
Citation: Ahmed Ali Agoub, R.;
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Abstract: The study focuses on the integration of a fuzzy logic-based Maximum Power Point Track-
ing (MPPT) system, an optimized proportional Integral-based voltage controller, and the Jellyfish
Optimization Algorithm into a solar PV battery setup. This integrated approach aims to enhance
energy harvesting efficiency under varying environmental conditions. The study’s innovation lies in
effectively addressing challenges posed by diverse environmental factors and loads. The utilization
of MATLAB 2022a Simulink for modeling and the Jellyfish Optimization Algorithm for PI-controller
tuning further strengthens our findings. Testing scenarios, including constant and variable irradi-
ation, underscore the significant enhancements achieved through the integration of fuzzy MPPT
and the Jellyfish Optimization Algorithm with the PI-based voltage controller. These enhancements
encompass improved power extraction, optimized voltage regulation, swift settling times, and overall
efficiency gains.

Keywords: PV system; battery storage; MPPT; fuzzy MPPT; PSO; GA; jellyfish optimization

1. Introduction

The urgency to mitigate fossil fuel dependency and its environmental repercussions
has propelled a global shift towards renewable energy sources (RES) as a viable solution to
our energy challenges. The efficiency of renewable energy sources has a significant impact
on system management [1]. RES offers a compelling avenue for power generation while
concurrently mitigating CO2 emissions and greenhouse gas effects [2]. Among RES options,
solar photovoltaic (PV), hydro, wind, geothermal, and biomass systems are noteworthy [3].
Solar PV is recognized as a leader for future energy needs due to its affordability, simple
installation, and minimal maintenance. The maximization of power extraction from PV
systems is a critical concern [4]. The inception of Maximum Power Point Tracking (MPPT)
in PV systems dates back to 1968 when it was first incorporated into space applications.
After this milestone, the widespread adoption of MPPT controllers ensued, significantly en-
hancing the operational efficiency of PV arrays. Over time, MPPT controllers have evolved
to enhance PV array efficiency, adapting to diverse conditions. However, the interplay
of irradiance levels, temperature, and other parameters can influence array performance,
potentially diminishing conversion efficiency [5]. To address this, researchers have ex-
plored diverse MPPT strategies, ranging from traditional linear controllers to innovative
approaches like the Jellyfish Search Optimization (JSO) method [6,7]. Despite advances in
solar cell technology, challenges persist, including series resistance losses that constrain cell
performance. Equivalent circuit derivations are utilized to model and quantify the impact
of these internal losses [8–10]. Additionally, the integration of thin-film solar cells such
as copper indium gallium selenide (CIGS) with wind turbine blades has shown promise
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in boosting power generation [11]. However, this study contributes significantly by inte-
grating a fuzzy logic-based MPPT system, an optimized PI-based voltage controller, and
the Jellyfish Optimization Algorithm into a solar PV battery setup. This innovative inte-
gration tackles challenges posed by dynamic environmental factors and loads, ultimately
enhancing power extraction efficiency, voltage regulation, and overall performance. The
study’s findings further support the use of MATLAB Simulink for modeling and the Jelly-
fish Optimization Algorithm for PI-controller tuning. The integrated approach’s prowess
becomes evident in achieving tangible enhancements through testing scenarios encompass-
ing various irradiation levels. The study’s innovation is characterized by this systematic
synergy of methodologies and algorithms, addressing practical challenges and advancing
the field of solar energy optimization. Also, this study uses Fuzzy Logic Control (FLC) and
the Jellyfish Optimization Algorithm due to their capacity to manage dynamic solar PV
system challenges. FLC’s flexibility handles complex environmental interactions, while
the Jellyfish Algorithm’s innovative optimization with integrated system uses tuning for
improved efficiency and performance. The paper introduces a Fuzzy Logic Controller (FLC)
designed for general-purpose embedded processors, specifically applied to the Maximum
Power Point Tracking (MPPT) of photovoltaic (PV) energy systems [12]. It utilizes linguistic
rules and membership functions, showcasing adaptability to diverse applications, while
Jellyfish Optimization, inspired by jellyfish behavior, is specialized for optimization tasks,
potentially requiring customization for specific applications [12]. The FLC demonstrates
effectiveness by exhibiting consistent results with simulations [12]. The paper explores
the use of modified particle swarm optimization (MPSO) with genetic algorithms (GA) to
enhance Maximum Power Point Tracking (MPPT) in partially shaded PV systems, outper-
forming the fuzzy logic controller (FLC) in handling multiple local peaks (LPs). MPSO
proves more effective at tracking the global peak (GP), substantially increasing generated
power compared to the FLC technique [13].

