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Abstract

The rapid adoption of low-code/no-code software systems has reshaped the landscape of software
development, but it also brings challenges in usability and accessibility, particularly for those unfa-
miliar with the specific components and templates of these platforms. This thesis targets improving
the developer experience in Nokia Corporation’s low-code/no-code software system for network man-
agement through the incorporation of Natural Language Interfaces (NLIs) using Natural Language
Processing (NLP) algorithms.

Focused on key NLP tasks like entity extraction and intent classification, we analyzed a vari-
ety of algorithms, including MaxEnt Classifier with NLTK, Spacy, Conditional Random Fields
with Stanford NER for entity recognition, and SVM Classifier, Logistic Regression, Naïve Bayes,
Decision Tree, Random Forest, and RASA DIET for intent classification. Each algorithm’s per-
formance was rigorously evaluated using a dataset generated from network-related utterances. The
evaluation metrics included not only performance metrics but also system metrics.

Our research uncovers significant trade-offs in algorithmic selection, elucidating the balance
between computational cost and predictive accuracy. It reveals that while some models, like RASA
DIET, excel in accuracy, they require extensive computational resources, making them less suitable
for lightweight systems. In contrast, simpler models like Spacy and StanfordNER provide a balanced
performance but require careful consideration for specific entity types.

While the study is limited by dataset size and focuses on simpler algorithms, it offers an
empirically-grounded framework for practitioners and decision-makers at Nokia and similar corpor-
ations. The findings point towards future research directions, including the exploration of ensemble
methods, the fine-tuning of existing models, and the real-world implementation and scalability of
these algorithms in low-code/no-code platforms.
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1. Introduction:

The use of low code/no code software systems is growing rapidly, as they allow developers to create
software applications more quickly and with less technical expertise[1]. However, these systems
can still be challenging to use, particularly for users who may not be familiar with the specific
components and templates provided by the system[2]. One promising approach to addressing this
challenge is the use of natural language interfaces (NLIs)[3], which allow users to interact with
software tools and systems using written language, similar to conversational assistants or chatbots.

NLIs can be particularly useful for tasks that may be difficult to express using traditional
interfaces, or for developers who may not be familiar with the underlying technologies being used[4].
By providing a more intuitive and efficient way for users to interact with the system, NLIs offers a
number of potential benefits, including improved usability and accessibility of software development
tools and resources, reduced learning curves for new developers, and the ability to provide real-time
assistance as developers work on coding tasks[4].

Natural language interfaces, which enable the use of natural language (e.g., English) to in-
teract with computer systems are often implemented using natural language processing (NLP)[5]
techniques, which allow computers to understand, interpret, and generate human language.While
numerous NLP approaches exist, including rule-based[6], statistical[6], machine learning[7], deep
learning[7], and hybrid methods[6], challenges remain in developing NLP algorithms for natural
language interfaces in low-code/no-code software systems. One challenge is the need to handle
a wide range of user input, including variations in language, dialect, and syntax. This requires
NLP algorithms with a high degree of flexibility and adaptability. Another challenge is the need
to accurately interpret and respond to user intent, particularly in the context of complex or am-
biguous input. This requires NLP algorithms with a high level of semantic understanding and the
ability to disambiguate meaning. A third challenge is the need to integrate the natural language
interface with the underlying software system in a seamless and intuitive manner. This requires
careful design and testing to ensure that the interface is intuitive and easy to use for developers.
Since, most of the NLP algorithms can be complex and may require a large dataset of annotated
examples for machine training, it is very important to identify the algorithm that is able to effect-
ively and efficiently handle the complexity of the domain, the ambiguity of natural language, and
the integration with the existing visual interface, while also addressing the challenges of limited
training data.

2. Problem Formulation

The focus of this thesis is inspired by Nokia’s specific use case. Nokia has developed a low-code/no-
code software system for network management. Its primary users are developers with programming
experience and network operation knowledge. Recognizing the potential of making their low-
code/no-code system even more user-centric, Nokia Corporation has shown interest in enhancing
its platform with natural language interfaces (NLIs). This motivation stems from the challenges
faced by users in interacting with the current system and the belief that NLIs can significantly
enhance the user experience. The nuances of human language, combined with the adaptability
and power of NLIs, could potentially revolutionize how developers interact with Nokia’s system.
By incorporating NLI, users gain the ability to interact with the system using natural language
text. For instance, instead of navigating through a plethora of menus and options, a user wanting
to limit bandwidth to 500 Mbps in a specific area can directly input the command in natural
language, such as "limit the bandwidth to 500 Mbps in the campus." The system then processes
the user input and outputs the confirmation that the bandwidth limit has been set for the campus.

In order to process such user input, NLI is backed with natural language processing tech-
niques[8], encompassing various subtasks. These algorithms are responsible for interpreting and
processing user input and generating appropriate responses. In our research, we focus on sub-
tasks such as entity extraction[9] and intent classification[10]. Entity extraction entails identifying
and categorizing entities like people, organizations, locations, and specific objects in text. Intent
classification involves discerning the intended meaning or desired actions.

Nokia has experimented with the incorporation of NLI into their current platform, utilizing
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RASA’s DIET[11] model for NLP sub-tasks of entity extraction and intent classification. This
model, being deep learning-based, demands substantial datasets for effective training. However,
the developed low-code/no-code system is very simple and lightweight, meaning that implementing
NLP algorithms, which are mostly complex and rely on large datasets, poses integration and future
maintenance challenges.

Hence, Nokia’s interest lies in incorporating NLIs on their low-code/no-code platform, while
simultaneously ensuring that the system remains lightweight, agile, and maintainable. To integrate
NLIs effectively, it’s imperative to delve into the underlying NLP algorithms that power them.
Thus, through this work, Nokia is keen on investigating alternative NLP algorithms that not only
interpret queries accurately but are also optimized for training data, computational efficiency,
system integration, and long-term maintainability. Their strategy is to assess a diverse set of
NLP algorithms based on key performance metrics, including precision, recall, and f1 score, as
well as system metrics like memory usage, processing time, and resource consumption. Thus,
in our work, we begin by identifying potential NLP algorithms that align with the general need
for effective natural language processing. Generally, there’s a universally acknowledged requisite
in the field of NLP: algorithms must excel in processing and interpreting natural language with
accuracy. Independent of Nokia’s particular scenario, any NLP solution’s worth is gauged by its
efficacy. Hence, performance metrics like precision, recall, and the f1 score stand out as universal
indicators, assessing an algorithm’s proficiency in its core function. Following this, we narrow down
choices based on the specific needs of Nokia’s platform, gauged through system metrics evaluation.
Specific to Nokia, the nature of their system inherently demands freedom from the computational
intricacies often tied to deep learning models. Being a low-code/no-code platform, which has
limited capability to manage extensive datasets or high resource demands, it’s imperative for it
to stay lightweight and agile. This characteristic drives the need for algorithms that are not only
computationally economical but also independent from massive datasets. Thus, the focus direction
of this work leans towards investigating simple algorithms and ommitting the emphasis on resource-
intensive deep learning models. System metrics, encompassing memory usage, processing time, and
resource consumption, are pivotal in this context as they are the tangible indicators that mirror
Nokia’s desire to uphold the platform’s agility and simplicity. Similarly, the evaluation based on
such metrics becomes particularly crucial when model selection decisions cannot be drawn based
purely on conventional performance metrics.

Thus, the objective of this research is to explore and perform a comparative analysis to identify
the effective and efficient NLP algorithms and techniques that can be implemented on natural
language interfaces that can potentially enhance the developer experience when integrated on low-
code/no-code software systems developed by Nokia. It’s important to note that this work does not
encompass the integration of these algorithms into Nokia’s system but instead offers a blueprint
for the types of models available and their evaluation based on performance and system metrics.

Aligned with this goal, the thesis addresses the following questions:

• RQ1: In the broader landscape of AI conversational assistants, which NLP algorithms, espe-
cially concerning entity extraction and intent classification, are prominently discussed?

• RQ2: Upon evaluation, how effective and efficient are these NLP models selected from the
literature review in terms of system metrics and performance metrics??

To reiterate, this study’s core purpose isn’t to single out the absolute best model, but to
shed light on various algorithms’ capabilities and limitations, providing Nokia with comprehensive
insights. This research provides Nokia with insights into the available models for specific tasks and
how these models perform in terms of efficiency and effectiveness. The study will offer an in-depth
analysis of the current state-of-the-art NLP algorithms and their suitability for this application.
The focus of this thesis, while inspired by Nokia’s specific use case, has broader implications. While
Nokia’s interest in enhancing the developer experience by integrating NLIs is the starting point,
the findings of this research aim to be generalizable. Given that the majority of low-code/no-
code platforms lean towards being lightweight, the findings from this research will be instrumental
in guiding the future inclusion of NLIs in similar systems. By pinpointing NLP algorithms that
respect the data and resource constraints of such platforms, the research not only addresses Nokia’s
immediate challenges but also lays a robust foundation for future studies in this domain.
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3. Background

3.1. Natural Language Processing (NLP):
Languages that have naturally developed over time and are employed by humans, such as Finnish,
English, Nepali, and French, are known as natural languages. The scientific examination of these
languages from a computational standpoint is referred to as Natural Language Processing (NLP), a
discipline primarily focused on the interaction between computers and human languages. Addition-
ally, NLP serves as an interdisciplinary domain that integrates linguistics, cognitive science, com-
puter science, and Artificial Intelligence (AI). Natural Language Processing (NLP) algorithms[8]
are a key component of natural language interfaces, as they are responsible for interpreting and
processing user input and generating appropriate responses. As depicted in Figure 1, domain
experts can craft their own natural language interfaces using NLP techniques, tailored to their
respective fields, leveraging specific knowledge to effectively utilize retrieved information.

Figure 1: Example of NLP system

Natural Language Processing (NLP) techniques are widely used in many applications and
encompasses several key tasks, including:

1. Automatic summarization: Creating concise and coherent summaries from source documents,
presenting information in an easily comprehensible manner.

2. Information extraction: Deriving information from unstructured text sources, such as identi-
fying topics within a document.

3. Information retrieval: Locating relevant text documents from large collections to retrieve
specific information.

4. Named entity recognition: Identifying named entities like individuals, locations, and time
references within text.

5. Natural language generation: A software process involved in machine reading that generates
human-like textual output, as seen in chatbots generating responses.

6. Optical character recognition: Automatically extracting data from printed or handwritten
text, commonly in scanned documents or image files.

7. Machine translation: The automated translation of text from one language to another without
human intervention.

8. Question answering: Automatically responding to questions based on contextual information.
For instance, a system answers queries based on provided text.

9. Speech recognition: Identifying spoken words and converting them into text format.

10. Text classification: Accurately categorizing text into predefined classes, such as determining
the sentiment of a movie review.

In our research, we focus on subtasks such as entity extraction and intent classification or text
classification.

In summary, Some of the commonly used techniques for the task of entity extraction and intent
classification include:
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• Rule-based extraction: This method involves using predefined rules, such as regular expres-
sions, to identify entities and intents in the text. This method is simple and fast, but not
very flexible or scalable[6].

• Dictionary-based extraction: Dictionaries or directories are used to identify entities. This
method is more flexible than rule-based extraction, but it still has limitations when it comes
to working with named entities that are not in the dictionary[6].

• Statistical models: This method involves training machine learning models, such as Hid-
den Markov Models (HMMs) or Conditional Random Fields (CRFs), on annotated data to
identify entities in the text. This method is more flexible and scalable than rule-based and
dictionary-based methods, but it requires annotated training data and can be computation-
ally expensive[7].

