This transverse 

thermal diffusion length is given by i = 2Di /v, with i = y and z. In particular, z defines the 

depth penetration of the transient thermal energy in experiments with a moving sample. 

Accordingly, a sample behaves as thermally thick if its thickness L > 2z, while it behaves as 

thermally thin if L < 0.5z. 

 

3.2 The “central longitudinal profile” method 

 

Fig. 5a shows the calculations of the central (y = 0) longitudinal profile of the natural 

logarithm of the surface temperature using Eq. (3) for the same anisotropic sample as in Fig. 3, 

with a = 0 and h = 0. Unlike in the transverse profile there is no symmetry with respect to the 

laser position. For x > 0, the curve is flat and lacks information on the sample thermal 

diffusivity. For x < 0, there is a linear relation depending on the sample velocity and thermal 

diffusivity. As before, two cases are considered. (a) If the material is opaque and thick we have 

found that the natural logarithm of the temperature multiplied by the longitudinal distance, 

Ln(Tx), behaves linearly as a function of the longitudinal distance, x. (b) If the material is an 

opaque and thin sample, or is transparent, we have found that the natural logarithm of the 

temperature multiplied by the square root of the longitudinal distance, Ln(Tx0.5), is a linear 

function of the longitudinal distance. The slope (m) of these straight lines is related to the 

sample velocity and longitudinal thermal diffusivity, Dx, through the simple formula:  

x

v
m

D
 .            (5) 

As in subsection 3.1, calculations performed for heat losses coefficients up to h = 100 

Wm-2K-1 do not reveal any change in the slope of the straight line, indicating that “central 

longitudinal profile” method is not affected by heat losses.  Moreover, the slope of the straight 

line is neither modified when considering realistic non-zero laser spot radii (see Fig. 5b). These 

evidences indicate that Eq. (5) provides a simple and robust method to retrieve the thermal 

diffusivity along the sample movement direction. 
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Fig. 5. (a) Calculations of the central longitudinal profile of Ln(Tx) for an opaque and thick sample 

(black curve) and Ln(Tx0.5) for an opaque and thin sample or a transparent sample (red curve). 

Calculations have been performed for the same anisotropic sample as in Fig. 3 with a = 0 and h = 0. 

(b) Effect of the laser spot radius on the central longitudinal profile. 

 

 

As we did in the previous subsection, the linear behavior shown in Fig. 5a allows 

defining the thermal diffusion lengths along the longitudinal direction as the distance with 

respect to the laser spot for which Ln(Tx) decreases by a factor e. This longitudinal thermal 

diffusion length is given by x = Dx /v. Note that the depth penetration of heat in experiments 

with a moving sample is different in the longitudinal and transverse directions, even for 

isotropic samples.  

 

3.3 The parabolas method 

 

 Eq. (1) gives the temperature field when the sample is heated by a brief laser pulse of 

Gaussian profile. According to these equations, the temperature along the x and y axes features 

Gaussian profiles for all times after the laser pulse and therefore the natural logarithm of the 

temperature profiles along the principal axes are parabolas 

  2( ,0,0, ) ( ) ( )xLn T x t A t C t x  ,        (6a) 

  2(0, ,0, ) ( ) ( )yLn T y t A t C t y  ,        (6b) 
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where the inverse of the second order coefficient of the parabolas is a linear function of time: 

21
4

( ) 2
j

j

a
D t

C t
   with j = x and y. The slope (mj) of this linear relation gives the thermal 

diffusivity: 4j jm D . This “parabolas method”, which we have checked is neither affected by 

heat losses for h < 100 Wm-2K-1, provides an efficient tool to measure the thermal diffusivity 

of isotropic and anisotropic solids [10]. As can be seen in Fig. 3b, the transverse profiles of 

Ln(T) become parabolas as going away from the laser spot. Moreover, numerical calculations 

performed varying Dx, Dy, a and v show that the inverse of the second order coefficient of those 

parabolas verifies the same linear relation as in static flash measurements 

 
2 2 41

4
2 2

y

y
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This result indicates that the inverse of the second order coefficient of the parabolas is 

a linear function of the distance to the laser spot, whose slope equals:  

4 yD
m

v
            (8)  

and the intercept is a2/2. This linearity provides a versatile method to retrieve the transverse 

thermal diffusivity of a moving sample. It is worth noting that this result is valid for the three 

kind of materials analyzed in Eqs. (2), regardless the laser power and the sample effusivity. 

