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Abstract—SpaceWire is a communication protocol that has
become widely used in spacecraft for connecting instruments
to data processors, mass-memory, and control processors. Field-
Programmable Gate Arrays (FPGAs) have been a popular choice
for implementing SpaceWire nodes due to their flexibility to
meet unique requirements of each program or product. This
paper presents a comparative study of two implementations of
SpaceWire nodes, based on two different FPGA technologies,
AMD-Xilinx SRAM-based and Microchip (Microsemi) FLASH-
based. The study compares the resource requirements and
estimated power consumption of both implementations, using
the same HDL SpaceWire IP core, with the SRAM-based one
incorporating a 32-bit Microblaze soft-CPU, and the FLASH-
based one using a 32-bit RISC-V CPU. The obtained results are
compared, and the paper concludes that FLASH-based FPGAs
are more suitable for applications that require high reliability,
tamper resistance, and fast, reliable restarts. In contrast, SRAM-
based FPGAs are preferred in applications that require high
performance and reconfigurability. The study shows that both
FPGA technologies are capable of implementing SpaceWire
nodes effectively and efficiently, and designers can choose the
technology that best suits the specific requirements of each
project.

Index Terms—SpaceWire, Spacecraft, On-Board, RISC-V,
SRAM FPGA, FLASH FPGA,SoC

I. INTRODUCTION

SpaceWire [1] is a widely-used on-board data-handling net-
work for spacecraft, connecting instruments to data processors,
mass-memory and control processors, based on the IEEE 1355
communication standard. FPGAs are a popular choice for
implementing SpaceWire nodes due to their flexibility to meet
unique requirements of each program or product. However,
designers of such systems must consider power consumption
and reliability, particularly in terms of resistance to Single
Event Upsets (SEUs).

This research compares two implementations of SpaceWire
nodes in terms of FPGA resource requirements and estimated
power consumption. The first implementation is based on
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AMD-Xilinx SRAM-based technology, while the second one
uses Microchip (Microsemi) FLASH-based technology. Both
implementations use the same HDL SpaceWire IP core, with
the SRAM-based one incorporating a 32-bit Microblaze soft-
CPU, and the FLASH-based one using a 32-bit RISC-V CPU.

The remainder of this paper is organized as follows: Section
II introduces the SpaceWire protocol and the two FPGA
technologies used for the implementations. Section III presents
the high-level block diagram of a generic SpaceWire node.
Section IV provides details of the two implementations de-
veloped, with the first using a 32-bit Microblaze CPU on
an AMD-Xilinx SRAM-based FPGA, and the second using
a 32-bit RISC-V CPU on a Microchip (Microsemi) FLASH-
based FPGA. Section V compares the obtained results in terms
of FPGA resources and power consumption, and the paper
concludes with the Conclusions section.

II. STATE-OF-THE-ART

A. SpaceWire standard

SpaceWire is already in orbit or is being designed into more
than 100 spacecraft. It provides high-speed (2 to 200 Mbit/s),
bi-directional, full-duplex, data links which connect together
SpaceWire enabled equipment.

The SpaceWire standard has several purposes, including
facilitating the construction of high-performance on-board
data handling systems, reducing system integration costs,
promoting compatibility between data handling equipment
and subsystems, and encouraging the re-use of data handling
equipment across multiple missions.

By implementing the SpaceWire standard, compatibility is
ensured at both the component and subsystem levels. This
means that instruments, processing units, mass-memory units,
and telemetry systems developed for one mission can be used
in any other mission, resulting in cost and time savings,
improved reliability, and increased scientific output within a
limited budget.

Since the SpaceWire standard was written and published
by the University of Dundee in 2003, it has been adopted by
ESA, NASA, JAXA and RosCosmos for several missions, as
it has been used for science, Earth observation and different
spacecraft. SpaceWire has been used in missions like Gaia, Ex-
oMars rover, GOES-R, Astro-H, etc. SpaceWire is a computer



network designed to connect together high data-rate sensors,
processing units, memory devices and telemetry/telecommand
sub-systems onboard spacecraft. It is based on two standards:
IEEE 1355-1995 [2] and ANSI/TIA/EIA-644 [3]:

• IEEE 1355-1995: IEEE 1355-1995 is a data communica-
tions standard for Heterogeneous Interconnect (HIC).The
protocol was designed for a simple, low cost switched
network made of point-to-point links. This network sends
variable length data packets reliably at high speed.

