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Abstract: The purpose of this study is to present fixed-point results for Suzuki-type multi-valued
maps using relation theory. We examine a range of implications that arise from our primary discovery.
Furthermore, we present two substantial cases that illustrate the importance of our main theorem.
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1. Introduction

Mathematical analysis has witnessed a significant surge in interest regarding the exam-
ination of fixed-point outcomes for diverse maps in recent times. The Banach contraction
principle (BCP) is a fundamental theorem in classical mathematics. Drawing upon this
initial framework, other scholars have expanded and broadened the concept of the BCP to
incorporate a wide range of circumstances and maps (see [1–8]).

Suzuki’s [9] generalization of the BCP introduced a new class of contractive maps
that satisfy contraction conditions only for specific elements of the underlying space.
Subsequently, Alam and Imdad [10] expanded the boundaries of the BCP by considering a
complete metric space (CMS) equipped with a binary relation. They introduced the concept
of relation-theoretic contraction, which applies to elements related under the binary relation
rather than the entire space. Other researchers, such as Song-il Ri [11], further extended the
BCP for a new class of contractive maps.

In 1969, Nadler Jr. [12] extended the BCP to multi-valued maps, yielding a fixed-point
result for multi-valued contractions. This result was subsequently refined by Ciric [13]
and led to a broader class of multi-valued contractions. Numerous mathematicians have
contributed to the generalization of Nadler’s theorem (see [4,5,13–18]), with Kikkawa and
Suzuki [15] achieving significant progress in the study of generalized multi-valued maps.

Motivated by the works of Alam and Imdad [10], Kikkawa and Suzuki [15], and others,
we present some new fixed-point results for multi-valued maps in relational metric spaces.
These results extend and generalize the findings from previous studies by Alam and
Imdad [10], Ciric [13], Kikkawa and Suzuki [15], Nadler [12], and others. Furthermore,
the paper provides illustrative examples to support these findings and explores the stability
of fixed-point sets for multi-valued maps within the framework of relational metric spaces.
Lastly, by applying the presented results, the paper establishes the existence and uniqueness
of solutions for a class of functional equations arising in dynamic programming.
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2. Preliminaries

In this section, we recapitulate relevant notation, definitions, and results from the
literature [12,13,18]. Throughout this paper, we denote a metric space (MS) as (L, γ), where
L is a set and γ is a metric on L. We use CB(L) to represent the collection of all nonempty
closed and bounded subsets of L, and C(L) to denote the collection of all nonempty
compact subsets of L. The Hausdorff metric ΓH induced by γ is

ΓH(A,B) = max

{
sup
ω∈A

Γ(ω,B), sup
v∈B

Γ(v,A)
}

,

for all A,B ∈ CB(L). Here, Γ(ω,B) = inf
v∈B

γ(ω, v).

Let F : L → CB(L) be a multi-valued map. A point ϑ ∈ L is termed a fixed point
of F if ϑ ∈ Fϑ, and it is a strict fixed point of F if {ϑ} = Fϑ. We denote the sets of fixed
points and strict fixed points of F as F(F ) and SF(F ), respectively.

Theorem 1 ([12]). Consider a CMS (L, γ) and a multi-valued map F : L → CB(L). If for all
ω, v ∈ L

ΓH(Fω,Fv) ≤ κγ(ω, v), (1)

where κ ∈ [0, 1), then F possesses a fixed point.

Theorem 2 ([13]). Suppose (L, γ) is a CMS and F : L → CB(L) is a multi-valued map. If for
all ω, v ∈ L

ΓH(Fω,Fv) ≤ κm(ω, v), (2)

where κ ∈ [0, 1), and if

m(ω, v) = max
{

γ(ω, v), Γ(ω,Fω), Γ(v,Fv),
Γ(ω,Fv) + Γ(v,Fω)

2

}
,

then F has a fixed point.

Definition 1 ([15]). Let φ : [0, 1)→ (1/2, 1] be defined as φ(κ) = 1
1+κ . For an MS (L, γ) and a

subsetM⊆ L, a map F :M→ CB(L) is called an a-KS multi-valued operator if κ ∈ [0, 1) and

ω, v ∈ M with φ(κ)Γ(ω,Fω) ≤ γ(ω, v) implies ΓH(Fω,Fv) ≤ κγ(ω, v). (3)

Theorem 3 ([15]). Let (L, γ) be a CMS and F be an a-KS multi-valued operator from L into
CB(L). Then, ∃ ϑ ∈ L such that ϑ ∈ Fϑ.

Definition 2 ([11]). Let Φ =

{
ϕ : [0, ∞)→ [0, ∞) : ϕ(ω) < ω, ω > 0 and lim sup

s→ω+

ϕ(s) < ω

}
.