Moreover, although heat losses reduce the temperature rise of the sample, the coefficient of the 

second order of the parabolas remains unaffected. 

 In order for the method to be applied properly we need to establish when the lateral 

profiles of Ln(T) are parabolas satisfying Eq. (7). In Fig. 6 we show the comparison of the 

quasi-parabola obtained from Eq. (3) and the exact parabola given by Eq. (7). Calculations have 

been performed for the same anisotropic sample as before (Dx = 4 mm2/s, Dy = 1 mm2/s, z = 

3000 Ws0.5m-2K-1), using the same experimental parameters (1 W laser beam with radius a = 

0.2 mm, heat losses coefficient h = 0, velocity v = 2 cm/s and steady-state conditions). Two 

transverse profiles of Ln(T) are shown: one for x = 2 mm and the other one for x = 4 mm. The 

continuous lines correspond to the calculation of Eq. (3) and the dotted lines the calculations of 

Eq. (7). The residuals, i.e. the difference between both, are also shown. As can be observed, as 

x increases the residuals are reduced.  
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Fig. 6. Calculations of the transverse profiles of Ln(T) for the same anisotropic material and experimental 

parameters as in Fig. 3. Continuous lines correspond to the quasi-parabola given by Eq. (3) and the dotted lines 

to the exact parabola given by Eq. (7). The residuals, the difference between both, are also shown. 

 

 

Now we want to determine the minimum distance from the laser spot, xmin, for which 

the difference between the quasi-parabola given by Eq. (3) and the exact parabola given by Eq. 

(7) is negligible. Systematic numerical calculations performed by varying D and v indicate that 

if the Péclet number, Pe, equals  

min 20
x

vx
Pe

D
  ,           (9) 

the difference is less than 0.05. To visualize the consequences of this result let us consider a 

fixed sample velocity of 2 cm/s and two materials of extreme thermal properties: a typical 

polymer (D = 0.1 mm2/s) and copper (D = 100 mm2/s). According to Eq. (9), in the case of the 

polymer the minimum distance to the laser spot where the “parabolas method” can be applied 

is min 0.1x  mm, whereas in the case of copper this limit rises up to min 10x  cm. Consequently, 

when dealing with a good thermal conductor it is required to use a quite high sample velocity 

to keep minx in the order of a few millimeters.  

 

4. Experimental results and discussion 

 

Figure 7 shows the scheme of the IR thermography setup, where the laser spot is kept 

fixed and the sample is moved at constant velocity. A CW laser (532 nm, up to 6 W) is focused 
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at the sample surface by means of a 10 cm focal length lens to a radius of about 200 m. A Ge 

window, which reflects visible light and transmits IR wavelength, is used to prevent the 

scattered laser radiation from reaching the IR camera. A small mirror, glued to the Ge window, 

directs the laser beam onto the sample surface, perpendicularly. An IR video camera (FLIR, 

model SC7500, 320 × 256 pixels, pitch 30 μm and spectral band from 3 to 5 μm) records the 

temperature field at the sample surface. An IR microscope lens is used to improve the spatial 

resolution of the IR camera to 30 m, with a field of view of 9.60 mm x 7.68 mm. The sample 

is mounted on a dynamic system (cart + track) that is coupled to an electric engine to move the 

cart at constant speed in the range between 0.5 and 15 cm/s. 

 

 

Figure 7: Scheme of the experimental setup with a moving sample and the laser spot at rest. 

 

 

The speed of the sample is measured by counting the number of frames between the entrance 

and the exit of one end of the sample in the field of view of the camera and taking into account 

the length of the sample and the frame rate of the camera. In this way, the sample speed is 

measured with an uncertainty of less than 0.5%. We worked at the maximum frame rate allowed 

by the IR camera: 330 frames/s at full frame and up to 2000 frames/s applying a subwindowing 

(320 × 70 pixels). On the other hand, in order to enhance the signal to noise ratio, several 

hundred of thermograms are averaged after reaching the steady state. For a comparison, we 

show in Fig. 8 the single thermogram and the average thermogram corresponding to a stainless 

steel AISI-304 sample moving along the horizontal axis at 6 cm/s. This remarkable noise 

reduction will allow us to retrieve the sample thermal diffusivity with high accuracy. 
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Figure 8: (a) Single thermogram and (b) averaged thermogram over several hundreds of thermograms 

corresponding to an AISI-304 sample moving to the right at 6.0 cm/s. 

