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Abstract—Recent advancements in artificial intelligence(AI)
have revolutionized the field of robotics. One of the most
intriguing use cases in this domain is whole-body manipulation.
Whole-body manipulation combines the precision of robotic
manipulators with the expanded reach of mobile platforms. This
thesis explores the task of autonomous whole-body manipulation
using reinforcement learning (RL). By leveraging RL’s ability
to learn from experience and adapt to new scenarios, we aim to
navigate and manipulate a robot jointly. First, we explore RL for
navigation and manipulation separately. After developing a keen
understanding of these tasks and training successful RL agents,
we move towards joint navigation and manipulation. We conduct
experiments using different training methods to combine these
tasks under the paradigm of hierarchical RL (HRL) to achieve
autonomous whole-body manipulation. The resulting RL agent
is capable of successfully reaching a target location outside the
operating range of the arm without collisions. In conclusion, we
provide an example of the future potential of HRL for complex
tasks within the domain of robotics.

Index Terms—whole-body manipulation, reinforcement learn-
ing, hierarchical reinforcement learning, robotics, autonomous
agents

I. INTRODUCTION

The recent advances in artificial intelligence (AI) have paved
the way for autonomous robots that can navigate and perform
complex manipulation tasks. One particularly intriguing area
of development in this field is whole-body manipulation, a
remarkable capability that enables robots to interact with their
environment using their entire body. Rather than relying solely
on the capabilities of a robotic manipulator, mounting it on a
mobile base can lead to a wide range of coordinated move-
ments. The resulting mobile robotic manipulator combines
the expansive working space of the mobile platform with the
flexible operating area of the robotic arm [31].

This integration opens up a multitude of possibilities in
research as well as various industries. A prime example
is Little Helper [11]. Developed by Aalborg University, it
pioneered the concept of industrial mobile manipulators. While
primarily serving as a research platform, Little Helper has
showcased its capabilities in real-world scenarios, including
industrial applications such as machine tending, as well as
in service robotics, notably as a host at the Scandinavian
Expo [27]. Mobile manipulators can be useful in the service
industry. For instance, they can be used for transporting objects
[13], opening doors [4], performing cleaning duties [16], and
pushing carts [21], among many other application domains.

While many works have focused on joint navigation and
manipulation of robots using traditional control-based ap-
proaches, current mobile manipulation tasks present a number
of unsolved challenges which are a focus of current research.
Primarily, the mobile base and the fixed manipulator have been
addressed as distinct research areas, making the integration of
both into a cohesive whole-body control system a complex
and demanding task. One approach to integration is to sep-
arate the two tasks entirely. In other words, the manipulator
and the mobile platform are controlled independently as two
distinct subsystems [5, 24], although this hard decoupling has
a major drawback since it fails to capture the impact of the
manipulation task on the locomotion task and vice versa. For
instance, the movement of the arm may cause the robot wheels
to slip leading to imprecise control. The better approach is to
control the dynamics of the whole body. This approach is also
known as whole-body control or whole-body manipulation as
this strategy considers the overall dynamics of the system.
Whole-body manipulation has shown exceptional results for a
wide range of tasks [12, 15, 18, 19].

Recently, reinforcement learning (RL) [26] has been emerg-
ing as a popular paradigm for various tasks in robotics
including manipulation and navigation. In the RL framework,
the controllers do not have to be explicitly programmed for
the task. Rather, near-optimal to optimal behaviors are learned
explicitly through interaction with the environment. In other
words, RL enables robots to learn and master complex tasks
through trial and error. RL has been explored for naviga-
tion, path planning, and obstacle avoidance of mobile robots
[3, 6, 7, 20, 23] as well as for the control of static manipulators
[29, 30]. However, relatively few works focus on the task
of whole-body manipulation [25]. This is primarily due to
the complex nature of the task. Whole-body manipulation
has greater degrees of freedom (DOFs) and RL must learn
the effect of each DOF on the overall motion of the robot.
Therefore, a large number of iterations are required for training
an RL agent to successfully perform a task. Moreover, the
rewards have to be tuned according to the task at hand. One
of the key hindrances in RL training is to ensure that the RL
agent explores in the right direction and obtains meaningful
samples. If the RL agent is exploring in an efficient way, it
eventually converges to optimal behavior. These challenges
lead to the motivation behind this work.



4

A. Problem Statement

In this thesis, we investigate the potential of RL for whole-
body mobile manipulation using a KELO robile [1] with a
Franka Research Arm attached [9] as our target platform. The
primary goal is to learn an RL policy that is able to jointly
navigate and manipulate. Moreover, we want to achieve our
objectives through simple reward functions, state, and action
definitions. Lastly, we want to ensure that the RL agents
explore efficiently and learn optimal behavior in a sample-
efficient manner.

B. Research Aim and Objectives

Having discussed the background and motivation for tar-
geting this problem, the aim of this thesis is to put forward a
whole-body control approach for joint navigation and manipu-
lation through RL. To achieve the stated aim, in this thesis, we
have identified and explored the following research objectives:

• Design of well-defined RL tasks for navigation, manipu-
lation and whole-body manipulation of the robot.

• Implementation of the corresponding environments using
the OpenAI Gym’s [2] APIs.

• Investigation of RLlib to enable parallelism in training,
allowing effective use of multiple workers (i.e. multiple
CPU threads).

• Training of the RL agents for the aforementioned tasks
using different configurations, algorithms and hyperpa-
rameter values.

• Definition of the qualitative and quantitative metrics to
evaluate the trained RL agents.

• Investigation of the potential and sample efficiency of
hierarchical RL (HRL) for whole-body manipulation.

C. Delimitations

Due to the non-availability of the mobile manipulator at
the time of conducting the research for this thesis, all the
experiments and analyses were carried out within a simulated
environment, where the agent was trained using RL and eval-
uated. The simulation environment was provided by Nokia.

D. Structure of the Thesis

This work is structured as follows: Section II contains a
brief overview of RL, deep RL and HRL; Section III presents
the high-level architecture of our system, detailing all the tools
used for this thesis; Section IV presents the design of the
RL tasks, along with the details of the neural network (NN)
architectures; Section V defines the metrics used for reporting
results and presents them in detail; lastly, Section VI ends
with the conclusions obtained from the work done, pointing
the reader to the future research directions in this domain.

II. BACKGROUND

In this section, we provide an overview of the concepts
and algorithms used in this thesis. First, we provide a brief
overview of RL, along with its mathematical formulation.
Next, we also provide a background on HRL approaches.

A. Reinforcement Learning

RL is a computational approach to learning where an
agent interacts with an environment and learns to make de-
cisions based on received feedback in the form of rewards
or punishments [26]. The key idea behind RL is to make
an agent learn without explicitly telling it which actions to
take. Unlike supervised learning, RL does not require data and
ground truth to learn a mapping function. RL is also different
from unsupervised learning where the goal is to identify the
underlying patterns in data. Hence, RL is the most suitable for
interactive problems compared to supervised and unsupervised
learning.

Interactive problems can be solved using RL by appropri-
ately defining several key terms, including the following:

• Environment: An environment refers to a simulated
or physical world in which the RL agent operates. It
provides the rules, dynamics, and interactions that shape
an agent’s experience.

• Agent: An RL agent is the entity that interacts with the
environment. At each step, it observes the environment
and takes an action accordingly. The agent’s objective is
to maximize its cumulative rewards over time.

• Observation: As the agent interacts with the environ-
ment, changes its own state and maybe the state of the
environment. For example, while navigating, the robot
would be changing its position, which leads to a change
in state. An observation is a part of the environment state
which is visible to the RL agent.

• Action: The agent can take an action based upon its ob-
servations. The action depends on the task. For example,
during navigation, an action can consist in the velocities
of the mobile platform.

• Policy: The internal decision-making process of the RL
agent is guided by its policy. A policy is simply a
mapping from the set of states to the set of actions. When
we say that the RL agent is learning, we imply that it is
improving the estimate of its policy. Ultimately, the aim
is to train the agent so that it learns the optimal policy.

