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Abstract: Photovoltaic panels present an economical and environmentally friendly renewable en-
ergy solution, with advantages such as emission-free operation, low maintenance, and noiseless
performance. However, their nonlinear power-voltage curves necessitate efficient operation at the
Maximum Power Point (MPP). Various techniques, including Hill Climb algorithms, are commonly
employed in the industry due to their simplicity and ease of implementation. Nonetheless, intelligent
approaches like Particle Swarm Optimization (PSO) offer enhanced accuracy in tracking efficiency
with reduced oscillations. The PSO algorithm, inspired by collective intelligence and animal swarm
behavior, stands out as a promising solution due to its efficiency and ease of integration, relying only
on standard current and voltage sensors commonly found in these systems, not like most intelligent
techniques, which require additional modeling or sensoring, significantly increasing the cost of
the installation. The primary contribution of this study lies in the implementation and validation
of an advanced control system based on the PSO algorithm for real-time Maximum Power Point
Tracking (MPPT) in a commercial photovoltaic system to assess its viability by testing it against the
industry-standard controller, Perturbation and Observation (P&O), to highlight its advantages and
limitations. Through rigorous experiments and comparisons with other methods, the proposed PSO-
based control system’s performance and feasibility have been thoroughly evaluated. A sensitivity
analysis of the algorithm’s search dynamics parameters has been conducted to identify the most
effective combination for optimal real-time tracking. Notably, experimental comparisons with the
P&O algorithm have revealed the PSO algorithm’s remarkable ability to significantly reduce settling
time up to threefold under similar conditions, resulting in a substantial decrease in energy losses
during transient states from 31.96% with P&O to 9.72% with PSO.

Keywords: Particle Swarm Optimization (PSO); Maximum Power Point Tracking (MPPT); photo-
voltaic panels; P&O; nonlinear control; boost converter; renewable energies

1. Introduction

In recent decades, there has been a significant shift in energy production policies
towards renewable sources [1], marking a paradigmatic change. This transition is driven
by two key factors. Firstly, the global increase in energy consumption is projected to
rise by 25% by 2040 [2,3]. To meet this growing demand, renewable energy sources are
crucial, given the upward trajectory of oil prices [4]. Steps in this direction are being
made, as the global renewable electricity capacity is expected to double the the capacity
installed in the last 2 decades within the next 5 years [5]. Secondly, there is a growing
awareness of the impact of climate change, where renewable energy sources, as the primary
alternative, play a vital role. The International Plant Protection Convention forecast a
climate scenario for 2050, indicating a potential global surface temperature rise of 1.5 ◦C to
2 ◦C unless significant reductions in CO2 emissions are achieved in the coming decades [6].
Consequently, according to the latest report by the International Energy Agency, renewable
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energy sources need to cover at least 70%, with half of this contribution expected to come
from wind and solar power [7].

In this context, photovoltaic panels (PV) represent a simple and cost-effective solu-
tion [8]. Their benefits include zero emissions, the absence of moving mechanical parts,
noise-free operation, low maintenance, and long lifespan [9,10]. All these factors, along
with economic incentives and significant advances in electronics, greatly favor the devel-
opment of photovoltaic panels as an energy source, making it one of the fastest-growing
industries in renewable energy in recent years [11]. Regarding technical specifications, a
photovoltaic system consists of multiple solar cells made of semiconductor materials, which
absorb photons and generate a pair of electrons and holes through a p–n junction [12]. This
process, involving electron diffusion to produce voltage, is intricate due to the limitation
in capturing the full spectrum of sunlight [13]. As a result, the photovoltaic conversion
efficiency generally remains below 20% [14].

Given the relatively low efficiency of a photovoltaic system, MPPT is an essen-
tial step as it helps the system achieve the best overall performance [15]. This can be
achieved through a designed control technique that can be incorporated into a DC–DC
converter [16,17]. However, PV cells, as well as PV modules, strings, and arrays, are
characterized by a nonlinear power-voltage (P-V) curve that depends on incident irradi-
ance [18], cell temperature [19] and, when present, partial shading [20]. As a result, one
of the fundamental problems in photovoltaic generators is how to operate them at their
MPP [21]. However, choosing an appropriate MPPT technique can be challenging due to the
extensive number of proposed options, each with its own advantages and disadvantages.
Primarily, there are two types of MPPT trackers: mechanical and electrical [21]. Mechani-
cal trackers, also known as "solar trackers", can increase energy production by 17.72% to
31.23% [22]. However, this configuration is recommended for industrial applications, rather
than residential ones, due to the excessive cost of mechanical tracking devices [23,24].