• ANSI/TIA/EIA-644: TIA/EIA-644, otherwise known as
LVDS, is a signaling method used for high-speed, low-
power transmission of binary data over copper. This
signaling technique uses lower output-voltage levels than
the 5-V differential standards (such as TIA/EIA-422) to
reduce power consumption, increase switching speed, and
allow operation with a 3.3-V supply rail. The LVDS
current-mode drivers create a differential voltage (247
mV to 454 mV) across a 100-Ω load.

SpaceWire standard involves wires and physical switches,
electric propierties and logic protocols, i.e. Transport Layer.
Levels are defined:

• Physical layer: SpaceWire connectors, wires, integrated
circuits, etc.

• Signal layer: Signal codification, voltage levels, noise
margins and data signal ratios.

• Character layer: Data and control characters are used
to lead the data flow through SpaceWire link. Each data
character (also called “normal data” or “N-Chars”) are
formed by 8 bits, whilst control characters are formed by
4 bits.

• Exchange layer: Link initialization protocols, flow con-
trol, error detection and error recovery.

• Packet layer: Definition of how the data is split in
different packets to send them through the SpaceWire
link.

B. FPGA Technology

An important benefit of utilizing HDL IPs to implement the
SoCe SpaceWire Core is the flexibility to leverage different
FPGA technologies to meet the unique requirements of each
product or program.

SRAM-based FPGAs and Flash-based FPGAs [4], [5] are
two different types of FPGA architectures. Both FLASH-
based and SRAM-based FPGAs have important applications in
the aerospace and defense sectors. FLASH-based FPGAs are
preferred in aerospace and defense systems that require a high
degree of security, reliability, and resistance to tampering. This
is because FLASH-based FPGAs have non-volatile memory,
which makes it more difficult for attackers to tamper with the
device’s configuration or extract sensitive data. FLASH-based
FPGAs are also suitable for applications where the device
needs to be restarted quickly and reliably, such as in safety-
critical systems.

On the other hand, SRAM-based FPGAs are preferred in
aerospace and defense systems that require high performance

and reconfigurability. SRAM-based FPGAs can be reconfig-
ured on-the-fly, allowing for real-time changes to the device’s
functionality. This makes them suitable for applications such
as software-defined radios, where the device’s configuration
needs to be adjusted frequently to accommodate changing
communication protocols.

Some key differences between these two types of FPGAs
are summarized below:

• Configuration: SRAM-based FPGAs are configured ev-
ery time they power up, while Flash-based FPGAs retain
their configuration across power cycles. This means that
Flash-based FPGAs can be used in applications where the
device needs to be restarted quickly and reliably, such as
in safety-critical systems.

• Performance: SRAM-based FPGAs generally have
higher performance and lower latency than Flash-based
FPGAs. SRAM-based FPGAs can be reconfigured on-
the-fly, while Flash-based FPGAs need to be repro-
grammed each time they are reconfigured.

• Power consumption: Flash-based FPGAs consume less
power than SRAM-based FPGAs. Flash-based FPGAs do
not need to be reconfigured every time they are powered
up, and they do not require a battery or other power
source to retain their configuration.

III. SPACEWIRE NODE SOC

SpaceWire IP core [6], can be implemented on both SRAM-
based FPGAs (such as AMD-Xilinx) and FLASH-based FP-
GAs (such as the Microchip Polarfire Family).

To illustrate these differences, an SpaceWire reference de-
sign was created for both technologies, as shown in the block
diagram in Figure 1.

The reference design includes basically a soft processor and
the SpaceWire IP core. The use of a soft processor comes
from the need to use a RISC-V processor in Microsemi’s
technology. For this reason, the design developed in Xilinx
technology must be done using a Microblaze processor, to be
able to compare both designs properly.

The SpaceWire IP core has different interfaces. The
SpaceWire protocol determines a differential full duplex com-
munication with strobe signaling. This means that it is neces-
sary two differential lines for transmitting both the data and
strobe signals, and two differential lines for receiving the data
and strobe signals.

