
1.  Introduction
Bioerosion is a global and ubiquitous ecological process transforming habitats, increasing biodiversity and shap-
ing landscapes (Davidson et al., 2018). Unfortunately, it can also have strong adverse impacts on human assets, 
from the economic, social and ecological points of view (Bayoumi & Meguid, 2011; Orlandini et al., 2015). 
The interaction between human infrastructures and wildlife has been known by engineers for centuries and is 
presently becoming an increasingly important research topic (Harvey et al., 2019; Haubrock et al., 2019). Spe-
cial attention is focused on burrowing mammals, such as the crested porcupine (Hystrix cristata), the European 
badger (Meles meles), the red fox (Vulpes vulpes) and the nutria (Myocastor coypus), affecting levees devoted to 
flood control. These mammals burrow levees to construct their dens, thus obtaining shelter from predators and 
thermal extremes, and a suitable environment for reproduction. However, mammal dens compromise both the 
structural integrity and the hydraulic properties of levees by ultimately affecting their functionality. Among levee 
failure mechanisms, seepage and internal erosion induced by dens have recently attracted much attention, since 
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with a computationally efficient unsteady seepage flow model. The resulting modeling framework incorporates 
the natural variability of floods and the essential hydraulic properties of disturbed/undisturbed levees. Model 
results reveal that the return period of levee failure due to excessive seepage reduces from 100 to 9 years, 
namely of −91%, when the mammal den extends for 84% of levee thickness. These results can be used to 
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these processes have been found to explain an increasing number of levee breaches causing disastrous inundations 
(Orlandini et al., 2015).

The awareness of researchers toward the issues that mammal dens in levees pose to flood prone communities is 
demonstrated by the rapidly growing number of papers dedicated to this topic (Calamak et al., 2020; Dassanayake 
& Mousa, 2020; Li et al., 2020; Palladino et al., 2020). In spite of the problem relevance, burrowing of earthen 
structures was previously discussed only by a limited number of publications such as failure reports, maintenance 
recommendations and restoration guidelines of authorities involved in flood control or newspaper articles. A 
broad review of this gray literature was provided by Bayoumi and Meguid (2011), who first raised the problem 
within the scientific community. On a global scale, 22 animal species were acknowledged to have a detrimen-
tal impact on the structural integrity and on the vulnerability to seepage of earthen dams and levees, including 
human vandals (Federal Emergency Management Agency, 2005; Woodward & Mayfield, 1999). Nevertheless, 
Bayoumi and Meguid (2011) underlined the disproportionately low attention given to burrowing with respect to 
its socio-economic impact.

The development of the research interest toward burrowing can also be justified by the increase in the invasive 
activity of animals against earthen structures, that has recently been noticed. Several reasons can be advocated 
to explain this evidence: (a) the establishment of nature reserves along river courses and the promulgation of 
laws protecting endangered species (Council of Europe,  1979,  1992), (b) some species take advantage from 
habitat fragmentation due to the urbanization sprawl and from deforestation (Alexandre et al., 2020; McMahon 
et al., 2019), (c) in the past decades the release of some allochthonous species in habitats where they did not 
find natural competitors or predators yielded their widespread proliferation (Carter & Leonard, 2002; Harvey 
et al., 2019), (iv) the decrease in the frequency of riverbanks maintenance practices during the last two decades 
favors mammal denning (Mori & Assandri, 2019).

The den structure depends on several factors, including the kind of species, the community size, the den age 
and the soil characteristics. Although strongly variable on a global scale, dens of semi-fossorial mammals are 
basically relevant to levees along the secondary river network where levee thicknesses are limited. For instance, 
nutria dens can extent 5 m in depth (Harvey et al., 2019). An increase in the overall failure probability of levees 
is therefore expected since these mammal species usually burrow their dens between the toe and the crest. During 
floods, the den tunnels can be directly inundated, if the entrance is placed on the riverside slope. Conversely, if the 
entrance is placed on the landside slope, the den tunnels provide a pipe network for the seepage waters to be con-
veyed, when the saturated front reaches the den end. In both situations, the actual soil thickness that the saturated 
front of seepage must cross to trigger the internal soil erosion can be significantly shorter than the design levee 
thickness. As the fine fraction of the soil is progressively removed by hydrodynamic forces, the seepage process 
auto-increases, until a pressurized pipe flow is established between the riverside slope and the landside slope. 
Then, soil removal continues due to shear stress erosion, and the pipe cross section enlarges. Finally, the levee 
portion located above the den subsides, yielding the levee overflow and then a breach (Orlandini et al., 2015).

When dealing with an extensive levee system affected by mammal bioerosion, it is important to develop practical 
methodologies for assessing the increase in levee failure probability, by using simple geometric characteristics 
and soil hydraulic properties. First, estimating levees vulnerability to bioerosion would allow authorities devoted 
to levee maintenance to better address survey campaigns. Second, classifying surveyed dens in terms of hazard 
would improve the effectiveness of restoring programs. Levee failure mechanisms induced by excessive seepage, 
as well as other levee failure mechanisms related to overflowing, internal erosion and mechanical instabilities, 
depends on both riverflow stages and their duration. Bearing in mind the natural variability of floods, this delin-
eates a multivariate problem in which at least two hydrograph characteristics must be accounted for. In addition, 
the geometrical characterization of dens is affected by high uncertainty, related to the difficulties involved in the 
indirect techniques used for their surveys (Borgatti et al., 2017). Thus, accounting for the epistemic uncertainty 
is essential. At the state-of-the-art, two approaches are available to evaluate the response of levees to the seepage 
of flood waters: (a) numerical simulations and (b) fragility curves.

Numerical simulations are capable to comprehensively represent the seepage processes by solving the 3D Rich-
ards equation in variably saturated soil conditions (e.g., Butera et  al.,  2020; Calamak et  al.,  2020; Orlandini 
et al., 2015). However, they are computationally intensive and require a large amount of data that are not al-
ways accessible with the appropriate accuracy. Therefore, their practical application is normally limited to the 
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simulation of a few individual floods, which can be observed events or synthetic design events, often derived 
from flood reduction curves (Bacchi et al., 1992). In both cases, accounting for the epistemic uncertainty, espe-
cially that related to the den geometry, is a nontrivial task. A stochastic simulation, based on the probabilistic de-
scription of hydroclimatic forcing, a simple deterministic modeling of levee response and the statistical descrip-
tion of uncertain parameters, is therefore a useful alternative. Fragility curves use schematic models or analytical 
solutions derived for simple cases (e.g., Marchi, 1961), that can be implemented in stochastic generation proce-
dures to account for the epistemic uncertainty (e.g., ; Camici et al., 2017; Hall et al., 2003, 2005; Vorogushyn 
et al., 2009). However, fragility curves express the failure probability variability for given flood durations and 
must be regarded as conditioned distribution functions. By using fixed durations of floods, the actual dependence 
structure of flood characteristics is lost (Balistrocchi et al., 2017). In addition, the peak flow discharge is often 
assumed to be constant over the chosen duration. Albeit conservative, this hypothesis is far from being realistic, 
so that dealing with a real-world flood, it must be relaxed by approximating the flood hydrograph through a step 
function.

As first suggested by Balistrocchi et al. (2019) for the levee failure due to the overflowing, levee failure probabil-
ity can be estimated in a conceptually correct manner by combining a fully bivariate statistical description of the 
hydrologic forcing to the levee with a simplified schematization of the failure mechanism requiring a reasonable 
computational burden. To this aim, bivariate distributions or copulas have largely been used in literature (De 
Michele et al., 2005; Goel et al., 1998; Grimaldi & Serinaldi, 2006; Salvadori et al., 2007; Yue, 2000). Recent ad-
vances have been achieved in the estimation of the frequency of occurrence of multivariate events (Balistrocchi & 
Bacchi, 2017; Balistrocchi et al., 2019; Balistrocchi & Grossi, 2020; Requena et al., 2013; Salvadori et al., 2015; 
Serinaldi, 2015, 2016; Volpi & Fiori, 2014). If a functional relationship exists between a multiple random varia-
ble representing the hydrological forcing and a univariate random variable representing the hydrologic load to the 
levee, the derived distribution theory implying the equality of exceedance probabilities of corresponding events 
can be used (e.g., Kunstmann & Kastens, 2006). If the transformation function represents the failure mechanism, 
it can be implemented in a limit state function that discriminates the hydrologic events in two dichotomous class-
es: (a) those that trigger the failure mechanism and (b) those that do not. Hence, the multivariate population of 
the hydrologic event variables can be split into a safety region and a failure region, making it possible to estimate 
the failure probability. This modeling strategy has never been used to investigate the levee failure due to excessive 
seepage and, more specifically, to determine the impact of burrowing mammals on levee failure probability.