2. Fuzzy and Jellyfish Optimization-Controlled Solar PV Battery System

Figure 1 depicts the Fuzzy and Jellyfish Optimization-Controlled Solar PV system.
The following subsections describe the details: a PI controller for a DC–DC bidirectional
converter (Jellyfish-Optimized PI controller), a solar PV panel (DC–DC boost converter), a
DC–DC bidirectional converter, and a battery.
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2.1. Solar PV System

Photovoltaic solar cells are semiconductor-based electric devices that convert solar
energy into usable electricity. When solar power was paired with a photovoltaic (PV)
system, issues arose, such as initial cost, dependability, and generation efficiency. There-
fore, simulation and modeling significantly contribute to the investigation, design, and
development of PV performance [14].

Due to the low power of photovoltaic solar cells, multiple cells, connected in series
or parallel, a PV module connected to the desired current and voltage values, which form
a PV array, should be created [15]. Photovoltaic cells have nonlinear properties that vary
with temperature and radiation intensity. The PV characteristics curve becomes more
complicated when the solar array is partly shaded and more than one peak arises. Because
of this, the efficiency of solar cells decreases [16]. There are several reasons why a PV
array may become shaded. As an illustration, consider the dust on the panels’ surface
and the nearby buildings, trees, and chimneys [17]. Using MPPT algorithms, the optimum
efficiency can be achieved for the photovoltaics at different load operating points. The
solar module’s power converter’s controller performs MPPT calculations. Figure 2 shows
the curves (current–voltage and power–voltage) at the operating position. The use of
solar power temperature and irradiation have a nonlinear and unpredictable effect on this
property. Typically, two distinct variables must be introduced:
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Figure 2 shows the power–voltage and current–voltage characteristics of the PV array
under uniform irradiance. The red colored curve shows the maximum power that obtained
from the 1000 radiation.

• When the current through the PV cell is 0, open circuit voltage (VOC) is the PV cell voltage.
• When the voltage through the PV cell is 0, short circuit current (ISC) is the PV cell current.

On the I–V curve, a unique point (maximum power point (MPP)) exists where the PV
array works at maximum efficiency. The panel’s rating is 100 W, 17.9 V, and 5.59 A.

2.2. DC–DC Boost Converter

In photovoltaic applications, these converters connect the PV module and the output
to maximize power extraction. The maximum power point can only be obtained if it is
directly connected and operating with the solar panel. Figure 3 depicts the boost converter
circuit. It has an output power rating of 150 W at 24 V.
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Figure 3. DC–DC boost converter.

2.3. Fuzzy MPPT Implementation

The fuzzy logic controller determines the optimal duty cycle value. Here, “e” repre-
sents the error and “ec” represents the error change/difference in the PV panel’s power
slope, so they are the fuzzy inputs. Using a fuzzy logic algorithm, we can calculate the
duty cycle.

2.3.1. Fuzzification

Fluffy sets have a set of membership values in the interval [0, 1] generated by the
fuzzifier, which is the FLC’s initial component. The error and the change in the error of the
power slope deal with triangular membership functions (a particular instance of the trape-
zoidal function). Seven membership functions represent each input (see Figures 4 and 5),
including NB (negative big), NM (negative medium), NS (negative small), and Z (zero).

Fuzzification determines the degree of membership function. It is achieved by de-
termining the degree of membership and then identifying the input in the membership
function. From −3 to 3, the membership function’s degree may be described as extreme.

In Figures 4 and 5, the µe and µce shows the value of the fuzzy for error and changing
of error.

Fuzzy input and output are shown in three dimensions in Figure 6.
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This figure shows the error and differential error which is shown in X- and Y-axis; the
output is the duty cycle value estimated by fuzzy logic, which is shown in Z-axis.
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2.3.2. Rule Inference

In the fuzzification step, the level of membership is established. If you have a set of
degrees of membership, you need to consider what you should do next. It is ideal to employ
fuzzy operators with several antecedents, such as “AND” and “OR”. While evaluating the
disjunction of the rule’s antecedents, the fuzzy operator “OR” is used, and when evaluating
the rule’s antecedents, “AND” is used. Because the rule’s antecedents must be evaluated
in combination, the fuzzy “AND” operator is necessary. The minimal function is utilized
because “AND” is the smallest operation between numerous antecedents. Fuzzy logic may
also be utilized when several rules produce the same result. Table 1 lays down the system’s
rules of procedure.