Now, we recall some relation-theoretic auxiliaries:

Definition 3 ([10,19]). Let L be a nonempty set and ℵ ⊆ L×L. Then, we say

(1) ℵ is a binary relation on L and “ω relates to v under ℵ" if and only if (ω, v) ∈ ℵ.
(2) ω and v are ℵ-comparative, if either (ω, v) ∈ ℵ or (v, ω) ∈ ℵ, and denoted by [ω, v] ∈ ℵ.
(3) ℵ is complete, connected, or dichotomous if [ω, v] ∈ ℵ for all ω, v ∈ L.
(4) A sequence {ωη} is called ℵ-preserving if (ωη , ωη+1) ∈ ℵ for all η ∈ N∪ {0}.
(5) ℵ is γ-self-closed if whenever {ωη} is ℵ-preserving sequence and ωη

γ−→ ω then there exists a
subsequence {ωηκ} of {ωη} with [ωηκ , ω] ∈ ℵ for all κ ∈ N∪ {0}.
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Definition 4 ([20]). Let (L, γ) be an MS and F : L → CB(L) be a multi-valued map. Then,
a binary relation ℵ on L is called F -γ-closed if for every

(ω, v) ∈ ℵ, u ∈ Fω, v ∈ Fv, γ(u, v) ≤ γ(ω, v) =⇒ (u, v) ∈ ℵ.

Remark 1. It we consider F := f as a single-valued map on L, then ℵ is called f -γ-closed if
(ω, v) ∈ ℵ, ( f ω, f v) ≤ γ(ω, v)⇒ ( f ω, f v) ∈ ℵ.

Definition 5 ([21]). Consider an MS (L, γ) and ℵ is a binary relation on L. Let ω ∈ L, then
a function f : L → R ∪ {+∞,−∞} is said to be ℵ-lower semi-continuous at ω if, for any
ℵ-preserving sequence {ωη} ⊆ L that converges to ω, the inequality f (ω) ≤ lim inf

η→∞
f (ωη) holds.

Definition 6 ([19]). Given a binary relation ℵ defined on a nonempty set L, the image of an
element a ∈ L under the relation ℵ is denoted as Im(a,ℵ) and is defined as {ω ∈ L : (a, ω) ∈
ℵ or ω = a}.

3. Main Results

Theorem 4. Consider a CMS (L, γ) equipped with a binary relation ℵ on L. Suppose F : L →
CB(L) is a multi-valued map that satisfies the following conditions:

(a) ∃ ω1 ∈ L such that Fω1 ∩ Im(ω1,ℵ) 6= ∅;
(b) ℵ is F -γ-closed and transitive;
(c) either the function f (ω) := Γ(ω,Fω) is ℵ-lower semi-continuous or
(d) for any trajectory {ωη} ⊂ L of F , if {ωη} → ω and ωη+1 ∈ Fωη for all η ∈ N, then the

sequence {ωη} has a subsequence (ωηκ ) such that [ωηκ , ω] ∈ ℵ for all κ ∈ N;
(e) ∃ ϕ ∈ Φ such that for any ω ∈ L, v ∈ Fω with (ω, v) ∈ ℵ

1
2

Γ(ω,Fω) ≤ γ(ω, v) implies ΓH(Fω,Fv) ≤ ϕ(m(ω, v)), (4)

where m(ω, v) is as in Theorem 2.

Then, F has a fixed point.

Proof. Since ω1 ∈ L then in view of assumption (a), let ω2 ∈ Fω1 ∩ Im(ω1,ℵ), that
is, ω2 ∈ Fω1 and (ω1, ω2) ∈ ℵ. As 1

2 Γ(ω1,Fω1) ≤ Γ(ω1,Fω1) ≤ γ(ω1, ω2), then
condition (4) implies that

Γ(ω2,Fω2) ≤ ΓH(Fω1,Fω2)

≤ ϕ(m(ω1, ω2)) (5)

where

m(ω1, ω2) = max
{

γ(ω1, ω2), Γ(ω1,Fω1), Γ(ω2,Fω2),
Γ(ω1,Fω2) + Γ(ω2,Fω1)

2

}
.

Here, it is easy to conclude from (5) that m(ω1, ω2) = γ(ω1, ω2), otherwise we will obtain
a contradiction. Thus,

Γ(ω2,Fω2) ≤ ϕ(γ(ω1, ω2)).

Since Fω2 is a closed and bounded set, thus ∃ ω3 ∈ Fω2 such that

γ(ω2, ω3) ≤ ϕ(γ(ω1, ω2)) < γ(ω1, ω2)

and from hypothesis (b), it follows that (ω2, ω3) ∈ ℵ. Now, continuing this process again
and again, we can construct a sequence {ωη} ⊆ L such that ωη+1 ∈ Fωη , (ωη , ωη+1) ∈ ℵ
and

γ(ωη+2, ωη+1) ≤ ϕ(γ(ωη+1, ωη)) < γ(ωη+1, ωη) for all η ∈ N.
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Set γη := γ(ωη+1, ωη). Thus, {γη} is a monotonically decreasing and bounded-below
sequence of non-negative numbers. This implies that lim

η→∞
γη exists.