• Reward: The agent learns a policy through a trial-and-
error process, exploring different actions and receiving
rewards. A reward is a feedback signal from the environ-
ment as a response to the agent’s actions. By receiving
rewards, the agent can assess the consequences of its
actions and adjust its behavior accordingly. A reward
function typically depends only on the state, but other
more complex configurations can be adopted.

• Reward engineering: Designing reward is critical for the
successful convergence of a policy. Rewards are the only
way to encourage the good actions and prevent the bad
ones. The process of tuning the reward function is called
reward engineering.

• Episode: The RL agent interacts with the environment
over discrete timesteps. An episode represents a com-
plete sequence of interactions between the agent and
the environment, typically starting from an initial state
and continuing until a terminal state is reached. At the
beginning of an episode, the agent perceives its initial
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state from the environment. It selects an action based on
its current policy and interacts with the environment by
executing the chosen action. The environment transitions
to a new state, and the agent receives a reward associated
to the new state attained. The agent continues to observe
states, choose actions, and receive rewards, progressing
through the episode. The episode concludes when a
specific condition is met, such as reaching a goal state or
exceeding a maximum number of time steps. At the end
of an episode, the agent evaluates the cumulative reward
it has obtained during that episode.

B. Markov Decision Process (MDP)

An MDP allows us to define and formalize a decision-
making process. An MDP can be defined as a tuple
(S,A, P,R, γ) where S is a set of valid states (called the state
space), A is a set of valid actions (called the action space),
P (s, a, s′) represents the probability of transitioning from one
state to the next, R(s, a, s′) is the reward function and γ is the
discount factor for future rewards. The problem in MDPs is to
find a policy π, which is a mapping from the set of observed
states S to the set of actions A.

MDPs are important in RL because they allow modelling
and solving sequential decision-making problems. First, they
capture the sequential structure of a problem. Under the
Markov assumption, the current state is supposed to contain
all the necessary information to make the next decision. This
property allows the RL algorithm to disregard the history
of actions and states which occurred before the current one,
greatly simplifying the decision-making process. Moreover,
MDPs capture the stochastic nature and uncertainty of real-
world problems using the concept of state transition proba-
bility, enabling RL agents to handle uncertain and dynamic
environments. Lastly, MDPs provide a way for the agent to
look at the long-term reward from the current state to the
end of the episode, called return, being expressed as Gt in
Equation 1 through the concept of discount::

Gt =

∞∑
i=t

γiR(si, ai, si+1) (1)

where ai = π(si) is the action recommended by the policy,
and γ is the discount factor, which satisfies 0 ≤ γ ≤ 1. This
equation allows us to assign importance to future rewards so
that the RL agent is not merely considering the immediate
consequences of its actions. The RL agent is more short-
sighted in considering rewards as the value of γ is closer to
0.

C. Search for the Optimal Policy

When we formulate a problem as an MDP, our goal is to
find the optimal policy π∗(a|s). Therefore, we need a way to
compare two policies and determine which one is better. For
this purpose, we use the concept of the value of a state. The
value of a state Vπ(s) indicates how favorable or unfavorable it
is to be in that state, after following policy π. While the return
Gt represents how good or bad a state is for the agent from

the time instant t until the end of the episode, Vπ(s) provides
complete information about a state. We accomplish this by
finding the expected return from a state. In other words, due
to the stochastic nature of the environment, we cannot rely on
a single value of the return. Rather, we focus on the expected
return from each state when following a certain policy π. This
expected return is called the value of a state. Similarly, the
action-value of a state-action pair Qπ(s, a) is the expected
return when the agent takes an action a in a state s and follows
the policy π thereafter.

The Bellman equations are a set of fundamental equations
in RL that express the relationship between Vπ(s) or Qπ(s, a)
and the expected future rewards, thereby providing a way
to evaluate and improve a policy. They allow us to obtain
a recursive formulation for calculating the expected return
without the need to add all the rewards up to the terminal
state. Ultimately, they permit to define ways to find V ∗

π (s)
or Q∗

π(s, a). The Bellman expectation equation for the value
function V (s) represents the expected cumulative reward from
being in state s and following the policy π thereafter:

Vπ(s) = E[Rt+1 + γVπ(s
′)|st = s] (2)

Similarly, the Bellman expectation equation for the action-
value function Q(s, a) represents the expected cumulative
reward from taking action a in state s and following the policy
π thereafter.

Qπ(s, a) = E[Rt+1 + γmax
a′

Qπ(s
′, a′)] (3)

D. Deep Reinforcement Learning

Deep RL is a sub-field of RL that combines the fundamen-
tals of RL with NNs to handle complex, continuous and/or
high-dimensional state and action spaces. It involves using
NNs as function approximators to represent the parameters
of the policy and/or the value function. Thus, the goal of deep
RL is to find a good policy by optimizing the parameters of
the NNs involved.

When using NNs, the loss or objective function L serves
as a critical steering for the learning process. It represents
a measure of the agent’s performance, which the learning
algorithm seeks to maximize or minimize. To optimize the
objective function, the most common approach is to use
stochastic gradient descent (SGD) or any of its variants such
as Adam [14]. The learning algorithm samples experiences
(state transitions and rewards) from the environment, and, on
the basis of these samples, computes the gradients of the
objective function ∆L with respect to the NN parameters.
These gradients indicate the direction in which the parameters
should be adjusted to improve the agent’s performance. The
optimizer then iteratively updates the network parameters in
the direction of these gradients, effectively improving the
corresponding estimation of the policy or the value function
over time.

The choice of the objective function L depends on the
specific RL algorithm and the learning framework being used.
Through the optimization process, the deep RL agent learns
to improve its policy or value function and, consequently, its
performance for the given task or environment.
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E. Classification of RL algorithms

The RL literature provides different ways to classify RL
algorithms. Based on whether the algorithms explicitly learn
a model of the environment or directly learn the policy or
value function without modeling the environment dynamics,
two broad categories can be defined, namely model-based RL
and model-free RL. The details of these categories are as
follows:

• Model-based RL: The agent uses the observed data to
learn a model of the environment allowing it to simulate
future states and rewards.

• Model-free RL: The agent focuses on estimating the
value of states or state-action pairs without explicitly
modeling the dynamics of the environment.

Another method to classify RL algorithms is based on their
interaction with the environment and the data collection strat-
egy, namely on-policy RL and off-policy RL. The details of
these categories are as follows:

• On-policy RL: On-policy RL algorithms act and update
the same policy. Therefore, exploration of the environ-
ment and learning are based on the same policy.

• Off-policy RL: Off-policy RL algorithms, in contrast,
learn and update the policy using data generated by a
different policy. The agent can explore the environment
using any policy, often an exploratory policy, and learn
from the collected experience without being constrained
to the current policy.

The choice between these categories is dependent upon
the problem. Given the uncertainty and complexity of the
operating environment, recent research has been focusing on
model-free RL. Both on-policy and off-policy methods are
commonly used. In this thesis, we focus on model-free RL.
In our experiments, we use an on-policy algorithm called
Proximal Policy Optimization (PPO) [22] and an off-policy
method called Soft Actor-Critic (SAC) [8].

F. Proximal Policy Optimization (PPO)

PPO is a popular and efficient model-free, on-policy RL
algorithm used for optimizing policy functions through small
and consistent updates [22]. PPO belongs to the family of
policy gradient methods and is specifically designed to address
some of the challenges associated with traditional policy
gradient algorithms, such as high variance and instability. The
key idea behind PPO is to perform multiple updates on the
policy by taking small steps to ensure that the policy remains
close to the previous one, thus preventing large policy changes
that can lead to instability.

One of the main components of PPO is the objective
function, which consists of two terms: the clipped surrogate
objective and an entropy bonus term. The clipped surrogate
objective helps to limit the policy update to a trust region,
ensuring that the new policy remains close to the old one.
The entropy bonus term encourages exploration by penalizing
policies that are overly certain in their actions. In other words,
the entropy bonus term encourages the policy to take different
actions and explore the environment in a better way.