On the other hand, electrical MPPT techniques rely on power-voltage and current-
voltage curves to track the optimal operating point. Electrical techniques can be classified
into three main groups: offline MPPT techniques, online MPPT techniques or Hill Climbing,
and intelligent MPPT techniques [21]. Offline techniques are based on estimating the MPP
by systematically exploring various combinations of voltage and current. These techniques
employ algorithms and mathematical models to determine the optimal operating point.
On the other hand, Hill Climbing techniques perform real-time tracking of the MPP by
incrementally adjusting the voltage or current of the solar panel and evaluating whether the
generated power increases or decreases. This process is repeated until the maximum power
point is reached [25]. These techniques are widely used due to their ease of implementation
and reduced cost, although they have limitations in terms of performance and difficulties in
reaching the MPP under adverse environmental conditions [26]. A classification of MPPT
techniques can be found in [27,28].

In comparison to offline and online MPPT methods, intelligent MPPT techniques,
while requiring higher computational costs, offer better accuracy and tracking efficiency
with fewer oscillations in steady-state. Additionally, unlike offline and online techniques,
intelligent methods can track the global MPP under partial shading conditions [29].

One of the intelligent techniques that has gained popularity in various fields in recent
years is the Particle Swarm Optimization (PSO) technique. This algorithm is an optimization
technique based on collective intelligence and the behavior of swarms of particles. It draws
inspiration from observed movement patterns in groups of animals, such as migratory
birds or schooling fish [30]. In PSO, a set of particles is represented in a multidimensional
space, where each particle seeks the optimal solution through iteration and communication
with other particles [31].

The advantage of PSO is that it can be easily implemented in any installation that is
already using Hill Climbing algorithms, which are the most commonly used methods in the
field of MPPT. This is possible because, like Hill Climbing algorithms, PSO only requires
current and voltage sensors typically included in converters and a microprocessor in order
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to implement the MPPT algorithm [32]. This provides a significant advantage over other
intelligent algorithms, which often require additional sensors to measure environmental
conditions, high processing power, or a preliminary study of the system in which they will
operate, thus increasing the installation and maintenance costs and time of the plants [33].

The primary contribution of this study lies in the implementation and validation of
an advanced control system based on the PSO algorithm for real-time Maximum Power
Point Tracking (MPPT) in a commercial photovoltaic system to assess its viability by testing
it against the industry-standard controller, Perturb and Observe (P&O), to highlight its
advantages and limitations. This is significant because, despite being validated by multiple
researchers in simulations, comparisons in commercial systems against industry-standard
controllers are not usually established, which are still largely operating with non-intelligent
controls. We selected the PSO algorithm from among all possible proposals due to its ease
of implementation in commercial installations that have traditional control systems, such as
a P&O algorithm. This is particularly attractive, as it would greatly facilitate the transition
from the use of traditional controllers to more effective intelligent controllers, potentially
increasing the performance of these generators.

This paper is structured as follows: Section 2 describes the hardware used and its
interconnection, as well as further details about the controllers handled for the MPPT track-
ing. Section 3 presents the outcomes gathered with the implemented controllers. Finally,
Section 4 comprises a summary of the highlights accomplished throughout this research.

2. Materials and Methods
2.1. Hardware Description

The proposed control structures were implemented in real-time using commercial
hardware for validation. The employed photovoltaic panel was a Peimar SG340P polycrys-
talline solar panel which arranges 72 high-quality module cells in a 12 × 6 array. The panel
is protected by a low-iron tempered glass front cover and a double-wall aluminum frame
for mechanical stiffness. These panels are commonly used in commercial, residential, and
industrial environments due to their light weight, robustness, high rigidity and convenient
installation. The characteristics of the Peimar SG340P are gathered in Table 1.