• Machine learning and Deep Learning Models: This method involves the use of machine learn-
ing models such as Random Forest, Decision Tree, and neural network-based models, such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to identify
entities and intents in the text. This method has shown great success in entity extraction
and other NLP tasks, but it requires a large amount of training data and computational
resources[6].

3.2. Entity extraction:
Entity extraction[9] is the process of identifying and extracting important entities from unstruc-
tured text data. An entity can be any real-world object or concept, such as a person, organization,
location, date, product, or event. It plays an important role across diverse applications, including
information extraction, question answering, automatic summarization, and machine translation.
Named Entities(NEs) refer to words or phrases that are grouped into specific categories related to
a particular topic. These entities typically contain crucial information within a sentence, serving
as significant attributes for the majority of language processing systems.

For instance, in the following sentence: “I am looking for a Mexican restaurant in the
center of the town.”, entity extraction would identify the following entities:

Cuisine: Mexican

Location: center of the town

The process of Named Entity Recognition (NER) generally comprises three primary stages:

Figure 2: Working of Entity Extraction Model

1. Tokenization: During tokenization, the text is divided into separate words or tokens.

2. Part-of-speech tagging: In this step, each token is assigned a label corresponding to its
grammatical part of speech, such as noun, verb, adjective, and so on.

3. Entity classification: The last step involves identifying and categorizing the named entities
into predefined groups.
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Figure 2, shows an example, highlighting the words in the sentence that represent Named
Entities (NEs). During the model training process, a Named Entity Recognition (NER) system
can be exposed to diverse entities, which may vary based on the specific project. Typically, pre-
trained NER models encompass common entities like names, locations, organizations, dates, and
more. The most commonly used NEs can be found in Table 1.

Figure 3: Named Entities present in text being highlighted

Table 1: Named Entity Types and Examples

NE Type Examples

ORGANIZATION Georgia-Pacific Corp., WHO

PERSON Eddy Bonte, President Obama

LOCATION Murray River, Mount Everest

DATE June, 2008-06-29

TIME two fifty a m, 1:30 p.m.

MONEY 175 million Canadian Dollars, GBP
10.40

PERCENT twenty pct, 18.75%

FACILITY Washington Monument, Stonehenge

GPE South East Asia, Midlothian

Entity Extraction is usually performed using machine learning or deep learning algorithms
that are trained on annotated text data. Annotated text data is text data that has been labeled
with named entity categories. Machine learning algorithms use these annotated datasets to learn
patterns and identify named entities in raw text data.

Some of the commonly used NLP algorithms to extract entities in NLP, include:

• Named Entity Recognition (NER): This is a common task in NLP that involves identifying
and classifying named entities, such as names of people, organizations, places, and dates, in
text. NER models can be rule-based or machine-learning-based and typically use techniques
such as regular expressions, decision trees, and neural networks to identify and classify named
entities[12].

• Regular Expression: This is a pattern-matching method that uses a set of rules to identify
entities in text. Regular expressions are often used to extract entities in simple cases where
a set of predefined patterns can be used to identify entities[13].

• Conditional Random Fields (CRF): This is a statistical learning technique that models the
sequence of words in a text and predicts entity labels for each word. CRF models are often
used for NER because they can effectively capture the relationships between words and entity
labels in a sentence[7].

• Hidden Markov Models (HMM): This is a statistical model that can be used to predict the
most likely sequence of entity labels for a given text[14]. HMMs are often used for NER
because they can effectively capture the dependencies between entity labels in a sentence.

• Support Vector Machines (SVMs): This is a machine learning algorithm that can be used to
classify text into different entity categories. SVMs are effective with high-dimensional data
and can be used for NER when the number of entity categories is large[15].
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• Neural Networks: This is a machine learning technique that can be used to identify and clas-
sify named entities in text[16]. Neural networks, such as recurrent neural networks (RNNs)
and transformer models, are widely used for NER because of their ability to process complex
language models and to capture dependencies between words and entity labels.

– Rasa DIET (Deep Information Extraction Transformations): The Rasa DIET[11] model
is a multilayer neural network that uses a combination of convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) to explore the connections between
words, phrases, and concepts in natural language texts and can handle both intent
classification and entity recognition. It provides the flexibility to plug and play vari-
ous pre-trained embeddings like BERT, GloVe, ConveRT etc. To extract entities, Rasa
DIET encodes the text into a sequence of vector representations and uses these repres-
entations to predict entity labels for each token in the text.

3.3. Need for custom Entity Extraction:
As previously discussed, it’s well-known that entities are typically categorized into commonly used
entity types when training NLP models with pre-trained resources. For instance, as depicted in
Figure 4, the model identified entities like "quantity" and "time." However, our dataset primarily
comprises network-related utterances, and generalizing these into standard entity categories isn’t
conducive to our specific requirements. In our case, the conventional approach to entity extraction
doesn’t align with our objectives. Instead, we opted for a customized approach to tailor the entity
extraction task to our problem domain. This enables the development of models that accurately
identify the desired entities within the context.

Figure 4: Incorrect Entity label classifications

Figure 5: Correct Entity label classifications

In doing so, we engaged in annotating the data with the precise entities we aimed to re-
cognize—highlighted text as shown in Figure 5. To achieve this, we employed a combination of
rule-based methods and manual annotation techniques to create labeled data for training purposes.
Various annotation tools, such as Brat[17], Prodigy[18], and NER Annotator[19], can be employed
for this purpose. The details pertaining to the data annotation process are elaborated upon in
Section 4 of this document.

In summary, Entity extraction plays an important role in NLI by allowing systems to understand
the meaning of the text and process text data efficiently. By identifying relevant entities and
relationships, NLI systems can provide more accurate and relevant information retrieval, answer
questions, and perform actions, resulting in a more natural and user-friendly experience.

3.4. Intent classification:
Intent classification in NLP (Natural Language Processing) [10]refers to the task of determining
the underlying intent or purpose behind a piece of text. It is a type of text classification task where
the goal is to predict the class label that best describes the intent of the text.

For example, in a customer service chatbot scenario, intent classification can help determine
whether a customer is asking for a product, asking for support, or asking for a refund. The
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model analyzes text received from a customer, such as a suggestion or question, and then predicts
the most likely intention based on training data. For instance, in the following sentence: "I am
looking for a Mexican restaurant in the center of the town.", intent extraction would
identify the following intent:

Intent: RestaurantSearch
Intent classification models are typically trained on a large set of text sample data along with

corresponding intention labels. The model learns to identify patterns in the text that indicate
certain intentions and uses this information to predict new text data.The process of intent classi-
fication generally comprises following stages:

Figure 6: Steps in Intent Classification

• Data Collection: Gathering a diverse and representative dataset that covers a wide range
of user queries and intents is crucial for training a robust Intent Classification model.

• Preprocessing and Tokenization: The collected text data undergoes preprocessing to
remove noise and standardize the format. Tokenization breaks down the text into individual
words or tokens, forming the basis for subsequent analysis.

• Feature Extraction: Relevant features are extracted from the tokenized text. These fea-
tures encompass linguistic attributes, contextual information, and syntactic structures that
aid in understanding the underlying intent.

• Model Selection and Training: Choosing an appropriate classification model is pivotal.
Various models, including traditional machine learning algorithms and deep learning archi-
tectures, can be considered. The selected model is trained on the dataset, learning to map
input queries to their corresponding intents.

• Model Evaluation and Optimization: The trained model is rigorously evaluated using
metrics to measure its accuracy and generalization capabilities. Optimization techniques are
applied to fine-tune model parameters and enhance performance.

• Deployment and Real-time Prediction: Once the Intent Classification model demon-
strates satisfactory performance, it can be deployed for real-time applications, effectively
categorizing user queries.

Some of the commonly used NLP algorithms for Intent classification tasks include:

• Logistic regression: Logistic regression [20]is a simple but effective algorithm that can be
used to classify intentions. It is especially useful when the number of classes is limited and
the amount of training data is small.

• Support Vector Machines (SVM): SVM[15] is another commonly used algorithm for intention
classification. It works well for a limited number of classes and when the data are not linearly
separable.
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• Naive Bayes: Naive Bayes[21] is a fast and simple algorithm that can be used to classify
intentions. It is based on Bayes’ theorem and assumes that the features in the data are
independent.

• Recurrent Neural Networks (RNN): RNN[22] is a popular deep learning algorithm that is
often used for intention classification. It is particularly useful when the data contains a
sequence of words or sentences and context is important.

• Convolutional Neural Networks (CNNs): CNN[23] is another deep learning algorithm that
can be used for intention classification. It is especially useful when the data is structured
and patterns need to be identified.

• Rasa DIET (Deep Information Extraction Transformations): RASA DIET[11] have become
very popular for NLP tasks, including intention classification. They work well with large
amounts of unstructured textual data and can capture complex relationships between words
and phrases. For intent classification, DIET uses a pre-trained model and represents the
text as a sequence of tokens or words and encodes these tokens in a multi-layer Transformer
network. The resulting vector representations of the tokens are then fed into a classifier, such
as a feedforward neural network, to make the final prediction of the user’s intent.

In summary, Intent classification is an important component in creating conversational AI
systems such as chatbots, virtual assistants, and customer service applications because it helps
provide users with more personalized and relevant responses.

3.5. Word Embeddings:
Word embeddings[24] enable the conversion of text data into numerical vectors. Each word is
represented by a fixed-length vector, and similar words possess comparable representations, as
illustrated in Figure 7[25], where the colored vectors signify the similarity between words. These
word embeddings are commonly pretrained and often serve as the initial data processing layer in
deep learning models. However, they can also be learned during the training process.

Figure 7: Word embeddings represented by a D-dimensional vector

Different types of word embeddings exist, depending on their training methods. Some of the
most common ones include Word2Vec[26], TF-IDF[27], and GloVe[28]. In our study, TF-IDF is
employed as a word embedding technique for the intent classification task. On the other hand, for
entity classification, we utilize built-in feature extraction methods such as those provided by NLTK
and Stanford NER. Additionally, we use tok2vec[26] for SpaCy and a CountVectorsFeaturizer[25]
for RASA.
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TF-IDF, short for Term Frequency-Inverse Document Frequency transform text documents into
numerical feature vectors that can be effectively employed in various machine learning tasks. Term
Frequency (TF) is a metric that gauges the significance of a term within a specific document. It
is computed by dividing the frequency of a term (word) within a document by the total number
of terms present in that document. This concept is rooted in the notion that terms occurring
more frequently within a document tend to hold greater importance for that particular document.
Inverse Document Frequency (IDF) is a measure of the rarity or distinctiveness of a term across a
collection of documents. It is calculated as the logarithm of the total number of documents divided
by the number of documents containing the term. Terms appearing in only a few documents are
assigned higher IDF values, indicating that they offer more informational or distinctive content
compared to terms present in numerous documents.

The calculation of TF-IDF involves multiplying the TF value of a term in a document by its
corresponding IDF value. This computation assigns greater weights to terms that are both highly
frequent within a specific document (high TF) and relatively scarce across the entire collection of
documents (high IDF).

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D) (1)

Where, t is the term (word) in question, d is the specific document and D is the collection of
all documents.

The individual components can be defined as follows:

TF(t, d) =
Number of times term t appears in document d

Total number of terms in document d
(2)

IDF(t,D) = log

(
Total number of documents in collection D

Number of documents containing term t

)
(3)

The process of vectorization ensues once TF-IDF values have been determined for all terms in
each document. These computed values are utilized to construct numerical feature vectors that
represent each document. Each individual term becomes a distinct feature dimension, and its
associated TF-IDF value is indicative of the value along that particular dimension.