Table 1. Fuzzy final rules.

E

NB NM NS Z PS PM PB

ec

NB Z Z Z NB NB NB NM

NM Z Z Z NS NM NM NM

NS NS Z Z Z NS NS NS

Z NM NS Z Z Z PS PM

PS PS PM PM PS Z Z Z

PM PM PM PM Z Z Z Z

PB PB PB PB Z Z Z Z

The fuzzy roles were chosen based on the performance of the duty cycle response.
These roles were manually selected through testing of the outcomes. The duty ratio is used
in controlling the PWM switch of the transistor. Fuzzy logic is utilized to ascertain the duty
cycle value, where the designation “D” is utilized to represent this value along the Z axis.
Figure 7 shows the use of fuzzy logic to determine the duty cycle value.
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2.3.3. Defuzzification

The next step is to aggregate the output from each rule into a single value that can
be used to adjust the duty cycle. Defuzzification is used to do this. Weighted average
defuzzification is employed in the Mamdani approach. The fuzzy output from the rule’s
evaluation is multiplied by its singleton value, and the resulting sum is divided by the total
sum of all the rule’s fuzzy output. Finally, the single output from this computation may be
utilized to adjust the duty cycle.
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2.4. Bidirectional DC–DC Converter

A battery energy storage system uses bidirectional DC–DC converters as a battery
module–load interface. The voltage control method must be adapted to maintain constant
load voltage [18]. Figure 8 depicts a bidirectional DC–DC converter. It has a power rating
of 150 W at 24 V.
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Figure 8. DC–DC bidirectional converter.

As shown in Figure 8, U1, D1, Q1, and Cf1 are, respectively, the power input voltage,
diode, switch tube, and capacitor for the high-voltage side of the power supply. U2, Q2,
D2, and Cf2, respectively, stand in for the power output voltage, switch tube, diode, and
capacitor on the low-voltage side of the power supply. The basic one-way buck converter,
which is made up of a buck-boost type of bi-directional DC/DC converter circuit to control
the state of the two switch tubes and further control the direction of the current and the
values of the voltage and current, adds a diode in the position of the switch tube and
relocates the switch tube to the original position of the diode [1].

2.5. Voltage Control of DC Bus via Proportional Integral Controller

A comparison is made between the load’s actual and reference voltage. The propor-
tional integral controller is used to handle the erroneous voltage. The PWM generator
processes the duty cycle that a proportional integral controller generates. In order to
maintain the voltage across the load, a PWM generator controls a bidirectional DC–DC
converter. The Jellyfish Optimization Algorithm maximizes the proportional integral con-
troller gains (kp and ki). A detailed explanation of the Jellyfish Optimization Algorithm
and PI controller gain adjustment is provided below:

Jellyfish Optimization Algorithm

It is a meta-heuristic algorithm presented in 2021 and is modeled on the swimming
behavior of jellyfish. In this algorithm, each problem solution is a jellyfish that looks for
food or an optimal solution. Jellyfish or problem solvers have several types of moves to
find the optimal solution. Their first movement is based on seawater waves, and their
second movement is based on group behavior within groups. The Jellyfish Algorithm,
as shown in Figure 9, is modeled from the group behavior of jellyfish and the change of
jellyfish with water waves [19]:

This algorithm has types of local and global searches to find the optimal solution, and
on the other hand, it has been proven to be more accurate than genetic and PSO algorithms.
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A type of swarm intelligence system called the Jellyfish Optimization Algorithm,
introduced in 2021, was motivated by jellyfish’s search for food. It is employed to address
optimization issues, particularly in engineering and computer science. According to the
literature, the Jellyfish method performs better in most real-world applications than several
popular meta-heuristic algorithms. A collection of synthetic agents or particles, referred to
as “jellyfish”, moves around a three-dimensional space in pursuit of the best answer in the
Jellyfish Algorithm. The program is built upon a set of guidelines that mimic the behavior
of actual jellyfish. In order to scout the search area and take advantage of interesting
solutions, the algorithm employs both random and deterministic movements. The position,
speed, and acceleration of the object are some of attributes that are updated based on both
its own and the swarm’s most well-known solutions. It can manage many objectives and
restrictions. The behavior of sea jellyfish is depicted in Figure 10 together with a model of
group motions [20].
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The three behaviors of the jellyfish algorithm are as follows:

• A walker or jellyfish can alternate between moving within the group and following
the ocean current while intermittently switching the two phases.