Suppose lim
η→∞

γη = γ > 0 and γη = γ+ ξη with ξη > 0. Since for all t > 0, lim sup
s→t+

ϕ(s) < t

for (tη) with tη ↓ γ+, we have lim sup
tη→γ+

ϕ(tη) < γ. Hence, we obtain

0 < γ = lim
η→+∞

γη+1 ≤ lim
η→+∞

ϕ(γη) ≤ lim
η→+∞

sup
s∈(γ,γη+1)

ϕ(s)

= lim
γη+1→+0

sup
s∈(γ,γ+ξη+1)

ϕ(s) ≤ lim
ξ→+0

sup
s∈(γ,γ+ξ)

ϕ(s) < γ,

a contradiction. Thus,

lim
η→∞

γη = 0 or lim
η→∞

γ(ωη , ωη+1) = 0 for η ∈ N. (6)

Therefore, for any ε > 0 there exists κ ∈ N such that

γ(ωηκ , ωηκ+1) < ε for ηκ ≥ κ. (7)

Assume that (ωη) is not a Cauchy sequence in L. Then, for each positive integer κ, there
exists an ε > 0 and sequences of positive integers {mκ}, {ηκ} such that κ ≤ mκ < ηκ and
the following assertions hold:

γ(ωmκ , ωηκ ) ≥ ε. (8)

Without loss of generality, we may assume that ηκ is the smallest integer greater than mκ

satisfying the inequality (8) and

γ(ωmκ , ωηκ−1) < ε. (9)

Then, by triangle inequality and using inequality (9), we have

γ(ωmκ , ωηκ ) ≤ γ(ωmκ , ωηκ−1) + γ(ωηκ−1, ωηκ )

< γ(ωηκ , ωηκ−1) + ε.

Making κ → ∞ and using (6), we obtain

lim
κ→∞

γ(ωmκ , ωηκ ) = ε. (10)

From (7) and (8), we have

1
2

γ(ωηκ , ωηκ+1) ≤ γ(ωmκ ωηκ ) for all ηκ > mκ ≥ κ. (11)

Then, from condition (4) and by triangle inequality, we have

γ(ωmκ , ωηκ ) ≤ γ(ωmκ , ωmκ+1) + γ(ωmκ+1, ωηκ+1) + γ(ωηκ+1, ωηκ )

≤ γ(ωmκ , ωmκ+1) + ΓH(Fωmκ ,Fωηκ ) + γ(ωηκ+1, ωηκ )

≤ γ(ωmκ , ωmκ+1) + ϕ
(
m(ωmκ , ωηκ )

)
+ γ(ωηκ+1, ωηκ ).

Making κ → ∞ and using (6) and (10), we obtain

ε ≤ lim
κ→∞

ϕ
(
m(ωmκ , ωηκ )

)
.
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Since ε = lim
κ→∞

m(ωmκ , ωηκ ). Then, by lim sup
s→t+

ϕ(s) < t for all t > 0, we obtain

ε ≤ lim
κ→∞

ϕ
(
m(ωmκ , ωηκ )

)
≤ lim

δ→+0
sup

s∈(ε,ε+δ)

ϕ(s) < ε,

which is a contradiction. Hence, the sequence {ωη} is a Cauchy in L. Since L is complete,
{ωη} converges to ϑ ∈ L.

Now, if f (ω) = Γ(ω,Fω) is lower semi-continuous at the point ϑ, then we have

Γ(ϑ,Fϑ) = f ϑ ≤ lim inf
η→∞

f (ωη) = lim inf
η→∞

Γ(ωη ,Fωη) = 0.

The closedness of Fϑ implies ϑ ∈ Fϑ.
On the other hand, if hypothesis (d) holds, then the sequence {ωη} has a subsequence

{ωηκ} such that [ωηκ , ϑ] ∈ ℵ for all κ ∈ N. Now, we show that

either
1
2

γ(ωηκ , ωηκ+1) ≤ γ(ωηκ , ϑ) or
1
2

γ(ωηκ+1, ωηκ+2) ≤ γ(ωηκ+1, ϑ), (12)

for κ ∈ N. By inference and contradiction, we assume that

1
2

γ(ωηκ , ωηκ+1) > γ(ωηκ , ϑ) and
1
2

γ(ωηκ+1, ωηκ+2) > γ(ωηκ+1, ϑ)

for each η ∈ N. As a result of the triangle inequality, we have

γ(ωηκ , ωηκ+1) ≤ γ(ωηκ , ϑ) + γ(ϑ, ωηκ+1)

<
1
2

γ(ωηκ , ωηκ+1) +
1
2

γ(ωηκ+1, ωηκ+2)

<
1
2

γ(ωηκ , ωηκ+1) +
1
2

γ(ωηκ , ωηκ+1) = γ(ωηκ , ωηκ+1).