The objective function for PPO can be defined as follows:

Lt(θ) = Êt

[
min

( πθ(at|st)
πθold(at|st)

Ât,

clip
(

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)
− βH(πθ(·|st))

] (4)

where Lt(θ) is the objective function at time step t with
respect to policy parameters θ, Êt represents the empirical
expectation over a batch of experiences collected from the
environment, πθ(at|st) is the probability of selecting action at
given state st according to the current policy with parameters
θ, πθold(at|st) is the probability of selecting action at given
state st according to the previous policy with parameters θold,
Ât is the estimated advantage function at time step t, clip(·)
is a clipping function that constrains the policy update, ϵ is a
hyperparameter that determines the extent of the clipping, β is
a hyperparameter controlling the weight of the entropy bonus
term and H(πθ(·|st)) is the entropy of the policy distribution,
encouraging exploration.

G. Soft Actor-Critic (SAC)

SAC is a model-free RL algorithm designed for solving
continuous action space tasks. SAC belongs to the family of
actor-critic algorithms and is based on the maximum entropy
RL framework. It has gained significant attention due to its
effectiveness in complex environments and its ability to handle
stochastic policies. We briefly explained the concept of entropy
when discussing PPO. In summary, policy entropy is a concept
in RL that quantifies the uncertainty or randomness in the
policy’s action selection. In the context of stochastic policies,
policy entropy measures the average level of surprise or unpre-
dictability in the agent’s actions given different states. A policy
with higher entropy implies that the agent’s actions are more
diverse and uncertain, promoting exploration and adaptability
in complex and uncertain environments. Maximizing policy
entropy encourages RL agents to explore more effectively
and discover potentially better solutions during the learning
process.

The key idea behind SAC is to encourage policies that are
both optimal and stochastic, leading to improved exploration
and better handling of uncertainties in the environment. The
central objective is to maximize the expected reward while
also maximizing the policy’s entropy. This is achieved through
the use of an objective function that combines the expected
reward and an entropy regularization term. The entropy term
encourages the policy to produce actions with high uncertainty,
which is beneficial for exploring diverse and potentially better
solutions. The SAC objective function can be expressed as
follows:

J(θ) = E(st,at)∼ρπ

[ T∑
t=0

γt
(
r(st, at) + αH(πθ(·|st))

)]
(5)

where J(θ) represents the objective function to be maximized
with respect to the policy parameters θ, (st, at) denotes a
state-action pair sampled from the state-action distribution



7

ρπ , r(st, at) is the immediate reward received when taking
action at in state st, γ is the discount factor determining the
importance of future rewards, H(πθ(·|st)) is the entropy of
the policy π at state st calculated over the set of actions, and
α is a balancing parameter that controls the trade-off between
the expected reward and the policy entropy.

H. Hierarchical Reinforcement Learning

HRL is an approach for solving complex tasks by decom-
posing them into sub-tasks or sub-goals [10]. In traditional RL,
an agent interacts with an environment to learn a policy that
directly maps states to actions. However, in many real-world
scenarios, tasks can be large and complex, making it difficult
for a single agent to learn an effective policy. Hierarchical RL
addresses this challenge by introducing additional levels of
hierarchy in the learning process. It involves learning multiple
policies, each responsible for a different level of decision-
making. These policies can be seen as controllers that manage
various sub-tasks or temporal abstractions.

A two-level hierarchical structure typically consists of the
following levels:

• High-level policy (or meta-controller): This policy is
responsible for selecting and switching between different
sub-policies or options. It decides which lower-level
policy should be executed at any given time based on
the current state of the environment.

• Low-level policies (or options): These policies are re-
sponsible for controlling the agent’s actions within a sub-
task or during a specific time interval. Each low-level
policy is specialized in handling a specific part of the
task or a particular situation.

HRL provides a way to decompose tasks into sub-tasks
which can lead to faster learning as the agent can focus on
mastering smaller components before tackling the entire task.
By reusing low-level policies for different high-level tasks, the
agent can save samples and improve data efficiency. Moreover,
HRL naturally handles tasks that have a clear hierarchical
structure, which is common in real-world scenarios such as
in whole-body manipulation.

There are several ways to train policies in the HRL frame-
work. While all the policies can be initialized at random and
trained in a multi-agent setting, it is often beneficial to train
low-level policies separately and reload them while training
the high-level policy from scratch. In this thesis, we explore
both training methods for whole-body manipulation.

III. SYSTEM ARCHITECTURE

In this section, we discuss the architecture for the whole-
body manipulation system, focusing on the three main com-
ponents, namely Simulation, OpenAI Gym environment and
RLlib-based algorithm implementations. The high-level ar-
chitecture of the whole-body manipulation system used to
conduct experiments for this thesis is shown in Figure 1. All
the tools, libraries and frameworks are open source.

Figure 1: High-level overview of the system architecture

A. Simulation

An RL agent requires multiple interactions with the environ-
ment to learn an optimal policy. Using real robots for training
poses logistic and safety concerns. Therefore, simulators are
used for training RL agents before transferring them to the
physical robot. It is essential to opt for a simulator that pro-
vides accurate and efficient physics simulations, incorporating
realistic dynamics, contacts, and friction. There are many
different simulators available for robotics simulation, each
with its own pros and cons. For this thesis, we simulate the
robot in Mujoco. It is a highly versatile and widely adopted
physics engine, developed by OpenAI, commonly used for
simulating complex robotic systems and physical interactions
[28]. Its widespread adoption and support within the research
community make it a reliable choice for creating realistic and
challenging environments for evaluating the performance of
RL algorithms.

In this thesis, we consider a mobile robotic manipulator
constructed by assembling two components: a KELO robile
mobile base and a Franka Research 3 (FR3) Arm, as shown
in Figure 2.

The KELO robile platform has been developed by KELO
robotics. It is equipped with four caster wheels, free to rotate
in any direction. The motion is similar to the wheels attached
to furniture such as office chairs. Each caster wheel consists
of two hub wheels, which can be commanded independently.
Based on the design, there are two ways of controlling the
mobile platform, both in real-world and in the simulation
framework:

• Passive Wheel Control: A force can be applied on the
mobile base by specifying velocities in the X and Y
directions vx and vy along with a rotational velocity ω.
Individual wheels move under the effect of the platform
force.

• Active Wheel Control: The velocity of each wheel is
set independently. The relative velocities of the wheels
produce movements along different axes.

One of the key novelties of the KELO mobile platform is



8

Figure 2: Three-dimensional model of the KELO Robile
platform fitted with a 7-DOF FR3 Panda manipulator

the ability to move it along any specified axis. For example, if
a velocity of 0.707 m/s is provided along the X and Y axes, the
robot will move along a 45° line with a net velocity of 1 m/s.
This design provides additional maneuverability compared to
other mobile platforms.

The FR3 arm is designed to offer precise and flexible
manipulation capabilities, making it well-suited for research
and industrial applications. It features seven DOFs, enabling
a wide range of complex movements and grasping tasks.
The arm incorporates torque sensors in each joint, providing
accurate force feedback and enabling safe human-robot in-
teraction. The aforementioned seven DOFs can be controlled
using various methods including Joint Position Control, Joint
Velocity Control, and Joint Torque Control. For this thesis, we
are primarily focusing on position and velocity control.

The simulation engine for simulating the robot is named
KeloFrankaSim, after its components. It has been designed,
developed, and tuned by Nokia Bell Labs. It has been devel-
oped using Python bindings, making it easier to incorporate it
with open source Python libraries for RL. In addition to the
mobile base and the FR3 arm, a split tendon has been attached
to the end of the arm as well. This split tendon serves as the
end effector. In robot manipulation, an end effector refers to
the device or tool attached to the end of a robotic arm or
manipulator that enables it to interact with the environment.

At each timestep, a control command can be applied to the
robot, which includes the mobile base velocities and/or the po-
sitions or velocities of the FR3 joints. As a consequence, in the
simulator, the state of the robot changes, and the corresponding
data structures are updated including the joint positions, base
position, and end effector position. This updated state data can
be read using Python APIs.