As it is said before, SpaceWire employs Data-Strobe (DS)
encoding, which combines the transmission clock with the
data through Data and Strobe lines. This allows for the clock
to be easily retrieved by XORing the two lines. The data is
transmitted as is, while the Strobe signal alters its state when
the data remains unchanged from one data bit interval to the
next. DS encoding is implemented to enhance skew tolerance,
which can reach up to nearly 1-bit time. This is in contrast to
the 0.5 bit time achieved with basic data and clock encoding.

The XORing recovery operation of this SpaceWire IP core is
based on asynchronous oversampling of the incoming signals,
instead of recovering the clock by combinational logic. The
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Figure 1. SpaceWire IP Core reference design.

data and strobe signals are sampled at a fixed rate, significantly
faster than the link bitrate, so the bit transitions are detected
by comparing the sampled signals to the previous ones.

On the other hand, there are the AXI4-Lite and AXI-Stream
interfaces. The AXI-Stream interface is used to transmit and
receive data packets to or from a device such as a measure
instrument or a memory with AXI-Stram interface. In this
case, both references designs have a FIFO memory core, which
allows the write or read of data packets between the FIFO
memory and the SpaceWire core through the AXI-Stream
interface.

The AXI4-Lite interface is used to configure the registers
of the SpaceWire IP core. These registers are:

• System Clock frequency: It specifies the system clock
frequency used in the IP core.

• Rx Implementation: It defines if generic mode or fast
mode is used in the receiver.

• Rx Bitrate: Only considered in fast mode implementa-
tion. It defines the received data bitrate.

• Tx Implementation: It defines if generic mode or fast
mode is used in the transmitter.

• Tx Clock frequency: Only considered in fast mode
implementation. Determines the maximum transmitted
data bitrate.

• Rx FIFO Depth: It specifies the Rx FIFO Depth used
in the IP core.

• Tx FIFO Depth: It specifies the Tx FIFO Depth used in
the IP core.

• AXI-S Data Width: Determines the data width of the
AXI-Stram interface.

The HDL code of the IP is highly customizable, allowing for
wide configuration options, previously described. Designers
have the flexibility to choose various parameters, such as
system frequency, AXI-Stream data width, and Tx implemen-
tation, among others. A comprehensive list of all configurable

features can be found in the SpaceWire datasheet [7].
For this experiment analysis, the following parameter con-

figurations were used:
• System Clock frequency: 100 MHz
• spw rx clk: 200 MHz
• spw tx clk: 200 MHz
• Rx Implementation: Fast
• Rx Bitrate: Up to x4
• Tx Implementation: Fast
• Tx Clock frequency: 200 MHz
• Rx FIFO Depth: 4096 bytes
• Tx FIFO Depth: 4096 bytes

IV. IMPLEMENTATIONS

A. Microblaze based implementation on SRAM-based FPGA

Figure 2 shows the high-level design of the SpaceWire
core implemented on a AMD-Xilinx Zynq Ultrascale+ MPSoC
device. The evaluation board used is ZCU102 that includes a
xczu9eg-ffvb1156-2-e SoC device and FMC expansion con-
nectors are used to connect the different SpaceWire cores.

Zynq UltraScale+ MPSoC devices are 16 nm bulk FinFET
technology.This family of products integrates a feature-rich
64-bit quad-core or dual-core ARM Cortex-A53 and dual-
core ARM Cortex-R5F based processing system (PS) and
Xilinx programmable logic (PL) UltraScale architecture in
a single device. The basic building block of an Ultrascale
FPGA is the Configurable Logic Block (CLB). The UltraScale
architecture CLBs provide advanced, high-performance, low-
power programmable logic with:

• Real 6-input look-up table (LUT) capability (configurable
into 2 5-input LUT with separate output but common
adress or logic inputs).

• Distributed memory and shift register logic (SRL) ability.
• Dedicated high-speed carry logic for arithmetic functions.
• Wide multiplexers for efficient utilization.



FMC

AXI AXI

AXI-Stream

AMD-Xilinx Zynq UltraScale + MPSoC
ZCU102 Evaluation Kit

AMD-Xilinx Zynq UltraScale + MPSoC ZCU102 Evaluation Kit

spw_di

spw_si

spw_do

spw_so
axis_m axis_s

axis_s axis_m

Figure 2. SpaceWire Core implemented on AMD-Xilinx Zynq Ultrascale+ SoC device (ZCU102 Evaluation Board).