In the present paper, a new stochastic model is specifically developed for estimating the increase in failure prob-
ability of levees due to mammal bioerosion. This model combines a fully bivariate statistical description of peak 
flow discharge and flood duration, a deterministic unsteady seepage flow model, and a Monte Carlo analysis of 
epistemic uncertainty in the characterization of the river system. Although the developed model is of general 
interest as it may be used for any disturbed and undisturbed levees, it is illustrated on the real case of the Secchia 
River in Italy, where bioerosion caused a remarkable flood damage in 2014. The paper is organized as follows. 
Methods are described in Section 2. The case study, the available data set, the calibration and the verification of 
model components are illustrated in Section 3. The discussion on results is reported in Section 4. Conclusions 
are drawn in Section 5.

2.  Methods
2.1.  Bivariate Modeling of Flood Events

The natural variability of flood events is modeled by using a joint distribution function (JDF) of peak flow dis-
charge qp and flood duration d. Peak flow discharge is related to the maximum riverflow stage through the uniform 
flow rating curve. River flow stage can directly be used in preference to flow discharge and uniform flow rating 
curve when these data are available. In addition, the combined use of peak flow discharge and flood duration is 
informative about the flood volume. Copulas are used to derive such a bivariate distribution (Joe, 1997, 2015; 
Nelsen, 2006). According to this approach, the JDF Q DpE F  expressing the overall mutual dependence of the mar-
ginal variables can be decomposed as given by

         
, ,Q D p Q p Dp pF q d H F q F dρ� (1)
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where QpE F  is the cumulative distribution function (CDF) of qp, DE F  is the CDF of d and Hρ is the underlying copula 
function, completely defined by the parameter vector ρ (Sklar, 1959). The bivariate function Hρ varies in the do-
main [0,1]2 of the marginal uniform variables u and v, defined as the non-exceedance probabilities of the natural 
marginal variables, as given by

             
2, : 0,1 0,1 with and .Q p DpH u v u F q v F dρ� (2)

Consequently, Hρ is independent of the marginal distributions and it only expresses the dependence structure. To 
fit the JDF given by 1, individual independent events must be sampled from an extended time series of observed 
riverflow discharges. To this aim, a peak-over-threshold (POT) criterion based on a threshold discharge qt and 
a minimum interevent time td is adopted. The first sampling parameter allows us to separate the continuous 
series into partial duration series, including only those hydrograph portions which exceed qt (Lang et al., 1999; 
Todorovic, 1978). These hydrograph portions are identified as individual flood events, separated by the others by 
interevent periods. The second sampling parameter aims at ensuring the independence between two subsequent 
flood events (Brunner et al., 2017). Hence, two hydrographs are considered to be independent if they are separat-
ed by an interevent period greater than td. Otherwise, they are aggregated into a unique flood event, whose partial 
duration spans from the beginning of the first hydrograph to the end of the second one.

Sampling parameters significantly affects the statistical properties of the flood sample, and thus the overall model 
reliability. The method suggested by Balistrocchi et al. (2017) provides, however, a sound strategy to select these 
values. In fact, qt must yield floods significant to the system behavior, while td must be long enough for the system 
to be restored to the initial condition, at the beginning of the subsequent flood. Once independent flood events 
are isolated, the observation sample of peak flow discharge ˆpiE q  and flood duration ˆ

iE d  couples are derived along 
with the average annual number of flood events ny. According to copula formalism in Equation 1, one can split 
the inference of a parametric model for Q DpE F  into the separate inferences of marginal distributions and copula, 
enabling for greater flexibility in the choice of these components and making the fitting procedure easier. This 
allows us to investigate the dependence structure and the marginal distributions in a more straightforward manner, 
and to construct a JDF that closely suits the observed joint variability.

The model of the theoretical copula Hρ is obtained in the present study by applying a convex linear combination 
of two copulas as given by

                    , , 1 , with , , and 0 1H u v C u v G u vρ ρ� (3)

where E C  is a Clayton copula having parameter E  , E G  is a Gumbel-Hougaard copula having parameter E  , and ω 
is the convex linear combination coefficient. Both copulas are mono-parametric and Archimedean (Salvadori 
et al., 2007). The bivariate CDFs of the Clayton and Gumbel-Hougaard copulas are given by

    
 

 


        

1/
, max 1, 0 with 1C u v u v� (4)

and

     
 

 
           

1/
, exp ln ln with 1G u v u v‐ ‐� (5)

respectively. The interest for combining these functions mainly arises from the different modeling of the tails. The 
Clayton copula features a strong concordance in the lower tail, but not in the upper tail. The contrary occurs for 
the Gumbel-Hougaard copula. Hence, their convex linear combination has tail dependence coefficients given by 
the same combination of the corresponding coefficients of the single copulas, as given by

   1/2 with 0L� (6)

for the lower tail coefficient λL, and by

        1/1 2 2 with 1U� (7)
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for the upper tail coefficient λU. The theoretical copula given by 3 can be fit to data leaving apart the marginal dis-
tributions by deriving the pseudo-observations  ˆ ˆ,i iE u v  from the observations  , ˆˆ pi iE q d  . Although the most popular 
method for fitting multi-parameter copulas is based on the maximization of the pseudo-log-likelihood estimator 
(Genest & Favre, 2007), in the present study the method based on the minimization of the Cramer-von Mises 
statistics is used to increase computational efficiency (Genest et al., 2009; Salvadori et al., 2007). To complete 
the JDF given by 1, the CDFs belonging to the generalized Pareto model, given by

    



 

     
 

1

1 1 withQ p p t p tpF q q q q q� (8)

and the Weibull model, given by

 




          
1 exp with 0D

dF d d� (9)

are selected to represent the marginal distribution of qp and d, respectively. In Equation 8, only the shape param-
eter κ and the scale parameter ξ must be estimated, since the location parameter for the peak flow discharge must 
be set equal to the threshold flow discharge qt. In Equation 9, only a shape parameter δ and a scale parameter ζ are 
needed, as the flood duration lower limit is zero. Owing to the copula approach, such CDFs can be individually 
fit and tested according to commonly used criteria for univariate distributions (Kottegoda & Rosso, 2008).

2.2.  Failure Hazard Estimate

In multivariate models, the estimate of the hazard referred to a planning period, or alternatively of the return peri-
od, suffers from the absence of a total order relation of the events. Hence, various approaches have been proposed 
in order to split the multivariate populations into sub critical regions and super critical regions: “AND,” “OR” 
(Goel et al., 1998), Kendall (Salvadori & De Michele, 2010), and structural (Balistrocchi & Bacchi, 2017; Balis-
trocchi et al., 2017; Requena et al., 2013; Salvadori et al., 2015; Volpi & Fiori, 2014). Owing to its reliability, the 
structural approach has recently attracted great interest and appears to be appealing in failure probability analyses 
of levees (Balistrocchi et al., 2019). Dealing with the estimate of failure probabilities, the multivariate events must 
be classified in two classes, including those that trigger the failure mechanism and those that do not. Thus, the 
failure mechanism itself induces a dichotomous partition of the population, that is split into the failure region and 
the safety region. The boundary separating these regions is referred to as limit state, which is a (k-1)-dimensional 
space in a k-dimensional population.

In general, the population partition can be obtained by using the limit state function, or reliability function, as 
given by

 Z R L� (10)

where R is the structural resistance and L is the external load. The difference Z between R and L is positive in 
the safety region, equal to zero in the limit state and negative in the failure region (Apel et al., 2004; Vorogushyn 
et al., 2009). Equation 10 can incorporate the natural variability of floods along with the epistemic uncertainty 
of the structural characteristics. In our study, the load L is derived from the bivariate JDF given by 1 through 
a deterministic transformation function estimating the maximum extent of the saturation front inside the levee 
body. Although the transformation function is deterministic, its parameters that can be randomly varied by using a 
Monte Carlo simulation technique in order to take into consideration the limited knowledge and the variability of 
the structural characteristics, as well as the errors due to model assumptions. In undisturbed levees, the resistance 
R is given by the seepage length needed for the saturation front to reach the landside levee slope. In the disturbed 
levees addressed in the present study, the resistance R is given by the seepage length needed for the saturation 
front to reach the den system.

2.2.1.  Seepage Modeling

Seepage in variably disturbed levees is sketched in Figure 1. The flood hydrograph forcing the levee is sketched 
in Figure 1a. A picture showing a crested porcupine at the entrance of its den is reported in Figure 1b. The 
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conceptual scheme proposed by Vorogushyn et al. (2009) for the levee failure mechanism due to excessive seep-
age is extended as shown in Figure 1c. The saturation front length ℓ at time t is given by

    


   02 tc

a

Kt h d� (11)

where Kc is the saturated hydraulic conductivity, θa is the air-filled porosity, and  E h h y is the hydraulic head 
with respect to the den elevation y. The integral   0

tE h d  is represented by the shaded area in Figure 1a. In 
order to account for the unsteady flow conditions determined by the gradual rise and recession of the flow stage 
during a flood, a time dependent water head   E h h t  is considered. Equation 11 makes it possible to overcome 
the usual hypothesis of rectangular shape for the flood hydrograph, which is needed to integrate analytically the 
filtration equations under unsteady flow conditions (Michelazzo et al., 2018; Palladino et al., 2020). To make this 
hypothesis conservative, a constant flow discharge equal to the flood peak is set throughout the flood duration. 
In contrast, by using Equation 11, any shape for the flood hydrograph can be adopted to derive the maximum 
length of the seepage front. In the present study the triangular hydrograph shape first suggested by Wycoff and 
Singh (1976) is used (Figure 1a).