This contradicts itself. The inequality (12) is valid for η ∈ N. Since the first scenario,

1
2

Γ(ωηκ ,Fωηκ ) ≤
1
2

γ(ωηκ , ωηκ+1) ≤ γ(ωηκ , ϑ)

by (4), we have
Γ(ωηκ+1,Fϑ) ≤ ΓH(Fωηκ ,Fϑ) ≤ ϕ

(
m(ωηκ , ϑ)

)
.

We obtain by adding κ → ∞,

Γ(ϑ,Fϑ) ≤ lim
κ→∞

ϕ(m(ωηκ , ϑ))

Also, lim
κ→∞

m(ωηκ , ϑ) = Γ(ϑ,Fϑ). Let Γ = Γ(ϑ,Fϑ). Then, by lim sup
s→t+

ϕ(s) < t for all t > 0,

we obtain

Γ ≤ lim
κ→∞

ϕ(m(ωηκ , ϑ)) ≤ lim
δ→+0

sup
s∈(Γ,Γ+δ)

ϕ(s) < Γ.

Therefore, unless Γ = 0 or Γ(ϑ,Fϑ) = 0, is a contradiction. This suggests that ϑ ∈ Fϑ. In
the other scenario, we can conclude that ϑ ∈ Fϑ.

Considering F := f as a single-valued map, we obtain the following result:

Theorem 5. Let (L, γ) be a CMS and ℵ be a binary relation on L. If f : L → L is a map and the
following conditions are satisfied:

(a) L( f ,ℵ) 6= ∅;
(b) ℵ is f -γ-closed and transitive;
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(c) either the function f (ω) := γ(ω, f ω) is ℵ-lower semi-continuous or
(d) ℵ is γ-self closed;
(e) ∃ ϕ ∈ Φ such that for any ω, v ∈ L with (ω, v) ∈ ℵ

1
2

γ(ω, f ω) ≤ γ(ω, v) implies ΓH( f ω, f v) ≤ ϕ(η(ω, v)),

where η(ω, v) =

{
γ(ω, v), γ(ω, f ω), γ(v, f v),

γ(ω, f v) + γ(v, f ω)

2

}
,

then, f has a fixed point.

If we assume ℵ := L×L as a universal relation on L, then we obtain the following
result:

Theorem 6. Let (L, γ) be a CMS and F : L → CB(L) a multi-valued map such that

1
2

Γ(ω,Fω) ≤ γ(ω, v) implies ΓH(Fω,Fv) ≤ ϕ(m(ω, v)), (13)

for any ω ∈ L, v ∈ Fω, where m(ω, v) is as in Theorem 2 and ϕ is as in Definition 2, then F
has a fixed point in L.

If we replace m(ω, v) = max{γ(ω, v), Γ(ω,Fω), Γ(v,Fv)} in Theorem 4, then we
obtain the following result.

Corollary 1. Let (L, γ) be a CMS endowed with a binary relation ℵ on L. If F : L → CB(L) is
a multi-valued map and satisfying the following conditions:

(a) ∃ ω1 ∈ L such that Fω1 ∩ Im(ω1,ℵ) 6= ∅;
(b) ℵ is F -γ-closed and transitive;
(c) either the function f (ω) := Γ(ω,Fω) is ℵ-lower semi-continuous or
(d) for any trajectory {ωη} ⊂ L of F , if {ωη} → ω and ωη+1 ∈ Fωη for all η ∈ N then the

sequence {ωη} has a subsequence (ωηκ ) such that [ωηκ , ω] ∈ ℵ for all κ ∈ N;
(e) ∃ ϕ ∈ Φ such that for any ω ∈ L, v ∈ Fω with (ω, v) ∈ ℵ

1
2

Γ(ω,Fω) ≤ γ(ω, v) implies ΓH(Fω,Fv) ≤ ϕ(max{γ(ω, v), Γ(ω,Fω), Γ(v,Fv)}),

then F has a fixed point.

Similarly, if we replace m(ω, v) = γ(ω, v) in Theorem 4, then we obtain the following
result.

