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Abstract: Deep learning (DL) has made significant advances in computer vision with the advent of
vision transformers (ViTs). Unlike convolutional neural networks (CNNs), ViTs use self-attention
to extract both local and global features from image data, and then apply residual connections
to feed these features directly into a fully networked multilayer perceptron head. In hospitals,
hematologists prepare peripheral blood smears (PBSs) and read them under a medical microscope
to detect abnormalities in blood counts such as leukemia. However, this task is time-consuming
and prone to human error. This study investigated the transfer learning process of the Google ViT
and ImageNet CNNs to automate the reading of PBSs. The study used two online PBS datasets,
PBC and BCCD, and transferred them into balanced datasets to investigate the influence of data
amount and noise immunity on both neural networks. The PBC results showed that the Google
ViT is an excellent DL neural solution for data scarcity. The BCCD results showed that the Google
ViT is superior to ImageNet CNNs in dealing with unclean, noisy image data because it is able to
extract both global and local features and use residual connections, despite the additional time and
computational overhead.

Keywords: convolutional neural network (CNN); vision transformer (ViT); ImageNet models;
transfer learning (TL); machine learning (ML); deep learning (DP); white blood cell classification;
peripheral blood cell (PBC); blood cell count and detection (BCCD)

1. Introduction

Machine learning (ML) is a subfield of artificial intelligence (AI) that involves the
development of algorithms capable of learning patterns and making predictions based on
data. It is a broad field that encompasses different approaches and techniques, including
deep learning (DL). Deep learning is a subset of ML that involves the use of artificial neural
networks (ANNs) with multiple layers to learn patterns from data [1]. The neural networks
in deep learning can have many layers, making it possible to extract complex features
from data.

One popular application of DL is computer vision, where convolutional neural net-
works (CNNs) have proven to be very effective in image recognition tasks. CNNs use
convolutional layers to extract features from images and pool those features to reduce the
dimensionality of the data, allowing them to identify patterns and classify images into
different categories [2].

Pre-trained CNN models are models that have already been trained on large datasets,
such as the ImageNet dataset, making them useful for transfer learning on other datasets.
Examples of such models are the winners of the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC), including DenseNets, ResNets, and VGGs [3].

Algorithms 2023, 16, 525. https://doi.org/10.3390/a16110525 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16110525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2887-8232
https://orcid.org/0000-0001-6581-9680
https://orcid.org/0000-0003-0229-5722
https://doi.org/10.3390/a16110525
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16110525?type=check_update&version=1


Algorithms 2023, 16, 525 2 of 17

However, there has recently been growing interest in a new type of DL architecture
called vision transformers (ViTs) [4], which are based on the transformer architecture
commonly used in natural language processing (NLP) tasks. The ViT encoder uses a
self-attention mechanism to extract features from the input image, allowing the model to
consider the entire image at one time and identify important regions. This makes ViTs
more efficient in identifying global features in images, such as overall shape and color,
and permits them to learn more complex relationships between different parts of the image.
Also, ViTs use residual links to forward extracted features to an MLP head unaffected by
its depth.

This work aimed to investigate the performance and optimization learning of two
deep neural networks, ImageNet CNNs and the Google ViT, in classifying four white
blood cell (WBC) types (neutrophil, eosinophil, lymphocyte, and monocyte) by means
of transfer learning. This study used the PBC [5] and BCCD [6] datasets. PBC is a large
imbalanced dataset with high-quality images, while BCCD is a small imbalanced dataset
with poor-quality images. Data augmentation techniques were employed to increase the
size of the BCCD dataset.

The paper will proceed with a literature review of the relevant research related to
the detection and classification of WBCs using pre-trained CNNs and ViTs in Section 2.
Section 3 will describe the methodology used in this study, while Section 4 will present the
experimental results obtained using pre-trained ILSVRC models and the Google ViT for
blood cell classification. An in-depth analysis of the results will be provided in Section 5,
and the paper will be concluded in Section 6.

Overall, the paper explores the effectiveness of pre-trained deep learning models in
classifying WBC types from peripheral blood smear images. Transfer learning and data
augmentation techniques were employed to address the imbalanced and poor-quality
nature of the datasets. The results of the study can help improve the accuracy and efficiency
of WBC classification, which could lead to the better diagnosis and treatment of blood
disorders.

2. Related Works

Numerous research studies and publications have focused on the autonomous image
analysis of white blood cells in microscopic peripheral blood smears. These studies lever-
aged transfer-based learning from pre-trained ImageNet models across various dataset
sizes [7–14].