The maximum horizontal advance xm in Figure 1c can be computed by assuming ℓ as the median RF of triangle 
DSF as given by

   

 

22

2 SMP if 2 SMP 0
2 2 2

2 SMP elsewhere

c c
p p

a a
m

c
p

a

s hK h K hh d h d
x

Ks h d

 



                   





� (12)

where SMP is the soil matric potential, E h  is the average hydraulic head with respect to the den elevation y as is 
given by

       
1 t dy p

typ
h h y d

d� (13)

dp is the flood impoundment duration, ty is the time at which impoundment at the level y begins, and s is the levee 
riverside slope as shown in Figure 1c. The gentler the slope s, the larger the infiltration area on the riverside is and 
the longer the seepage front advance xm is. The maximum length of the seepage front ℓm and the maximum hori-
zontal advance xm occurring during the flood event are obtained when the integral given by Equation 13 covers 
the total duration of the flood impoundment dp. Indeed, these values are related to the maximum possible value 
of the hydrograph integral in Equation 11. It is remarked that the variable xm can hardly be observed directly and 
the statistics for this quantity needs therefore to be derived from observed flood variables.

Figure 1.  (a) Shape of the flood hydrograph adopted in this study. (b) Crested porcupine photographed on the entrance of its den along a river system. (c) Sketch of the 
seepage at a given time t in the ponding period starting at time ty and ending at time ty + dp at elevation y.
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In Equation 12, the soil matric potential SMP corresponding to the initial levee saturation is also considered as 
driving force in addition to the gravitational forces. This contribution could be significant in presence of soils 
with fine granulometry, such as those that are commonly used in the construction of levees. Owing to the nature 
of the methodology proposed in the present study, the whole population of flood events, including those with 
short duration and high peak, must be investigated even though their probability of occurrence is low. These 
events were not considered in the study by Vorogushyn et al. (2009) and they may cause the radical of the first 
case of Equation 12 to become negative. To deal with this problem, the solution given by the second case of 
Equation 12 is introduced in the present study. This solution assumes a seepage length ℓm equal to the half of the 
average water stage and allows the continuity of the limit state boundary to be preserved. The cross-sectional river 
geometry sketched in Figure 1c is consistent with the conceptual model described by Equation 12 and it is sim-
ilar to the cross-sectional river geometry considered by Vorogushyn et al. (2009) or, more recently, by Palladino 
et al. (2020). In this conceptual model the gently sloping floodplain located between the levee riverside and the 
active channel are not considered.

To estimate the hydrograph integral in Equation 13, the triangular shape shown in Figure 1a appears to be a 
reasonable approximation. Although flood hydrographs are generally flatter on the recession limb, an isosceles 
triangle hydrograph is considered in Figure 1a as E h  used in Equation 12 does not depend on the slopes of the 
rising and recession limbs. The base-time directly corresponds to the random variable d, and the maximum water 
stage hp can be assessed from the random variable qp by using an estimated uniform flow or looped rating curve. 
As illustrated in Figure 1a, the impoundment duration dp at a level y and the corresponding average water head 

E h  are easily computed as


 p

p
p

h y
d d

h� (14)

and

  
1
2 ph h y� (15)

respectively. According to the derived distribution theory, Equations 12–15 configure as a transformation func-
tion, suitable to relate the bivariate space of the flood variables qp and d to the univariate space of xm. In addition, 
this derivation procedure is consistent with the structural based approach for the estimation of the failure hazard 
or the failure return period, and makes it possible the exploitation of the total order of the univariate random 
variable xm to estimate the return period of a bivariate flood event defined by qp and d.

2.2.2.  Mammal Den Modeling

Under undisturbed conditions, it is routinely assumed that the failure mechanism triggers immediately when the 
saturated front reaches the landside levee toe. Accordingly, in this analysis, a den with an entrance located on the 
landside slope is idealized as a cylindric horizontal pipe, which extends toward the riverside slope for a length bd. 
As illustrated in Figure 1c, given the total thickness of the levee bt at the elevation y, the residual levee thickness 
br represents the levee thickness at elevation y from the river thalweg, that the saturated front must cross to trigger 
the failure mechanism. This schematization can also stand for a den with the entrance located on the riverside 
slope if an instantaneous filling of the den volume is assumed. In the limiting case of a den crossing the levee 
from the riverside to the landside (br equal to zero), the failure mechanism can be considered triggered by any 
flood whose water stages reach the den. A similar schematization is adopted by Saghaee et al. (2016) and Pallad-
ino et al. (2020), to analyze the impact of dens on levee stability by using physical modeling and finite element 
analysis, respectively.

2.2.3.  Hazard Estimate

The seepage failure probability associated with an individual independent flood is defined as the integral of 
the probability density function of its constitutive variables over the failure region. According to the derived 
distribution theory, this integral can be computed in the probability space by using the copula density func-
tion      2 /E H u vρ  . Due to the complexity of the copula functions, the integration must be performed by 



Water Resources Research

BALISTROCCHI ET AL.

10.1029/2021WR030559

8 of 24

numerical techniques. However, the semi-infinite regions of the space of natural variables are transformed in 
definite regions, included in the unitary square [0,1]2, greatly simplifying the integral computation. In this case, 
the general form of the limit state function in Equation 10 takes the form

    , ,p r m pZ q d b x q d� (16)

where the levee residual thickness br represents the resistance R and the maximum advance of the saturated front 
xm the load L. Hence, Equation 16 can explicitly incorporate the mutual variability of flood variables, along with 
the epistemic uncertainty through the randomization of its parameters according to Monte Carlo techniques. 
The state variable Z is thus function of the natural random variables qp and d, which can be expressed in terms 
of quantiles of the corresponding uniform variables u and v by inverting the marginal CDFs given by 8 and 9, 
respectively. The failure region Λ in the probability space can thus be delimitated as indicated by

              
2 1 1Λ , 0,1 | , 0 .Q Dpu v Z F u F v� (17)

The hazard related to a structural failure in a planning period of N years can finally be computed as

     Λ1 1 ,
N

N yH n u v du dv� (18)

In the past, this quantity was referred to as long-term risk, or inherent hydrologic risk (US Army Corps of Engi-
neers, 1996). In this formulation, the annual hazard is computed by multiplying the event failure probability for 
the average annual event number ny. The hazard HN is thus the probability that a load L exceeding the resistance 
R occurs in a planning period of N years (Akan & Houghtalen, 2003; Chow et al., 1988). The return period Tr is 
therefore related to the hazard HN as given by

 


 
1

1

1 1
r

NN

T
H

� (19)

2.3.  Implementation of the Failure Probability Estimation Model

The stochastic model estimating the failure probability of levees affected by bioerosion is implemented by per-
forming the following steps:

1.	 �The copula function Hρ given by Equation 3 expressing the natural mutual variability of peak flow discharge 
and flood duration is fitted to pseudo-observations by minimizing the sum of the squared residuals between 
the empirical and the theoretical copula, as described in Section 2.1.

2.	 �The soil hydraulic parameters affecting the load factor xm given by Equation 12 and the parameters of the uni-
form flow rating curve are randomly generated by using the Monte Carlo procedure described in the following 
Section 3.2.3.

3.	 �The failure region Λ defined by Equation 17 is delimited in the probability space [0,1]2 for chosen den eleva-
tion y and levee residual thickness br, through the limit state function Z given by Equation 16, by varying the 
uniform variables u and v in [0,1] according to a sufficiently small interval:
�3.1.	� Uniform variables u and v are fixed in [0,1].
�3.2.	� Uniform variables are transformed in the corresponding natural variables qp and d through the CDFs 

given by 8 and 9, respectively.
�3.3.	� The maximum water stage hp is obtained from the peak flow discharge qp by using the uniform flow 

rating curve, as illustrated in the following Section 3.2.3.
�3.4.	� The average water head E h  and the ponding duration dp at elevation y are evaluated by using Equations 14 

and 15.
�3.5.	� The maximum horizontal advance xm, namely the load factor L in 10, is computed from Equation 12 and 

subtracted to the residual thickness br, namely the resistance factor R in 10, as given by Equation 16, to 
obtain the limit state function Z introduced in Equation 10.
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�3.6.	� The point (u,v) is attributed to failure region Λ if the value of the state function Z computed by using 
Equation 16 is negative.

4.	 �The hazard HN is estimated by integrating numerically the copula density function η, derived from the copula 
Hρ given by Equation 3, over the failure region Λ as given by Equation 18.