Table 1. Technical data of SG340P panel.

Properties Values Units

Dimensions 156 × 156 mm
Number of series cells 6 units

Number of parallel cells 12 units
Maximum Power 340 W

Max. Power Voltage 37 V
Max. Power Current 9 A
Open-circuit voltage 45 V
Short-Circuit Current 9.9 A

Although it is not necessary for the operation of the controllers, it is convenient to
know the effects of the environmental variables during the experiments. Temperature
and radiation were monitored using a trustworthy external silicon sensor, specifically the
Ingenieurbüro Si-V-10TC-T. This sensor is specifically designed for accurately measuring
photovoltaic variables. It consists of a monocrystalline silicon solar cell connected to a
transducer. Additionally, it incorporates an active temperature compensator located on
the rear surface of the module, which effectively corrects measurements and provides
supplementary temperature information. The measured signals are transmitted as voltage
variations within the 0–10 V range. For more detailed information, please refer to Table 2.
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Table 2. Ingenieurbüro Si-V-10TC-T specifications.

Properties Values Units

Voltage Supply 12 to 28 VDC

Temperature Measurement Range −40 to 90 ◦C
Irradiance Measurement Range 0 to 1500 W/m2

In order to adjust the electrical outputs of the PV panel, a TEP-192 boost converter
produced by the research group at the University of Huelva has been implemented. This
device operates with a 20 kHz PWM switching input signal and provides information
of the electrical variables as 0–10 V output analog signals for monitoring. The module
incorporates two Schottky diodes, MURF1560 GT, two capacitances, TK (1.5 mF and 3 mF),
six PVC2-564-08 inductances, and an IGBT, HGT40N60B3. Voltage and current readings
are provided in 0–10 V signals. Additional technical data about this converter is described
in Table 3.

Table 3. TEP-192 specifications.

Properties Values Units

Switching frequency 20 kHz
Max. input voltage 60 V
Max. input current 30 A

Max. output voltage 250 V
Max. output current 30 A

To complete the electrical circuit, a BK Precision model 8500B was used. This is a
programmable DC load with broad flexibility and suitability for testing and evaluating
DC power sources, especially photovoltaic panels. This programmable resistance includes
several useful features such as reverse polarity protection, which avoids overheating, power,
voltage, and current overload on the PV system. Its characteristics are shown in Table 4.

Table 4. BK8500 specifications.

Properties Values Units

Max. Power Rating 300 W
Operating voltage 0–120 V

Max Current Rating 30 A
Load range 0.1–4000 Ω

The generation of the PWM signal was accomplished through the utilization of
dSPACE’s DS1202 MicroLabBox hardware, specifically designed for software develop-
ment and validation. This versatile hardware is capable of generating analog, digital, and
PWM signals. Powered by a programmable FPGA equipped with a dual-core processor, it
offers impressive specifications including clock speeds of up to 2 GHz, 1 GB of DRAM, and
128 MB of flash memory. The device also features Real-Time Interface (RTI), a platform that
facilitates the rapid and automatic generation of C code, allowing designers to concentrate
their efforts on the Simulink interface. Furthermore, dSPACE’s ControlDesk tool provides
a comprehensive solution for visualizing measured variables and enables the manipulation
of control signals.

Figure 1 shows a diagram representing the hardware described and its connections
between the elements.
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Figure 1. Hardware–software workflow diagram.

2.2. Maximum Power Point (MPP)

Tracking the maximum power point is essential to ensure that the photovoltaic system
operates at its highest efficiency at all times. MPPT techniques are necessary to continuously
track and adjust the operational parameters of the system, such as voltage or current, to
maximize power production, which has become an industry standard. This is achieved
through algorithms that control and optimize the system’s operating points based on solar
radiation and the electrical characteristics of the solar panels, for example, by influencing
the behavior of a DC–DC converter that adjusts the electrical characteristics of the panel [34].

In addition to optimizing power production, MPPT plays a crucial role in enhancing
the overall performance and longevity of photovoltaic systems. By dynamically adapt-
ing to variations in solar radiation and environmental conditions, MPPT helps improve
system stability and reliability. Whether it is coping with changing weather patterns,
adjusting to partial shading scenarios, or managing varying panel temperatures, MPPT
ensures that the photovoltaic system operates at or near its maximum power point. This
capability minimizes energy losses and maximizes energy yield, even under challenging
conditions [35].