In their study [7], Sharma et al. employed convolutional neural networks, including a
custom five-layer CNN (“LeNet-5”), and pre-trained models such as “VGGs”, “Inception
V3”, and “Xception” for white blood cell classification. They tackled the challenging
BCCD dataset, initially containing only 349 low-quality images distributed among four
white blood cell categories: monocyte, lymphocyte, neutrophil, and eosinophil. Through
extensive data augmentation techniques, they substantially expanded the dataset to over
3000 images per category. This augmented dataset was then divided into training and
testing subsets, ultimately achieving an average classification accuracy of 87% for all four
white blood cell types.

In a similar vein, Alam and Islam [8] also used the BCCD dataset for object identifi-
cation considering red blood cells (RBCs), white blood cells (WBCs), and platelets. They
divided the BCCD dataset into 300 images for training, reserving the remaining images
for testing. The authors employed the Tiny YOLO model for object identification and
incorporated pre-trained CNNs like VGG-16, ResNet-50, Inception V3, and MobileNet.
Notably, all types of white blood cells were identified as WBC cells without further clas-
sification. However, no single model excelled in the identification of all RBCs, WBCs,
and platelets simultaneously.

In another work [9], an automated system was introduced for classifying eight types
of blood cells using convolutional neural networks (CNNs), specifically VGG-16 and
Inceptionv3, with the PBC dataset. An impressive accuracy of 96.2% was achieved.
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Jung et al. [10] introduced “W-Net”, a CNN-based architecture for classifying five
different types of white blood cells. They utilized a dataset from the Catholic University
of Korea (CUK), comprising 6562 images of these five WBC types. Additionally, the LISC
dataset was used, and the pre-trained ResNet model was included for comparison. The re-
sults demonstrated that W-Net achieved an average accuracy of 97%.

In a different approach, a deep learning model using DenseNet121 was presented
in [11] for classifying different white blood cell (WBC) types. The augmented BCCD dataset
was employed, consisting of 12,444 images, including 3120 eosinophils, 3103 lymphocytes,
3098 monocytes, and 3123 neutrophils. Image pre-processing included the cropping of
the WBC images. Then, augmentation techniques, such as flipping, rotation, brightness
adjustment, and zooming, were applied to the isolated WBCs. The DenseNet121 model
achieved an average accuracy of 98.84%.

Abou El-Seoud and colleagues [12] introduced a CNN-based architecture comprising
five layers for classifying five types of white blood cells. They employed the BCCD dataset
and applied augmentation techniques, including rotation, flipping, and shearing, to create
a balanced training dataset with approximately 2500 images per class. The testing dataset
contained fewer than 50 images, and the achieved average accuracy stood at an impressive
96.78%.

In their study [13], Sahlol and colleagues introduced a CNN-based architecture that
utilized VGG-19 as a feature extractor and incorporated the Statistically Enhanced Salp
Swarm Algorithm (SESSA) as an optimized classifier for categorizing five types of white
blood cells (WBCs). Two datasets, the ALL-IDB and C-NMC datasets, were employed,
resulting in an impressive average accuracy of 96.11%.

Almezhghwi and Serte [14] employed transfer learning with pre-trained CNNs like
“ResNet”, “DenseNet”, and “VGG” to classify five types of white blood cells (WBCs) using
a small dataset called LISC, which contained 242 images. They applied image segmentation
to isolate WBCs and used data augmentation techniques, including data transformations
and generative adversarial networks (GANs). The DenseNet-169 model achieved the
highest average accuracy at 98.8%.

In this literature review, we examined a series of studies (Table 1) focusing on au-
tomating the classification of white blood cells in microscopic blood smears. These studies
utilized diverse deep learning techniques, pre-trained models, and datasets, collectively
showcasing the potential for precise white blood cell classification. The common thread
across these works was the application of deep learning to enhance performance in this
crucial medical domain.

Table 1. Summary of references.

Reference Model Dataset Training/Testing Augmentation Accuracy

[7]
LeNet-5, VGG,
Inception, and

Xception

Augmented
BCCD 80%/20% 30 times 87% (average)

[8]

Tiny YOLO,
VGG-16,

ResNet-50,
Inception V3,

and MobileNet

BCCD 82%/18% Not augmented Varied for
different cell types

[9] VGG-16
and Inceptionv3 PBC 80%/20% Not augmented 96.20%

[10] W-Net (CNN) and
ResNet CUK and LISC 90%/10% Not augmented 97%

[11] DenseNet121 Augmented
BCCD 80%/20% 30 times 98.84%

[12] 5-layer CNN Augmented
BCCD 80%/20% 30 times 96.78%

[13]
VGG-19 feature

extractor and
SESSA classifier

ALL-IDB and
C-NMC 80%/20% Not specified 96.11%

[14] ResNet, DenseNet,
VGG LISC 90%/10% 8 times 98.80%
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3. Materials and Methods

This section describes the methodology adopted to classify the images of the four
WBC types into different categories. Multi-class classification was performed using the
pre-trained deep neural network models ImageNet ILSVRC and Google ViT [3,4]. Figure 1
shows a detailed methodology using the PBC dataset [5].