5.	 �Steps from 2 to 4 are repeated for a sufficiently large number of runs.
6.	 �The sample of hazards HN is statistically described by sample median and quartiles.

It is specified here that this stochastic modeling framework is composed of deterministic and statistical compo-
nents. The deterministic component is the seepage flow model given by Equation 12. The statistical components 
are the bivariate distribution 1 of peak flow discharge and flood duration describing the natural variability of 
floods and the statistical distributions of uncertain parameters in Equation 12 and in the uniform flow rating curve 
described in Section 3.2.3. The probability of occurrence of the hydrologic load xm is directly estimated by using 
JDF 3 and no further estimations are needed. An equivalent result can be achieved by statistically characterizing a 
sample of xm occurrences, derived from JDF 3 by means of copula simulation techniques. In theory, the estimate 
method used in this study should lead to a more precise estimate of the failure probability, since it relies on the 
whole population of flood events and not on a limited sample of flood occurrences. In the present study, major 
sources of uncertainty are taken into consideration. Nevertheless, the uncertainties related to probabilistic model 
estimate could also be accounted for, through the randomization of the parameters of JDF 3. In addition, the dif-
ferent weight associated with the single sources of uncertainty could be quantified through an analysis of variance 
approach as shown, for instance, by Qi et al. (2016).

Annual levee failure probability can interchangeably be expressed as 1 / rE T  , where rE T  is the levee failure return pe-
riod, or hazard NE H  over the planning period N, which is related to rE T  by Equation 19. Although the model outlined 
in the present section can mathematically yield estimates of levee failure return period having unlimited magni-
tude, the statistical reliability of results must be qualified in regard to the flow record length. Computed events 
having return periods that do not exceed by a factor of two the flow record length are commonly considered to 
be statistically reliable (Benson, 1962, 1963; Hu et al., 2020; Natural Environment Research Council, 1975; UK 
Center for Ecology & Hydrology, 1999). In addition, more recent studies indicate a greater reliability of quantiles 
obtained from POT series with respect to those obtained from the corresponding annual maximum series (Todor-
ovic, 1978). In the case study reported in the following Section 3, where flow discharge is observed over a period 
of 42 years and a POT series of 188 flood events is used, all model results are illustrated and events having return 
period that do not exceed 100 years are assumed to be statistically reliable.

3.  Case Study
3.1.  Data

The failure probability model herein developed is applied to and tested on an existing levee located in northern 
Italy along the left bank of the Secchia River (Figure 2). As shown in Figure 2a, the Secchia River is a main right 
bank tributary of the Po River in the Tuscan-Emilian Apennines originating at Alpe di Succiso at an elevation of 
about 1,450 m asl. It heads north, touches Modena on the right bank and runs into the Po River south of Mantua. 
The course is 172 km long and the drainage basin has a total area of 2,292 km2. The riverflow has been moni-
tored by a river station located in Ponte Bacchello, 73.5 km upstream of the river mouth, since 1923 by the Italian 
Hydrographic Service (Servizio Idrografico Italiano). As shown in Figure 2, the Ponte Bacchello river station 
lies on the plain and drains a drainage basin having area of 1,292 km2 and time of concentration of about 15 hr. 
The annual rainfall depth averagely amounts to 1,270 mm. The runoff coefficient is estimated to be on average 
equal to 0.47 and the mean annual discharge is equal to 22.4 m3 s−1. The riverflow regime is mostly driven by 
rainfall, which is characterized by two maxima and two minima. The main maximum occurs in November and the 
main minimum in July. Nevertheless, snowmelt supplies an appreciable contribution to the riverflow in March, 
when the average monthly runoff coefficient is close to one. Owing to high temperatures, scarce rainfalls and 
the absence of glacier contributions, low riverflow is frequently observed in August. Conversely, the most severe 
floods usually occur in November, after the drainage basin moisture is restored by the stratiform rainfall events.

The river reach on the plain is bounded by an extensive levee system that underwent a severe failure yielding a 
disastrous inundation of a densely populated floodplain on January 19, 2014 (Figure 2a). The breach occurred in 
the right bank levee at San Matteo, a few kilometers upstream of the Ponte Bacchello section. The event featured 
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a flooding volume of about 36 × 106 m3, affecting an area of 52 km2 and yielding a damage in excess of $500 
million. The failure event was extensively analyzed by Orlandini et al. (2015) and a mammal den was found to 
be the most plausible cause for the levee failure. Therefore, a detailed knowledge of the hydraulic characteristics 
of the levees in this area was achieved. In addition, a 42-year long series of hourly flow discharges recorded at 
the Ponte Bacchello river gage is available, making it possible to statistically characterize the flood variability 
in this river reach. The analyzed period spans from 1923 to 1933 and from 1951 to 1981. After this period, the 
national hydrographic agency was dismissed, and regional hydrographic services were established. As a result, 
the observation series was interrupted for several years, during which the Secchia River underwent important 
hydraulic works, including the construction of an extensive flood control reservoir. Therefore, flood variability 
has been deeply changed and flow discharges presently recorded cannot be considered homogeneous with respect 
to previously recorded data. The data series used in the present study represents the longest available time series 
describing the flood variability of the Secchia River.

Figure 2.  Secchia River drainage basin and (inset a) aerial photo of the levee breach occurred on January 19, 2014 near San 
Matteo (Modena, Italy).
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The analyzed levee location is shown in Figure 2. The river cross section and the corresponding uniform flow 
rating curve are reported in Figures 3a and 3b, respectively. The river cross section geometry is determined from 
a 1-m digital elevation model generated from a lidar survey featuring horizontal errors less than 30 cm and eleva-
tion errors less than 15 cm. The uniform flow rating curve was set by separating the compound section in elemen-
tary subsections. Different values are adopted for the Gauckler-Strickler conductance coefficients kS, which are 
set equal to 32 and 25 m1/3 s−1 for the main channel and the floodplains, respectively. Such values are in accord-
ance with the data reported in literature for a plain straight riverbed and banks covered by grass and light brush 
(Chow et al., 1988). The obtained uniform flow rating curve is consistent with the maximum of the observed flow 
discharge series, which was estimated to be 817.4 m3 s−1. The maximum flow discharge is therefore conveyed 
through this section without overflowing the shortest levee on the left bank. In fact, during the observation period 
overflowing events were not recorded. It is worth to underline that, during the last two decades, the overall con-
veyance capacity of this river reach has greatly reduced due to a decrease in maintenance. The derived uniform 
flow rating curve in Figure 3b must therefore be considered as representative of the river condition during the 
observation period. This does not compromise the generality of the performed analysis since its main objective is 
to illustrate the potential and the reliability of the hazard estimate procedure herein developed, and not to provide 
specific results for the reported case study.

3.2.  Calibration and Test of Model Components

The assessments and the reliability verifications of the probabilistic and the deterministic model components of 
the Monte Carlo simulation technique used in the present study to estimate the failure hazard given by 18, as well 
as its uncertainty, are described in the following subsections. The probabilistic component is portioned into the 
natural variability of flood variables in Section 3.2.1. The deterministic component is given by the transformation 
function reported in Equation 16 as described in Section 3.2.2. The epistemic uncertainty is finally illustrated in 
Section 3.2.3.

3.2.1.  Natural Variability of Floods

In consideration of the hydrologic characteristics of the river section and its upstream contributing area, a thresh-
old flow discharge qt equal to 180 m3 s−1 and a minimum interevent time td equal to 24 hr are used to sample the 
independent floods from the discharge series. According to the uniform flow rating curve reported in Figure 3b, 
the threshold flow discharge is needed for the flow to begin the wetting of the left bank. An interevent period 
equal to about the double of drainage basin time of concentration is considered to ensure the independence of two 
subsequent floods. The selected parameters lead to a sample size n of 188 individual independent floods, with 
an average annual number of flood events ny equal to 4.48. A scatterplot of the derived pseudo-observations is 
supplied in Figure 4a, visually showing a moderate-strong concordance for the association of peak flow discharge 
and flood duration. The Kendall rank correlation coefficient is estimated to be 0.68, while the independence 
hypothesis can be rejected for a test significance level less than 0.1%. This kind of moderate-strong concordant 
association is consistent with those observed in other flood frequency studies (Balistrocchi et al., 2017; Serinaldi 
& Kilsby, 2013).