3.6. Tools and Libraries for Entity Extraction and Intent Classification:
There are several popular Python libraries that can be used for Entity Extraction, Intent Classi-
fication and Semantic parsing in NLP. The python libraries used in our work are:

• spaCy: It is an industrial-strength NLP library[29] that provides efficient and easy-to-use
intent classification, entity extraction systems and dependency parsing. It supports training
of custom intent classifiers and entity recognition models, and includes pre-trained models
for various tasks.

• Stanford NLP: It is a suite of Java-based NLP tools developed by Stanford University, includ-
ing a part-of-speech tagger, named entity recognizer, and parser. It can be used in Python
using the PyNLPI library and provides a Python interface for various tools[30].

• Scikit-learn: This is a machine learning library for Python that provides a simple and efficient
interface for training and evaluating machine learning models. It includes several classifiers,
such as support vector machines (SVMs) and decision trees, which can be used to classify
intentions, and entity extraction can be performed using the Named Entity Recognition
(NER) module of the library[31].

• NLTK: This is a comprehensive library for natural language processing tasks including token-
ization, stemming, tagging, parsing, semantic analysis, intention classification and named
entity recognition modules. The intention classification module is based on the maximum
entropy model, and the named entity recognition module supports entity extraction for dif-
ferent types of named entities.[32]
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4. Related Works

Natural Language Processing (NLP) has undergone a series of developmental stages in its relatively
recent emergence. Natural Language Processing (NLP) algorithms [5]are a key component of
natural language interfaces, as they are responsible for interpreting and processing user input and
generating appropriate responses. In this thesis, we are mainly interested in the sub-tasks of NLP,
which includes Entity extraction[9], intent classification[10]. There is a growing body of research
on the use of NLP algorithms for such NLP tasks, including rule-based, statistical, and hybrid
methods[6] in the NLP interface to improve developer usability. Initially, during the 1980s, the
rule-based approach was a significant milestone, involving the manual creation of rules to address
language processing tasks. Noteworthy systems of that era included SHRDLU[33] developed by
Winograd, which operated in limited block worlds with restricted vocabularies, and ELIZA by
Weizenbaum[34], a conversational program that employed pattern matching and substitution for
human-machine interactions.

The subsequent phase marked the statistical revolution, where NLP research extensively em-
braced statistical models, utilizing machine learning (ML) algorithms such as decision trees to
make probabilistic decisions based on input data[35]. A more recent paradigm shift emerged with
the integration of deep neural architectures, specialized hardware, and the abundance of available
data[36]. This evolution has been driven by the vast textual data accessible on the internet, con-
tributing to a surge in NLP research and creating novel applications for natural language interfaces.

There have been a number of studies and successful implementations of projects focusing on
the use of natural language interfaces for developer experience. One early example is the "Intel-
liSense"[37] feature in Microsoft’s Visual Studio development environment, which uses NLP tech-
niques to provide code completion suggestions and documentation links as the developer types.
Another example is the "Stack Overflow Assistant"[38] project, which uses a combination of NLP
and machine learning to provide answers to developers’ questions based on data from the Stack
Overflow programming Q&A website. More recently, there has been a trend towards the use of
chatbots as natural language interfaces for developer experience. One example is the "GPT-3 De-
veloper Assistant,"[39] which uses the GPT-3 language model to provide assistance to developers
on a variety of topics, including code debugging and library documentation. In addition to the
specific systems and studies mentioned above, there are a number of other notable examples of
natural language interfaces for developer experience such as CodeGenie[40], CodeFlow[41], Deep-
Code[42]. There have also been research studies on the use of natural language interfaces for other
aspects of the developer workflow, such as requirements gathering and project management. For
instance, the "NLPlanner"[43] system uses NLP to allow developers to create software development
plans using natural language input, and the "Requirement Miner"[44] system uses NLP to extract
requirements from natural language project descriptions. These systems have demonstrated the
potential of natural language interfaces to improve the developer experience and make software
development tools more accessible and user-friendly.

Z. Liu, et al.[45] present a comparative study of NLP algorithms for intention classification and
entity recognition in the development of NLP interfaces, compares the performance of rule-based
systems, statistical methods, and deep learning approaches mainly Logistic regression, conditional
random fields (CRFs), Naive Bayes classifiers, hidden Markov models (HMMs), BERT and high-
lights trade-offs between accuracy, efficiency, and computational resources. Similarly, J. Kim, et al
[46] in their research present a rule-based system for classifying intentions and entity recognition
in the development of NLP interfaces, demonstrating the effectiveness of handwritten grammars
and dictionaries for simple and easily implemented NLP applications.

Further, X. Li, et al.[47] in their research present a deep learning-based approach to intention
classification and entity recognition in the development of NLP interfaces, using a combination
of CNNs, RNNs, and LSTMs to achieve high accuracy and efficiency in natural language input
processing. Moreover, Y. Zhang, et al. [48] present an empirical evaluation of transfer learning
approaches for entity recognition and intention classification in the development of NLP interfaces,
comparing the performance of BERT and GPT-2 with traditional statistical methods such as
HMMs, MEMs, and CRFs.

Moreover, xu, et al. [49] present an ensemble approach to intention classification and entity re-
cognition in the development of an NLP interface, combining the results of several NLP algorithms
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to improve the overall accuracy and stability of the NLP system. The paper shows that the en-
semble approach outperforms individual algorithms and emphasizes the importance of combining
different NLP algorithms when developing an NLP interface.

Pilault, et al.[50] focuses on transfer learning for intention classification and entity recognition
in the development of NLP interfaces, exploring the use of pre-trained NLP models such as BERT
and GPT-2 to fine-tune and adapt to a target NLP application. The paper shows that transfer
learning can significantly improve the accuracy and efficiency of NLP systems, and emphasizes the
importance of pre-trained models in the development of NLP interfaces.

T. Nguyen, et al.[51] presents a framework for integrating NLP algorithms to improve developer
experience when developing NLP interfaces, demonstrating how different NLP algorithms can be
combined and optimized to improve the accuracy and efficiency of NLP applications. The paper
demonstrates the importance of integrating NLP algorithms to improve developer experience when
developing NLP interfaces, and presents a roadmap for future research in this area.

Similarly, previous research has extensively leveraged a variety of NLP tools for the purpose
of Named Entity Recognition (NER). For instance, a study by Ramachandran et al. [52] utilized
Spacy for entity extraction in the medical domain, emphasizing its high performance and efficiency.
Likewise, Johnson et al.[53] employed NLTK in their research on historical text analysis, citing its
flexibility and extensibility as key factors for their choice. Stanford NER has also been a popular
choice; it was used by Vychegzhanin et al. [54] in a benchmark study to evaluate the efficacy of
different NER tools across multiple languages. The work confirmed Stanford NER’s high accuracy
and robustness, particularly in handling complex syntactic structures. More recently, the RASA
DIET architecture was adopted by Sharma et al. [55] for a chatbot application in customer service.
Their work demonstrated that RASA DIET is particularly well-suited for real-time applications
where both intent recognition and entity extraction are required. These examples illustrate the
diversity of applications and domains where these NER tools have been successfully employed.

While many preceding investigations regarding entity and intent categorization in the realm of
natural language interfaces lean heavily towards deep learning approaches, our exploration veered
towards simpler algorithms. Notably, prior studies in the network-related domain zoomed in on
a singular model, predominantly the deep learning-based RASA. However, our research took a
broader lens, examining multiple models. In our work, we have employed four different Entity
Recognition techniques: MaxEnt Classifier with NLTK, Spacy, Conditional Random Fields with
Stanford NER, and RASA DIET, and six different algorithms for the task of intent classification:
SVM Classifier, Logistic Regression, Naïve Bayes, Decision Tree, and Random Forest, along with
RASA DIET. Unlike previous studies that primarily assessed the performance of NLP algorithms
in the network management domain based solely on performance metrics, this research goes a step
further by incorporating system metrics, which are paramount in evaluating the feasibility of these
models in real-world scenarios.

5. Research Methodology

This section outlines the comprehensive approach adopted to address the thesis’s objectives. The
core objective of this research revolves around evaluating the efficiency and effectiveness of various
NLP algorithms. A comprehensive and iterative approach was adopted to ensure that the selected
algorithms were not only well-suited for the task but also met the system’s requirements.

The research methodology is guided by the quantitative research design principles outlined
by Creswell et al. [56], where the performance of each algorithm was compared under the same
conditions.

• Problem Formulation

The initial phase started with engaging with the primary stakeholder, Nokia, to gain a
deeper understanding of their low-code/no-code system and the challenges associated with
it. This involved one-on-one interviews, focus group discussions, and observation sessions.
Understanding the stakeholder perspective ensures that the research is grounded in real-world
challenges and aids in formulating the precise research questions that the subsequent stages
address.
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• Literature Review

Post problem formulation, a literature review was conducted. This phase aimed to identify,
evaluate, and interpret all available research relevant to our first research question, specific-
ally focusing on AI conversational assistants and NLP algorithms related to entity extraction
and intent classification. The review process was structured using established guidelines[57]
to ensure a comprehensive and unbiased assessment. We implemented search strategies that
extracted data on key topics such as the nature of the algorithm, its performance indicators,
and its domain of application. Databases like IEEE Xplore1, ScienceDirect2, and Springer3
were scoured using search terms such as "NLP algorithms", "conversational AI", "entity
extraction", and "intent detection". To maintain topical relevance, only articles that under-
went peer review within the past decade were included in our review. Exclusions were made
for redundant studies, articles not in English, or those not entirely accessible.

This rigorous approach enriched our understanding of the domain, confirming that our selec-
ted algorithms for testing align with cutting-edge practices. Recognizing existing approaches,
their merits, and their drawbacks allows us to establish a foundation for our experiments and
contextualize our findings.

• Experimental Design

For this study, we adopted a Comparative Experimental Design, influenced by the principles
outlined by Wohlin et al. [58]. This approach enables the concurrent evaluation of different
treatments (here, NLP algorithms) within controlled conditions, facilitating a comprehensive
comparison of the outcomes of the algorithms under study and answering our second research
question.

The nature of the experiment in our case is quantitative. Numerical metrics were chosen to
evaluate and compare the treatments. The comparison was made on the basis of quantitat-
ive metrics including system metrics like precision, recall, f1 score, computation time, and
resource consumption. Through the comparison of these metrics, the experiment aims to
assess the performances of the different NLP algorithms and determine the suitable ones.

Subsequent sections delve deeper into the foundational structure of our experiments, namely
Experiment 1: Entity Extraction and Experiment 2: Intent Classification.

– Programming Tools: The experimentation process was carried out using the Python
programming language. Essential Python libraries for this experiment encompassed
visualization tools like seaborn, machine learning libraries like scikit-learn, and NLP
tools such as spaCy, Stanford NLP, NLTK, with NER Annotator facilitating custom
annotations.

– Controlled Variables:

∗ Evaluation Environment: The computational setup remained consistent to en-
sure results were not affected by external factors.

∗ Data: Across all algorithmic experiments, the size and integrity of the data were
maintained.

– Dependent Variables:

∗ Performance Metrics: These include precision, recall, and f1 score.
∗ System Metrics: Metrics like memory consumption, processing duration, and

resource usage were observed.