Furthermore, the importance of MPPT becomes evident when examining characteristic
power-voltage curves, as shown in Figure 2. These curves illustrate how delivered power
varies depending on factors such as the resistive load value, incident radiation, panel
temperature, and partial shading conditions. MPPT enables the system to navigate these
complex and dynamic conditions effectively, ensuring that it consistently delivers optimal
performance and energy production. This capability is vital for both grid-connected and
off-grid photovoltaic installations, where energy efficiency and reliability are paramount
for sustainable power generation and reducing environmental impact.

2.3. Particle Swarm Optimization (PSO) Controller

The PSO algorithm is part of the bio-inspired algorithms, which draw inspiration from
the behavior of bird flocks and other animals and how they interact and move in search
of resources [36]. Proposed by Kennedy and Eberhart in 1995 [37,38], this algorithm is
suitable for solving a wide range of optimization problems, including the one addressed in
this study. In the original algorithm, a search space encompassing all possible solutions
is defined, along with a population of particles representing potential solutions. These
potential solutions are evaluated using the objective function and, iteration by iteration,
converge towards the best solution.
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Figure 2. Electrical curves of a photovoltaic system, where: (a) is a conventional power vs. voltage
and power vs. current graph with the MPP highlighted; (b) displays the variation in power-voltage
curves with constant temperature and variable irradiation; (c) illustrates how power-voltage curves
change with different temperatures at constant irradiation; (d) demonstrates the impact of partial
shading on power vs. voltage curves.

The algorithm operates as follows: it starts with a population of particles whose initial
positions are randomly chosen within defined boundaries. In each iteration, each particle
calculates its velocity Vi based on its previous velocity, its previous best personal position,
Pbesti

and the best global position found so far, Gbest, according to Equation (1). Then, each
particle position is updated with its current position and the calculated velocity, as shown
in (2). These optimal values are determined based on the power generated by each particle
compared to the maximum power found so far [39,40].

Vi(k + 1) = W ·Vi(k) + C1 · rand1 · (Pbesti
(k)− Xi(k)) + C2 · rand2 · (Gbest(k)− Xi(k)) (1)

Xi(k + 1) = Xi(k) + Vi(k + 1) (2)

where C1 is the acceleration component associated with Pbest, C2 is the acceleration compo-
nent associated with Gbest. Modifying these coefficients allows for adjusting the desired
behavior in the algorithm. Giving more weight to the C1 coefficient will result in a more
exploratory behavior, while giving weight to the C2 coefficient will exploit the best solution
more [41]. Finally, W represents the weight or inertia of the particle, rand1 and rand2 are
random numbers between 0 and 1. The inclusion of this randomness, along with the
exploration of the search space, allows the PSO algorithm to converge towards the global
maximum and avoid being trapped in local maxima. This exploration of the search space is
depicted in Figure 3.
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Figure 3. Representation of the particle movement in the search space of the PSO algorithm.

In the context of MPPT, the particles in PSO represent different points on the power vs.
voltage curve of a PV, as illustrated in Figure 4:

Figure 4. Representation of particle movement during the execution of the PSO algorithm: (a) initial-
ization of particles, (b) calculation of particle velocities Vi, (c) calculation of new particle positions Xi,
(d) particle positions when the convergence criterion is met.

Each particle has a position and velocity in the search space, which corresponds to a set
of current and voltage values, related to a duty cycle [42]. On the other hand, the objective
function is not a mathematical function; instead, in each iteration, the solution proposed by
a particle (its duty cycle value) is applied, and the extracted power is determined. The full
operation of the implemented controller is depicted in Figure 5 as a flowchart:
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Figure 5. Flowchart illustrating the operation of the PSO algorithm.
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As the flowchart describes, initially, and whenever the algorithm is restarted, the
particle positions are randomly initialized throughout the operation range of the duty
cycle of the boost converter, 0.1 to 0.9 in this particular case. Likewise, the velocities of the
particles is initialized as zero. Then, in each k iteration, the the output power related to
each particle position is measured, outputting the duty cycle associated with each i particle.
In case the read power value of the i particle is greater than all the previous ones read by
that i particle, the best personal position Pbesti