Figure 1. Methodology workflow using the PBC dataset.
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Figure 2 presents a detailed methodology using the BCCD dataset. An additional
pre-processing step “data augmentation” was added to increase the size of the original
BCCD dataset [6].

Figure 2. Methodology workflow using the BCCD dataset.
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3.1. PBC and BCCD Datasets
3.1.1. PBC Dataset

The online “peripheral blood cells” dataset, known as the PBC dataset [5], includes
17,092 images of eight groups of blood cells: neutrophils, eosinophils, basophils, lym-
phocytes, monocytes, immature granulocytes, erythroblasts, and platelets (thrombocytes)
(Table 2).

Table 2. Summary of PBC dataset.

Number Cell Type Total Images by Type Percent

1 Neutrophils 3329 19.48
2 Eosinophils 3117 18.24
3 Basophils 1218 7.13
4 Lymphocytes 1214 7.10
5 Monocytes 1420 8.31
6 Immature cells 2895 16.94
7 Erythroblasts 1551 9.07
8 Platelets (thrombocytes) 2348 13.74
9 Total 17,092 100

PBC images come with a standard size of 360 × 363 pixels, close to the input size
of the ImageNet models and the Google ViT. This minimized the impact of downsizing
the images.

3.1.2. BCCD Dataset

The BCCD dataset [6] originally contained 410 peripheral blood smear images includ-
ing red blood cells (RBCs), WBCs, and platelets. The image format was JPEG with a size
of 640 × 480. The Wright–Giemsa method was utilized to stain the blood smears, and the
dataset was captured at a 100× magnification using a standard light microscope equipped
with a CCD color camera.

Table 3 [6] presents a summary of the BCCD distribution of eosinophils, lymphocytes,
monocytes, and neutrophils.

Table 3. Summary of BCCD dataset.

Number Cell Type Total Images by Type Percent

1 Neutrophils 88 25.2
2 Eosinophils 207 59.3
3 Lymphocytes 33 9.5
4 Monocytes 21 6.0
9 Total 349 100

3.1.3. Dataset Quality and Size

Since the BCCD dataset had only four WBC classes (neutrophil, eosinophil, lympho-
cyte, and monocyte), this forced us to select only the same four WBC classes from the
PBC dataset.

Figure 3 displays the huge difference in image quality between the PBC and BCCD
datasets. It shows images of an eosinophil cell. The PBC eosinophil image [5] represents
a well-prepared peripheral blood smear, which is free of noise, has a high resolution,
and is full of details. This return back being automatically prepared and stained by the
autostainer Sysmex SP1000i. On the other hand, the BCCD eosinophil image [6] shows a
poorly manually prepared, stained, and captured peripheral blood smear, reflected by the
noise, low resolution, and lack of detail.
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Figure 3. Eosinophil sample images taken from the PBC and BCCD datasets.

3.2. Dataset Preprocessing

Dataset pre-processing usually consists of many steps, including image resizing, data
augmentation, data balancing, and data splitting.

3.2.1. PBC Dataset Pre-Processing

The PBC dataset pre-processing included only three steps: image resizing, data bal-
ancing, and data splitting. First, images in the PBC dataset needed to be resized to fit
the standard 224 × 224 image input of the pre-trained ImageNet ILSVRC and Google ViT
models [3,4].

Secondly, the analysis of performance demanded that we kept the minimum number
of evaluating metrics during the comparison. This target was achieved by employing
balanced datasets with accuracy and loss as assessment tools. For this purpose, three
balanced datasets (Table 4), DS-1, DS-2, and DS-3, were used to represent the PBC dataset.

Table 4. New balanced PBC datasets: DS-1, DS-2, and DS-3.

Cell Type DS-1 DS-2 DS-3

Neutrophils 200 400 1000
Eosinophils 200 400 1000
Basophils 200 400 1000

Lymphocytes 200 400 1000
Monocytes 200 400 1000

Total number 1000 2000 5000
Training 900 1800 4500

Validation 100 200 500

The ultimate data pre-processing stage included partitioning the data into training
and validation sets, with a distribution of 90% for training and 10% for validation for each
new PBC dataset (Table 3).