– Independent Variables: The model features served as the independent variables in
our experiment. These attributes, such as different entity and intent types, fed into
the models, possibly influencing the dependent variables. Tweaking these features could
yield varied outcomes.

– Assumptions: Certain assumptions underpinned our research:
1https://ieeexplore.ieee.org/
2https://www.sciencedirect.com/
3https://www.springer.com/
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∗ Data Representativeness: The selected dataset is believed to aptly mirror the
real-world language queries that the Nokia system might encounter.

∗ Algorithmic Compatibility: There’s an underlying presumption that the al-
gorithm’s performance in our study would also be reflected in a similar fashion
when integrated into the Nokia system.

– Design Procedure: The experiment follows these steps:

1. Algorithm Selection: Algorithms were selected based on the literature review as
explained in previous section.

2. Dataset Selection: Established benchmark datasets were utilized for entity ex-
traction, ensuring that the datasets capture a wide variety of entity types and
sentence structures[59].

3. Data Pre-processing: Following the guidelines from Garcia et al.[60], data was
sanitized to remove irrelevant or noisy content. Custom annotations were added
by tagging more entities and intents, adhering to the standards by Ruppenhofer
et al.[61]. The data was then converted into a format suitable for NLP tools, as
suggested by Cho et al. [62]. For training and validation, a 70:30 split was adopted,
as recommended by Kohavi et al.Kohavi et al. [63].

4. Algorithm Training: Each algorithm was trained using the designated training
set. Parameter optimization was achieved using cross-validation [63].

5. Evaluation: We gauged each algorithm’s computational requirements. Relying on
insights from Han et al. [64], we observed each algorithm’s effect on computation
time, memory, and CPU utilization. Performance was analyzed through established
metrics by Sokolova et al.[65], focusing on precision, recall, and the F1 score.

• Comparative Analysis

After conducting the experiments, a methodical comparison of the obtained results for each
NLP algorithm was undertaken. This comparison not only aids in understanding the per-
formance of the algorithms but also offers actionable insights to identify the effective solution
for our specific needs. The comparison was done for the following reasons:

– To distinguish the strengths and weaknesses of each technique in relation to entity
extraction and intent classification.

– To establish a reference framework for future studies and optimizations.

6. Approach:

In this section, we outline the two experiments used in our work to compare and evaluate the
performance of different NLP algorithms for entity extraction and intent classification tasks. Each
experiment relies on specific algorithms, which we’ll discuss in detail. Before diving into these
methods, we’ll start by explaining the primary steps common to most ML projects: data collec-
tion, preprocessing, and Exploratory Data Analysis (EDA). These steps are essential because they
prepare the data for further processing and give us an initial understanding of its features and
patterns.

6.1. Data:
The data utilized in this research is sourced from the Lumi Nile Chatbot Dataset[66], available at
https://github.com/lumichatbot/chatbot/tree/master/nlu-engine/data. This dataset was origin-
ally developed in conjunction with the 2021 USENIX Annual Technical Conference paper, "Hey,
Lumi! Using Natural Language for Intent-Based Network Management,"[67] authored by a re-
search team led by Arthur S. Jacobs. The dataset aims to facilitate the use of natural language
in managing intricate networking tasks and consists of utterances specifically related to network
operations. These utterances enable network operators to convey their high-level intentions using
natural language. The dataset itself has been generated based on real-world intents obtained from
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U.S. university network policies, and the utterances are constructed as if network operators are
directly interacting with a management system.

The Lumi Nile Chatbot Dataset is pivotal to the present study, serving as the foundational
resource for the training and evaluation of natural language understanding models implemented in
intent-based network management systems.

6.1..1 Data Composition:

In the dataset used for this research, three primary components contribute to the robustness and
flexibility of the Natural Language Understanding (NLU) system: utterances, lookup files, and
synonym files. Utterances are natural language expressions that serve as the raw input for the
NLU system. These utterances are processed to identify various entity types, which are predefined
categories of data that the system needs to recognize and act upon.

To provide a brief understanding of the types of utterances obtained as raw data from the Lumi
Nile dataset, we present the following examples; these examples illustrate the diversity of entities
belonging to a certain entity type and the entity types that the system can recognize and process.

Table 2: Raw utterances as obtained from Lumi Nile dataset

No. Example Utterance

1 From [dorms](location) to [internet](location) [add](operation) [nat](middlebox)

2 [unblock](operation) [facebook](service)

3 [Add](operation) [DPI](middlebox) middlebox into [all traffic](traffic) from
[Internet](location) to the [Labs](location)

4 [limit](qos_constraint) [servers](location) [bandwidth](qos_metric) to
[5](qos_value) [gbps](qos_unit) between [4pm](hour) and [7pm](hour)

5 [block](operation) all [student](group) [traffic](traffic) in the [network](location)

6 [Set](operation) [quota](qos_metric) to [10](qos_value) [GB per week](qos_unit)
at [dorms](location)

7 [Limit](qos_constraint) [students](group) in the [dorm](location) to
[10](qos_value) [GB per week](qos_unit)

8 Make sure [all traffic](traffic) from the [Internet](location) to the [labs](location)
is [inspected](middlebox) by the [DPI](middlebox) middlebox

9 [block](operation) [F2movies traffic](service) for [students](group) in the
[labs](location)

10 [Students](group) shall [download](qos_constraint) [no more than](qos_metric)
[1000000](qos_value) [MB per week](qos_unit)

The raw data obtained from the Lumi Nile dataset follows a specific annotation format to
indicate entities and their corresponding types within the natural language utterances. In this
format, square brackets [] are used to encapsulate the entities, and parentheses () immediately
following the square brackets are used to specify the type of the entity.

For instance, consider the example utterance "[limit](qos_constraint) [servers](location)
[bandwidth](qos_metric) to [5](qos_value) [gbps](qos_unit) between [4pm](hour) and
[7pm](hour)". In this utterance, the words inside the square brackets, such as "limit", "servers",
"bandwidth", "5", "gbps", "4pm", "7pm", are the entities. The words inside the parentheses,
such as "qos_constraint", "location", "qos_metric", "qos_value", "qos_unit", "hour",
"hour", indicate the types of these entities, respectively.

Similarly, The lookup files provide examples of the entity types present in the dataset, effectively
serving as a reference guide for the NLU system to better understand and categorize the entities
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present in the utterances. In the scope of the entity recognition task in our research, there are 11
distinct entity types to be recognized. A brief explanation of each of these entity types and their
examples is provided in the subsequent sections to offer a comprehensive understanding of their
roles and significance in the NLU system.

• Location: Refers to the physical or logical place where a network service, device, or user is
situated.

• QoS_Constraint: Specifies the limitations or conditions under which a network service
must operate.

• Group: Represents a collection of users or devices that share common attributes or permis-
sions.

• Hour: Indicates the time of day, often used to specify when certain network rules or limita-
tions apply.

• QoS_Metric: Describes the measurable attributes related to the quality of a network
service.

• Service: Refers to the specific network services or applications that are being used or man-
aged.

• Traffic: Describes the type or category of network data being transmitted or received.

• QoS_Value: Specifies the numerical value associated with a QoS metric or constraint.

• Operation: Describes the action to be taken on a network service, often in the context of
permissions or limitations.

• Middlebox: Refers to any intermediary device on a network that performs functions other
than just forwarding packets.

• QoS_Unit: Indicates the unit of measurement for a QoS metric or constraint.

Table 3: Examples of Entity Lookups

Entity Type Examples

Location video server, my network, labs, HR department, University of Illinois

QoS_Constraint download, upstream, capped at, minimum, incoming,

Group all professors, teachers, guests

Hour 1am, 2pm, noon

QoS_Metric bandwidth, download rate, speed

Service YouTube, Netflix, email

Traffic news, streaming, music, all traffic

QoS_Value 1, 10, 100

Operation add, block, allow

Middlebox NAT, load balancing, intrusion prevention

QoS_Unit gigabytes, Mbps, Kbps

Complementing the lookup files, the synonym files contain alternative expressions or words
that map to the same entity. Synonyms are employed to accommodate the variability in how
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different users express the same idea, including case sensitivity and spelling errors, thereby making
the system more flexible and user-friendly. For example, the time "01:00" and "1am" could be
synonyms for the same canonical representation of time. The inclusion of lookup and synonym
files not only enhances the system’s ability to understand varied user inputs but also allows for a
more nuanced and comprehensive understanding of natural language.

Table 4: Examples of Synonyms

Synonym Examples

01:00 01:00, 1am, 13:00

02:00 02:00, 2am, 14:00

Battlenet blizzard battlenet, Battlenet, battlenet

DMZ DMZ, demilitarized zone

HR HR, human resources, Human Resources, HR department

LAN local area network, LAN

add add, append, include, increase, must pass through, pass through, for-
ward, forward through, affix

allow allow, allowed, allowing, grant, let, permit, let on, authorize, pass, ad-
mit, tolerate, do not block, must not be blocked, unblock

block block, blocked, blocking, can not run, cannot run, deny, do not let, may
not run, prevent, stop, obstruct, cut off, deter, halt, intercept, impede,
stall, thwart, hinder, hold up, close, close off, bar, barred, do not allow,
must not be allowed

campus campus, entire campus

classrooms classroom, classrooms, class

copyright monitoring copyright, copyright violation, copyright-monitoring

6.1..2 Data Synthesis:

In the initial phase of our research, we obtained a dataset from Lumi Nile consisting of 141 utter-
ances. While this dataset provided a valuable starting point, its limited size posed a challenge for
training robust machine learning models. To address this issue, we decided to augment the dataset
by generating synthetic data.

We used Gretel AI[68], a leading platform specializing in data synthesis and privacy-preserving
data generation, to extend our dataset. Gretel AI utilizes advanced machine learning algorithms
to generate synthetic data that retains the statistical properties and relationships inherent in the
original dataset. This approach allows for the creation of data that can serve as a viable substitute
for real data, enabling organizations to conduct analyses and develop models without compromising
privacy or security.

For the data synthesis process, we configured Gretel AI with the following parameters:

• Model: GPT_X

• Batch Size: 4

• Epochs: 3

• Weight Decay: 0.01

• Learning Rate Scheduler: Linear

• Learning Rate: 0.0002
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• Steps: 100

• Rows: 500

• Data Source: Existing 141 sentences from Lumi Nile dataset

The machine learning model used for this task was a variant of the Generative Pre-trained
Transformer, denoted as GPT_X. The batch size was set to 4, indicating that four data samples
were processed in a single batch during the training phase. The model was trained for 3 epochs,
each epoch being a complete forward and backward pass of all the training examples. To prevent
overfitting, a weight decay of 0.01 was applied as a regularization technique. The learning rate
scheduler was set to linear, gradually decreasing the learning rate over time. The initial learning
rate was set at 0.0002, dictating the step size in the optimization algorithm. The total number of
optimization steps was fixed at 100, denoted as steps. The model was configured to generate 500
rows of synthetic data, specified by the rows parameter. For the data source, we used the existing
141 sentences from the Lumi Nile dataset.

The model took approximately 6 minutes to generate 500 synthetic utterances. Upon inspection
of the newly generated data, we found that it contained numerous duplicates and random words
that did not contribute meaningfully to the dataset. As a result, we undertook a manual filtering
process to remove these inconsistencies. The final dataset, post-filtering, consisted of 199 high-
quality synthetic utterances. The data is further split for training and testing purposes in the ratio
of 70:30 for both entity and intent classification models.