  

 

To verify the validity of the three methods proposed in this work we have tested them 

on some calibrated samples covering a wide range of thermal diffusivity values, from thermal 

insulators (polymers) to good thermal conductors (metals): Polyether-ether-ketone (PEEK), 

AISI-304, Ni, Zn and Al 2024-T6 alloy. We have also measured the anisotropic thermal 

diffusivity of balsa wood. All these materials have been covered by a thin graphite layer to 

enhance both the absorption to the laser and the IR emissivity. We have also tested the method 

on two semitransparent samples: orange coloured Polymethyl-methacrylate (PMMA) and grey 

BK7 glass. Moreover, three thin samples have also been tested: 0.25 mm thick PEEK and 0.20 

mm thick AISI-304 and Zn. Regarding the sample speed, for bad thermal conductors (polymers 

and glass) sample speeds in the lower range of our track, 1.5 - 2.5 cm/s, were used. Contrarily, 

for good thermal conductors higher speeds are better adapted: from 6 cm/s for AISI-304 up to 

15 cm/s for Al alloy. As a rule of thumb, we can say that the most appropriate speed for thermal 

diffusivity measurements produces a thermogram with an aspect ratio of the pseudo-ellipses 

around 3:1, similar to that found in Fig. 8. 

Figure 9 shows the transverse profiles of Ln(T) corresponding to the AISI-304 sample  

thermogram plotted in Fig. 8b. For the sake of clarity, only eight transverse profiles, separated 

by 1 mm, are shown. Dots are the experimental data and the continuous lines are the parabolic 

fits. As can be observed, the experimental profile at x = 1 mm, very close to the laser spot, 

differs from a parabola. Actually, according to Eq. (9), the minimum distance from the laser 

spot to fulfil a parabola is xmin ≈ 1.3 mm. This means that only transverse profiles at distances 

larger than 1.3 mm will be used in the parabolas method. Figure 10 shows the inverse of the 

second order coefficient of the parabolas versus the longitudinal distance for some of the 

calibrated materials used in this work. Dots are the experimental data and the continuous lines 

are the linear fits. Figure 10a shows the results for thermal insulators, which are very clean and 

1 cm 

(a) (b) 
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Fig. 10b for good thermal conductors, for which the noise increases as the thermal diffusivity 

does. In fact we were unable to measure the thermal diffusivity of a copper sample due to the 

poor signal to noise ratio. Then, using Eq. (8) the thermal diffusivity is obtained. The results, 

summarized in Table 1, agree with the literature values and confirm the validity of the parabolas 

method. The uncertainty in the D values varies from less than 3% in thermal insulators up to 5-

6% for good thermal conductors. It should be noted that, according to Eq. (7), the intercept of 

the linear fits in Fig. 10 gives the laser radius. Actually, for thermal insulators we obtain a laser 

radius in the range 0.2-0.3 mm, very close to the optically measured value. For good thermal 

conductors, instead, the accuracy is not good enough to estimate the laser radius. 
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Figure 9: Transverse profiles of Ln(T) at eight distances from the laser spot centre (x) for the AISI-304 

thermogram shown in Fig. 8b. Dots are the experimental data and the continuous lines are the parabolic fits. 

 

We have also tested a piece of Balsa wood, which is a soft, low-density heterogeneous 

material. As its thermal transport properties are anisotropic, measurements have been 

performed in the direction perpendicular to the growth rings (  ) and in the direction parallel 

(II) to them. The retrieved values of the thermal diffusivity are given in Table 1. It is worth 

noting that for this heterogeneous material there are differences in the physical properties from 

tree to tree depending on the age, climate and moisture [13,14]. That is the reason for the large 

dispersion of the literature values given in Table 1. Anyway, a thermal anisotropy factor of 2.5, 

similar to that found in this work, has been already reported [15].  
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Figure 10: Inverse of the parabolic coefficient versus the longitudinal distance for some of the calibrated 

materials used in this work. Dots are the experimental data and the continuous lines are the linear fits. (a) 

Thermal insulators. (b) Good thermal conductors. 

 

 

Then, we have tested the “central transverse profile” method. We have analysed the 

same averaged thermograms as those used for the parabolas method. Figure 11a shows the 

transverse profiles of Ln(Ty) for a thick Zn sample and of Ln(Ty0.5) for two thin plates (L = 0.2 

mm) of Zn and AISI-304. Dots are the experimental data and the continuous lines are the linear 

fits. By applying Eq. (4), the transverse thermal diffusivity is obtained. The results, which agree 

with the literature values, are summarized in Table 1.  