B. OpenAI Gym

To facilitate the development and evaluation of RL algo-
rithms, OpenAI Gym [2] has emerged as a widely-used toolkit.
It comes with a collection of diverse environments ranging
from Atari video games to robotic motion control. Moreover,
it provides standard, well-documented APIs to design custom
environments. These APIs provide communication between
the environment and the learning algorithm. The step func-
tion takes an action to advance the simulation. It returns

the updated state of the environment (observation) and the
reward to the learning algorithm. Once a terminal state is
reached, the reset function allows to start a new episode.
Additionally, the OpenAI Gym environments provide other
auxiliary functions and attributes, such as action_space and
observation_space, which define the valid set of actions and
observations respectively. These functions and attributes help
agents understand and interact with the environment more
effectively. Moreover, they simplify the job of researchers and
developers, allowing them to focus on the task design instead
of fiddling with the communication between the agent and the
environment.

C. RLlib

RLlib [17] is an open-source library designed to provide
robust support for distributed RL workloads in production
environments. RLlib offers a user-friendly and flexible frame-
work for implementing and training RL agents across a wide
range of problem domains. It includes a collection of state-
of-the-art algorithms, such as PPO [22] and SAC [8]. RLlib
supports distributed training, allowing for efficient utilization
of computational resources and accelerating the training pro-
cess. By specifying the number of workers Nworkers, multiple
copies of the environment can be spawned, which run in
parallel to accelerate training as shown in Figure 3. Within the
RLlib framework, RL algorithms can be trained on multiple
workers across several iterations Niter. At the start of each
iteration, each worker begins to advance the simulation by the
maximum steps specified in the iteration or until an episode
is complete. At the end of the iteration, each worker stores
the collected sample in a buffer B which is used to update the
parameters of the policy and the value function. This allows
us to collect more training samples in each iteration.

RLlib also provides support for both single-agent and multi-
agent settings. One of the goals of this work is to explore
the potential of HRL for whole-body manipulation. The Mul-
tiAgent environment provided by RLlib has simplified in a
significant way the development of this part of the work done.
A multiprocessor server provided by Nokia has been used for
accelerated training inside RLlib.

IV. DESIGN AND IMPLEMENTATION

In this section, we detail the design and development
process for the description of RL tasks. We describe the
navigation and manipulation tasks in detail, followed by the
description of the hierarchical tasks for whole-body manipu-
lation. Finally, we provide details of our NN architectures and
the hyperparameter values used for training.

A. Parameterization of RL Tasks

Tasks are defined as specific goals and objectives that
an RL agent aims to accomplish within an environment.
The description of tasks involves specifying the objectives,
constraints, and desired behaviors that an agent needs to learn
and optimize. The definition of several parameters plays a
crucial role in designing well-defined and achievable RL tasks.
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Figure 3: Representation of the RLlib training setup with multiple workers

These parameters include the reward function, state and action
spaces, and the criteria for task completion. In addition to these
general parameters, there are specific parameters tailored to the
problem under consideration, which play a critical role in the
behavior and learning progress of RL agents. These parameters
include the following, each of which will be discussed in
detail:

• Criteria for Task Completion: The criteria for task
completion include the conditions under which the RL
agent is deemed to have successfully achieved its ob-
jective or goal. The Gym interface must have some
method to determine whether the goal has been achieved.
For instance, in the context of the navigation task, the
criteria for task completion can be defined in terms of
the distance to the goal. When the distance to the goal
becomes smaller than a specified error threshold, the task
is considered complete.

• Error Threshold: The selection of the error threshold is
a crucial hyperparameter, as it implicitly determines the
complexity of the task. Opting for lower error margins
increases the complexity of the task. Training an RL agent
with much lower error margins requires a higher number
of training iterations.

• Terminal States: When designing an RL task, it is essen-
tial to specify the termination conditions for the episode
within the Gym interface. For instance, within the context
of a navigation task, the episode must be terminated in
the event of a collision or if the agent wanders in the
opposite direction of the goal. This ensures that the agent
learns from the negative consequences of its actions.
Additionally, if the agent gets stuck in a state from
which it cannot recover, continuous interactions with the
environment can result in unnecessary consumption of
computational resources. This, in turn, leads to reduced
scalability and efficiency in the RL training process.

• Environment Timestep: The environment timestep de-
notes the interval used within the simulator for time-based
dynamics calculations. This timestep must be sufficiently
small for precise control and dynamics. After careful
consideration, this value was set to be 1 millisecond(ms).

• Control Frequency: Within the Gym environment, each
timestep denotes the interval within which the agent
collects a single training sample. When this interval is
extremely small, the agent must process a higher volume
of samples while updating its parameters. A straightfor-
ward method to circumvent this problem is to repeat
the same command for a defined number of timesteps
until the subsequent control command is received. The
time interval between subsequent commands can be con-
trolled using the control frequency. The control frequency
determines the relationship between one timestep in the
Gym interface (also known as the agent timestep) and one
environment timestep, i.e. the time period in environment
timesteps during which a control command persists. After
trial and error, in this work, a value of 10 has been found
useful for the control frequency, i.e. a control command
persists for 10 environment timesteps (and 10 training
samples) before changing.

• Episode Length: The episode length denotes the duration
of a single episode in the Gym interface, expressed in
terms of the maximum number of agent timesteps in one
episode. It has to be carefully selected to ensure that
the designated task can, in fact, be completed within the
specified timeframe. This was ensured by simulating the
robot using a package called urdf-tutorial, which allows
the teleoperation of the robot using a keyboard or a
mouse. This package enables the user to simulate a URDF
file and control each individual joint. By simulating a
number of sample trajectories, we obtained estimates of
the timeframe required to complete each task considered
in this thesis.

The essential parameters for the simulator and the Gym
interface have also been used for whole-body manipulation in
this thesis. The inherent complexity of whole-body manipula-
tion has made it a difficult problem to solve. Using the divide-
and-conquer approach, the task has been broken down into
more manageable sub-problems involving either navigation or
manipulation. By incrementally increasing the difficulty of the
task, the RL framework eventually has evolved to the point
where RL can control the entire robot. Under this approach,
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our focus has shifted to training RL agents for the subsequent
tasks:

• Navigation: Navigating to a randomly selected goal
location, sampled at a specified distance and orientation
from the initial robot position.

• Manipulation: Moving the end effector to a target posi-
tion within the operational space of the robot’s arm.

• Whole-body Manipulation: Moving the end effector to
a target position situated outside the operational space of
the robot’s arm.

We expand upon each task in the following sections.

B. Navigation

In this task, the RL objective is to learn a policy πnav that
effectively advances the robot’s mobile platform towards a
specific goal location. At the beginning of each episode, a
random goal is selected, positioned 6 meters away from the
robot’s initial position P0base

and at a randomized orientation.
The goal position is specified by a point Gxy in the XY-
plane. The agent receives observations and samples actions to
navigate the robot towards the goal. The maximum duration
of an episode is selected to be 12 seconds (i.e. Tsim = 12000).
In the Gym environment, we specify a control frequency of
10, leading to one action being repeated for 10 simulation
timesteps (Tctrl = 10). We specify the maximum episode
length to be 1200 agent timesteps (Tlimit = Tsim/Tctrl = 1200).
After this timeframe, the episode is truncated, and a new goal
is sampled for the next episode. In the following, we define
the relevant elements of the RL strategy:

• Observation Space: In order to navigate to a randomly
selected goal, the robot needs information about the goal.
This information is provided in the form of a relative
distance dg and an angle θg to the goal. Additionally,
information about the robot’s velocities at the previous
timestep is added to the navigation observation onav . This
aids the robot in selecting achievable velocities at the
current timestep. Our objective is to find the navigation
policy πnav which is a mapping function f to determine
the current action at given the previously stated inputs:

at = f(dg, θg, vx, vy, ω) (6)

Since the policy πnav is parameterized using a NN, we
normalize the inputs to have a similar range. Specifically,
dg is normalized by a look ahead distance of 10 meters,
representing the maximum permissible distance the robot
can stray from the goal. Similarly, θg is limited within
[−π, π]. Moreover, the velocities are already constrained
within the interval [−1,+1] in the form of limits imposed
on the mobile platform in simulation.