3.2.2. BCCD Dataset Pre-Processing

The BCCD dataset pre-processing required the same steps as the PBC dataset with
an additional data augmentation step to increase the amount of data. Table 2 shows that
the number of WBC images in the BCCD dataset (four) was too small. Data augmentation
techniques, such as image rotating and shearing, were randomly applied to produce enough
data. Table 5 [6] represents a summary of the WBC distribution in the four newly created
BCCD datasets, DS-4, DS-5, and DS-6.
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Table 5. New balanced BCCD datasets: DS-4, DS-5, and DS-6.

Cell Type DS-1 DS-2 DS-3

Neutrophils 400 1000 2750
Eosinophils 400 1000 2750

Lymphocytes 400 1000 2750
Monocytes 400 1000 2750

Total number 1600 4000 11,000
Training 1440 3600 9900

Validation 160 400 1100

3.3. Transfer Learning (TL)

Transfer learning (TL) is a common ML practice in computer vision whereby a model
developed for one task serves as a starting point for a model aimed at a second task.
Developers build on previous learning by leveraging already successful learning models,
eliminating the need for a clean slate or starting from scratch. In addition, high performance
is realized with small datasets and no expensive supercomputers [15].

First, in TL, a base network or a model is trained on a base dataset and task. Next,
the learned features are transferred to a second target network or model for training on a
target dataset and task. Accordingly, the TL process entails the existence of a pre-trained
model, a model formed from an extensive set of reference data to solve a similar problem
in another area [16,17].

Both pre-trained ImageNet ILSVRC and Google ViT models used an MLP head as a
classifier. The output layer of the MLP head was removed, and a new output layer was
added, representing the four WBC types of the PBC dataset.

3.3.1. ImageNet ILSVRC Models

The seven pre-trained ImageNet ILSVRC models considered in this research comprised
two DenseNets (DenseNet-169 and DenseNet-201) [18]; InceptionResNet V2 [19]; three
ResNets (ResNet-50, ResNet-101, and ResNet-152) V2 [20]; and VGG-16 [21]. Figure 4
represents a typical example of transfer learning for the seven pre-trained ImageNet
ILSVRC models.

Figure 4. Architecture of VGG-16 model classifying a neutrophil.
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In Figure 4, the transfer learning process of the VGG-16 model is depicted. The
weights of all layers, excluding the classifier (MLP Head), were held constant (“frozen”).
The parameters of these layers in the feature extractor were designated as non-trainable.
The only parameters subject to training during the fitting process were those associated
with the classifier (MLP Head), revealing the new four-class WBC output layer.

3.3.2. Google Vision Transformer (ViT)

Figure 5a,b show the resizing of a 360 × 363 PBC neutrophil image into a 224 × 224
PBC neutrophil image. After that, Figure 5b,c demonstrate the splitting of the 224 × 224
neutrophil image into 196 patches using the standardized 16 × 16 patch size. However,
Figure 3 shows the splitting of the neutrophil image into 9 patches instead of 196 patches,
because the purpose in this figure was only graphical simplification.

Figure 5. PBC neutrophil image resizing and splitting.

In the Google ViT, similarly to the ILSVRC models, only the 1000-class output layer of
the MLP head was replaced with the new four-class WBC output layer.

Figure 6 represents the transfer learning process of the Google ViT “ViTForImageClas-
sification”.

Figure 6. Architecture of ViT classifying a neutrophil.

However, all the parameters of the vision transformer entered into the training and
validating process, and this justified the longer training time compared to the ILSVRC models.
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3.3.3. Trial Setup

The AI tool used in this work was Google Colaboratory (“Google Colab” for short).
Google Colab is a very useful product for ML and data analysis, allowing data scientists to
write and execute Python code through an online-hosted Jupyter notebook [22].

The parameters kept constant during the trials were the Adam data optimizer, the cat-
egorical cross-entropy loss function, the accuracy metric, the epoch number of 10, and the
10-to-1 training-to-validating ratio.

3.3.4. Evaluation Metrics

The comparison of the ImageNet models and Google ViT was based on two types of
learning curves: optimization and performance.

Optimization curves are a type of learning curve calculated based on the metric by
which the model’s parameters are being optimized, such as loss or mean squared error
(MSE).