• Dedicated storage elements that can be configured as flip-
flops or latches with flexible control signals.

As shown in Figure 2, the design is complemented by
a 32-bit soft Microblaze CPU [8] for executing the user
configuration interface. The design also incorporates an AXI
Interconnect IP, which enables access to the internal registers
of the SpaceWire IP.

The design is equipped with auxiliary IPs that manage
SoC reset and initialization, clock tree, and AXI on-chip bus
infrastructure.

Table I summarizes the implementation results after
Place&Route required to implement the whole design. The
resources required to implement SpaceWire IP are detailed in
Table II.

Resources Used Available Percent
6-Input LUT (LUTRAM included) 4820 274080 1.76 %

LUTRAM(512b) 651 144000 0.45 %
Flip-Flop 4366 548160 0.80 %

Block RAMs(36Kb) 17 912 1.86 %

Table I
FPGA RESOURCES USED IN SRAM-BASED AMD-XILINX TECHNOLOGY

TO IMPLEMENT THE WHOLE DESIGN.

Resources Used Available Percent
6-Input LUT (LUTRAM included) 658 274080 0.24 %

LUTRAM(512b) 6 144000 0.01 %
Flip-Flop 756 548160 0.14 %

Block RAMs(36Kb) 3 912 0.33 %

Table II
FPGA RESOURCES USED IN SRAM-BASED AMD-XILINX TECHNOLOGY

TO IMPLEMENT SPACEWIRE IP CORE.

A Power consumption estimation for this design is presented
in Table III.

Power (mW) Percentage
Total Power 794 100.0 %
Static Power 621 78.2 %

Dynamic Power 173 21.8 %

Table III
POWER CONSUMPTION OF THE DESIGN IN SRAM-BASED FPGA

TECHNOLOGY.

B. RISC-V based implementation on FLASH-based FPGA

Figure 3 shows the high-level design of the SpaceWire
core implemented on a Microchip (Microsemi) Polarfire
FPGA device. The evaluation board used for the test
is an MPF300-EVAL-KIT that includes a FLASH-based
MPF300TS-1FCG1152I Polarfire FPGA device [9] and an
FMC extension port used to connect the SpaceWire board.

Polarfire are Non Volatile-based 28nm FPGAs devices. The
Logic Cell, Logic Element as known for this technology, is
composed of 4-input LUT and a D-type flip-flop can be used
as a register or latch. This 4-input LUT with carry chain
can be configured to implement any 4-input combinational
logical function or arithmetic function. The carry chain is used
to implement fast addition and subtraction. PolarFire FPGAs
also include embedded memory blocks, which can be used to
implement data storage and processing functions.The largest
ones, named LSRAM, are 20Kbits each with 20-bit width and
a depth of 1024.

As is shown in Figure 3, the design is completed with a soft
32-bit RISC-V CPU [10] to run the user configuration inter-
face. The design also includes an AXI Interconnect IP, which
provides access to the internal registers of the SpaceWire core.

The design is completed with auxiliary IPs to manage SoC
reset and initialization, clock tree and on-chip bus infrastruc-
ture.

The post Place&Route implementation results for this de-
sign are summarized in Table IV. To aid in the identification
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Figure 3. SpaceWire Core implemented on Polarfire MPF300TS-1FCG1152I device (MPF300-EVAL-KIT Evaluation Board).

of the elements required for the SpaceWire IP and the whole
design, the are shown two different tables.

Table IV summarizes the implementation results after
Place&Route required to implement the whole design. The
resources required to implement SpaceWire IP are detailed in
Table V.

Resources Used Available Percent
4LUT 12356 299544 4.12 %
DFF 5687 299544 1.90 %

single I/O 4 512 0.78 %
differential I/O 4 256 1.56 %
uSRAM(1Kb) 28 2772 1.01 %

LSRAM(18Kb) 3 952 0.32 %

Table IV
FPGA RESOURCES USED IN FLASH-BASED MICROSEMI TECHNOLOGY IN

THE WHOLE DESIGN

Resources Used Available Percent
4-Input LUT 1000 299544 0.33 %

Flip-Flop 728 299544 0.24 %
uSRAM(1Kb) 1 2772 0.04 %

LSRAM(18Kb) 2 952 0.21 %

Table V
FPGA RESOURCES USED IN FLASH-BASED MICROSEMI TECHNOLOGY

TO IMPLEMENT SPACEWIRE IP CORE

A Power consumption estimation for this design is presented
in Table VI.