• Jellyfish swim throughout the ocean in search of food. They are more attracted to
locations with abundant sustenance.

• The quantity of food found depends on the target’s location and function.

The sea’s waves provide nutrients that may draw jellyfish. Equation (1) illustrates
how a vector can be used to define the direction of ocean current:

−−→
trend =

1
nPop

. ∑
−−→
trendi =

1
nPop ∑(X∗ − ecXi) (1)

Here, ec represent the absorption factor. Equation (2) can be created by extending
Equation (1).

−−→
trend = X∗ − ∑ ecXi

nPop
= X∗ − ecµ (2)

The best jellyfish, X*, and the average jellyfish population, µ, are used in this calcula-
tion. Since df = ecµ can be assumed, this equation can be written in a more general form as
Equation (3):

−−→
trend = X∗ − ∑ ecXi

nPop
= X∗ − df (3)

Equations (4) and (5) allow us to consider the distribution of jellyfish at random to be
normal.

d f = β× σ× rand f (0, 1) (4)

σ = rand f (0, 1)× µ (5)

The jellyfish distribution’s standard deviation index is represented in these relation-
ships by the symbol σ. The usual distribution of jellyfish scattered about the mean point is
shown in Figure 11 by the jellyfish.
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The displacement process of each jellyfish is shown in Figure 12 both under the
influence of the jellyfish community and the water force of the ocean.
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Equations (6) and (7) can be used to rewrite equations df and ec, respectively:

d f = β× rand(0, 1)× µ (6)

ec = β× rand(0, 1) (7)

Equation (3) can now be presented in Equation (8) after being rewritten based on
Equation (6):

−−→
trend = X∗ − β× rand(0, 1)× µ (8)

They are pushed by jellyfish water waves, as shown by Equation (9):

Xi (t + 1) = Xi (t) + rand(0, 1)×
−−→
trend (9)

It is possible to expand Equation (9) to Equation (10):

Xi (t + 1) = Xi (t) + rand(0, 1)× (X∗ − β× rand(0, 1)× µ) (10)

In this equation, β is often equal to three and is a value greater than zero. Jellyfish also
move in groups and frequently alternate between two passive and vigorous movements.
They look more closely at their surroundings when they are inactive. Equation (11) is used
to simulate passive motion:

Xi (t + 1) = Xi (t) + γ.rand(0, 1)× (Ub − Lb) (11)



Appl. Sci. 2023, 13, 11409 11 of 19

In Equation (11), the coefficient of motion is a positive number and typically set at
0.1, is denoted by the symbol γ. Each dimension’s upper range (Ub) and lower range (Lb)
are indicated by the letter “b”. The jellyfish Xi randomly chooses the jellyfish Xj in the
active behavior mode, which has two modes. Equation (12) is applied to move if Xi’s merit
exceeds Xj’s, and Equation (13) is used in all other cases:

Xi (t + 1) = Xi (t) + rand.
(
Xj (t)− Xi (t)

)
(12)

Xi (t + 1) = Xi (t) + rand.
(
Xi (t)− Xj (t)

)
(13)

Equation (14) is used to convert between ocean and collective movements:

c (t) =
∣∣∣∣(1− t

Maxt

)
× (2.rand − 1)

∣∣∣∣ (14)

In this equation, Maxt means the maximum iteration counter and t represents the
number of current iterations. Figure 13 displays the c(t) diagram for the experiment. The
jellyfish update is based on group movements if c(t) is less than 0.5 and on waves if it is
larger than 0.5 for each update.
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Figure 13. Ocean current force and group motion types are randomly determined by a random
function [20].

After some iteration and trials, the Jellyfish Optimization sends the gain to the PI
controller and receives the integral absolute error as the fitness function. The PI controller
uses the JSA results to maintain consistent load voltage. Comparisons are made between
the Jellyfish Optimization Algorithm, PSO, and the genetic algorithm.

3. Simulation Results and Discussion

The Fuzzy and Jellyfish Optimization-controlled solar PV system was created and
simulated in MATLAB. The overall Simulink model of the Fuzzy and Jellyfish Optimization-
controlled solar PV battery system is shown in Figure 14.

The gain tuning of the PI controller convergence graph with Jellyfish Optimization,
PSO, and GA is shown in Figure 15.
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Figure 15. Convergence graph for JSAA, PSO, and GA algorithm.