In this work, categorical cross-entropy [23] was used as a loss function. Cross-entropy
loss is used when adjusting model weights during training aiming to minimize the loss.
This means that the smaller the loss, the better the model. A perfect model has a cross-
entropy loss of zero. Cross-entropy [23] is defined in Equation (1) as follows:

LCE =
n

∑
i=0

ti log(pi) (1)

where ti is the truth label and pi is the Softmax probability for the ith class. Moreover,
there are also two essential correlated terms associated with optimization curves: variance
and overfitting.

Variance [24–26] is the difference in fit between the training and validating datasets.
A high variance typically occurs when the model is too complex and does not reflect the
simpler real patterns existing in the data. Variance is calculated using Equation (2):

σ2 =
1
N

n

∑
i=1

(xi − x̄)2 (2)

where xi equals each value in the dataset, x̄ is the mean of all values in the dataset, and N is
the number of values in the dataset.

The training loss (TL) indicates how well the model fits the training data, while
the validation loss (VL) indicates how well the model fits the new data. Variance is
correlated with the loss difference (LD), which is the difference between VL and TL. The LD
is calculated using the Equation (3):

LD = VL − TL (3)

Figure 7 [27] explains the underfitting and overfitting problems in relation training
and validation losses. When the deep learning algorithm effectively captures the training
data but performs poorly on the new data, it is unable to generalize, and this is known as
overfitting. The greater the variance of a model, the more it overfits the training data.

As for performance learning, accuracy represents the ratio of true predicted classes to
the total number of samples evaluated [28]. Equation (4) [28] demonstrates this computa-
tional process:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TN and TP account for successfully classified negative and positive cases, respec-
tively. Additionally, FN and FP report the number of misclassified positive and negative
cases, respectively.
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Figure 7. Underfitting and overfitting.

Another parameter used for performance assessment was the accuracy difference
(AD) (5), i.e., the difference between the training accuracy (TA) and the validating accu-
racy (VA):

AD = VA − TA (5)

Apart from the previously mentioned metrics for model evaluation, another valuable
tool employed for enhancing the interpretability of the models was Score-CAM [29]. Score-
CAM is a visual explanation technique that utilizes class activation mapping (CAM) to
assign scores to different regions in convolutional neural network (CNN) models, facilitat-
ing a deeper understanding of their internal workings.

4. Results

This section explains the experimental results for classifying WBC cells using the
seven pre-trained ImageNet ILSVRC models and the Google ViTForImageClassification.
The experiments were conducted on both the online peripheral blood smear PBC and
BCCD datasets. The PBC dataset is characterized by being a large imbalanced dataset with
standardized consistent high-quality images that are full of details, whereas the BCCD
dataset is a small imbalanced dataset with blurred and noisy images due to the fact that the
samples were manually prepared, stained, and captured.

In these experiments, the imbalanced PBC dataset was represented by three balanced
datasets: DS-1 (200 images per class), DS-2 (400 images per class), and DS-3 (1000 images
per class). Due to the small size of the BCCD dataset, data augmentation techniques were
applied to increase the amount of data. Thus, the imbalanced BCCD dataset was embodied
by three balanced datasets: DS-4 (400 images per class), DS-5 (1000 images per class),
and DS-6 (2750 images per class). The dataset balancing was aimed at evaluating the
ImageNet CNNs and Google ViT based on minimal metrics, namely accuracy and loss.

4.1. PBC Dataset Results

Table 6 shows the tenth-epoch validation accuracy and loss (VA and VL) values of
the seven pre-trained ImageNet ILSVRC models versus the Google ViT. The Google ViT
exhibited exceptionally stable performance compared to all ImageNet ILSVRC models.
The Google ViT had a validation accuracy of 100 percent and a validation loss close to zero
when fitted with the three PBC datasets (DS-1, DS-2, and DS-3).

As shown in Table 7, the Google ViT again outperformed all ILSVRC models, with an
accuracy difference (AD) value of zero, representing the difference between the training
and validating accuracies (TA and VA).

Table 8 clearly shows the development of an overfitting problem in all ILSVRC models
due to the high variances caused by the high LD values when fitted using the DS-1 and
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DS-1 datasets. However, the size of the small and medium datasets DS-1 and DS-2 had no
impact on the behavior of the Google ViT, which showed great results in such cases.

Table 6. PBC dataset: Tenth-epoch VA/VL values of Google ViT versus ILSVRC models.