6.1..3 Data Processing:

In our research, the initial dataset sourced from the Lumi Nile project came pre-labeled, with en-
tities enclosed in square brackets and their corresponding entity types denoted within parentheses.
While this format is informative, it is not directly compatible with the natural language processing
tools we employed for entity recognition, namely Spacy, StanfordNER and NLTK and for the task
of intent classification as well. This conversion was a crucial preprocessing step, enabling us to
utilize advanced entity recognition and intent classification algorithms for further analysis.

6.1..3.1 Conversion of data into IOB format:

To bridge this gap, we converted the raw data into the IOB (Inside-Outside-Beginning) format,
which is a common tagging format for named entity recognition and is supported by both Stan-
fordNER and NLTK. In the IOB format, each token in a sequence is tagged with one of three
labels:

• B (Beginning): Indicates that the token marks the beginning of a named entity.

• I (Inside): Signifies that the token is a part of a named entity but is not the first token in
the sequence.

• O (Outside): Denotes that the token does not belong to any named entity.

To illustrate the IOB labeling process, consider the sentence: “John Smith lives in New York
and works for United Nations.” First, the sentence is tokenized into individual words. Each token
is then labeled according to the IOB format. In this specific example:

Figure 8: Example of IOB label

• The token “John” is tagged as B-PER, indicating the beginning of a person’s name.
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• “Smith” is tagged as I-PER, signifying that it is part of a person’s name but not the first
token.

• “United” is tagged as B-ORG, marking the beginning of an organization’s name.

• “Nations” is tagged as I-ORG, indicating that it is part of an organization’s name but not the
first token.

• All other tokens are tagged as O, denoting that they do not belong to any named entity.

In our study, sentences were converted into IOB format as follows. Consider the two example
sentences: “Block F2movies traffic from Internet to student Labs” and “Add DPI middlebox into
all traffic from Internet to the Labs.” These sentences are tokenized and labeled as shown below:

Block B−opera t i on
F2movies B−s e r v i c e
t r a f f i c I−s e r v i c e
from O
In t e rn e t B−l o c a t i o n
to O
student B−l o c a t i o n
Labs I−l o c a t i o n

Add B−opera t i on
DPI B−middlebox
middlebox I−middlebox
in to O
a l l B−t r a f f i c
t r a f f i c I−t r a f f i c
from O
In t e rn e t B−l o c a t i o n
to O
the O
Labs B−l o c a t i o n

Figure 9: Example of tokens and their corresponding IOB labels

It should be noted that the dataset after conversion consists of two columns: the token and its
corresponding entity label. These columns are separated by a tab. Additionally, each sentence in
the dataset is separated by a new line.

To reformat the data as depicted in Figure 9, we utilized pre-annotated raw data from the Lumi
Nile dataset. The transformation was carried out using the algorithm outlined in the accompanying
pseudo-code:

18



Aanchal Upreti Comparative Analysis of NLP algorithms for NLI

1: Initialize:
2: converted_lines ← empty list
3: prev_label ← None
4: label ← None
5: Tokenize:
6: words ← split input sentence
7: for word in words do
8: if word starts and ends with square brackets then
9: label ← content inside square brackets

10: continue
11: end if
12: if label is not None then
13: prefix ← “B-” if label ̸= prev_label else “I-”
14: converted_line ← word + \t + prefix + label
15: else
16: converted_line ← word + \t + “O”
17: end if
18: append converted_line to converted_lines
19: prev_label ← label
20: label ← None
21: end for
22: result ← join converted_lines with newline
23: return result

Figure 10: Pseudo-code for Sentence to BIO Tag Conversion

The algorithm for converting sentences into the BIO (Beginning, Inside, Outside) tagging
scheme uses basic string manipulation and list operations. The algorithm is initiated by tokeniz-
ing the input sentence into discrete words. Subsequently, it iterates through each word to check
whether it is a label within the square brackets or a regular word. Upon encountering a label, it
is temporarily stored for tagging the succeeding word(s). For each standard word, the algorithm
verifies the presence of a label. If a label is present, the algorithm decides whether to use the “B-”
or “I-” prefix, contingent on whether the label matches the label of the preceding word. Words
devoid of labels are tagged with “O”. The algorithm maintains a list of these tagged words, which
are ultimately concatenated into a string, each tagged word appearing on a new line and separated
by a tab character.

6.1..3.2 Conversion of data into Spacy format:

As various methods are available for annotating data in Named Entity Recognition (NER), includ-
ing IOB, IOB2, BILUO tags, and JSON formats. In versions of spaCy prior to v3, the data had
to be annotated in JSON format. However, starting with spaCy v3, this data is required to be
converted into the .spacy binary format. To streamline this conversion, we developed a specialized
function.

In spaCy, the training data for Named Entity Recognition (NER) is structured as a list of
tuples. Each tuple contains a sentence and a dictionary. The dictionary, in turn, contains a key
called "entities" that maps to a list of tuples. Each tuple in this list represents an entity in the
sentence. The tuple contains three elements: the start position of the entity, the end position, and
the type of the entity.

For example, consider the following sentence: "limit servers bandwidth to 5 gbps between 4pm
and 7pm". The corresponding spaCy format would be:

In this example, the entity "limit" starts at position 0 and ends at position 5, and is of type
"qos_constraint". Similarly, the entity "servers" starts at position 6 and ends at position 13, and
is of type "location". This format allows spaCy to understand both the entities present in the
sentence and their types, thereby facilitating the training of the NER model.
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( " l im i t s e r v e r s bandwidth to 5 gbps between 4pm and 7pm" ,
{" e n t i t i e s " : [ ( 0 , 5 , " qos_constra int " ) , ( 6 , 1 3 , " l o c a t i o n " ) , ( 14 , 23 , "qos_metric " ) ,
(27 ,28 , "qos_value" ) , ( 29 , 33 , "qos_unit " ) , ( 42 , 45 , "hour" ) , ( 50 , 53 , "hour" ) ] } )

Figure 11: Example of spaCy format

To transform the data into the format outlined in Figure 11, we utilized pre-labeled raw data
from the Lumi Nile dataset. We accomplished this transformation by implementing the algorithm
described in the provided pseudo-code. This algorithm relies on elementary string manipulation
and list operations to produce the specified output. The algorithm starts by splitting the input
sentence into individual words. It then iterates through each word, checking if it is enclosed in
square brackets, which would indicate that it is a label for the following word. If a label is found,
it is stored temporarily, and the algorithm continues to the next word. The actual word is then
appended to a list that will eventually form the converted sentence. Simultaneously, the start and
end indices of the word in the converted sentence are calculated, and along with the previously
stored label, they are added to a list of entities. Finally, the list of words is joined back into a
single string to form the converted sentence, and a tuple containing this sentence and the list of
entities is returned.

1: Initialize:
2: converted_sentence ← empty list
3: entities ← empty list
4: start_idx ← 0
5: label ← None
6: Split:
7: words ← split input sentence
8: for word in words do
9: if word starts and ends with square brackets then

10: label ← content inside square brackets
11: continue
12: end if
13: end_idx ← start_idx + length of word
14: append word to converted_sentence
15: if label is not None then
16: append (start_idx, end_idx, label) to entities
17: end if
18: start_idx ← end_idx + 1
19: end for
20: converted_text ← join converted_sentence
21: return (converted_text, entities)

Figure 12: Pseudo-code for Sentence Conversion Algorithm

After transforming the data into the format illustrated in Figure 11, the next step involved
converting this data into the .spacy binary format, which is compatible with spaCy’s machine
learning models. To accomplish this, we utilized the DocBin class provided by spaCy for binary
serialization of a collection of Doc objects. Specifically, we used the add method to include each
Doc object into the DocBin. The to_disk method was then employed to save the serialized DocBin
object to disk with a .spacy extension. One of the key advantages of using DocBin is its efficiency;
it not only speeds up the serialization process but also generates smaller file sizes compared to
Python’s native pickle module. Additionally, DocBin allows for secure deserialization without the
need to execute arbitrary Python code.
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6.1..3.3 Conversion of raw data into format suitable for Intent Classification:

In the context of intent classification, which is a multi-class classification problem in our study, it
is imperative to separate the features from the labels. The model specifically requires the features,
which in our case are the utterances, to be devoid of any entity labels. To achieve this, we preprocess
the raw data, which is initially annotated with entity labels, to remove these labels and retain only
the utterances.

For instance, consider the original sentence annotated with entity labels: [limit](qos_constraint)
[servers](location) [bandwidth](qos_metric) to [5](qos_value) [gbps](qos_unit) between
[4pm](hour) and [7pm](hour). The Sentence Conversion Algorithm is employed to transform
this sentence into a format suitable for intent classification. The algorithm utilizes regular expres-
sions to efficiently strip the sentence of its entity labels as given in the accompanying pseudo-code:

Converted Sentence:
limit servers bandwidth to 5 gbps between 4pm and 7pm

Figure 13: Example of a Converted Sentence for Intent Classification

The converted sentence, as shown in Figure 13, is then used as the feature input for the intent
classification model.

Require: Original sentence with text and labels in the format [text](label)
Ensure: Converted sentence with labels removed
1: converted_sentence ← original_sentence
2: matches ← find all occurrences of [text](label) using regular expression
3: for each match in matches do
4: text, label ← match
5: Replace [text](label) in converted_sentence with text
6: end for
7: return converted_sentence

Figure 14: Pseudo-code for Sentence Conversion Algorithm

The Sentence Conversion Algorithm employs regular expressions (regex) to transform an ori-
ginal sentence containing both text and labels into a simplified version with the labels removed.
The algorithm takes as input a sentence where each word or phrase is annotated in the format
[text](label). The objective is to extract just the text portions and concatenate them to form
a coherent sentence without any labels.

The algorithm initializes a variable, converted_sentence, with the original sentence. It then
utilizes a regular expression to identify all occurrences of the pattern [text](label) within the
sentence. Each match is a tuple containing the text and its corresponding label.

A loop iterates through each of these matches. Within the loop, the algorithm replaces each
occurrence of [text](label) in converted_sentence with the extracted text. This is done until
all such patterns in the original sentence have been replaced. Finally, the algorithm returns the
converted_sentence, which is the original sentence stripped of all labels. This approach leverages
the power of regular expressions for efficient text manipulation, making it particularly useful for
natural language processing tasks where such transformations are common.

6.1..4 Data Annotations:

6.1..4.1 Custom Entity Labeling:

In our research, we focus on custom entity extraction, a specialized form of Named Entity Recog-
nition (NER) that goes beyond the capabilities of general-purpose NER models. While standard
NER models are effective at identifying common entities such as names, locations, and dates, they
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often fall short in specialized domains. Custom entity extraction allows us to identify and classify
domain-specific entities that are not covered by pre-trained models.

A critical step in developing a custom NER model is data annotation. This involves manually
tagging or labeling raw data to create a ground truth that the machine learning algorithm can
learn from. Various tools are available for this purpose, ranging from simple manual tools to
more complex automated or semi-automated platforms. Some popular choices include Brat[17],
Prodigy[18], and NER Annotator[19].

Our work involved using the Lumi Nile dataset, which was already annotated with entity labels.
While this pre-labeling was advantageous as it provided a ready-to-use dataset, it posed challenges
when we tried to adapt it for various NLP libraries such as SpaCy, NLTK, and Stanford NER. The
primary issue was that the data was not in a format compatible with these libraries, necessitating
a data conversion process.