Corollary 2. Let (L, γ) be a CMS endowed with a binary relation ℵ on L. If F : L → CB(L) is
a multi-valued map and satisfying the following conditions:

(a) ∃ ω1 ∈ L such that Fω1 ∩ Im(ω1,ℵ) 6= ∅;
(b) ℵ is F -γ-closed and transitive;
(c) either the function f (ω) := Γ(ω,Fω) is ℵ-lower semi-continuous or
(d) for any trajectory {ωη} ⊂ L of F , if {ωη} → ω and ωη+1 ∈ Fωη for all η ∈ N then the

sequence {ωη} has a subsequence (ωηκ ) such that [ωηκ , ω] ∈ ℵ for all κ ∈ N;
(e) ∃ ϕ ∈ Φ such that for any ω ∈ L, v ∈ Fω with (ω, v) ∈ ℵ

1
2

Γ(ω,Fω) ≤ γ(ω, v) implies ΓH(Fω,Fv) ≤ ϕ(γ(ω, v)),

then F has a fixed point.
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Example 1. Let L = {l, m, p, r, s}, ℵ = {(p, p), (p, r), (p, l), (p, m), (r, r), (r, l), (r, m),
(l, m), (l, r), (l, l), (m, r), (m, l), (m, m)} ⊂ L×L and γ is the metric on L defined by

γ(ω, ω) = 0, γ(ω, v) = γ(v, ω) for all ω, v ∈ L,

γ(p, r) = γ(p, l) = γ(p, m) = 1,

γ(r, l) = γ(r, m) = γ(l, m) =
3
2

,

γ(s, l) = γ(s, m) = γ(s, p) = γ(s, r) = 2.

Then, (L, γ) is a CMS. Define ϕ : [0, ∞)→ [0, ∞) and F : L → CB(L) by

ϕ(ω) =

{
ω2

2 , if ω ≤ 1,
ω− 1

4 , otherwise;
Fω =


{p}, if ω ∈ {p, r, m},
{r, m}, if ω = l.
{s}, if ω = s.

Then, ℵ is F -γ-closed, transitive and f (ω) = Γ(ω,Fω) is a continuous map on L implying it is
ℵ-lower semi-continuous on L. Now, we consider the followings cases.

Case 1: ω, v ∈ {p, r, m} or ω = v = l and (ω, v) ∈ ℵ. Then,

ΓH(Fω,Fv) = 0 ≤ ϕ(γ(ω, v)).

Case 2: (ω, v) = (p, l) ∈ ℵ. Then,

ΓH(F (p),F (l)) = ΓH({p}, {r, m}) = 1 <
5
4
= ϕ(Γ(l,F (l))).

Case 3: (ω, v) = (r, l) or (l, r) ∈ ℵ. Then,

ΓH(F (r),F (l)) = 1 <
5
4
= ϕ(γ(r, l)).

Case 4: (ω, v) = (l, m) or (m, l) ∈ ℵ. Then,

ΓH(F (l),F (m)) = 1 <
5
4
= ϕ(γ(l, m)).

Thus, in all the cases, ΓH(Fω,Fv) ≤ ϕ(m(ω, v)), and (4) is satisfied. Further, all the conditions
of Theorem 4 are satisfied and the mapping F has two fixed points at p ∈ F (p) and s ∈ F (s).
However, for ω = p and ϕ = s, the mapping F does not satisfy contraction conditions (1), (2),
and (3). Consequently, Theorems 1–3 cannot be applied to this particular example.

Example 2. Let L = [−3, 5], ℵ = L× L and γ be the usual metric L. Then, (L, γ) is a CMS.
Define ϕ : [0, ∞)→ [0, ∞) and F : L → CB(L) by

ϕ(ω) =

{
ω2

2 , if ω ≤ 1,
ω− 1

3 , otherwise;
Fω =

{{
ω
3 , 0
}

, if ω < 0,[
0, ω

3
]
, if ω ≥ 0.

We consider the followings cases.

Case 1: ω, v < 0. Then,

ΓH(Fω,Fv) = ΓH
({ω

3
, 0
}

,
{v

3
, 0
})

= max
{∣∣∣ω

3
− v

3

∣∣∣, ∣∣∣ω
3

∣∣∣, ∣∣∣v
3

∣∣∣}
≤ ϕ(max{γ(ω, v), Γ(ω,Fω), Γ(v,Fv)}).
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Case 2: ω < 0, v > 0. Then,

ΓH(Fω,Fv) = ΓH
({ω

3
, 0
}

,
[
0,

v

3

])
= max

{∣∣∣ω
3

∣∣∣, ∣∣∣v
3

∣∣∣}
≤ ϕ(max{Γ(ω,Fω), Γ(v,Fv)}).

Case 3: ω, v ≥ 0. Then,

ΓH(Fω,Fv) = ΓH
([

0,
ω

3

]
,
[
0,

v

3

])
=

∣∣∣ω
3
− v

3

∣∣∣ ≤ |ω−v|.

Thus, in all the cases, ΓH(Fω,Fv) ≤ ϕ(m(ω, v)), and (4) is satisfied. Since under universal
relation that is, ℵ = L×L, conditions (b) and (d) both are obviously true. Thus, all the assertions
of Theorem 4 are fulfilled, leading to the conclusion that 0 ∈ F (0) ⊂ L is a fixed point for the
map F .

4. Stability of Fixed-Point Sets and Well-Posedness

The stability of fixed points is concerned with understanding whether small deviations
from a fixed point will lead the system’s solutions to stay close to the fixed point or diverge
away from it. This topic has been explored in various works; see [4–6,14,16,22–27]. Here,
we delve into the stability of fixed-point sets for multi-valued maps. Our exploration begins
with the following lemma.