Pre-Trained Models
VA (Epoch = 10) VL (Epoch = 10)

DS-1 DS-2 DS-3 DS-1 DS-2 DS-3

ImageNet Models

DenseNet-121 96.00 95.50 100 100 0.113 0.186 0.000
DenseNet-169 99.00 96.00 100 100 0.033 0.227 0.000
DenseNet-201 99.00 96.50 99.20 99.20 0.030 0.162 0.034
Inception V3 98.00 92.00 100 100 0.087 0.327 0.000
Inception-ResNet V2 99.00 94.50 100 100 0.030 0.221 0.000
ResNet-50 V2 94.00 92.00 100 100 0.271 0.320 0.000
ResNet-101V2 96.00 91.50 100 100 0.153 0.393 0.000
ResNet-152 V2 97.00 92.50 100 100 0.141 0.297 0.000
VGG-16 97.00 91.00 100 100 0.097 0.219 0.007
VGG-19 98.00 94.00 100 100 0.117 0.249 0.013
Xception 96.00 92.00 99.40 99.40 0.224 0.404 0.013

Vision Transformer (ViT)

Google ViT 100 100 100 100 0.005 0.003 0.000

Table 7. PBC dataset: Tenth-epoch AD values of Google ViT versus ILSVRC models.

Pre-Trained Models
AD Values (Epoch = 10)

DS-1 DS-2 DS-3

ImageNet Models

DenseNet-121 +4% +5% 0%
DenseNet-169 +1% +4% 0%
DenseNet-201 +1% +3.5% +0.1%
Inception V3 +2% +8% 0%
Inception-ResNet V2 +1% +5.5% 0%
ResNet-50 V2 +6% +8% 0%
ResNet-101V2 +4% +8.5% 0%
ResNet-152 V2 +3% +7.5% 0%
VGG-16 +3% +9% 0%
VGG-19 +2% +6% 0%
Xception +4% +8% +2.2%

Vision Transformer (ViT)

Google ViT 0% 0% 0%

Table 8. PBC dataset: Tenth-epoch LD values of Google ViT versus ILSVRC models.

Pre-Trained Models
LD Values (Epoch = 10)

DS-1 DS-2 DS-3

ImageNet Models

DenseNet-121 0.111 0.185 0.000
DenseNet-169 0.033 0.227 0.000
DenseNet-201 0.029 0.161 0.003
Inception V3 0.087 0.327 0.000
Inception-ResNet V2 0.029 0.220 0.000
ResNet-50 V2 0.270 0.320 0.000
ResNet-101V2 0.153 0.392 0.000
ResNet-152 V2 0.141 0.297 0.000
VGG-16 0.063 0.200 0.000
VGG-19 0.063 0.225 0.001
Xception 0.223 0.404 0.271

Vision Transformer (ViT)

Google ViT 0.000 0.000 0.000

Finally, the larger number of trainable parameters for Google ViT compared to all
ILSVRC models during the transfer learning process explained its need for additional
computational resources and a longer training and validating time.

4.2. BCCD Dataset Results

Table 9 shows the tenth-epoch validation accuracy and loss (VA and VL) values of the
seven pre-trained ImageNet ILSVRC models versus the Google ViT. The models were fitted
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with the three BCCD datasets (DS-4, DS-5, and DS-6). The Google ViT demonstrated better
performance than all ImageNet ILSVRC models.

The Google ViT reached an 88.6% validation accuracy and a validation loss close to one
when fitted with the BCCD DS-6 dataset. By comparison, when fitted with the DS-6 dataset,
all ImageNet ILSVRC models displayed poor optimization learning and performance. This
was due to the great amount of noise caused by the overuse of data augmentation and the
poor quality of the original BCCD dataset images.

Table 9. BCCD dataset: Tenth-epoch VA/VL values of Google ViT versus ILSVRC models.

Pre-Trained Models VA (Epoch = 10) VL (Epoch = 10)
DS-4 DS-5 DS-6 DS-4 DS-5 DS-6

ImageNet Models

DenseNet-121 46.88 49.75 54.45 1.748 2.820 4.574
DenseNet-169 48.75 58.50 100 2.034 3.630 7.262
DenseNet-201 53.75 60.25 59.45 1.722 3.024 6.163
Inception-ResNet V2 57.50 60.50 55.27 1.272 1.492 3.847
ResNet-50 V2 39.38 47.75 46.27 3.420 6.310 16.39
ResNet-101V2 44.37 41.50 46.82 3.392 6.379 11.76
ResNet-152 V2 44.37 52.00 53.09 2.408 2.790 8.540
VGG-16 46.88 55.00 52.64 1.347 1.213 1.560

Vision Transformer (ViT)

Google ViT 85.62 87.75 88.36 0.832 0.905 1.018

As shown in Table 10, the Google ViT fitted with the DS-6 dataset again outperformed
the other models, reaching a +11.64% accuracy difference (AD) value, which was far better
than any AD achieved by the ILSVRC models.