of the i particle is saved. Likewise, if the read
power value of any particle is greater than all the previous ones read by every particle, the
best global position Gbest is saved. At the end of every k iteration, when all the particles
have been evaluated, the velocity and positions of every particle is updated according to
the (1) and (2) equations. This process is repeated until the convergence criterion is met.
Each user is free to establish their desired criterion. In the experiments conducted in this
research, the chosen criterion was that every particle has to be at most 5% apart from each
other in the selected operating range of the duty cycle. Once this criterion is fulfilled, the
best found solution, e.g., the duty cycle founded which produces the greater power is
established as the output of the controller. The algorithm will keep that output until the
reset criterion is met. When that happens, the algorithm will restart the search. Again, each
user is free to establish their desired criterion for the reset of the algorithm. Ideally, it has
to be one that reflects a meaningful change on the power output, which is usually lead
by a sudden change in the incident radiation. In the experiments conducted, the chosen
criterion was that the output power of the system varies more than 1% compared to the
power output when the algorithm converged. Finally, a maximum of 50 iterations has
been set for the unlikely scenario in which the algorithm does not converge, so that it can
be restarted.

2.4. Perturb and Observe (P&O) Controller

The P&O algorithm, known for its simplicity, is one of the most widely used methods
for MPPT in PV systems, and is the reason for which it has been chosen as a reference point
for the validation of the proposed PSO controller. Its ease of implementation and low cost
make it appealing in the industry [43]. This algorithm operates by perturbing the duty
cycle, which increases or decreases the output power of the photovoltaic panel, and then
comparing this power with the previous system state, as shown in Figure 6. When the
perturbation is produced, the power changes. If the new power is greater than the previous
power, the perturbation moves again in the actual direction; otherwise, it moves in the
opposite direction. This process continues until the maximum power is reached. Figure 7
illustrates the flowchart of the algorithm.

Figure 6. Operation concept of the P&O algorithm.
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Although this conventional method is widely used due to its simplicity, it has some
limitations. One limitation is the oscillation of the operating point around the desired MPP
during tracking [32,43]. After reaching the MPP, the power oscillates around the maximum,
which reduces the power output of the photovoltaic system. One way to dampen this
oscillation is by reducing the perturbation size. This increases accuracy and dampens the
power oscillation of the photovoltaic system at the expense of reducing the algorithm’s
tracking speed [44]. In this situation, a larger number of iterations are required to reach
the MPP, resulting in more time being needed and, therefore, more power loses until the
system reach the MPP.

Another limitation of the P&O algorithm is its slow response to changes in environ-
mental conditions and partial shading conditions, where multiple peaks exist in the P vs. V
curve, leading to deviations from the exact MPP because the P&O algorithm cannot distin-
guish between a local maximum and a global maximum so, unfortunately, this algorithm
forces the system state to the first maximum (global or local) that is reached [43].

Figure 7. Flow chart of the P&O controller.

3. Results
3.1. Sensibility Analysis of the W, C1 and C2 Parameters

Just like in other types of controllers, the PSO-type controller has several parameters
that can be adjusted by the user to determine its desired dynamics. In this case, the
parameters to be adjusted are the three constants present in the equation governing the
position of a new particle (1). Tuning these three weighting coefficients results in different
static and dynamic behaviors of the controller.

The combination of these three parameters, W, C1 and C2, gives rise to three main
possible combinations, depending on which one is the most weighted. For example, if the
inertia parameter is primarily weighted (W = 1; C1 = C2 = 0), the direction in which the
particle moves in the workspace never changes and continues increasing or decreasing until
reaching the maximum or minimum limits of the duty cycle. This causes the photovoltaic
system to never reach the MPP and never converge.