Lemma 1 ([12]). In an MS (L, γ), for every ω ∈ L ∃ v ∈ B ∈ C(L) such that γ(ω, v) =
Γ(ω,B).

Theorem 7. Let ℵ be a binary relation on a CMS (L, γ) and Fj : L → C(L) (j ∈ {1, 2}) are

two multi-valued maps satisfying all the assumptions of Theorem 4 with
∞
∑

κ=1
ϕκ(ω) < ∞ for all

ω > 0. Then,

(a) F(Fj) 6= ∅ (j ∈ {1, 2}).

(b) ΓH(F(F1), F(F2)) ≤ Ψ(L), where L = sup
ω∈L

ΓH(F1(ω),F2(ω)) and Ψ(L) =
∞
∑

κ=1
ϕκ(L).

Proof. The validity of Theorem 4 guarantees the existence of nonempty fixed-point sets
F(Fj) 6= ∅ for j ∈ {1, 2}, satisfying condition (a). Moving on, let us assume ϑ1 ∈ F(F1),
implying ϑ1 ∈ F1ϑ1. Using Lemma 1, since F2ϑ1 is a compact subset of L, in view of
Lemma 1, there exists ϑ2 ∈ F2ϑ1 such that γ(ϑ1, ϑ2) = Γ(ϑ1,F2ϑ1). Repeating this process
with Lemma 1, we determine ϑ3 ∈ F2ϑ2 such that γ(ϑ2, ϑ3) = Γ(ϑ2,F2ϑ2). Continuing
this iteration and following the proof strategy of Theorem 4, we generate an ℵ-preserving
sequence {ϑη} that fulfills

ϑη+1 ∈ F2ϑη and γ(ϑη+1, ϑη+2) ≤ ϕ(γ(ϑη , ϑη+1)) ≤ · · · ≤ ϕη(γ(ϑ1, ϑ2)). (14)

Now, as we follow the proof of Theorem 4, it becomes evident that the sequence {ϑη}
is an ℵ-preserving Cauchy sequence. Thus, it inevitably converges to a point w ∈ L.
Furthermore, it can be established that w is a fixed point of F2 since

γ(ϑ1, ϑ2) = Γ(ϑ1,F2ϑ1) ≤ ΓH(F1ϑ1,F2ϑ2).
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Now, using the definition of L, we obtain

γ(ϑ1, ϑ2) ≤ L = sup
ω∈L

ΓH(F1ω,F2ω). (15)

With the triangle inequality and Equation (14), we obtain

γ(ϑ1, w) ≤
η+1

∑
κ=1

γ(ϑi, ϑi+1) + γ(ϑη+2, w) ≤
η

∑
κ=1

ϕκ(γ(ϑ1, ϑ2)) + γ(ϑη+2, w).

Taking the limit as η → ∞ and utilizing Equation (15), we derive

γ(ϑ1, w) ≤
∞

∑
κ=1

ϕκ(γ(ϑ1, ϑ2)) + γ(ϑη+2, w) ≤
∞

∑
κ=1

ϕκ(L) = Ψ(L).

Consequently, given ϑ1 ∈ F(F1), we find w ∈ F(F2) satisfying γ(ϑ1, w) ≤ Ψ(L). Similarly,
it can be proven that for any w1 ∈ F(F2), ∃ u ∈ F(F1) such that γ(w1, u) ≤ Ψ(L). This
concludes the proof of condition (b).

Lemma 2. Assume that (L, γ) is a CMS, ℵ is a binary relation on L, and Fη : L → CB(L)
(η ∈ N) is a sequence of multi-valued maps. If (Fη) converges uniformly to F : L → CB(L) for
each η ∈ N and Fη satisfies all the conditions of Theorem 4, then F also satisfies (4) and has a fixed
point in L.

Proof. Let ω ∈ L and v ∈ Fω be such that (ω, v) ∈ ℵ. Since each Fη satisfies (4), we
have

1
2

Γ(ω,Fηω) ≤ γ(ω, v) implies ΓH(Fηω,Fηv) ≤ ϕ(mη(ω, v))

for all ω ∈ L, v ∈ Fω with (ω, v) ∈ ℵ, where

mη(ω, v) = max
{

γ(ω, v), Γ(ω,Fηω), Γ(v,Fηv),
Γ(ω,Fηv) + Γ(v,Fηω)

2

}
.

By letting η → ∞ while maintaining uniform convergence, and following a similar argu-
ment as in the proof of Theorem 4, we conclude that

1
2

Γ(ω,Fω)) ≤ γ(ω, v) implies ΓH(Fω,Fv) ≤ ϕ(m(ω, v))

for all ω ∈ L, v ∈ Fω with (ω, v) ∈ ℵ, where m(ω, v) is as defined in Theorem 4. This
implies that F satisfies (4). Since L is complete and F satisfies (4), F has a fixed point in
L.