During this conversion, specifically into Spacy format, we encountered specific inconsistencies
related to the start and end indices of the labeled entities. Upon closer inspection, we realized that
the algorithm we used for string manipulation was not accurately capturing the entities enclosed
within square brackets and their corresponding types within parentheses. This led to incorrectly
labeled entities and even resulted in some entities being missed altogether.

To address these challenges, we resorted to manual annotation using a tool called NER Annot-
ator[19]. This tool provides a user-friendly interface for manually tagging entities in a text corpus.
It allows the annotator to highlight text spans and assign them custom entity labels. The tool
also offers features for reviewing and editing annotations, ensuring a high level of accuracy and
consistency.

Figure 15: Manual Data Annotation Using NER Annotator

The NER Annotator tool provides a streamlined process for annotating text data for Named
Entity Recognition (NER). The workflow is divided into several steps. Step 1 involves loading
a text file that contains the content to be annotated. It is advisable to break the content into
paragraphs or passages and maintain a consistent separator between them, such as a newline or
an empty line. For large datasets, it’s recommended to divide the text into smaller files. Step 2
focuses on the actual annotation process. Users can create new tags using the New Tag button
and remove unwanted tags with the Edit Tag button. After annotating an entry, the Save button
should be clicked to proceed to the next entry. The tool also provides options to adjust the text
separator and to export or import tags for team collaboration. Step 3 allows users to download
the annotated data as a JSON file suitable for machine learning training. Finally, the annotations
can be converted to DocBin format for training, as per spaCy’s documentation.

By manually annotating a subset of our data, we were able to correct the inaccuracies in the
dataset for Spacy and generate a reliable ground truth for training our custom NER model.

6.1..4.2 Custom Intent Labeling:

Our research utilized the Lumi Nile dataset, which came pre-annotated with entity labels and some
intent labels. However, the intent labels provided in the dataset did not align with our specific
requirements. Consequently, we needed to create our own custom intent labels.
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As detailed in Section 4, we first converted the raw data into a format devoid of any labels.
Subsequently, we employed rule-based techniques to generate new intent labels. For instance, if an
utterance contained the word "limit", it was automatically assigned the label "limit". Following
this methodology, we created five distinct labels: "limit", "add", "block", "allow", and "unblock".
To enhance the label assignment process, we also utilized a synonym file that listed alternative
expressions for each label.

1: Input: List of sentences, Synonym files for each label
2: Output: List of labeled sentences
3: Initialize empty list labeled_sentences
4: for each sentence in sentences do
5: label ← None
6: for each word in sentence do
7: if word or its synonyms match with "limit" then
8: label ← "limit"
9: break

10: else if word or its synonyms match with "add" then
11: label ← "add"
12: break
13: else if word or its synonyms match with "allow" then
14: label ← "allow"
15: break
16: else if word or its synonyms match with "block" then
17: label ← "block"
18: break
19: else if word or its synonyms match with "unblock" then
20: label ← "unblock"
21: break
22: end if
23: end for
24: Add (sentence, label) to labeled_sentences
25: end for
26: return labeled_sentences

Figure 16: Pseudo-code for Sentence Labeling Algorithm

The algorithm takes as input a list of sentences and synonym files for each predefined label,
such as "limit," "add," "allow," "block," and "unblock." The algorithm initializes an empty list
called labeled_sentences to store the labeled sentences. For each sentence in the input list, it
iterates through each word and checks if the word or its synonyms match any of the predefined
labels. The first match found determines the label for the entire sentence, and the loop breaks to
avoid multiple label assignments. The labeled sentence is then added to the labeled_sentences
list. The algorithm returns this list as the output, providing a set of sentences each associated
with a specific intent label.

Upon reviewing the newly labeled data, we found that the majority of the utterances were
correctly annotated with the new intent labels. However, there were instances where the labeling
was either incorrect or missing. To address these issues, we manually inspected the dataset and
made the necessary corrections to ensure accurate intent labeling.

6.2. Model Architecture:

6.2..1 NLTK with MaxEnt Classifier

6.2..1.1 Natural Language Toolkit (NLTK):

The Natural Language Toolkit (NLTK) is a Python library that provides tools to work with human
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language data (text). One of its features is the MaxEnt classifier, a machine learning model for
classification tasks like Named Entity Recognition (NER). MaxEnt, short for Maximum Entropy,
is a statistical model that belongs to the family of exponential models and is equivalent to logistic
regression in its formulation.

Similar to other NER systems, NLTK also employs preprocessing steps like tokenization, stem-
ming, and part-of-speech tagging to prepare the text for feature extraction.

Figure 17: Model Architecture: Natural Language Toolkit (NLTK) for Entity Recognition

NLTK allows for custom feature extraction, enabling the user to define features that capture
various lexical, syntactic, and semantic aspects of each word and its context.

6.2..1.2 Maximum Entropy (MaxEnt) classifier:

The MaxEnt classifier[69] in NLTK uses these features to compute probabilities for each entity
type given the features of each token. The model consists of an input layer, potentially multiple
hidden layers, and an output layer.

In MaxEnt, each token in the text is represented by a feature vector, capturing various attributes
like the word itself, its part-of-speech tag, and its surrounding context. Each feature is associated
with a weight, learned during the training process, which signifies the importance of that feature
in entity classification. The MaxEnt model is based on the Principle of Maximum Entropy.

MaxEnt operates on the Principle of Maximum Entropy, which aims to make the least amount
of assumption beyond the known facts (the training data) and select the model with the highest
entropy from all models that fit the training data. The model is trained to maximize the likelihood
of the observed data, given the features and their weights. Mathematically, the model is formulated
as:

P (y|x) = 1

Z(x)
exp

(
n∑

i=1

λifi(x, y)

)
where Z(x) is a normalization factor, fi(x, y) are feature functions, and λi are the learned

feature weights.
MaxEnt computes the conditional probabilities of each entity type given the features of each

token. The model is discriminatively trained to adjust these probabilities such that the likelihood
of the observed data is maximized. MaxEnt uses a statistical model to calculate the probabilities
of each entity type for a given token based on its features. The model employs an optimization
algorithm to adjust the weights of these features. Unlike other sequence models like Hidden Markov
Models (HMMs), MaxEnt makes fewer independence assumptions. It focuses on the conditional
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probability of the output sequence given the input sequence, allowing it to incorporate arbitrary
overlapping features.

Figure 18: Model Architecture: Maximum Entropy (MaxEnt) classifier for Entity Recognition

The MaxEnt model is trained using methods like Iterative Scaling or Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) to maximize the likelihood of the observed data. During
inference, the model calculates the probabilities for each class label and selects the one with the
highest probability.

The MaxEnt classifier in NLTK offers a robust and flexible architecture for Named Entity
Recognition. By maximizing the likelihood of the observed data and making minimal assumptions,
MaxEnt provides a powerful mechanism for entity prediction. Its ability to handle a rich set of
overlapping features makes it a versatile tool for various NLP tasks, including domain-specific
NER.

6.2..2 Stanford NER with Conditional Random Fields for Entity Extraction:

6.2..2.1 Stanford’s Named Entity Recognition (NER):

Stanford’s Named Entity Recognition (NER) is a Java-based implementation that employs machine
learning algorithms for the task of entity recognition. One of the key algorithms it utilizes is
the Conditional Random Field (CRF), a form of statistical modeling particularly well-suited for
sequence data like text.

Before feeding into the CRF model, the text undergoes several preprocessing steps. These may
include tokenization, stemming, and part-of-speech tagging, which prepare the text for feature
extraction.

Figure 19: Model Architecture: Stanford NER for Entity Recognition

Stanford NER uses a comprehensive set of features that capture various aspects of each word
and its surrounding context. These features can include the word’s stem, its part-of-speech tag,
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orthographic features like capitalization, and contextual features such as adjacent words.

6.2..2.2 CRF Model

The core of Stanford NER is a CRF model trained on these features. The model consists of an
input layer, one or more hidden layers, and an output layer. Each layer is fully connected to the
next, and the model is trained to minimize a loss function that considers both the predicted and
true entity labels.

CRFs are a type of discriminative undirected graphical model. They model the conditional
probability P (Y |X), where Y is the output sequence (entity labels in our case) and X is the input
sequence (the words in the sentence). The goal is to find the label sequence Y that maximizes this
conditional probability, given a particular input sequence X.

Figure 20: Model Architecture:Conditional Random Fields for Entity Recognition

CRFs use feature functions to capture the state of each word and its context. These feature
functions are weighted, and the weights are learned during the training process. Mathematically,
the conditional probability P (Y |X) is modeled as:

P (Y |X) =
1

Z(X)
exp

(
N∑
i=1

K∑
k=1

λkfk(yi−1, yi, X, i)

)
where Z(X) is a normalization factor, fk are feature functions, and λk are the learned weights.
CRFs are typically trained using maximum likelihood estimation. The inference problem, find-

ing the most likely label sequence for a given input sequence, is often solved using dynamic pro-
gramming algorithms like the Viterbi algorithm.

The Stanford NER, with its use of Conditional Random Fields, offers a robust architecture for
the task of Named Entity Recognition. The CRF model allows for the incorporation of a wide
array of features, capturing intricate patterns in the text. Its focus on conditional probability,
as opposed to joint probability, allows it to make fewer independence assumptions, making it a
powerful tool for sequence labeling tasks like NER.

6.2..3 spaCy for Named Entity Recognition:

spaCy is a state-of-the-art Natural Language Processing (NLP) framework that offers a range
of functionalities, including Named Entity Recognition (NER). While spaCy provides pre-trained
models capable of recognizing standard entities like names, organizations, and countries, it also
allows for custom model training to recognize domain-specific entities.

spaCy’s standard pipeline includes a tagger for part-of-speech (POS) tagging, a parser for
dependency parsing, and an entity recognizer for NER. These components are pre-configured in
spaCy’s pre-trained models.
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Figure 21: Model Pipeline: spaCy for Named Entity Recognition

The NER component in spaCy employs a transition-based model inspired by techniques used
in dependency parsing to capture semantic and syntactic features of the text. This model predicts
entities based on the surrounding context, previously predicted entities, and actions taken so far
in the parsing process.This strategy is trained on a labeled dataset to learn the optimal sequence
of actions for NER.

Figure 22: Model Architecture:spaCy for Named Entity Recognition

The model uses a series of actions like SHIFT, REDUCE, and BILUO tags (Begin, In, Last,
Unit, Out) to annotate entities in the text. These actions and tags guide the model in identifying
the boundaries and types of entities.

A blank model in spaCy serves as a foundational pipeline with only tokenization capabilities.
Additional components like NER can be added to this pipeline.

spaCy offers a robust and flexible architecture for Named Entity Recognition, capable of hand-
ling both standard and custom entities. Its transition-based model, inspired by dependency parsing
techniques, provides a powerful mechanism for entity prediction. The ability to extend a blank
model with custom components makes spaCy a versatile tool for various NLP tasks, including
domain-specific NER.

6.2..4 Rasa DIET for Entity Recognition and Intent Classification:

Rasa is an open-source machine learning framework designed for building conversational AI sys-
tems. The Rasa DIET (Dual Intent and Entity Transformer) model is a sophisticated multilayer
neural network that employs a combination of convolutional neural networks (CNNs) and recurrent
neural networks (RNNs). It is capable of handling both intent classification and entity recogni-
tion tasks. The model also offers the flexibility to incorporate various pre-trained embeddings like
BERT, GloVe, and ConveRT.
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Figure 23: Model Architecture:Rasa DIET for Entity Recognition and Intent Classification

The DIET model is composed of several layers designed to perform specific tasks:

• Embedding Layer: This layer is responsible for converting tokens into dense vectors. It
can utilize pre-trained embeddings like BERT or GloVe, or learn embeddings from scratch.