On the other hand, if the C1 parameter is primarily weighted (C1 = 1; W = C2 = 0),
the new duty cycle value of the i-th particle converges towards the best local duty cycle
Pbesti

. This choice makes each particle insensitive to the global optimal position.
Finally, if the C2 parameter is primarily weighted (C2 = 1; W = C1 = 0), all particles

converge towards the first-best global duty cycle Gbest without exploring the search space.
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For these reasons, a sensitivity analysis must be conducted to determine the most
effective combination of the three parameters. To do this, an experiment has been performed
by testing different combinations of PSO parameters, with an identical load (140 Ω) and
radiation conditions as similar and constant as possible, around 900–1100 W/m2. Four sets
of parameters have been established, as shown in Table 5, and the experiment results are
presented in Figure 8. To avoid influencing the tuning of these parameters, a fixed number
of particles has been selected for all sets. The choice has been made to use five of them
since, during testing, it has been observed that they provide the best trade-off between
exploring the search space and convergence time.

Table 5. Sets of the PSO parameter sensitivity analysis experiment.

Sets W C1 C2

1 0.3 0.3 0.3
2 0.3 1 0.2
3 1 0.3 0.2
4 0.2 0.2 0.6
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Figure 8. Results of the sensitivity analysis of the W, C1 and C2 parameters.

To assess the efficiency and effectiveness of each set, two indicators will be calculated:
the algorithm convergence time, tc, and the energy loss, EL, during the transient state
[t0, tc]. The latter indicator, along with its normalized version, is calculated as shown in
Equations (3) and (4):

EL =
∫ tc

t0

|Pc − P(t)|dt (3)

EL(%) =
EL
Etot
· 100 (4)

where Pc is the power at the MPP found by the algorithm, P(t) is the instantaneous power,
and Etot is the total energy that would have been extracted if the algorithm had remained
at the MPP found throughout the entire experiment. The results of these comparisons are
presented in Table 6.
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Table 6. Performance comparison between different PSO parameter sets.

Sets W C1 C2 Dc Pc [W] EL (%) tc [s]

1 0.3 0.3 0.3 0.7466 222.37 16.79 26
2 0.3 1 0.2 0.7482 219.47 26.97 32
3 1 0.3 0.2 - 259.04 35.83 -
4 0.2 0.2 0.6 0.7656 260.46 10.89 15

Analyzing the results, it is observed that the PSO with parameters adjusted using Set 4
achieves both a lower convergence time and a smaller energy loss during transient states,
making it the clear winner.

From the experiment, it can be concluded that the most appropriate parameters for
MPPT are those that favor convergence towards the global maximum in each iteration,
i.e., those that weigh the C2 parameter more, resulting in a lower convergence time. Ad-
ditionally, they maintain the exploration of the search space with a lower, yet significant
weighting of the other parameters.

Therefore, the tuning parameter values for the PSO-based controllers used in the
experiments carried out in this paper have been established as: W = 0.2; C1 = 0.2; C2 = 0.6.

3.2. Performance Comparison: PSO vs. P&O

In this section, a comparison of operation and performance is conducted between the
PSO and the P&O algorithm to determine the improvement provided by the proposed new
algorithm. The P&O algorithm was chosen due to its widespread usage in the industry
for photovoltaic power generation systems. Additionally, both algorithms require the
same electrical sensors to operate, namely the voltage and current measurements from
the panel at each moment. They do not require any radiation or temperature sensors, nor
do they rely on any reference voltage estimators (VRE). This allows the PSO algorithm to
be installed in applications where a P&O algorithm is already in place, without incurring
significant expenses or requiring additional hardware installations. This potential for
enhanced performance makes the P&O algorithm a reasonable benchmark for evaluating
the performance of the proposed algorithms.

Due to its operation, the dynamic behavior of this algorithm is directly influenced
by the increment/decrement applied to the duty cycle at each iteration (∆D). Generally,
a small increment is preferred, as when the algorithm reaches the vicinity of the MPP, it
tends to oscillate continuously, resulting in a stationary state with oscillations that never
fully reaches the MPP. A small ∆D mitigates this issue at the expense of relatively longer
convergence times. Additionally, if a local maximum is encountered between the MPP and
the current operating duty cycle of the P&O algorithm, it will inevitably fall into it.