Figure 3.  (a) Analyzed river cross section and (b) corresponding uniform flow rating curve.
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The parameter vector ρ which minimizes the sum of squared residuals between the theoretical copula given 
by 3 and the empirical copula (Cramer-von Mises statistics) was estimated by only considering the value rang-
es of concordant associations (E   > 0 and E   > 1) and assuming a dominant contribution of the Clayton copula 
(E   > 0.5). This choice is intended to combine the tail dependence properties of the copulas to better suit the em-
pirical evidence. The result is  0.52, 3.2, 4.7E      ρ  , corresponding to a Cramer-von Mises statistics 
equal to 0.0094, which is far less than those achievable by the single copulas (0.0458 for Cϕ and 0.0884 for Gψ). 
The theoretical upper tail coefficient λU (6) and the lower tail coefficient λL (7) are estimated to be 0.40 and 0.42, 
respectively. The goodness-of-fit of the theoretical copula is illustrated in Figure 4 by comparing the contour 
lines of the cumulative function Hρ to those of the empirical copula (Figure 4a). An alternative representation of 
the global dependence structure is given by the χ-plot reported in Figure 4b. A χ-plot is a scatterplot relating the 
measure λ of the distance of the pseudo-observations  ˆ ˆ,i iE u v  from the bivariate median (0.5,0.5), that is the center 
of the data set, to χ values, representing the departure from independence. Details for the computation of λ, χ and 
the critical values for testing independence can be found in Fisher and Switzer (2001). In Figure 4 critical values 
under the null hypothesis of independence refer to a significance level α of 10%. As highlighted by Joe (2015), 
empirical measures of tail dependences do not really exist because of the limit inherent in their definition. Graph-
ical inspections by using scatterplots of pseudo-observations limited to suitable subsets of [0,1]2 can however be 
conducted. According to Abberger (2005), in this paper a focus on the dependence structure featuring the tails 
was obtained by χ-plots reporting pseudo-observations belonging only to specific quadrants with respect to the 
bivariate median, namely the upper-right hand quadrant (URHQ) for the upper tail, the lower-left hand quadrant 

Figure 4.  Global goodness-of-fit displayed by the copula Hρ with respect to pseudo-observations: (a) copula CDF contour 
lines, (b) χ-plot of pseudo-observations derived from data and simulated by using the theoretical copula Hρ given by 
Equation 1, (c) χ-plot of the pseudo-observations falling in the upper right-hand quadrant (URHQ), and (d) χ-plot of the 
pseudo-observations falling in the lower left-hand quadrant (LLHQ).
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(LLHQ) for the lower tail. The remaining pseudo-observations are referred to other quadrants (OQ). Such χ-plots 
are reported in Figures 4c and 4d, respectively.

The χ-plot reported in Figure 4b indicates a moderate to strong concordant association which appears to be sta-
tistically significant as almost all the χ values are positive and larger than the critical values for the independence 
hypothesis not to be rejected. When pseudo-observations belonging to specific quadrants are considered, the 
greatest χ values are found to belong to the LLHQ (χ values varying between 0.5 and 1.0). A less marked concord-
ance, but still statistically significant, is shown in the URHQ (χ values varying between 0.0 and 0.70). Therefore, 
a theoretical dependence structure featuring asymmetric tail dependence properties, in which the lower tail de-
pendence coefficient is greater than the upper tail dependence coefficient, appears to fit the observed dependence 
structure. Actually, χ-plots based on 1,000 simulated pseudo-observations are visually compared to those derived 
for actual pseudo-observations, revealing a satisfactory global agreement (Figure 4b) and satisfactory agreements 
both in the URHQ (Figure 4c) and in LLHQ (Figure 4d). Details on copula simulation methods can be found in 
Mai and Scherer (2012) and Joe (2015).

The satisfactory goodness-of-fit visually shown in Figure 4 was quantitatively investigated by using test statis-
tics. In particular, the blanket test proposed by Genest et al. (2009) and based on Cramer-von Mises statistics is 
adopted. By using a bootstrap procedure, an empirical estimate of the p-value that is the test significance level 
for which the null hypothesis cannot be rejected is obtained. In this case, the tested null hypothesis was that the 
underlying copula is the theoretical function given by 3. After 10,000 copula simulation runs, the p-value is found 
to be 64.5%. The obtained p-value is far larger than the usual 10% significance level routinely adopted in test 
statistics and it supports the suitability of the selected theoretical function.

The marginal CDFs for qp and d given by 8 and 9, respectively, are fitted by using the maximum likelihood cri-
terion obtaining κ equal to 0.015 and δ equal to 1.345, for the shape parameters, ξ equal to 118.24 m3 s−1 and ζ 
equal to 24.9 hr, for the scale parameters. The overall goodness-of-fit was first evaluated by using the probability 
plots shown in Figure 5 that evidence a satisfactory agreement between the theoretical and the empirical func-
tions. The confidence limits shown in Figure 5 are derived as suggested by Kite (1977) for a significance level 
α equal to 10%. Since the empirical distributions completely lie inside the 80% pointwise confidence intervals, 
the null hypotheses that the observation samples are distributed according to theoretical CDFs (8) and (9) cannot 
be rejected.

Additional evaluations were conducted by using the Kolmogorov-Smirnov (K-S) test and the Anderson-Darling 
(A-D) test (Kottegoda & Rosso, 2008). The first is useful to highlight the maximum residual between the theo-
retical and the empirical functions, while the second focuses more specifically on the fit of the tails. The K-S and 
the A-D tests were conducted by implementing a bootstrap procedure. The results are reported in Table 1, where 
the test statists Dmax and 2E A  along with the p-values obtained after 100,000 simulations are listed. All p-values are 
greater than 10% test significance level adopted in the present study, so that none of the null hypotheses should be 

Figure 5.  Probability plots showing the confidence interval for the significance level α of 10% for the marginal distributions 
of (a) peak flow discharge (     /p tE z q q  ), and (b) flood duration (  /E z d  ).
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rejected. For the sake of completeness, Table 1 also reports the critical values 
Dnα and 

2E A  , corresponding to 10% significance levels. In all the cases, test 
statistics are less than the corresponding critical values, and thus consistent 
with the results of the bootstrap procedure.

3.2.2.  Transformation Function

The soil unsaturated hydraulic properties of the levee required to calibrate 
Equation 12 have been determined experimentally by using 10 undisturbed 
samples collected near the location of the levee failure occurred on Janu-
ary 19, 2014 (Figures S1 and S2 and Table S1 in Supporting Informa-
tion  S1). Levee soil at the site can be classified as a loam. Soil retention 
experiments and hydraulic conductivity tests were performed as described 

in Romano and Santini  (1999) and results are summarized in Table S1 in Supporting Information S1. Addi-
tional information on foundation soils can be found in D’Alpaos et al. (2014). The constitutive equation relating 
the volumetric soil water content θ to the soil matric potential SMP is given by the van Genuchten equation 

        
Θ 1 / 1 SMP

mvgnvg
vgE a  , where         Θ /r a rE  is the degree of saturation, aE  is the air-filled 

porosity, rE  is the residual soil water content, SMPE  is the soil matric potential, vgE a  , vgE n  , and vgE m  are parameters. The 
constitutive equation relating the unsaturated hydraulic conductivity K to the volumetric soil water content θ was 
defined by the Mualem model as  c rE K K K  , where cE K  is the soil saturated hydraulic conductivity and the soil 

relative hydraulic conductivity is given by 
          

2
1/1/2Θ 1 1 Θ

mvgmvg
rE K  . Soil parameters for the analyzed 

levee are rE  = 0.079, aE  = 0.404, nvg = 1.495, mvg = 1–1/nvg = 0.331, avg = 1.543 m−1, and Kc = 1.881 × 10−6 m 
s−1. In particular, the air-filled porosity aE  and the saturated hydraulic conductivity cE K  in Equation 12 are assessed 
as the arithmetic mean and the geometric mean of the sample values, respectively.

To test the simplified seepage flow model given by Equation 12, detailed numerical simulations based on the 
Richards equation are performed by using the soil hydraulic properties reported above as shown in Figure 6. 
The levee geometry incorporated in the simplified seepage flow model is shown by the gray dashed line. In the 
simplified seepage flow model, the soil domain extending between the levee body and the active channel is not 
entirely represented. This is equivalent to assuming that the omitted soil portion saturates instantaneously during 
the flood event. The soil matric potential SMPE  in Equation 12 is estimated to be −1.0 m. Numerical simulations 
are performed by using the FEFLOW model (Diersch, 2014). The levee geometry in the numerical model is based 
on a 1-m resolution lidar survey. As shown in Figure 6a, the computational soil domain has a planar extension 
along the river cross-section of about 450 m and a soil thickness of about 30 m. Boundary conditions assigned 
to the land surface are Dirichlet-type (assigned potential) conditions, representing a levee boundary wetted by 
riverflow. The head is assigned to the mesh nodes only when the river stage is greater than the node elevation. 