The Jellyfish Optimization Algorithm reaches global fitness value after 17 iterations,
but PSO reaches it after 25 iterations and GA after 35 iterations. The value obtained from
the Jellyfish Optimization Algorithm is 0.022, but the global point for PSO is 0.025, and for
GA, it is 0.035.

Figure 16 shows the solar PV battery system’s load voltage response using Jellyfish
Optimization, PSO, and GA.
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Figure 16. The load voltage response of the solar PV battery system with PSO, GA, and JSAA.

In Figure 16 the dotted line shows the unit step value. The load voltage response of a
GA-optimized PI controller has more overrun and more oscillation. Jellyfish Optimization
Algorithm-optimized PI controller has less overrun and faster settling than PSO- and GA-
optimized PI controllers. Based on test results, the PI controller optimized by the Hawks
Optimization Algorithm provides superior results.

The solar PV battery system was tested for different operating systems, such as
constant irradiance, varying irradiance, and varying load conditions. Figures 17–19 show
the results for constant irradiance conditions (1000 W/m2).
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Figure 19. Load power, voltage, and current for constant irradiance.

The voltage of the PV panel is 17.4 volts, the PV panel’s power regeneration is
99.5 W, and the PV panel current is 5.71 A. Theoretically, the maximum power is 100 W
at 1000 W/m2. Still, fuzzy logic MPPT extracts 99.5 W, and the maximum power ratio is
99.5%. The fuzzy logic MPPT extracts the optimum power from a PV panel. The battery
voltage, power, and current are 13 Volts, −45.3 W, and −3.48 A, respectively. The battery is
in charging mode in this condition. The load current and voltage are 2.08 A and 24 volts,
whereas the load power is 50 W. The overall system efficiency is 95.3%. The performance
under constant irradiance conditions is shown in Table 2.
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Table 2. Performance of the system under constant irradiance.

Parameter Voltage (V) Current (A) Power (W)

PV 17.4 5.71 99.5

Battery 13 −3.48 −45.3

Load 24 2.08 50

Every 0.2 s, the irradiance of the PV panel changes from 1000 to 600 to 400 W/m2.
Figures 20–22 show the results of the system with varying irradiance.

The fuzzy logic MPPT extracts the maximum power PV panel around 99.5 W at
1000 W/m2, 59.9 W at 600 W/m2, and 39.9 W at 400 W/m2. The maximum power ratio
is around 98 to 99.5% using fuzzy MPPT. The battery is in charging mode at 1000 and
600 W/m2, and the battery is in discharge mode at 400 W/m2 to meet the load demand.
The system’s overall efficiency improved from 94 to 95.3%. The performance under varying
irradiance conditions has been shown in Table 3.

The system’s load varied every 0.2 s from 50 to 100 W and then 100 to 150 W.
Figures 23–25 show the results of the system.
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The fuzzy logic MPPT extracts the maximum power PV panel around 99.5 W, and the
maximum power ratio is around 99.5% using fuzzy MPPT. The battery charges at 50 W
load and discharges when the load is 100–150 W. The overall efficiency of the system is 93.5
to 95.3%. The performance under varying load conditions is shown in Table 4.
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The best locations of JSO were 2.8281 and 2.5565 for kp, and ki, respectively. Also, the
best fitness of JSO was 1.4079. The number of search agents was selected as two (for kp,
and ki) and the number of the Jelly fish was selected as 30.

In this article, we focused exclusively on normal irradiance conditions, which involve
uniform irradiance without factoring in partial shading effects. Under these uniform
irradiance conditions, the proposed method demonstrates effective performance.

4. Conclusions

The study employed fuzzy Maximum Power Point Tracking (MPPT) and the Jellyfish
Optimization Algorithm to enhance solar photovoltaic (PV) battery systems through a
proportional integral voltage controller. The MATLAB-tested system showcased improved
proportional integral (PI)-controller values with minimized overshoot and quick settling
time. The integration of fuzzy MPPT and the Jellyfish Optimization Algorithm optimized
the PI-based voltage controller, effectively extracting maximum power with an extraction
ratio of 98–99.5%. The system exhibited an overall efficiency of 93.5–95.3%. Notably, fuzzy
MPPT and the Jellyfish Optimization Algorithm successfully optimized the proportional
integral-based controller, ensuring constant load voltage while extracting maximum power
across diverse operational conditions.
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