• Convolutional Layer (CNN): This layer applies convolutional filters to the embeddings
to capture local dependencies among words.

• Recurrent Layer (RNN): This layer captures the sequential information in the text. It is
usually implemented using LSTM or GRU cells.

• Attention Mechanism: This is used to weigh different parts of the input text differently,
focusing on the most informative parts for the task at hand.

• Fully Connected Layers: These layers are used for the final classification tasks, both for
intent and entities.

• Masking: Used to ignore certain parts of the input, such as padding, during the training
process to improve model performance.

• Entity Loss: A loss function specifically designed to improve the model’s performance on
entity recognition tasks.

• Similarity Measures: Used in the loss function to measure how close the model’s predic-
tions are to the actual labels.

The Rasa DIET pipeline consists of several components, each serving a specific purpose:

• WhitespaceTokenizer: Splits the text into individual tokens.

• RegexFeaturizer: Generates features based on custom regular expressions.

• LexicalSyntacticFeaturizer: Creates features based on the position of the word, its part-
of-speech (POS) tag, and other syntactic elements.

• CountVectorsFeaturizer: Produces bag-of-words representations for the tokens. The first
instance operates at the word level, and the second at the character level (char_wb).

• DIETClassifier: Trained on both the intent labels and entities present in the training data.
It takes the features produced by the preceding featurizers and generates contextualized word
embeddings using a transformer architecture.
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In summary, the Rasa DIET model is a robust and flexible architecture for conversational
AI applications. It combines the strengths of CNNs and RNNs to effectively handle both intent
classification and entity recognition. The pipeline is modular, allowing for easy customization and
the integration of pre-trained embeddings for enhanced performance. Its multilayer architecture
is designed to capture both local and global contextual information, making it highly effective for
the tasks it is designed for.

6.2..5 Support Vector Machine (SVM) for Intent Classification:

Support Vector Machine (SVM)[45] is a supervised learning algorithm widely used for classific-
ation tasks, including text classification. In the context of intent classification, SVM works by
transforming text data into a numerical representation and finding an optimal hyperplane that
separates different intent classes. This section elaborates on the architecture and mathematical
foundations of the SVM model used in our research.

The mathematical formulation of the SVM optimization problem for a binary classification can
be expressed as:

min
w⃗,b

1

2
∥w⃗∥2 + C

N∑
i=1

ξi

subject to:
yi(w⃗ · x⃗i − b) ≥ 1− ξi, ξi ≥ 0

where w⃗ is the weight vector, b is the bias term, ξi are the slack variables, C is the regularization
parameter, and yi and x⃗i are the label and feature vector of the ith training example, respectively.

The core idea of SVM is to find a hyperplane that best separates the different classes in the
feature space. Mathematically, a hyperplane is defined as:

w⃗ · x⃗− b = 0

where w⃗ is the weight vector and b is the bias term. In a binary classification scenario, this
hyperplane serves as the decision boundary between two classes. The objective is to find the
optimal hyperplane that maximizes the margin, M , defined as:

M =
2

∥w⃗∥

The margin is essentially the distance between the hyperplane and the nearest data points (or
support vectors) from each class.

Figure 24: Model Architecture:Support Vector Machine (SVM) for Intent Classification
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Support vectors are the data points that lie closest to the decision boundary or on the margin
itself. These vectors are critical in defining the optimal hyperplane, as they are the most challenging
points to classify. Mathematically, support vectors satisfy the condition yi(w⃗ · x⃗i − b) = 1 for
correctly classified points, or yi(w⃗ · x⃗i − b) < 1 for misclassified points.

In cases where the data is not linearly separable, SVM utilizes a kernel function to transform
the feature space into a higher-dimensional space where a separating hyperplane can be found.
Commonly used kernel functions include polynomial kernels, radial basis function (RBF) kernels,
and sigmoid kernels.

The model is trained using an optimization process that aims to maximize the margin while
minimizing classification error. This is often formulated as a convex optimization problem, which
can be solved using techniques like Sequential Minimal Optimization (SMO).

For multi-class problems, the One-vs-Rest (OvR) strategy is employed. For K classes, K binary
classifiers are trained. The class corresponding to the classifier with the highest output is selected
as the predicted class.

In summary, SVM for intent classification transforms text data into a numerical representation,
identifies an optimal hyperplane using support vectors, and employs the kernel trick for handling
nonlinear relationships. This makes it a robust and effective model for classifying intents in text
data.

6.2..6 Naive Bayes for Intent Classification:

Naive Bayes[45] is a probabilistic classifier based on Bayes’ theorem. It is particularly well-suited for
text classification tasks, including multi-class problems. The model operates under the assumption
that the features (words in the case of text) are conditionally independent given the class label.

Figure 25: Naive Bayes for Intent Classification

The Naive Bayes classifier is based on Bayes’ theorem, which can be expressed as:

P (Ck|x⃗) =
P (x⃗|Ck) · P (Ck)

P (x⃗)

where Ck is the class label, and x⃗ is the feature vector.
One of the key assumptions of Naive Bayes is that the features are conditionally independent
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given the class label. Mathematically, this is expressed as:

P (x⃗|Ck) =
n∏

i=1

P (xi|Ck)

where n is the number of features, and xi is the ith feature.
Naive Bayes estimates two types of probabilities: class prior probabilities P (Ck) and class

conditional probabilities P (xi|Ck). The class prior probabilities are simply the frequencies of each
class in the training data. The class conditional probabilities are estimated as:

P (xi|Ck) =
Count(xi, Ck)

Count(Ck)

where Count(xi, Ck) is the number of times feature xi appears in samples of class Ck, and
Count(Ck) is the total count of all features in class Ck.

For a new document x⃗, the posterior probabilities for each class are calculated, and the class
with the highest posterior probability is selected as the predicted label:

Ĉ = argmax
k

P (Ck|x⃗)

In summary, the Naive Bayes model for multi-class text classification is a probabilistic approach
based on Bayes’ theorem. It assumes conditional independence among features and calculates class
prior and conditional probabilities from the training data. The model is simple yet effective, making
it a popular choice for text classification tasks.

6.2..7 Logistic Regression for Intent Classification:

Logistic Regression[45] is a supervised learning algorithm commonly used for binary and multi-
class classification problems. In the context of intent classification, the model employs the logistic
function to model the relationship between the features (words) and the target class labels.

The logistic function, also known as the sigmoid function, is mathematically defined as:

σ(z) =
1

1 + e−z

where z = w⃗ · x⃗+ b, w⃗ is the weight vector, x⃗ is the feature vector, and b is the bias term.

Figure 26: Logistic Regression for Intent Classification

Logistic Regression uses either maximum likelihood estimation or gradient descent to find the
optimal weights. The objective function for maximum likelihood estimation is:

L(w⃗, b) =
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where ŷi = σ(w⃗ · x⃗i + b) and yi is the actual label of the ith sample. The goal is to maximize this
likelihood function.
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To classify a new text sample, the model calculates the predicted probability ŷ using the logistic
function. A threshold is then applied to ŷ to determine the final class label. For example, if ŷ is
greater than 0.5, the sample is classified as positive; otherwise, it is classified as negative.

In summary, Logistic Regression is a robust and effective model for text classification. It uses
the logistic function to model the probability of a particular class given the features. The model is
trained using either maximum likelihood estimation or gradient descent to find the optimal weights.
A threshold is applied to the predicted probabilities to make the final class assignment.

6.2..8 Decision Tree for Intent Classification:

Decision Trees[45] are supervised learning algorithms widely used for classification tasks. In the
context of text classification, Decision Trees build a tree-like model of decisions based on the
features extracted from the text data.

The algorithm starts with the entire training dataset at the root node. It selects the best
feature to split the data based on a criterion such as information gain or Gini impurity. This
selected feature becomes the decision criterion at that node, and the data is divided into subsets
based on the feature values. The process is recursively applied to each subset.

Figure 27: Decision Tree for Intent Classification

The algorithm selects the feature that maximizes the information gain or minimizes the Gini
impurity. Mathematically, information gain IG is defined as:

IG(D, f) = H(D)−
∑

v∈Values(f)

|Dv|
|D|

H(Dv)

where H(D) is the entropy of dataset D, and Dv is the subset of D for which feature f has value
v.

The algorithm continues to split the data at each node until a stopping criterion is met. Com-
mon stopping criteria include reaching a maximum depth, reaching a minimum number of samples
at a node, or no further improvement in impurity.

Once the Decision Tree is built, it can be used to classify new, unseen text samples. The sample
traverses the Decision Tree, following the learned decision rules based on its feature values. At
each node, the sample is directed to the appropriate child node until a leaf node is reached. The
class label associated with that leaf node is then assigned to the sample.

In summary, Decision Trees are a robust and interpretable model for text classification. They
build a hierarchical model of decisions based on feature values, using criteria like information gain
or Gini impurity for splitting. The algorithm is straightforward yet effective, making it a popular
choice for text classification tasks.

6.2..9 Random Forest for Intent Classification:

Random Forest[45] is an ensemble machine learning technique that builds upon Decision Trees.
It is particularly effective for classification tasks, including text classification. The model aims to
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improve the performance and robustness of a single Decision Tree by creating an ensemble of trees
and aggregating their predictions.

Figure 28: Random Forest for Intent Classification

One of the key techniques used in Random Forest is Bagging, or Bootstrap Aggregation. In
this method, multiple data subsets are created from the original dataset by randomly selecting
samples with replacement. A Decision Tree is trained on each of these subsets. Mathematically, if
D is the original dataset, a subset Di is created as:

Di = RandomSampleWithReplacement(D)

To introduce randomness and reduce overfitting, Random Forest employs the Random Subspace
Method. In this approach, a random subset of features is chosen at each node for making a
decision. This ensures that each tree in the ensemble is slightly different, contributing to the
model’s robustness.

The final prediction of the Random Forest model is based on majority voting from all the
Decision Trees in the ensemble. For a given sample, each tree in the ensemble makes a prediction,
and the class label that receives the majority of votes is selected as the final prediction.

The final prediction ŷ is given by:

ŷ = MajorityVote(ŷ1, ŷ2, . . . , ŷn)

where ŷi is the prediction from the ith Decision Tree in the ensemble.
In summary, Random Forest is an ensemble method that builds upon Decision Trees to create

a more robust and accurate model. It employs techniques like Bagging and the Random Subspace
Method to introduce randomness and reduce overfitting. The final prediction is made through
majority voting, aggregating the wisdom of the ensemble for improved performance.

6.3. Experimental setup:
In this section, we describe the training and experimental configurations for the four different
Named Entity Recognition algorithms used in this study: NLTK, Spacy, Stanford NER, and
RASA DIET.

6.3..1 Experiment 1: Entity Recognition:

NLTK:
The NLTK model employs the MaxEnt classifier, which is based on the Generalized Iterative
Scaling (GIS) algorithm. The feature extraction is done using an inbuilt feature extractor. The
configuration parameters are as follows:
a lgor i thm = 'GIS '
t r a c e = 3
max_iter = 10
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Here, ‘algorithm = ’GIS’‘ specifies the use of the Generalized Iterative Scaling algorithm. The
‘trace=3‘ parameter is used for logging verbosity, and ‘max_iter=10‘ specifies the maximum num-
ber of iterations for the algorithm.