• Action Space: The RL agent needs to select the appropri-
ate action in each state to reach the goal successfully. The
action at depends on the type of the control. As described
in Section III, the mobile platform can be controlled
using passive or active wheel control. Consequently,
the following three action spaces are defined for this
navigation task, based on the type of control used for
the mobile platform:

– Action Space 1 (AS1): For passive wheel control,
the action space is three-dimensional, consisting of
the velocities in the X and Y directions vx and vy
along with a rotational velocity ω. The action space
is continuous and each velocity value is constrained
within the range [−1,+1] (m/s). This action space
formulation dictates that a valid action consists of
three values, each restricted to a magnitude not
surpassing 1 m/s.

– Action Space 2 (AS2): For active wheel control,
the action space consists of four dimensions. It is
continuous with each value constrained within the
range [−60,+60] (radians per second). These four
actions correspond to individual velocities of the four
wheels of the KELO robile platform. It is important
to note that controlling individual wheels intensifies
the task complexity. The action space is of higher
dimensionality. Moreover, the RL agent must learn
the corresponding relationship between the wheel
velocities and the global base movement. Note that
we provide the same velocity to the right and left
hub wheels under this definition.

– Action Space 3 (AS3): Alternatively, another
strategy for active wheel control is to have an
8-dimensional continuous action space constrained
within [−60,+60] (radians per second). These eight
actions correspond to individual velocities of the
eight hub wheels of the KELO robile platform. This
task is significantly more complex than AS1 and
AS2, as the RL agent needs to learn the relationship
between the movement of 8 wheels and the global
movement of the entire platform.

• Reward Function: An RL agent tries to maximize the
cumulative reward through the learning process. There-
fore, the reward functions play a critical role in implicitly
determining the optimization objective for the agent. A
reward is computed at each agent timestep t indicating
whether the current action led to a more favorable state
or not. Therefore, after careful analysis and experiments,
the reward function in Equation 7 is proposed.

R =


Rgoal, if dgt ≤ 0.02

Rwander, if dgt > dLA

G(dgt−1
, dgt), otherwise

(7)

We want to incentivize the RL agent to reach the goal.
Consequently, the agent gets a positive reward when it
reaches its goal (Rgoal = 20). A robot is considered
to have reached the goal when the distance between the
goal and the robot is less than or equal to 0.02 meters
(dg ≤ 0.02). However, our aim is to facilitate faster
learning by providing dense rewards. In addition to re-
warding the agent upon reaching the goal, we also want to
encourage the agent to move closer to the goal with each
passing timestep. Therefore, we use a delta-based reward
kernel G(dgt−1

, dgt), which is the difference between the
distance to the goal at the previous timestep and the one
at the current timestep. If the current action resulted in
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Figure 4: Environment setup for manipulation and whole-body
manipulation tasks

the robot moving closer to the destination, the reward
is positive. Otherwise, the agent gets a negative reward.
However, if the agent wanders in the opposite direction
over a look-ahead distance of 10 meters (dLA = 10), a
penalty of Rwander = −20 is applied.

• Episode Reset: At the beginning of each episode, the
agent is placed at an initial position selected at random.
The episode terminates if the timestep limit is met or
the robot wanders away from the goal (greater than 10
meters).

C. Manipulation

In this task, the RL objective is to learn a policy πman

that effectively manipulates the joints of the FR3 arm to
move the end effector to a target position. The environment
for the manipulation task consists of a table placed near the
robot, as shown in Figure 4. The specified target position is
located slightly above the tabletop. In addition to reaching the
target position, the RL agent must also ensure that the end
effector does not hit the table. The target position is within
the operational range of the arm, eliminating the need to
move the mobile base. That is to say, we exclusively focus
on manipulation and provide zero velocities to the mobile
base. The target position is sampled at random between a
radius of 0.58 to 0.68 meters from the base of the arm, as
shown in Figure 6. Note that the maximum range of the arm
is 0.855 meters. We only consider an area in front of the robot.
Therefore, the target position is sampled with an orientation of
[−1.2,+1.2] (radians) with respect to the robot’s base frame.
After simulating the robot using the urdf-tutorial package, it
was found that a duration of 7 seconds is sufficient to reach
the target position within the specified area (i.e. Tsim = 7000).
Similar to navigation, we use a control frequency of 10. This
implies that a single manipulation action is repeated for 10
simulation timesteps (Tctrl = 10). As a result, the time limit
in the Gym interface is specified to be 700 (Tlimit = 700).
Episodes lasting longer than that time period were truncated.

The RL agent can move the end effector by manipulating
the joints of the arm. We chose a target position on a plane
with a height of 0.437 meters. This plane location is slightly

above the top of the table placed adjacent to the robot. In the
following, we define the relevant elements of the RL strategy:

• Observation Space: The agent requires information
about the arm’s joint, the end effector’s position, and the
target position. Therefore, the manipulation observation
oman must include the position of the arm joints Qpos,
position of the end effector EEpos and the target position
Gxy . Consequently, the observation space is represented
as follows:

ot = (Qpos, EEpos, Gxy) (8)

In Equation 8, Qpos = [q1, q2, q3, q4, q5, q6, q7] is a 7-
dimensional vector comprising the rotational positions
of all the arm joints. Each joint position is constrained
between 0 and 2π radians. EEpos is the location of the
end effector in the 3-dimensional space. Finally, Gxy

represents the target position in the XY plane. Note that
the z-coordinate of the target position has been omitted
because we are considering movements along a plane at
a fixed height.
Since we want to move the end effector to a position
along a fixed plane, not all degrees of freedom are
required. Planar movement is possible by manipulating
joints 1, 2 and 4 of the arm. A description of these joints
and their function is provided as follows:

– Joint 1 is the base joint of the arm and provides
rotation around the vertical axis. It allows the arm
to rotate horizontally, enabling it to cover a wide
workspace. Joint 1 is responsible for the base rotation
of the entire arm.

– Joint 2 is the joint allowing rotation in the vertical
plane. It is responsible for lifting the arm up or down.
Joint 2 provides vertical motion, which is orthogonal
to the rotation provided by joint 1.

– Joint 4 is the elbow joint of the FR3 arm. It provides
rotation about the axis formed by the end effector
of the previous joints. Joint 4 allows the arm to
rotate around its own axis, enabling it to change the
orientation of the end effector. This allows the arm
to extend and reach locations that are further away.

• Action Space: This thesis explores both position and
velocity control of the arm. Consequently, the action
at depends on the specified control mode. The action
spaces for the two control modes are discussed in detail
as follows:

– Velocity Control: For velocity control, the action
consists of velocities for joints 1, 2, and 4. We
simplify the problem by considering a discrete action
space. The policy πman would provide an integer
output which is mapped to the values [−0.5, 0, 0.5]
(rad/s) for each joint. A velocity of −0.5 leads
to an anti-clockwise rotation along the joint while
a velocity of 0.5 leads to a clockwise rotation.
Providing a 0 velocity stops the joint from rotating.
The size of the discrete action space N can be found
using the number of actions J and the possibilities
for each action A according to N = JA. Since we
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Figure 5: Architecture of the HRL Setup for Whole-body Manipulation

Figure 6: A new target position is sampled from the space
indicated in blue at the start of each episode

have 3 joints and 3 possible action values for each,
the action space consists of 27 permutations.

– Position Control: For position control, the action
consists of three displacement values. Similar to
velocity, we consider a discrete action space that
would be mapped to [−0.001, 0, 0.001]. A displace-
ment of −0.001 leads to an anti-clockwise change
in the rotational position of the joint while that of
0.001 leads to a change in the clockwise direction.
Providing a 0 does not change the position of the
joint. Since we have 3 joints and 3 possible action
values for each, the action space consists of 27
actions. Since the target position is sampled from
a limited space, we also limit the range of motion
of joints 1,2, and 4 as shown in Table I to facilitate
faster learning.