Marginal

K-S A-D

Dmax Dnα p-value 2E A 
2E A p-value

QpE F  given by 8 0.0523 0.0890 59.4% 0.6913 0.9160 57.6%

FD given by 9 0.0624 0.0890 47.7% 0.6367 0.6370 10.4%

Table 1 
Results of K-S and A-D Tests Reporting Test Statistics (Dmax and A2), 
Critical Values for a Significance Level α of 10% (Dnα and 

2E A  ) and the 
Empirical Estimates of the p-values

Figure 6.  Detailed numerical modeling of seepage flow performed by the FEFLOW model to test the simplified seepage flow model given by Equation 12. Panel (a) 
shows the volumetric soil water content at time t = 37 hr when the levee is forced by the stage hydrograph reported in panel (b). The term “saturation” reported in the 
legend of panel (a) is used in the FEFLOW model to denote the volumetric soil water content. The phreatic line is reported in white. Predictions of maximum horizontal 
advance xm obtained from the simplified model and from the FEFLOW model are compared in panel (c).
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For all the mesh nodes belonging to the land surface outside the wetted perimeter of the river cross section, a 
Dirichlet-type (assigned potential) conditions constraint by the flux is assigned. When flow is directed outward 
the domain, the head equal to the elevation of the node is assigned. This makes it possible to correctly simulate 
the possible return to the land surface of flood water seeping across the levee. A no-flux Neumann-type boundary 
condition is assigned to the bottom of the domain, whereas a Dirichlet-type was assigned to the lateral boundaries 
(far from the levee) to represent a water table depth of about 1.50 m. The mesh is refined to obtain nodes along 
the levee riverside with a spatial resolution in elevation of at least 0.10 m and a 10-min time step for the definition 
of boundary conditions is used.

As exemplified in Figure 6b, the seepage process is simulated in response to four triangular flood hydrographs 
by combining two flood durations d of 48 and 72 hr, with two peak water stages of 11.5 and 10.5 m, respectively 
(35.9 and 34.9 m asl, respectively). These values are selected to represent relevant hydroclimatic forcing to the 
analyzed levee. The triangular shape is used to ensure consistency between the compared models, namely Equa-
tion 12 and FEFLOW. The maximum horizontal advances xm are then obtained at different elevations y varying 
between the levee toe on the riverside and the levee crest (35.6 and 32.7 m asl, respectively) with resolution of 
25 cm. A sample of 41 simulated values was obtained and compared to the corresponding estimates obtained by 
Equation 12. The visual comparison of such estimates is reported in Figure 6c. By assuming that numerical sim-
ulations are benchmarking, the estimates of the Nash-Sutcliffe efficiency and of the linear correlation coefficient 
are 0.86 and 0.98, respectively. Therefore, the model comparison is satisfactory and supports the implementation 
of the simplified model given by Equation 12. It is finally remarked that according to these simulations, the time 
for the levee soil to be completely drained after a flood event is assessed in no more than 2–3 days, indicating a 
negligible memory effect in multiple flood events in these systems.

Examples of the bivariate population splits between the safety region and the failure region that can be achieved 
by using Equation  17, with soil hydraulic properties previously reported and uniform flow rating curve 
 0.4010.749E h q  (Figure 3b), are plotted in Figure 7 for left bank levee and for different den elevations and re-

sidual thicknesses when Kc = 1.88 × 10−6 m s−1; θa = 0.404; SMP = −1.0 m. The flow discharge of 400 m3 s−1 
corresponds to the value needed for the levee toe to be pounded. The dashed line indicates the crest overflow 
discharge, that is the threshold flow discharge over which the additional failure mechanism of overflowing must 
be taken into consideration.

3.2.3.  Epistemic Uncertainty

Epistemic uncertainty deals with the imperfect knowledge of the analyzed system as a result of the limited ability 
to measure and describe natural phenomena. Limited extension and quality of hydrologic data is another relevant 
source of uncertainty. In hydrological applications such as levee breach, the epistemic uncertainty is remarkable 
and deserves to be suitably accounted for to provide meaningful estimates of the variables of interest (Voro-
gushyn et al., 2011). As highlighted by Apel et al. (2004), in a Monte Carlo analysis the epistemic uncertainty 
can be modeled by randomizing the parameters of the deterministic model components. Sources of uncertainty 
are assumed to be mutually independent, so that random values are generated separately by using univariate tech-
niques. The sources of uncertainty considered in the present study are listed below, along with the characteristics 
of the CDFs implemented in the Monte Carlo analysis to estimate the uncertainty in the obtained estimates of the 
levee failure hazard. These sources are:

•	 �Soil saturated hydraulic conductivity Kc. The uncertainty is modeled by using the conductivity values estimat-
ed for the 10 soil samples through a triangular distribution. The density function was assumed to vary between 
the minimum estimate of 8.333 × 10−8 m s−1 and the maximum estimate of 1.301 × 10−5 m s−1, while the 
geometric mean of 1.881 × 10−6 m s−1 is assumed to be the mode. The triangular distribution is used in pref-
erence of the lognormal distribution as the triangular distribution makes it possible to equal the pdf mode to 
the sample geometric mean while also keeping a positive skewness (Figure S3 in Supporting Information S1). 
It is remarked here that the triangular distribution of soil saturated hydraulic conductivity observed at a given 
point is used in the Monte Carlo analysis to determine the value at any point inside the levee body. The prob-
ability that this value is less than the minimum observed value or greater than the maximum observed value 
is assumed to be insignificant.

•	 �Soil air-filled porosity θa. The uncertainty is modeled by using the porosity values estimated for the 10 soil 
samples through a normal distribution, characterized by a mean of 0.404 and a standard deviation of 0.047.
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•	 �Soil matric potential SMP in Equation 12. In consideration of its high uncertainty, a uniform density function 
was adopted for the soil matric potential. A minimum value of −1.20 m and a maximum value of −0.80 m 
are considered.

•	 �Uniform flow rating curve. Owing to the precision and the reliability of the survey that yielded the cross-sec-
tion geometry reported in Figure 3a, the uncertainty is mainly related to the Gauckler-Strickler conductance 
coefficients kS of the main channel and the floodplains. This parameter is also variable due to the season and 
the maintenance status. With respect to the mean parameter values reported in Section 3.1, a variability of 
±5% and of ±10% are therefore assumed for the main channel and the floodplains, respectively. If the uniform 
flow rating curves are approximated by simple power functions of the kind  bE h a q  , its variability can be 
expressed in terms of the variability of parameters a and b. Hence, normal distributions are assumed for both 
the coefficient a (mean equal to 0.749, standard deviation equal to 0.003) and the exponent b (mean equal to 
0.401, standard deviation equal to 0.002). The mean values delineate the uniform flow rating curve in Fig-
ure 3b, whereas the standard deviation is set by assuming that the maximum and the minimum uniform flow 
rating curves bound a variability range equal to six times the standard deviation.

Figure 7.  Examples of the bivariate population splits for (a) den elevation y = 10.5 m (about 0.7 m below the levee crest) 
and residual thickness br = 1.0 m, (b) y = 10.5 m and br = 10.5 m, (c) y = 8.5 m (about 2.7 m below the levee crest) and 
br = 1.0 m, and (d) y = 8.5 m and br = 0.5 m. Vertical dashed lines indicate the value of the threshold flow discharge of 
880 m3 s−1 above which overflow occurs.
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3.3.  Hazard Estimation Results

The hazard estimates conducted by using Equation 18 for different planning periods N can be expressed in terms 
of functional boxplots as reported in Figure 8. The reference value is given by the median, and the uncertainty 
band is delimitated by the first and the third quartiles. For the sake of completeness, the 5% and the 95% quantiles 
are also reported in Figure 8. The parameters of the limit state function are randomly varied according to the 
CDFs discussed in Section 3.2.3. To achieve a satisfactory stability of results while also maintaining computa-
tional efficiency, 1,000 simulation runs are conducted. Under the considered model assumptions, a variation of 
only 2%–3% in the percentile estimates of the event failure probability is obtained by increasing the number of 
simulation runs up to 10,000. In this derivation, a fixed elevation of 9.5 m (about 2.0 m below the levee crest) 
is chosen to reproduce a condition similar to that of the levee failure occurred on January 19 2014 along this 
river reach. Different plots can be obtained by varying the den geometrical parameters. For instance, Figure 9 
shows the functional boxplots of the hazard increasing trends with respect to the planning period N, estimated for 
increasing values of the den elevation y when a constant residual thickness br equal to 1.5 m is considered. Con-
versely, Figure 10 shows the same trends estimated when the den length bd is set equal to 5.6 m and the residual 
thickness br is varied.