Finally, we have checked the “central longitudinal profile” method. Figure 11b shows 

the longitudinal profiles of Ln(Tx) and Ln(Tx0.5) for the same three samples as in Fig. 11a. Dots 

are the experimental data and the continuous lines are the linear fits. As predicted by the theory 

(see Fig. 5), for x > 0 there is a flat behaviour without any information on the thermal diffusivity. 

For x < 0 there is a linear relation whose slope gives the longitudinal thermal diffusivity by 

applying Eq. (5). The results are summarized in Table 1.  

As can be observed in Table 1, no results are given for insulators using both central 

profiles methods. The reason for that is not a limitation of the method itself, but it is related to 

the lower velocity limit of our setup (1.5 cm/s). At this speed the number of points is too small 

to provide reliable thermal diffusivity values. For those materials either velocities of a few mm/s 

or a higher spatial resolution are needed.  
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Figure 11: (a) Transverse profiles and (b) longitudinal profiles in natural logarithm scale for thick Zn (black 

curve) and for thin Zn (L = 0.2 mm) and AISI-304 (L = 0.2 mm) in red. Dots are the experimental data while the 

continuous lines are the linear fits. 

 

 

 Before concluding, let us remark some drawbacks of the methods proposed in this work. 

(a) On the one hand, they are valid for quite big samples, since the steady-state must have been 

reached. Anyway, as these methods are addressed to in-line production or in-line quality control 

processes, this is not a real limitation. (b) On the other hand, the two central profiles methods 

require a high spatial resolution to have enough experimental data to clearly define the linear 

region. Accordingly, IR cameras with high resolution (640 × 512 pixels or higher) and/or 

microscope lenses, leading to a spatial resolution better than 30 m, are highly recommended. 

Note that the parabolas method does not suffer from this limitation, since even with few data 

the second order coefficient of the parabolas can be obtained accurately [20]. (c) Besides, the 

central profiles methods are not valid when the thermal thickness of the specimen is 

intermediate, i.e. neither thick nor thin. This issue can be overcome by selecting, whenever it is 

possible, the appropriate velocity range: increasing the speed for the sample to behave as thick 

or reducing it to approach the thermally thin limit. (d) One of the potential applications of these 

methods is to detect heterogeneities in-line production. This application requires local thermal 

diffusivity measurements methods. For this purpose, it is worth noting that the central profiles 

methods are preferable to the parabolas method since the former only requires taking 

temperature data a few millimetres around the laser spot, whereas the latter requires analysing 

the temperature along a centimetre or more in the direction of the sample movement. 
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5. Conclusion 

 

 In this paper we have proposed three methods to measure the in-plane thermal 

diffusivity of (an)isotropic solids moving at constant velocity, by analyzing the surface 

temperature field in logarithmic scale. These methods are based on simple linear relations, 

which avoid complex multiparametric fitting procedures. Moreover, they are valid not only for 

opaque samples, but also for semitransparent ones and they are not affected by heat losses by 

convection and radiation. The validity of the methods have been confirmed experimentally on 

calibrated samples covering a wide range of thermal diffusivities. It is worth noting that these 

methods can be directly applied when the sample is at rest while its surface is scanned by a 

laser spot moving at constant velocity, i.e. the classical Flying Spot infrared thermography.  
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Table 1. Retrieved thermal diffusivities (mm2/s) using the three methods proposed in this 

manuscript. The uncertainty varies from less than 3% for thermal insulators up to 5-6% for 

good thermal conductors. 

 

 

Sample 

D 

(Parabolas 

method) 

 

D 

(Transverse 

profile) 

D 

(Longitudinal 

profile) 

D  

(Literature)13-19 

PEEK 0.19 - - 0.18 

AISI-304 4.0 4.0 4.1 4.0 

Ni 21 22 20 22 

Zn 43 43 40 42 

Al 2024-T6 70 73 70 73 

     

Balsa wood  0.44 - - 0.30-0.51 

Balsa wood   0.22 - - 0.14-0.25 

     

Colored PMMA 0.12 - - 0.11 

BK7-glass 0.56 0.52 0.50 0.5-0.6 

     

PEEK (L = 0.25 mm) 0.20 - - 0.18 

AISI-304 (L = 0.2 mm) 3.9 3.9 4.0 4.0 

Ni (L = 0.2 mm) - 20 20 22 

Zn (L = 0.2 mm) - 45 45 42 
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