Table 10. BCCD dataset: Tenth-epoch AD values of Google ViT versus ILSVRC models.

Pre-Trained Models
AD Values (Epoch = 10)

DS-4 DS-5 DS-6

ImageNet Models

DenseNet-121 +53.12% +48.92% +41.16%
DenseNet-169 +51.25% +39.50% +35.9%
DenseNet-201 +46.25% +38.89% +37.13%
Inception-ResNet V2 +42.50% +39.50% +40.56%
ResNet-50 V2 +60.62% +47.28% +51.24%
ResNet-101V2 +55.63% +54.64% +50.31%
ResNet-152 V2 +55.63% +48.00% +42.56%
VGG-16 +52.77% +44.86% +47.18%

Vision Transformer (ViT)

Google ViT 13.28% +12.25% +11.64%

Table 11 clearly demonstrates that the Google ViT fitted with the DS-6 dataset again
outperformed the other models, achieving a loss difference (LD) of around 1%, which was
lower than any LD attained by the ILSVRC models.

Table 11. BCCD dataset: Tenth-epoch LD values of Google ViT versus ILSVRC models.

Pre-Trained Models
LD Values (Epoch = 10)

DS-4 DS-5 DS-6

ImageNet Models

DenseNet-121 1.740 2.779 4.396
DenseNet-169 2.032 3.570 7.015
DenseNet-201 1.720 3.000 5.947
Inception-ResNet V2 1.254 1.482 3.716
ResNet-50 V2 3.420 6.113 16.18
ResNet-101V2 3.392 6.210 11.58
ResNet-152 V2 2.408 2.790 8.271
VGG-16 1.234 1.140 1.521

Vision Transformer (ViT)

Google ViT 0.829 0.904 1.018
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Thus, Tables 10 and 11 stress the same facts and conclusions supported by Table 9.

5. Discussion

The experimental results presented in this study provide valuable insights into the
performance of the pre-trained ImageNet ILSVRC models and the Google ViT (vision
transformer) when applied to the classification of white blood cells (WBCs). In this section,
we discuss the key findings, implications, and limitations and provide a summary based
on the results obtained from the PBC and BCCD datasets.

5.1. PBC Dataset Results

The results obtained from the PBC datasets demonstrated a stark contrast in the per-
formance of the pre-trained ImageNet ILSVRC models and the Google ViT. The Google ViT
consistently outperformed all ImageNet models across all three PBC datasets (DS-1, DS-2,
and DS-3) in terms of both validation accuracy (VA) and validation loss (VL). It achieved a
remarkable 100% validation accuracy and a validation loss close to zero. This exceptional
performance suggests that the Google ViT is well-suited for handling imbalanced datasets
with high-quality, detailed images.

Furthermore, when we analyzed the accuracy difference (AD) values, it was evident
that the Google ViT maintained a constant 0% AD across all three PBC datasets. In contrast,
the ImageNet models exhibited positive AD values, indicating overfitting issues, especially
when working with the DS-1 dataset. This overfitting was likely due to the high variances
caused by the presence of limited data in DS-1. The Google ViT’s consistent performance
regardless of dataset size suggested its robustness in dealing with small and medium-
sized datasets.

The LD (loss difference) values further emphasized the Google ViT’s superiority.
While the ImageNet models displayed varying degrees of loss difference as the dataset size
increased, the Google ViT consistently maintained minimal loss differences, once again
highlighting its stability.

Overall, the performance of the Google ViT on the PBC datasets indicated its effec-
tiveness in handling large, imbalanced, and high-quality image datasets while mitigating
overfitting issues.

5.2. BCCD Dataset Results

In contrast to the PBC datasets, the BCCD datasets presented a more challenging
scenario due to their small size, noise, and poor image quality. The Google ViT continued
to demonstrate its superior performance, achieving an 88.36% validation accuracy and
a validation loss close to one when fitted with the BCCD DS-6 dataset. This exceptional
performance, especially when handling the most challenging dataset, DS-6, is a testament
to the robustness of the Google ViT.

When compared to the ImageNet models, the Google ViT was consistently superior
across all three BCCD datasets (DS-4, DS-5, and DS-6) in terms of the accuracy difference
(AD) and loss difference (LD) values. The AD values for the Google ViT were consistently
lower, indicating its ability to maintain a higher accuracy. In addition, the LD values for
the Google ViT remained minimal, underscoring its stability even when dealing with small,
noisy, and low-quality image datasets.