4.  Discussion
The convex linear combination of Clayton and Gumbel-Hougaard copulas defined in Equations 3–5 is found to 
provide a suitable model closely fitting the empirical distribution (Section 3.2.1). As shown in Figure 4, asym-
metric and statistically significant tails were suitably reproduced by combining the different tail properties of 
the individual components. Despite the increase in probabilistic model complexity, the suggested linear combi-
nation is selected in preference to other copula families commonly adopted in flood frequency analysis such as 
the elliptical copulas. In fact, the computational advantages of the Archimedean copulas related to the existence 
of the explicit analytical expression of the copula cumulative function are maintained. It is acknowledged that 
investigating tail properties is always a nontrivial task, due to the conceptual issues of deriving estimators for the 
empirical distributions (Joe, 2015). However, the empirical copula characteristics outlined in Figure 4 are often 
observed in bivariate flood frequency analysis and fueled the debate on the use of copula featuring only lower 
tail dependence (Balistrocchi et al., 2017, 2019; Chowdhary et al., 2011), only upper tail dependence (Karmakar 

Figure 8.  Hazard trends and related uncertainties as obtained by varying the residual thickness br at a constant elevation 
y = 9.5 m (about 2.0 m below the levee crest) and for increasing planning period N: (a) 20 years, (b) 50 years, (c) 100 years, 
and (d) 200 years.
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& Simonovic, 2009; Requena et al., 2013; Zhang & Singh, 2007), or both tail dependences (Ganguli & Red-
dy, 2013). Therefore, despite the estimation of tail dependences in empirical samples is theoretically challenging, 
these aspects of the joint variability do deserve investigation as made in Figure 4.

Numerical experiments conducted through the FEFLOW model to investigate seepage dynamics in the analyzed 
levee system demonstrate that the time needed for the seepage water to completely drain after a significant flood 
is in the order of 2–3 days (Section 3.2.2). This period is far less than the average interevent time between two 

Figure 9.  Hazard trends and related uncertainties as obtained by varying the planning period N for a constant residual 
thickness br = 1.5 m and for increasing elevation y: (a) 8.5 m, (b) 9.0 m, (c) 9.5 m, and (d) 10.0 m.

Figure 10.  Hazard trends and related uncertainties as obtained by varying the planning period N for a constant den length 
bd = 5.6 m and for increasing elevation y: (a) 8.5 m (br = 4.0 m), (b) 9.0 m (br = 3.0 m), (c) 9.5 m (br = 2.0 m) and (d) 10.0 m 
(br = 1.0 m).
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subsequent floods of about 80 days, that corresponds to an average annual number of flood events ny equal to 4.48 
(Section 3.2.1). Thus, the levee moisture content can be assumed to be restored to the initial condition, or at least 
to an unsaturated soil condition, when an independent flood occurs. This supports the hypothesis of statistical 
independence of the sample flood events, from the physical point of view concerning seepage flow dynamics.

The complete model proposed by Vorogushyn et al. (2009), and herein modified as given by Equation 12 to be 
suitably implemented in the limit state function given by 16, was found to provide results comparable to those 
obtained from detailed numerical simulations (Figure 6). As shown in Figure 6c, deviations between the sim-
plified and detailed model results are found to be acceptable in consideration of the uncertainties related to the 
description of seepage processes. The scatterplot reported in Figure 6c indicates that there is a satisfactory overall 
agreement between the values of the maximum horizontal advance xm obtained from the simplified seepage flow 
model and by the numerical FEFLOW model (Nash-Sutcliffe efficiency equal to 0.86, linear correlation coef-
ficient equal to 0.98). The simplified seepage flow model underestimates xm for values of xm greater than about 
2 m, which are especially obtained at lowest elevations, and overestimates xm for values of xm less than about 
2 m, which are especially obtained at highest elevations. The obtained trend is likely to be connected to the high 
nonlinearity of soil hydraulic conductivity with soil water content incorporated in the numerical FEFLOW model 
and to the longer impoundment of the low points of the levee with respect to those located at a higher elevation. 
In addition, the computational burden decreases dramatically when Equation 16 is used in preference to detailed 
numerical models, making it possible to account for the epistemic uncertainty in the whole modeling framework 
developed.

Other studies used a simplified version of Vorogushing et al.’s model, but they did not account for the contribu-
tion to seepage flow due to the infiltration from the riverside slope (Michelazzo et al., 2018; Oliver et al., 2018). 
More precisely, in previous studies the seepage length ℓm estimated in Equation 11 is set equal to the seepage 
horizontal advance xm (Figure 1) and the impact of soil matric potential SMP is disregarded. These assumptions 
have also been tested in the present study. The model given by Equation 11 is found to yield significant underes-
timations of the maximum saturated front extents when compared to numerical simulations. It is concluded that 
the terms neglected in Equation 11 are important and in the results obtained from previous studies the effect of 
these terms is compensated, at least in part, by the use of a rectangular hydrograph in preference to a triangular 
hydrograph. In accordance with Vorogushyn et al. (2009), Equation 11 can be used to describe the substratum 
piping processes, whereas Equation 12 and triangular hydrographs are needed to describe the seepage process 
through the levee body.

The limit state function obtained from Equation 16 is conceptually meaningful. As shown in Figure 7, a shorter 
flood duration is needed for the failure mechanism to be triggered as the peak flow discharge increases. This 
configuration of the limit state function appears to be realistic since the higher the peak flow discharge, the 
steeper the seepage flow hydraulic gradient is. In addition, the failure region expands when the residual thickness 
br decreases for a fixed elevation (compare Figure 7a to Figure 7b, and Figure 7c to Figure 7d), and when the 
den elevation y decreases for a fixed residual thickness (compare Figures 7a–7c, and Figures 7b–7d). The first 
behavior is expected as the residual thickness is the path length that must be crossed by the seepage to trigger the 
failure mechanism. Conversely, the second behavior can be explained by considering that, at a lower elevation, 
the den is subject to a longer pounding duration and to a higher hydraulic load. As shown in Figure 7, levee 
overflowing under noncritical seepage flow conditions occur for very short flood durations, which may not be 
critical for levee crest erosion and breach formation. In any case, levee failure due to excessive seepage appears 
to be dominant when dens exist. It is finally remarked that the limit state function defined by Equation 16 and 
illustrated in Figure 7 identifies infinite flood events expressed in terms of peak flow discharge qp and flood 
duration d that correspond to a unique value of maximum horizontal advance xm inside the levee, and thus to a 
unique value of return period.

The method developed in Section 2.2.1 takes into consideration the potential presence of a mammal den inside 
the levee body, making it possible to carry out assessments for undisturbed and disturbed levees. As shown in 
Figure 8, a decreasing trend in the hazard HN with respect to the residual thickness br is obtained. Hazard is found 
to be negligible when br is larger than 5.0 m, even for a planning period of 200 years. Since the levee thickness 
is 6.0 m at this elevation, the hazard related to seepage is almost null in the absence of mammal dens and the 
seepage failure mechanism could be disregarded in the estimate of the overall hazard (Figure 8d). In contrast, 
the hazard is unacceptably high for a planning period of 20 years when br is less than 2.5 m (Figure 8a). In this 
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situation, the hazard is actually estimated to be 15.5%. When the den completely crosses the total levee thickness 
(that is when br is equal to zero) the hazard equals the probability that the den is pounded during the planning pe-
riod. This event is almost certain for the 20 years planning period as the median hazard is estimated at 98.5%. The 
return period of a levee failure due to the excessive seepage mechanism only can be estimated by Equation 19. 
In the absence of dens, Tr is greater than 200 years and decreases down to 9 years when bioerosion extends for 
84% of the levee thickness and 5 years when the den completely crosses the levee. Major uncertainties are related 
to a residual thickness varying between 1.5 and 3.0 m, as the other values lead to hazard estimates very close to 
one or zero, respectively. With regard to the planning periods of 20 and 200 years, the maximum widths of the 
uncertainty bands are 17.9% and 40.4%, respectively. This analysis was repeated at various elevations, revealing 
that the maximum distance for the hazard to be negligible is always shorter than the levee total thickness bt for 
return periods far greater than 200 years. Therefore, the analyzed levee can be considered globally verified, with 
regard to the flood variability previously featuring the plain river reach. The results obtained for undisturbed and 
disturbed levees are consistent with the events observed in the study area.

A strong impact of mammal dens on the levee structural integrity is clearly revealed. As shown in Figure 8, the 
hazard referred to the excessive seepage failure mechanism is negligible in undisturbed conditions, whereas it in-
creases dramatically when the levee body is affected by bioerosion. Indeed, based on obtained model results, the 
levee analyzed in the present study is verified with respect to excessive seepage induced failure for flood return 
periods greater than 200 years as required for levees belonging to the main hydrographic network. It is, however, 
remarked here that the statistical analysis reported in the present study is based on a flow record having length of 
42 years, from which a POT series of 188 flood events is extracted and used, and only events having return period 
that do not exceed 100 years are conservatively considered to be statistically reliable. The functional boxplots 
obtained for the hazard HN by varying the planning period N (Figures 9 and 10) show an increasing trend. When a 
fixed residual thickness and different elevations are considered, the hazard trends shown in Figure 9 are obtained. 
Since the levee thickness increases as the elevation decreases, a constant residual thickness involves more ex-
tended dens near the levee toe. Under this assumption, the worst situation is represented by a den located near the 
levee toe (y equal to 8.5 m, den length bd equal to 8.0 m), for which the hazard HN is estimated to be 94.5% for N 
equal to 20 years (Figure 9a). However, near the levee crest (y equal to 10.0 m, den length bd equal to 5.0 m), the 
estimate of the hazard HN is 30.6% for N equal to 20 years, which increases up to 97.4% for N equal to 200 years 
(Figure 9d). Hence, the return period Tr of a failure event only due to the excessive seepage mechanism increases 
from 7 to 55 years, when the elevation y increases from 8.5 to 10.0 m and the residual thickness is 1.5 m. Such a 
behavior can be explained by considering that the lower the den elevation, the longer the pounding durations are 
and the higher the hydraulic heads are. Owing to the hazard values close to the upper limit of 100%, uncertainty 
bands are quite narrow for low elevations (Figures 9a and 9b). The maximum uncertainty is observed for a den 
elevation y of 10.0 m and a planning period N ranging between 50 and 100 years where the band width is assessed 
to range from 25% to 29%.