Taking into account the previous considerations, an experiment was conducted to
compare the performance of the PSO algorithm against the P&O algorithm. For this
purpose, radiation conditions were kept as constant as possible (around 1000 W/m2), and
three tests were performed: one with the PSO algorithm and two with the P&O algorithm.
The latter two tests differed in terms of ∆D. The first P&O test used a small increment of
∆D = 0.005 to observe the normal dynamics of P&O, while the second test used a larger
increment of 0.025 to achieve faster dynamics for comparison. For all algorithms, an
iteration was performed every 0.5s. The results of the experiment are shown in Figure 9.
Furthermore, Table 7 presents the settling times and energy performance of these algorithms
in the experiment.
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Figure 9. Results of the PSO vs. P&O performance experiment.

Table 7. Performance comparison between PSO and P&O controllers.

Algorithm ∆D Dc Pc [W] EL (%) tc [s]

PSO - 0.7579 264.35 9.72 12
P&O 0.005 0.755–0.765 255.924 31.96 31
P&O 0.025 0.725–0.775 254.27 13.18 7

Regarding the dynamics of the transient state, it is observed that the PSO algorithm
finds the MPP almost three times faster than the P&O algorithm with a small step, and it
exhibits significantly lower energy losses, reducing them from 31.96% to 9.72%. On the
other hand, the P&O algorithm with a larger step has a shorter convergence time than the
PSO but also bigger (3.46%) energy losses. It is important to note that the energy loss is
calculated only within the 45 s duration of the experiment. If the test were extended for
a longer period, the poor response exhibited by the P&O algorithm during steady state
conditions would likely result in even worse energy losses.

Regarding the behavior during the steady state, it is observed that the PSO algorithm
remains stable without oscillations, while the P&O algorithm exhibits oscillations, never
fully reaching the MPP. This oscillation is moderate and acceptable with a small ∆D but
becomes unacceptable with the larger step, as shown in the figure.

Taking all factors into account, it can be concluded that the PSO algorithm demon-
strates superior performance compared to the P&O controller in terms of convergence time,
behavior in steady-state, and energy efficiency.

4. Conclusions and Future Work

In this study, the use of an advanced control system based on the Particle Swarm
Optimization algorithm for Maximum Power Point Tracking in real photovoltaic systems
is summarized. After designing the controller based on the PSO algorithm, a sensitivity
analysis of the parameters governing the search dynamics of the algorithm was performed
to determine the most effective combination for real-time MPPT. The experiments demon-
strated that a combination favoring exploitation behavior resulted in more advantageous
dynamics of convergence, leading to faster convergence and more precise solutions.
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Once the controller was properly tuned, several experiments were conducted to test
its performance. A P&O controller was selected as a reference since it is one of the most
popular algorithms in the photovoltaic industry. Additionally, the P&O algorithm requires
the same sensors as the PSO algorithm to operate, making the comparison between both
algorithms interesting, as the proposed new control could be integrated into existing P&O-
based installations without additional costs. The comparative experiment demonstrated
that the PSO algorithm significantly reduces the settling time from 31 s to only 12 s under
similar conditions, resulting in a decrease in energy losses during transient states from
31.96% with P&O to 9.72% with PSO. Therefore, it can be stated that the PSO algorithm
outperforms its counterpart, proving to be a promising improvement for solar energy
generation systems.

The validation of this controller in a commercial panel represents an advancement in
the state of the art in MPPT algorithms. Progress in this type of algorithm can facilitate the
incorporation of intelligent control in commercial systems since, unlike other intelligent
algorithms, PSO-based controllers do not require additional sensorization, specific com-
ponent modeling, or high computing capacity to function. These factors, which tend to
increase installation and maintenance costs, make these alternatives undervalued by the
industry.

Despite the promising results and the experience gained during the development
of the algorithm and the conducted experiments, certain characteristics have potential
for improvement. The PSO algorithm is a general optimization algorithm applicable to
a multitude of situations. However, certain modifications can be made to enhance its
performance for this specific application. In future studies, variants of the algorithm
could be tested to improve the original algorithm’s performance by incorporating domain-
specific knowledge. Similarly to other cases, bounded particle initializations could be
proposed to enhance the dynamic characteristics of the search phase. Additionally, the
inclusion of selection mechanisms to aid particle convergence and exploration of alternative
convergence criteria would be interesting avenues for exploration.
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