Theorem 8. Suppose ℵ is a binary relation on a CMS (L, γ). If a sequence of maps {Fη}, where
Fη : L → CB(L) for all η ∈ N, converges uniformly to a function F : L → CB(L) and for each
η ∈ N, Fη satisfies all the conditions of Theorem 4, then F(Fη) 6= ∅ for all η ∈ N and F(F ) 6= ∅.

Moreover, let Ψ(ω) =
∞
∑

κ=1
ϕκ(ω) and lim

ω→0
Ψ(ω) = 0, then lim

η→∞
ΓH(F(Fη), F(F )) = 0.

Proof. By Lemma 2, F(Fη) 6= ∅ for all η ∈ N and F(F ) 6= ∅. Suppose
Lη = sup

ω∈L
ΓH(Fηω,Fω). For (Fη) being uniformly convergent to F , we obtain

lim
η→∞

sup
ω∈L

ΓH(Fηω,Fω) = 0.



Mathematics 2023, 11, 4271 10 of 13

From Theorem 7, we have

ΓH(Fη(F ), F(F )) ≤ Ψ(Lη) for all η ∈ N.

Further, lim
ω→0

Ψ(ω) = 0 implies

lim
η→∞

ΓH(Fη(F ), F(F )) ≤ lim
η→∞

Ψ(Lη) = 0.

Therefore, sets of fixed points of Fη are stable.

Now, we show that the fixed-point problem (fpp) is well-posed. We begin with the
following definitions.

Definition 7. Assume that (L, γ) is an MS, ℵ is a binary relation, and F : L → CB(L) is a
multi-valued map. We say fpp is well-posed for F with respect to Γ if

(i) SF(F ) = {ϑ};
(ii) for anyℵ-preserving sequence (ωη) inLwith lim

η→∞
Γ(ωη ,Fωη) = 0, we have lim

η→∞
γ(ωη , ϑ) = 0.

Definition 8. Assume that (L, γ) is an MS, ℵ is a binary relation, and F : L → CB(L) is a
multi-valued map. We say fpp is well-posed for F with respect to ΓH if

(i) SF(F ) = {ϑ};
(ii) for anℵ-preserving sequence (ωη) inLwith lim

η→∞
ΓH(ωη ,Fωη) = 0, we have lim

η→∞
γ(ωη , ϑ) = 0.

Notice that when F(F ) = SF(F ) and fpp is well-posed for F with respect to Γ, then
it is well-posed with respect to ΓH.

Theorem 9. Let all the conditions of Corollary 1 be true along with assertions (i) SF(F ) 6= φ
and (ii) all fixed points of F are comparative. Then,

(a) F(F ) = SF(F ) = {ϑ};
(b) the fpp is well-posed for F with respect to ΓH.

Proof. (a) Let u ∈ SF(F ) and ϑ ∈ F(F ) such that u 6= ϑ. This leads to 0 = 1
2 Γ(u,Fu) <

γ(u, ϑ). As all fixed points of F are comparative, so we have (u, ϑ) ∈ ℵ. Using (4) we find

ΓH(Fu,Fϑ) ≤ ϕ(max{γ(u, ϑ), Γ(u,Fu), Γ(ϑ,Fϑ)})
= ϕ(γ(u, ϑ)) < γ(u, ϑ).

This leads to
γ(u, ϑ) = Γ(ϑ,Fu) ≤ ΓH(Fu,Fϑ) < γ(u, ϑ),

which is contradictory unless u = ϑ.

(b) Let {ωη} be an ℵ-preserving sequence in L such that lim
η→∞

Γ(ωη ,Fωη) = 0. We aim to

prove lim
η→∞

γ(ωη , ϑ) = 0.

Assume for contradiction that lim
η→∞

γ(ωη , ϑ) 6= 0. Then, ∃ ε > 0 such that ε < γ(ωη , ϑ)

for each η ∈ N. As ℵ is γ-self-closed and lim
η→∞

Γ(ωη ,Fωη) = 0, ∃ a subsequence {ωηκ} of

{ωη} with [ωηκ , ω] and a number η0 ∈ N such that

Γ(ωηκ ,Fωηκ ) < ε for each ηκ ≥ η0.
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For ηκ ≥ η0, we have 1
2 Γ(ωηκ ,Fωηκ ) < ε < γ(ωηκ , ϑ). Utilizing (4), we obtain

γ(ωηκ , ϑ) = Γ(ωηκ ,Fϑ)

≤ Γ(ωηκ ,Fωηκ ) + ΓH(Fωηκ ,Fϑ)

≤ Γ(ωηκ ,Fωηκ ) + ϕ(max{γ(ωηκ , ϑ), Γ(ωηκ ,Fωηκ ), Γ(ϑ,Fϑ)})
= Γ(ωη ,Fωηκ ) + ϕ(max{γ(ωηκ , ϑ), Γ(ωηκ ,Fωηκ )}).