A different behavior with respect to the variation of the den elevation is nevertheless assessed if the den length bd 
is kept constant instead of the residual levee thickness br. In the example shown in Figure 10, the worst situation is 
given by a den placed near the levee crest. The hazard for a den elevation of 8.5 m varies between 7.0% and 51.8%, 
as the planning period increases from 20 yr to 200 years (Figure 10a). In contrast, the corresponding variation 
for a den elevation of 10.0 m is estimated to range between 51.8% and 99.9% (Figure 10d). The return period of 
the failure event thus decreases from 270 to 30 years, as the den elevation increases. This can be explained by 
admitting a major contribution of the increase in the resistance factor (the residual levee thickness br) with respect 
to the worsening of the load factor (pounding duration dp and hydraulic head E h  ) in the limit state function given 
by 16. The uncertainty bands are large for a den elevation of 8.5 m (Figure 10a) and of 9.0 m (Figure 10b), where 
the maximum width is estimated to range from 49% to 60% for the planning periods ranging between 100 and 
200 years. The greatest uncertainties of the hazard estimates at the lowest elevations can be explained by consid-
ering the great contribution of the uncertainties of the soil hydraulic parameters when large soil thicknesses are 
involved. The assumption of constant den length (Figure 10) appears to be more realistic than assuming constant 
residual levee thickness (Figure 9). Although the den geometry shows significant variability on a global scale, 
such a variability greatly diminishes on regional and local scales, where the population number is in balance with 
respect the resources of the surrounding habitat and similar soil types are used to construct the levee system. The 
analysis reported in the present paper confirms therefore that the major threat to levee stability is due to mammal 
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species burrowing dens close to the levee crest, such as crested porcupines and badgers, as reported in Orlandini 
et al. (2015).

Aiming at making the illustration of the developed methodology more effective, the geometrical characteristics 
of the den are not implemented in the uncertainty analysis. Thus, the residual levee thickness br, that is the actual 
length that seepage must cross to reach the landside slope, and the den elevation y were considered to be known 
(Section 3.3). Nevertheless, these parameters can be assessed through on-site surveys by using indirect methods 
or remote sensing. At the state of the art, den surveys are affected by uncertainties (e.g., Borgatti et al., 2017). 
The Monte Carlo procedure herein developed makes it possible to implement this additional uncertainty sources 
in the hazard uncertainty estimate, by randomizing the den elevation y and the residual thickness br according to 
the specific uncertainties related to the survey methodology. This is however left to future more comprehensive 
analyses. Among the uncertainty sources considered in this study (Section 3.2.3), a major role is played by the 
estimate of the soil hydraulic conductivity Kc. Owing to the width of the uncertainty bands shown in Figure 10, 
it must be remarked that a precise estimate of this soil parameter is crucial to obtain meaningful estimations of 
the hazard when the den is located near the levee toe, where the residual thickness is basically large. As shown in 
Figures 10a and 10b, when the residual thickness br is greater than 3 m, uncertainty bands are significantly wider 
than those obtained for br less than 2 m and reported in Figures 10c and 10d. Clearly, when the uncertainty bands 
are wide, caution must be exercised in the use of estimated median value of the hazard for the longest planning 
periods.

The results reported in the present study must be qualified by recognizing limitations in the description of real 
levees. Mammal dens can form a complex tridimensional tunnel network often including chambers and multiple 
entrances. Complexity of these dens depends on the size and the age of mammal community, along with the 
mechanical characteristics of the soil and the potential for the mammal community to grow up. The essential 
parameters are the den elevation y with respect to the thalweg and the corresponding minimum residual thickness 
br. These are critical parameters affecting the hydrologic forcing and the excessive soil saturation in the specific 
locations where the levee is weakened by a den. Critical points where the residual thickness is small can exist at 
different elevations. The impact on levee failure of multiple critical points can be accounted for by applying the 
total probability theorem, by estimating the probability that excessive saturation occurs at any critical point. Giv-
en the joint distribution function of peak flow discharge and flood duration, such a probability can be estimated 
by integrating the probability density function over the failure region obtained as the union of individual failure 
regions related to all critical points. Alternatively, a detailed numerical model can be used to incorporate complex 
den geometries in the modeling framework described in the present study at the expense of higher computational 
cost. Only the levee failure mechanism due to excessive seepage is considered in the present paper. Levee failure 
due to overflowing is analyzed in Balistrocchi et al. (2019). The total failure probability for a levee can however 
be computed as the probability of the union of events caused by all possible failure mechanisms. These events in-
clude those due to internal erosion, caused by excessive seepage, those due to crest erosion, caused by overflow-
ing, and those due to mechanical instability, caused by soil saturation. These events are not mutually exclusive as 
an individual flood event can trigger one or more failure mechanisms.

It is finally acknowledged that real levees may display soil heterogeneity across the levee body and the levee foun-
dation, and that seepage cutoff walls may be another relevant source of heterogeneity. Based on the experimental 
analysis of undisturbed soil samples reported in Section 3.3.2, the assumption of homogeneity for the levee body 
considered in the present study appears to be acceptable. No undisturbed soil samples were collected in the levee 
foundations as the problem addressed in the present study was observed to affect the levee body only. However, 
geotechnical surveys indicated that no relevant soil heterogeneities are present in the levee foundation (D’Alpaos 
et al., 2014). Seepage cutoff walls are a possible means for reducing the impact of borrowing mammals on levees. 
Seepage cutoff walls for levees may have limited durability and may not entirely solve the problem addressed 
in the present study. Theoretical and experimental work is, however, needed to appropriately test this possible 
structural measure. In order to address structural heterogeneity of levees and related foundations, in the modeling 
framework proposed in the present study, a detailed numerical model has to be used in preference to the simpli-
fied seepage flow model described in Section 2.2.1 at the expense of higher computational cost. In any case, the 
modeling framework proposed in the present study can be applied to any levee with the appropriate characteri-
zation of soil properties and the appropriate selection of the deterministic component describing seepage flow.
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5.  Conclusions
In the present study, a new model for estimating the failure probability of levees affected by bioerosion was devel-
oped (Section 2). The statistical component of the model implements a fully bivariate approach to represent the 
natural variability of peak flow discharge and flood duration (Section 2.1), whereas the deterministic component 
was developed by using an extended version of the Vorogushyn et al.’s (2009) analytical model of seepage flow 
in the levee body (Section 2.2). This model was found to be reliable, computationally efficient and able to incor-
porate any flow hydrograph shape. Comparison with FEFLOW numerical model, revealed its capability to rep-
resent the maximum extent of saturated fronts inside the levee body under unsteady unsaturated flow conditions 
(Section 3.2.2). The bivariate nature of flood events was summarized in a state variable through the deterministic 
component that operates as a transformation function (Section 2). Owing to the derived distribution theory, the 
hazard estimated by using the model herein developed is related to a fixed period of time, such as a planning peri-
od or a return period, in a conceptually meaningful manner. From a theoretical point of view, this assessment was 
found to be more appropriate than those obtained by using detailed numerical simulations of individual synthetic 
floods or conditional approaches relying on arbitrary assumptions on flood durations to understand and predict 
the long-term behavior of levee systems.

The increase in failure probability due to mammal bioerosion revealed by the developed bivariate approach was 
found to be dramatic, for commonly observed locations and extents of the dens (i.e., den extending for most of the 
levee width leaving a residual thickness of undisturbed soil of 1 m on the riverside). The analyzed levee located 
along the Secchia River was tested against seepage flow under undisturbed conditions and the analyzed flood 
regime, for a planning period of 200 years or a return period greater than 100 years (Figure 8d). In contrast, when 
a den reproducing the essential structure observed in the real-world is incorporated in the model, the levee failure 
is almost certain during a planning period of 5 years and the failure return period is less than 10 years (Figure 8a 
and Section 3.3). These results are consistent with the events observed in the study area. Future work is needed 
to investigate the impact of den complexity and levee structural heterogeneity on levee failure probability. Addi-
tional research is also needed to assess the impact of riverflow regulation on levee instability due to the combined 
occurrence of overflowing, excessive seepage, and mechanical instability.

Data Availability Statement
Data used in this study are available at the repository https://doi.pangaea.de/10.1594/PANGAEA.931759.
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