Table I: Functional Range of FR3 joints

Name Maximum Range Selected Range
Joint 1 (-2.8973, 2.8973) (-1.30, 1.30)
Joint 2 (-1.7628, +1.7628) (0, 1.60)
joint 3 (-3.0421, -0.1518) (-2.80, -0.16)

• Reward Function: The reward function must encourage
the RL agent to move the end effector to the target
position. Therefore, the agent gets a positive reward when
it achieves its objective (Rtarget = 100). The distance
between the end effector and target position dtarg is
monitored at each agent timestep. The task is considered
complete when the distance is less or equal to 0.01
meters. This margin of error can be modified depending
on the level of accuracy desired. It is important to note
that the number of steps required to train the agent
exponentially grows as a higher precision is specified. In
addition to rewarding the agent upon reaching the goal,
we also want to encourage the agent to move closer to
the target position with each passing timestep. Therefore,
we use a delta-based reward kernel G(dtargt−1

, dtargt)
which is simply the difference between the distance from
the end effector to the target position at the previous
timestep and the one at the current timestep. Each episode
is 1000 timesteps in the gym interface (10 seconds) which
are sufficient to reach the goal. Moreover, we want to
penalize the agent if it hits the end effector against the
table or its own body. Therefore, for such undesirable
scenarios, the agent is penalized with Rcollision = −100.
Equation 9 describes all the aforementioned in a formal
way:

R =


Rtarget, if dtarg < 0.01

Rcollision, if FEE > 200

G(dtargt−1
, dtargt), otherwise

(9)

• Episode Reset: At the beginning of each episode, the arm
is reset to an initial position Q0, as shown in Figure 4.
The episode terminates in one of the following terminal
states:

– the end effector is at the target position
– the number of steps in the episode has exceeded

Tlimit

– the robot falls over because the arm is being moved
beyond the joints’ range of motion or the end effector
makes contact with a surface (robot body or table)

For detecting the last scenario, a force sensor is used in
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MuJoCo. When the end effector hits an object, the force
FEE has a value greater than 200.

D. Whole-body Manipulation

In this task, the RL objective is to learn simultaneous
navigation and manipulation. The preceding exploration of
navigation and manipulation tasks in Sections IV-B and IV-C
has provided insights into the essential components of the
problem, including reward functions, termination conditions,
action spaces and observation spaces. Merging these insights,
we now move on toward whole-body manipulation. RL-based
whole-body manipulation can be approached in the following
two methods:

• Flat RL Setup: This setup uses a single RL policy to
control both the arm and the mobile platform.

• HRL Setup: This setup breaks the problem into simpler
sub-problems, namely navigation and manipulation. The
RL agent uses a separate policy for each sub-problem.
Finally, a high-level control policy selects which low-
level policy should be used in which state.

HRL’s ability to deconstruct the complex and intricate
task of whole-body manipulation into manageable sub-level
objectives that we have already explored greatly simplifies the
problem. The agent learns the task in a structured manner,
where each level of the hierarchy focuses on different levels
of abstraction and complexity. As mentioned previously, we
decompose the task into navigation and manipulation and use a
high-level policy πhigh to choose between the two sub-policies
(πnav and πman). Each policy operates with its distinct NN,
observation space, and action space.

The environment for this task is the same as the one in
Section IV-C. However, in addition to sampling the target
position, we randomly select the initial pose of the mobile base
P0base

within 2.5 meters from the edge of the table. The arm
always has an initial position of Q0 at the start of the episode.
Within this setup, the target position Gxy would be outside
the reach of the arm most of the times. Occasionally, we
may reset the robot’s position to a location close to the table,
to ensure diversity in the training scenarios. The maximum
duration of an episode is 20 seconds, which is equivalent to
20,000 timesteps in the simulation. In the Gym environment,
this equals to an episode limit of 2000 steps (Tlimit = 2000).

In the following, we define the relevant elements of the RL
strategy:

• Observation Space: We define three observation spaces,
one for each policy. We use the same observation space
for the navigation policy onav as described in Section
IV-B. The observation space for the manipulation policy
oman has the same terms as described in IV-C. How-
ever, since the mobile base pose is constantly changing,
we transform the end effector and target positions into
the reference frame of the mobile base. Therefore, we
consider the position Pxy = (px, py) and yaw ϕ of the
mobile base using the following transformation matrix:

[
xrobot
yrobot

]
=

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

] [
xworld − px
yworld − py

]
(10)

where (xrobot, yrobot) are the coordinates of the point in
the reference frame of the robot while (xworld, yworld) are
the coordinates of the point in the world frame.
Lastly, the observation space for the high-level policy
ohigh consists of the relative distance and angle to the
target position, mobile base velocities, target position, and
the end effector position as indicated in Equation 11. A
key difference is that here we do not transform the target
and end effector positions into the robot’s frame.

ot = f(dg, θg, vx, vy, ω, EEpos, Gxy) (11)

• Action Space: The action space of the navigation
and manipulation policies are the same as described
previously. The high-level policy has a discrete action
space consisting of two options: at = 0 corresponds to
navigation while at = 1 corresponds to manipulation.

• Episode Reset: At the beginning of each episode, the
arm is set to an initial position Q0. The mobile base
pose P0base

is randomly selected. The episode terminates
in one of the following terminal states:

– the end effector is at the target position
– the number of steps in the episode has exceeded the

limit Tlimit

– a high force is detected at the end effector FEE >
200, indicating collision

– the robot collides with the table while navigating
• Reward Function: In the HRL setup, we can use dif-

ferent methods for learning the policies, with the step
function and reward calculation being dependent on the
chosen method. For this thesis, we experiment with the
following two methods:

– Training the high-level policy with pre-trained low-
level policies

– Training all three policies from scratch in a multi-
agent HRL setup.

We discuss the two methods in detail in the following
sections:

1) HRL with Pre-trained Policies: In this training method,
we leverage the manipulation and navigation policies obtained
from our prior experiments. The high-level policy πhigh re-
ceives an observation ohigh from the environment. Based on
this observation, the high-level policy can either choose to
navigate or manipulate. Depending on the chosen action, the
corresponding low-level policy is used to get an action that
moves the robot’s platform or arm. As a consequence of
this action, the end effector’s position as well as the state
of the environment change. Thus, the agent receives the next
observation o′high from the environment.

If the high-level policy chooses to navigate (at = 0),
the platform position might also have changed. In order to
accurately assess the impact of the robot’s action, we only
compute the navigation reward when at = 0. The robot
receives a penalty for hitting the table and for moving far
away from the target position. Moreover, it gets a positive
reward for moving closer to the target position. This reward
function encourages the robot to move to a location such that
the target position is within the reach of the arm. Equation 12
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next describes all the aforementioned in a formal way:

R =


Rcollision, if the robot hits the table
Rwander, if dgt > dlimit

G(dgt−1 , dgt), otherwise
(12)

On the other hand, if the high-level policy chooses to
manipulate (at = 1), we also use the reward function of
Equation 9. Eventually, the high-level policy learns to use
these pre-trained policies to achieve its objective and maximize
the reward. The training method is summarized in Algorithm
1.

2) Multi-agent HRL: Alternatively, in this method, we use
a MultiAgent environment provided by RLlib where all the
policies are trained from scratch. The reward functions for the
lower-level policies are the same as described in Equations
9 and 12. Aside from using randomly initialized lower-level
policies, the high-level corresponds to multiple agent timesteps
in the Gym environment. In other words, the actions taken at a
higher level of the hierarchy encompass a series of lower-level
actions or interactions with the environment.

At the beginning of each episode, the high-level policy re-
ceives an observation and makes a choice between navigation
and manipulation. Based on this decision, the selected lower-
level policy is executed for either Nlow steps or until a terminal
state is reached. We have selected a value of 20 for Nlow. The
lower-level agent receives a reward for each of these steps.
Thus, the low-level agent obtains up to 20 samples to train the
policy. On the contrary, only one step of the high-level policy
has been completed. The reward for the top-level policy is a
sum of the rewards received for these 20 steps. The training
method is summarized in Algorithm 2. Notice that we use
ohigh, onav and oman to represent the observation at the current
received from the environment for the three policies. Similarly,
we denote the observations at the next timestep using o′high, o′nav
and o′man.