Taking κ → ∞ and using the properties of ϕ, we derive

ε < γ(ωηκ , ϑ) ≤ ϕ(γ(ωηκ , ϑ)) < ε,

which is a contradiction. Therefore, lim
η→∞

γ(ωη , ϑ) = 0, and the fpp is well-posed for F
concerning ΓH.

5. An Application to Dynamic Programming

In the context of this section, we consider Banach spaces Ξ and Λ, with Π ⊂ Ξ and
E ⊂ Λ, while R denotes the field of real numbers. We work with maps τ : Π× E → Π,
f : Π× E → R, F : Π× E × R → R, and utilize the set B(Π) to represent all bounded
real-valued functions on Π.

Our focus in this section is on investigating the existence and uniqueness of a solution
for the functional equation

p(ω) = sup
v∈Γ

f (ω, v) + F(ω, v, p(τ(ω, v))), ω ∈ Π, (16)

where f and F are bounded functions, ω and v symbolize the state and decision vectors,
respectively, τ denotes the process transformation, and p(ω) signifies the optimal return
function given an initial state ω.

To facilitate our analysis, we introduce a map F : B(Π)→ B(Π), defined as:

F (h(ω)) = sup
v∈Γ
{ f (ω, v) + F(ω, v, h(τ(ω, v)))}, (17)

where h and κ belong to B(Π). Additionally, we define a distance metric γ : B(Π) ×
B(Π)→ [0, ∞) as

γ(h, κ) = sup
ω∈Π
|h(ω)− κ(ω)|. (18)

Furthermore, we introduce the notation

Γ(h,F (h)) = inf
ω∈Π
|h(ω)−F (h(ω))|.

Our aim is to establish the existence and uniqueness of a solution for the functional
Equation (16) using the framework provided by Theorem 4.

Theorem 10. Suppose that ∃ ϕ ∈ Φ such that for every (ω, v) ∈ Π×E , ω ∈ Π and h, κ ∈ B(Π)
with h(ω) ≤ κ(ω) for all ω, we have

θ(r)|h(ω)−F (h(ω))| ≤ |h(ω)− κ(ω)| (19)

implies
|F(ω, v, h(ω))− F(ω, v, κ(ω))| ≤ ϕ(M(h(ω), κ(ω))) (20)

where M(h(ω), κ(ω)) = max
{

γ(h, κ), Γ(h,F (h)), Γ(κ,F (κ)), Γ(h,F (κ) + Γ(κ,F (h))
2

}
.

Then, the functional Equation (16) has a bounded solution in B(Π).
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Proof. Define ℵ := B(Π)× B(Π), a universal relation on B(Π). Then, obviously ℵ is F -γ-
closed, transitive, and γ-self-closed on B(Π), where F is defined in (17). Also, (B(Π), γ) is
a CMS, where γ is defined by (18). Let λ be an arbitrary positive number and h, κ ∈ B(Π).
Let ω ∈ Π be arbitrary and choose v1, v2 ∈ Γ such that

F (h(ω)) < f (ω, v1) + F(ω, v1, h(τ1)) + λ (21)

F (κ(ω)) < f (ω, v2) + F(ω, v2, κ(τ2)) + λ (22)

where τ1 = τ(ω, v1) and τ2 = τ(ω, v2). Further, by definition of F , we know

F (h(ω)) ≥ f (ω, v2) + F(ω, v2, h(τ2)) (23)

F (κ(ω)) ≥ f (ω, v1) + F(ω, v1, κ(τ1)). (24)

Since (19) holds, thus from (21) and (24), we have

F (h(ω))−F (κ(ω)) ≤ F(ω, v1, h(τ1))− F(ω, v1, κ(τ1)) + λ

≤ |F(ω, v1, h(τ1))− F(ω, v1, κ(τ1))|+ λ

≤ ϕ(M(h(ω), κ(ω))) + λ. (25)

Similarly, from (22) and (23), we obtain

F (κ(ω))−F (h(ω)) ≤ ϕ(M(h(ω), κ(ω))) + λ. (26)

Hence, from (25) and (26), we have

|F (h(ω))−F (κ(ω))| ≤ ϕ(M(h(ω), κ(ω))) + λ.

Since ω ∈ Π and λ > 0 is arbitrary, hence we find from inequality (19) that

θ(r)γ(h(ω),F (h(ω))) ≤ γ(h(ω), κ(ω))

implies
γ(F (h(ω)),F (κ(ω))) ≤ ϕ(M(h(ω), κ(ω))).

Therefore, all the conditions of Theorem 5 are fulfilled for the map F . As a result, the map
F possesses a fixed point denoted as h(ω), signifying that h(ω) is a bounded solution for
the functional Equation (16).
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