The superior performance of the Google ViT on the BCCD datasets, especially the DS-6
dataset, highlights its resilience in the face of challenging data conditions and noise. This
makes it a promising choice for applications where image quality is a concern or where the
dataset size is limited.

5.3. Score-CAM

These findings received additional support from the utilization of Score-CAM, as de-
picted in Figure 8, which offers a visual representation of the fitted pre-trained DenseNet-
169 model’s performance using the DS-3 PBC dataset. In Figure 8, four selected WBCs,
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namely an eosinophil, lymphocyte, monocyte, and neutrophil, randomly taken from the
DS-3 PBC dataset, are presented in the upper section. Meanwhile, the lower section of
Figure 8 displays their corresponding Score-CAM images, highlighting the specific areas of
focus detected by the DenseNet-169 model.

Figure 8. Score-CAM for DenseNet-169 model fitted with the DS-3 PBC dataset.

5.4. Implications and Limitations

The findings in this study have significant implications for the field of deep learning
and computer vision. The Google ViT’s consistent and exceptional performance, even on
challenging datasets, suggests its potential for a wide range of medical image analysis
and diagnostic applications. Its robustness to dataset size and quality could lead to more
accurate and reliable results in various healthcare settings, providing valuable support for
medical professionals.

One of the strengths of this study was its focus on key metrics such as accuracy,
loss, accuracy difference (AD), and loss difference (LD), which provided a comprehensive
evaluation of the models’ performance. The results were clear and consistent across all
datasets, supporting the conclusion that the Google ViT is a powerful choice for medical
image classification tasks.

This work featured many novel aspects and perspectives when compared to the
previously cited works [7–14].

Firstly, it utilized the Google ViT for the first time and proved its superiority in
performance and stability compared to the ImageNet CNNs under the same circumstances
and conditions. The Google ViT achieved superior performance, with an average 100%
accuracy. Secondly, this work shed light on and stressed the significance of data processing
techniques, such as data balancing, in order to achieve better performance and a higher
accuracy. Additionally, it demonstrated the negative impacts of poor data processing habits,
such as the overuse of data augmentation methods without considering the preservation
of an acceptable ratio between the original data and their augmented versions. Finally,
it clearly showed how such a case could be exaggerated in the event of unclean noisy
image data.

One limitation of our study lay in its exclusive focus on the classification of four mature
WBC types. This raises the question of whether our findings would hold true if additional
blood cell classes, such as basophils; segmented/banded neutrophils; immature granulo-
cytes (pro-myelocytes, myelocytes, meta-myelocytes); and erythroblasts, were included.
The inclusion of these additional cell classes could significantly increase the complexity of
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the classification task due to their numerous similarities, presenting a challenging avenue
for future research.

5.5. Summary

In summary, the experimental results from this study demonstrated that the Google
ViT consistently outperformed the pre-trained ImageNet ILSVRC models when classifying
white blood cells (WBCs), even when dealing with challenging datasets. Its exceptional
stability, regardless of dataset size or image quality, highlights its potential for various
medical image analysis tasks. Researchers and practitioners in the field of medical imaging
should consider the Google ViT as a reliable and robust tool for image classification tasks,
particularly in healthcare applications. This study emphasizes the importance of selecting
the right deep learning model to achieve high performance in medical image analysis and
paves the way for further advancements in the field.

6. Conclusions

In conclusion, this study thoroughly assessed the performance of the Google ViT
when classifying four types of WBCs using peripheral blood smear images from two on-
line datasets, the PBC and BCCD datasets. To address data scarcity, the study employed
three balanced datasets (DS-1, DS-2, and DS-3) from the PBC dataset, which contained
high-quality images of various blood cell groups. The Google ViT exhibited superior
performance compared to the ImageNet CNNs when dealing with data shortages. Further-
more, the study applied data augmentation techniques to create three balanced datasets
(DS-4, DS-5, and DS-6) from the low-quality BCCD dataset, introducing noise to the data.
In this scenario, the Google ViT demonstrated its robustness and resilience to noisy data, in
contrast to the ImageNet CNNs. In summary, this work underscored the effectiveness of
ViTs in scenarios of data insufficiency and the presence of unclean data.

In future research, we will expand the scope of this study to encompass additional
blood cell classes, including basophils; segmented/banded neutrophils; immature granulo-
cytes (pro-myelocytes, myelocytes, meta-myelocytes); erythroblasts; and other related cell
types. These additional classes exhibit notable similarities among themselves. Additionally,
our study will aim to augment the number of images within each class to provide a more
challenging task for both ViTs and pre-trained CNNs.
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