E. Policy Parameterization

In this thesis, our goal is to learn a policy to maximize the
rewards for each of the specified tasks. In all of the conducted
experiments, NNs are the cornerstone for formulating the
policy within the RL framework. Consequently, all the policies
are parameterized by NNs. Hence, finding an optimal policy
is equivalent to learning the optimal parameters for its NN.
We use the same architecture for all the policies trained in this
thesis. The input layer contains the same number of parameters
as the dimensions of the observation space. Similarly, the
output layer size is dependent upon the size of the action space.
We use two hidden layers of size 64 each.

Table II: NN Parameters Common for all Policies

Hyperparameter Value
Number of hidden layers 2

Number of hidden units per layer 64
Optimizer Adam
Batch size 4000

Discount factor 0.99
Number of runs used for plot averages 5

Confidence Interval for plots 95%

V. EXPERIMENTAL RESULTS

In this section, we analyze the experimental results for the
tasks described in Section IV. First, we evaluate the training
progress and results of the RL agents with respect to the
following metrics:

• Average Return: Return refers to the cumulative sum
of rewards obtained by an RL agent over a single episode
through its interactions with the environment. It quantifies
the agent’s ability to achieve its goals and maximize
accumulated rewards over time. A higher average return
signifies better performance, indicating that the RL algo-
rithm is making more informed decisions and achieving
higher rewards in the given environment. During the
training process, the return plateaus, indicating that the
policy has converged.

• Training time (Train Time): Training time refers to
the total amount of time required to train the RL agent.
This metric is dependent upon the resources employed
for training and the type of algorithm used. To ensure a
consistent and fair comparison of different RL algorithms,
we maintain the same hardware and software settings for
training (one 8-core processor and one GPU).

• Environment Steps (Env Steps): Environment steps
refer to the total number of interactions between an RL
agent and the environment during the training process.
Lower environment steps indicate that the algorithm
learns effectively with fewer interactions, which is de-
sirable in scenarios where obtaining real-world samples
is costly or time-intensive.

The training progress of the RL agents has been visual-
ized in Figure 7. In order to obtain reliable and statistically
significant results, we conducted a series of experiments with
our RL agents. Each experiment was repeated five times, with
metrics recorded for each run. Additionally, we calculated the
confidence intervals for each metric to quantify the uncertainty
and variance in the results. Confidence intervals at a 95%
confidence level are reported, providing a range within which
the true population values are likely to lie. The shaded regions
represent this confidence interval.

A. Results for the Navigation Task

The results for passive wheel control have been visualized
in Figure 7a. During initial experiments with PPO for passive
control, no activation function (linear) was used in the last
layer of the NN (PPO-linear). This resulted in sub-optimal
performance while testing the trained model. Since the range
of velocities for AS1 is [−1, 1], the hyperbolic tangent tanh
was used as the activation function in the last layer with PPO
(PPO-tanh). This improved the performance. In addition, we
experimented with SAC as well and used tanh activation in
the output layer (SAC-tanh). The results indicate that PPO
has better performance as compared to SAC, with the same
policy architecture. Moreover, during multiple experiments,
PPO gave similar results (less variance) as compared to SAC.
Lastly, PPO is a simple algorithm to train. Therefore, it was
much faster to train as compared to SAC. For active wheel
control, we tried PPO with and without tanh for both, AS1 and
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Algorithm 1 HRL with Pre-trained Policies

1: Inputs: Pre-trained policies πnav and πman
2: Hyperparameters: Niter, Nworkers, Tctrl, Tlimit
3: Init: GymEnv for each worker, function estimator for πhigh and buffer for storing batch samples Bhigh
4: for i = 1, 2, ..., Niter do
5: for w = 1, 2, ..., Nworkers do
6: Sample and set P0base . Set arm pose to Q0

7: Sample and set target position Gxy

8: Set done = False and nep = 0
9: while not done do

10: Get observation for high-level agent ohigh
11: Sample ahigh ∼ πhigh(·|ohigh)
12: Increment nep by 1.
13: if ahigh = 0 then
14: Get navigation observation onav
15: Sample anav ∼ πnav(·|onav) and perform anav for Tctrl simulation timesteps. Get reward R.
16: if nep ≥ Tlimit or collision then
17: Set done = True
18: end if
19: else
20: Get manipulation observation oman
21: Sample aman ∼ πman(·|oman) and perform aman. Get reward R.
22: if neplimit or FEE > 200 then
23: done = True
24: end if
25: end if
26: Store (ohigh, ahigh, Rhigh, o

′
high) in Bhigh

27: end while
28: end for
29: Update πhigh using Bhigh. Discard samples in Bhigh collected before the policy update
30: end for
31: Outputs: Trained policies πnav and πman

Table III: NN Architecture and Training Details

Task Size of Input Size of Output
Input Layer parameters Output Layer parameters

Navigation 5 dg , θg , vx, vy , ω
AS1: 3
AS2: 4
AS3: 8

AS1: Platform velocities vx, vy , ω
AS2: Individual velocities for caster wheels
AS3: Individual velocities for hub wheels

Manipulation 13 Qpos, EEpos, Gxy 27 Velocity Control: joint velocities q̇1, q̇2, q̇4
Position Control: joint displacement δq1, δq2, δq4

High-Level 10 dg , θg , vx, vy , ω, EEpos, Gxy 2 0 (navigation) or 1 (manipulation)

AS2. The results have been visualized in Figure 7b. Similar
to the previous case, linear activation resulted in poor perfor-
mance for both action spaces (PPO-4wheel_linear and PPO-
8wheel_linear). When we use the hyperbolic tangent (tanh)
activation function, we get a comparatively higher reward
(PPO-4wheel_tanh and PPO-8wheel_tanh). Upon visualization
in MuJoCo with a random goal, it was observed that the robot
was pushed in the direction to the goal. However, the policy
did not manage to learn how to reach the goal. These insights
are summarized in Table IV.

The two best performing models for the navigation task,
PPO-tanh and SAC-tanh, have been tested for different goals.
We provided different goals to the RL agents, situated at a
distance of 5 meters from the robot. The robot started at the
same initial pose, i.e. (0,0) with zero yaw. We have performed

Table IV: RL Training Results for Navigation Task (in the
table, M stands for 106)

Exp Algo. Control Average Train time Env
return (hours) steps

1 PPO-tanh passive 25.9±0.0 2.3±0.2 12M
2 SAC-tanh passive 21.9±14.1 10.6±0.5 20M
3 PPO-linear passive 6.5± 9.1 2.5±0.2 300M
4 PPO-tanh active-4 12.1 ± 30.1 15.1±0.2 300M
5 PPO-tanh active-8 14.8 ± 15.1 17.1±0.3 300M
6 PPO-linear active-4 -1.9 ± 0.4 15±0.1 300M
7 PPO-linear active-8 -1.9 ± 0.2 17±0.2 300M

10 runs for each goal and recorded the following metrics:
• Peak Deviation: Maximum deviation from the shortest

path to the goal in meters.
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Algorithm 2 MultiAgent RL Training Setup

1: Hyperparameters: Niter, Nworkers, Tctrl, Tlimit, Nlow
2: Init: MultiAgentEnv for each worker, function estimators for πhigh, πnav and πman, buffers for storing batch samples

Bhigh,Bnav,Bman
3: for i = 1, 2, ..., Niter do
4: for w = 1, 2, ..., Nworkers do
5: Sample and set P0base . Set arm pose to Q0

6: Sample and set target position Gxy

7: Set done = False and nep = 0
8: while not done do
9: Get observation for high-level agent ohigh