Power (mW) Percentage
Total Power 250 100.0 %
Static Power 192 76.8 %

Dynamic Power 58 23.2 %

Table VI
POWER CONSUMPTION OF THE DESIGN IN MICROSEMI TECHNOLOGY

V. RESULTS COMPARISON

When comparing the resources used in the SpaceWire IP
core for both SRAM and FLASH-based FPGA technologies,
they appear to be quite similar. However, the design developed
for the Microchip PolarFire device seems to require slightly
more resources than the one implemented on the Xilinx Ultra-
Scale+ device. It is worth noting that UltraScale+ devices have
6-input LUTs, while PolarFire devices have 4-input LUTs,
which has an impact on the resource usage.

The results presented in Table VII provide a comparison of
LUT resources in the SpaceWire core for the two different
FPGA technologies. To account for the difference between 6-
Input LUTs used in Xilinx devices and 4-Input LUTs used in
Microchip devices, a scaling factor of 2.1875, as suggested
by AMD-Xilinx [11], was applied. To compare the SRAM
memory resources used in both cases, we considered the total
size of each block type. The AMD-Xilinx LUTRAMs offer
up to 512 bits, while the BRAM size is 36 Kb. On the other
hand, the LSRAM memory blocks of Microsemi are 18 Kb in
size, while the uSRAM size is 1 Kb.

Resources SRAM-based FPGA FLASH-based FPGA
4-Input LUT 1426 ((658-6)*2.1875) 1000

Flip-Flop 756 728
RAM(Kb) 111 (6*0.512+3*36) 37 (2*18+1*1)

Table VII
FPGA RESOURCES COMPARED FOR SRAM-BASED AND FLASH-BASED

FPGA TECHNOLOGY TO IMPLEMENT SPACEWIRE IP CORE

In terms of power consumption, the total power of the
design implemented on the Microchip device is significantly
lower than that of the Xilinx device as it can be shown in
Table VIII. This is mainly due to the use of FLASH-based
technology. Unlike SRAM, FLASH memory is non-volatile
and does not require power to maintain its contents, which
results in significantly lower static power consumption.



SRAM-based
FPGA (mW)

FLASH-based
FPGA (mW)

Ratio (SRAM-
b/FLASH-b)

Total Power 794 250 3.18
Static Power 621 192 3.23
Dynamic Power 173 58 2.98

Table VIII
POWER CONSUMPTION OF THE DESIGN IN SRAM-BASED AND

FLASH-BASED RECONFIGURABLE TECHNOLOGY.

VI. CONCLUSION

In conclusion, this research compared two implementa-
tions of SpaceWire nodes, one based on SRAM-based FPGA
technology and the other based on FLASH-based FPGA
technology, in terms of FPGA resource requirements and
estimated power consumption. Both implementations used the
same HDL SpaceWire IP core, but with different CPUs, and
were analyzed for their performance and energy efficiency.
Although the comparisons are made between two devices with
some differences such as the technology nodes or performance,
the results can give an idea of the differences between both
FLASH and SRAM based technologies.

The results showed that the FLASH-based implementation
required fewer FPGA resources and had lower power con-
sumption than the SRAM-based implementation. The selec-
tion of each technology for a specific application not only
depends on the factors discussed in this paper (there are other
important features like reprogrammability, radiant resistance
or volatility). Nevertheless, one important fact that can affect
to the election of an specific techology for an application is
the power consumption. Nowadays, the term “new-space” is
becoming more popular and it refers to the tendency of sending
to the space small spacecrafts (instead of big ones), so they
need to reduce their power consumption. Because of this, as it
has been discussed here, a FLASH based FPGA solution can
achieve this goal.

The study also highlighted the benefits and drawbacks of
each FPGA technology, making it easier for designers to
choose the right technology for their specific application. This
research provides valuable insights for the development of
future spacecraft data-handling systems, contributing to the
continued improvement of space exploration technology.
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