10: Sample ahigh ∼ πhigh(·|ohigh)
11: Set nlow = 0 and Rhigh = 0
12: if ahigh = 0 then
13: while not done and nlow < Nlow − 1 do
14: Get navigation observation onav
15: Sample anav ∼ πnav(·|onav) and perform anav for Tctrl simulation timesteps. Get reward Rnav.
16: Store (onav, anav, Rnav, o

′
nav) in Bnav

17: Increment Rhigh by 0.3×Rnav, nlow by 1 and nep by 1.
18: if nep ≥ Tlimit or collision then
19: Set done = True and store (ohigh, ahigh, Rhigh, o

′
high) in Bhigh

20: end if
21: end while
22: else
23: while not done and nlow < Nlow − 1 do
24: Get manipulation observation oman
25: Sample aman ∼ πman(·|oman) and perform aman. Get reward Rman.
26: Store (oman, aman, Rman, o

′
man) in Bman

27: Increment Rhigh by 0.7×Rman, nlow by 1 and nep by 1.
28: if nep ≥ Tlimit or FEE > 200 then
29: done = True
30: Store (ohigh, ahigh, Rhigh, o

′
high) in Bhigh

31: end if
32: end while
33: end if
34: end while
35: end for
36: Update πhigh, πnav and πman using Bhigh,Bnav and Bman
37: Discard samples in Bhigh,Bnav and Bman collected before updating the policy
38: end for
39: Outputs: Trained policies πnav and πman

• Time: Time taken to reach the goal in seconds.
• Trajectory Length: Length of the trajectory from the

initial position to the goal in meters.

The mean and standard deviation of these metrics across
the 10 trials are presented in Table V. Moreover, we visualize
the trajectories as a qualitative measure of performance in
Figure 8. We can see that the friction in the environment
causes the robot to skid from a straight line path. However,
both RL agents have learnt to apply corrective commands to
overcome errors caused by friction. Except for a goal that
is perpendicular to the initial orientation of the robot, PPO
exhibits a lower deviation from the straight-line path. It is
important to note that the straight line behaviour was not
explicitly encouraged in the reward function. The RL agents

implicitly figured out that the shorter path they take, the faster
they would accomplish the objective.

Table V: Evaluation Results for the Navigation Task

Algo. Target Peak Time Trajectory
Pos. Deviation (sec) length (m)

PPO (5,0) 0.42±0.02 4.89±0.16 5.46±0.01
SAC (5,0) 1.02±0.01 5.60±0.01 5.96±0.01
PPO (0,5) 0.80±0.01 5-24±0.02 5.62±0.03
SAC (0,5) 0.46±0.01 4.56±0.01 5.52±0.01
PPO (4.2,4.2) 0.85±0.01 5.23±0.02 5.82±0.01
SAC (4.2,4.2) 1.23±0.1 5.23±0.01 5.87±0.01
PPO (-4.2,4.2) 0.78±0.04 5.28±0.10 6.79±0.01
SAC (-4.2,4.2) 1.15±0.0 5.45±0.01 5.13±0.01
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(a) Training results for passive-wheel navigation (b) Training results for active-wheel navigation

(c) Training results for manipulation (d) Training results for whole-body manipulation

Figure 7: Comparison of performance of different RL agents for the three tasks considered in this thesis

B. Results for the Manipulation Task

The training results for manipulation are visualized in
Figure 7c. Upon analysis, we notice that position control yields
a higher reward than velocity control. These training results
are also summarized in Table VI.

Table VI: RL Training Results for the Manipulation Task (in
the table, M stands for 106)

Exp Control Average Train time Env
return (hours) steps

1 Position 37.9±20.2 20.2±0.02 126M
2 Velocity 7.6±14.1 17.3 ± 0.01 132M

For the testing of the manipulation agents, the robot starts
at an initial location of (0,0). The arm is always at the same
starting position Q0, similarly to training. Then, we select
goals at random at a height of 0.437 meters. We perform 20
trials for each type of control, with each trial running for a
maximum of 10 seconds. We report the following metrics in
Table VII:

• The success rate, as the percentage of trials in which the
RL agent successfully moves the end effector within a
0.035-meter distance to the target location in 10 seconds.

• The collision rate, as the percentage of trials in which
the end effector collides with the table.

• The average error, as the average distance between the
end effector and the target location at the end of each
trial.

Table VII: Evaluation Results for the Manipulation Task

Exp Control Success Collision Avg. Error
rate rate (m)

1 Position 0.9 0.0 0.029 ± 0.01
2 Velocity 0.7 0.0 0.033 ± 0.01

We can notice that RL-based position control is more
precise and has a higher success rate as compared to velocity-
based control. Both agents have learned not to collide with
the table. Sample trajectories of the two agents as well as the
variations in joint position are visualized in Figure 9. Notice
that RL-based position control is faster and more accurate.
However, velocity-based control is smoother.

C. Results for the Whole-body Manipulation Task

For whole-body manipulation, we tried two training meth-
ods. The training results are summarized in Figure 7d. When
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Figure 8: Trajectory followed by the PPO and SAC agents to reach goals at different angles.

Figure 9: Performance Analysis of RL-based position and velocity control for the manipulation task
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Figure 10: Analysis of the performance of HRL agents for whole-body manipulation

training the top-level policy with pre-trained πnav and πman,
we only have one curve for average return (represented in blue
color). In the multi-agent scenarios, we train the πhigh, πnav

and πman from scratch. The progress is indicated by the green,
orange, and red curves respectively. We get better results with
pre-trained policies. Notice that we are using position control
due to its higher precision.

Table VIII: Training Results for the HRL agents (in the table,
M stands for 106)

Exp Policy Average Train time Env
return (hours) steps

1
High-level (pre-trained) 14.3±2.9 30.1±0.1 95M
High-level (multi-agent) 0.07±14.9 34.8±0.0 110M

2 Manipulation 4.34±7.2 34.8±0.0 110M
Navigation 34.8±0.0 14.4 ± 0.01 110M

To evaluate the policies trained using the two methods, we
use randomly sampled goals. The robot starts 2.5 meters away
from the target position. The evaluation episode is allowed to
run for a maximum of 20 seconds. The episode terminates with
the successful completion of the task (when the end effector is
at the target position), when the robot collides with the table
or when the time runs out. The end effector trajectories are
visualized in Figure 10. The high-level policy trained with pre-
trained low-level policies provides better results. The robot
successfully moves the end effector to the target position.
However, when all the policies are trained from scratch, the
robot learns to move closer to the table, but the manipulation
policy is not learnt accurately. These results are summarized
in Table IX.

VI. CONCLUSIONS AND FUTURE WORK

In this thesis, we present an HRL-based approach to tackle
the complex task of whole-body manipulation. Leveraging the
complementary nature of precise manipulation and expansive

Table IX: Evaluation Results for the HRL agents

Exp Policy Type Trajectory Avg. Error
Length (m)

1 HRL-pretrained 2.2 ± 0.01 0.035 ± 0.01
2 HRL-multiagent 4.4± 0.05 0.17 ± 0.01

navigation capabilities of the KELO mobile base mounted with
an FR3 arm, we investigate the potential of RL algorithms for
autonomous navigation and manipulation. We experiment with
different algorithms and configurations for these two tasks. By
defining well-structured and simple reward functions, termi-
nation conditions, observation spaces and action spaces, we
train an RL agent which can successfully perform these tasks
separately. With a foundational understanding of these tasks,
we define a hierarchical structure where a high-level policy
acts as a controller above the navigation and manipulation
policies. Our results demonstrate that HRL can seamlessly
orchestrate the decision-making processes required for whole-
body manipulation, effectively addressing complex scenarios
beyond the scope of individual tasks. We have shown that
amongst several different training methods for HRL, using
pre-trained policies yields better results.

This thesis provides a groundwork for RL-based whole-
body manipulation while opening numerous avenues for future
research. One crucial direction is to enhance the adaptability
and robustness of the RL agents through real-world testing.
It would also be interesting to explore more complex tasks
such as pick-and-place using HRL. Multiple levels of hierar-
chy can also be explored for more complicated whole-body
manipulation tasks.
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