Spacy:
The Spacy model uses a Named Entity Recognition (NER) algorithm with a Transition-Based
Parser. The vectorizer used is an inbuilt tok2vec model. The pipeline includes tokenizers and a
named entity recognizer. The configuration parameters are:
Model = blank (" en ")
p i p e l i n e = token i z e r s , ' ner '
i t e r = 50
drop = 0 .5
batch_size = compounding ( 4 . 0 , 16 . 0 , 1 . 001 )

In this configuration, ‘Model = blank("en")‘ initializes a blank English model. The pipeline
includes tokenizers and a named entity recognizer (‘’ner’‘). The ‘iter: 50‘ specifies the number of
iterations, and ‘drop: 0.5‘ is the dropout rate to prevent overfitting. The batch size starts at 4 and
increases to a maximum of 16.

Stanford NER:
The Stanford NER model uses a Conditional Random Field (CRF) algorithm with an inbuilt
feature extractor. The configuration parameters are extensive and include:
useTypeSeqs2 = true
useWordPairs = true
maxNGramLeng = 10
maxLeft = 1
wordShape = chris2useLC
useWordTag = true
u s eD i s junc t i v e = true
useOccurrencePatterns = true
useClassFeature = true
useNGrams = true
useNext = true
usePrev = true
usePrevSequences = true
map = word=0, answer=1
useWord = true
useShapeConjunctions = True

This configuration includes various boolean flags that enable or disable specific features in the
CRF model, such as word pairs, n-grams, and disjunctive features. The ‘maxNGramLeng=10‘
specifies the maximum length of n-grams to be considered.

Rasa DIET:

The Rasa DIET model employs the DIET Classifier with a pipeline that includes Whitespace-
Tokenizer, RegexFeaturizer, LexicalSyntacticFeaturizer, and CountVectorsFeaturizer. The config-
uration parameters are:
Language = ' en '
p i p e l i n e = ana lyze r : char_wb , min_ngram : 1 , max_ngram : 4
DIETClas s i f i e r
epochs = 100
c o n s t r a i n_ s im i l a r i t i e s = true
th r e sho ld = 0 .3
ambiguity_threshold = 0 .1
RegexEntityExtractor

Here, ‘Language = ’en’‘ specifies that the language used is English. The ‘pipeline‘ includes
various tokenizers and featurizers. The ‘epochs: 100‘ specifies the number of training epochs, and
‘constrain_similarities: true‘ ensures that only meaningful similarities are considered.

Each of these models was trained using their respective configurations, and their performance
was evaluated based on multiple metrics, as described in the Results section.
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6.3..2 Experiment 2: Intent Classification:

In this section, we elaborate on the training configurations for various machine learning algorithms
used for intent classification in this study: SVM Classifier, Logistic Regression, Naïve Bayes,
Decision Tree, Random Forest, and RASA DIET.

SVM Classifier:

The SVM Classifier model is implemented using the Sklearn library. The configuration para-
meters are:
pena l ty = ' l2 '
l o s s = ' squared_hinge '
C = 1.0
mult i_c las s = ' ovr '
max_iter = 1000

Here, penalty = ’l2’ specifies the L2 regularization, and loss = ’squared_hinge’ sets the
loss function. The C = 1.0 parameter controls the margin hardness, and multi_class = ’ovr’
specifies a one-vs-rest strategy. The max_iter = 1000 sets the maximum number of iterations for
the solver.

Logistic Regression:

The Logistic Regression model is also implemented using the Sklearn library. The configuration
parameters are:
pena l ty = ' l1 '
C = 1.0
s o l v e r = ' l i b l i n e a r '
max_iter = 100

In this configuration, ‘penalty = ’l1’‘ specifies the L1 regularization. The ‘C = 1.0‘ parameter
controls the inverse of regularization strength, and ‘solver = ’liblinear’‘ specifies the algorithm to
use for optimization. The ‘max_iter = 100‘ sets the maximum number of iterations for the solver.

Naïve Bayes:

The Naïve Bayes model is implemented using the Sklearn library. The configuration parameters
are:
p r i o r s = None
var_smoothing = 1e−09

Here, ‘priors = None‘ means that no prior probabilities are provided, and ‘var_smoothing =
1e-09‘ specifies the portion of the largest variance to be added to variances for calculation stability.

Decision Tree:

The Decision Tree model is implemented using the Sklearn library. The configuration paramet-
ers are:
ccp_alpha = 0 .0
c r i t e r i o n = ' g in i '
max_depth = None
max_features = None
max_leaf_nodes = None
min_samples_leaf = 1
min_samples_split = 2

This configuration includes various parameters like ‘ccp_alpha‘ for cost complexity pruning
and ‘criterion = ’gini’‘ for the function to measure the quality of a split.

Random Forest:

The Random Forest model is implemented using the Sklearn library. The configuration para-
meters are:
n_estimators = 100
c r i t e r i o n = ' g in i '
min_samples_split = 2

35



Aanchal Upreti Comparative Analysis of NLP algorithms for NLI

min_samples_leaf = 1
boots t rap = True
ccp_alpha = 0 .0
max_samples = None

Here, ‘n_estimators = 100‘ specifies the number of trees in the forest. The ‘criterion = ’gini’‘
is used for the quality of a split, and ‘min_samples_split = 2‘ specifies the minimum number of
samples required to split an internal node.

RASA DIET:

The RASA DIET model employs the DIET Classifier. The configuration parameters are:
epochs = 100
c o n s t r a i n_ s im i l a r i t i e s = true
min_ngram = 1
max_ngram = 4

Here, ‘epochs = 100‘ specifies the number of training epochs. The ‘constrain_similarities =
true‘ ensures that only meaningful similarities are considered during training.

6.4. Evaluation:

6.4..1 Performance Metrics:

Named Entity Recognition (NER) is assessed by contrasting the model’s predictions with a set of
gold standard annotations. Two primary methods for this evaluation are exactmatch evaluation
and relaxed match evaluation. In the former, a span is considered correct only if it perfectly aligns
with the gold standard. In the latter, the entity is deemed correct if its type is accurate and it
overlaps with the gold standard, even if the boundaries are not exact. In our work, we use the
exact-match method for its evaluation metrics.

The evaluation metrics of Precision, Recall, and F-score are calculated using True Positives
(TP), False Positives (FP), and False Negatives (FN). TP represents the entities correctly identified
by the model and aligned with the gold standard. FP signifies the entities identified by the model
but not present in the gold standard. FN denotes the entities present in the gold standard but
missed by the model.

• Precision: Precision quantifies the model’s capability to correctly identify only the positive
samples while avoiding the misclassification of negative samples. Essentially, the focus of
precision is to reduce the number of false positives.

• Recall: Recall addresses the question: Of the instances that are genuinely positive, how
many did the model fail to identify? In essence, recall aims to minimize the occurrence of
false negatives.

• F1-Score: The F1score serves as the harmonic mean of precision and recall. It provides a
balanced measure that considers both the false positives and false negatives, offering a more
comprehensive view of the model’s performance.

The mathematical representations of these metrics are as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score = 2× Precision× Recall
Precision + Recall

(6)

Generally, Entity Recognition and Intent Classification are treated as a multiclass classification
problem, and the F-score is commonly used as the evaluation metric. It is often calculated using
both micro-averaging and macro-averaging techniques. Thus, in our work, the F1-score, which is
the harmonic mean of precision and recall, is used as the evaluation metric to balance between
precision and recall.
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6.4..2 System Metrics:

In addition to the traditional evaluation metrics like Precision, Recall, and F1-Score, the perform-
ance of the model is also assessed using system metrics. These metrics provide insights into the
computational efficiency and resource utilization of the model, which are crucial for real-world
deployments.

• Computation Time: This metric measures the amount of time required for the model
to complete its task, from data ingestion to output generation. Lower computation time is
generally preferred as it indicates a more efficient model.

• CPU Usage: CPU usage quantifies the percentage of the central processing unit’s capa-
city that is being utilized by the model. High CPU usage may indicate that the model is
computationally intensive and could benefit from optimization.

• Memory Usage: Memory usage gauges the amount of RAM consumed by the model during
its operation. Efficient memory usage is essential for ensuring that the model can run on
systems with limited resources.

• GPU Usage: For models that are optimized to run on Graphics Processing Units (GPUs),
GPU usage measures the percentage of the GPU’s computational power being utilized. This
metric is particularly relevant for deep learning models, which often require significant com-
putational resources. In the context of our work, we also conduct an evaluation to determine
whether the selected models utilized the capabilities of the Graphics Processing Unit (GPU)
for optimal performance. If GPU usage is required, we further assess the extent to which the
GPU’s computational resources are utilized.

The results of this evaluation contribute to a comprehensive understanding of the model’s
performance and system metrics, encompassing both its predictive capability and its computational
efficiency.

6.5. Results:
This section provides insights into the model’s performance, focusing on its predictive ability on
the test dataset and the system metrics during the training phase.

6.5..1 Overall Comparison of Performance Metrics:

In this section, we provide a comprehensive overview of the performance metrics attained by four
distinct Named Entity Recognition (NER) models: NLTK, StanfordNER, Spacy, and RASA DIET,
as well as six Intent Classification algorithms—SVM Classifier, Logistic Regression, Naïve Bayes,
Decision Tree, Random Forest, and RASA DIET.

Figure 29: Entity Extraction: Overall Comparison of Performance Metrics
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Figure 30: Intent Classification: Overall Comparison of Performance Metrics

It is evident from the results that the precision, recall, and F1 score achieved by the "RASA
DIET" model are notably higher compared to the other models and "RASA DIET" model con-
sistently outperforms the other models for both tasks. On the other hand, the "NLTK" model
generally exhibits lower scores, indicating comparatively weaker performance. Additionally, it is
worth noting that while the performance of the "Spacy" and "StanfordNER" models for entity ex-
traction and "Random Forest" and "Decision Tree" models for intent classification is comparable,
they fall short compared to the "RASA DIET" model.

This holistic comparison provided us with a general comprehension of the model’s performance.
However, it didn’t provide detailed insights into the models’ individual capabilities concerning
entity-wise and intent-wise tasks. Therefore, to achieve a more granular understanding, it became
essential to evaluate their performance on specific entity types and intent labels. This focused
assessment will allow us to unravel nuances that might not have been apparent in the overall
comparison, enabling us to make more informed conclusions about each model’s strengths and
weaknesses in handling distinct entities and intents.

6.5..2 Entity-wise Comparison of Entity Recognition Models:

We present the performance metrics of four different Named Entity Recognition (NER) models:
NLTK, StanfordNER, Spacy, and RASA DIET. The metrics include Precision, Recall, and F1
Score for various entity types.The models were tested on various entity types such as location,
quality of service (QoS) constraints, group, hour, QoS metric, service, traffic, QoS value, operation,
middlebox, and QoS unit.
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Table 5: NLTK Model Results

NLTK

Entity Type Precision Recall F1 Score

location 0.58 0.83 0.68

qos_constraint 1.00 0.40 0.57

group 1.00 0.45 0.62

hour 1.00 1.00 1.00

qos_metric 0.83 0.62 0.71

service 1.00 0.25 0.40

traffic 0.50 0.11 0.18

qos_value 1.00 0.75 0.86

operation 0.92 0.73 0.81

middlebox 0.60 0.27 0.37

qos_unit 1.00 0.88 0.93

Table 6: StanfordNER Model Results

StanfordNER

Entity Type Precision Recall F1 Score

location 0.81 0.90 0.85

qos_constraint 0.87 1.00 0.93

group 0.83 0.62 0.71

hour 1.00 1.00 1.00

qos_metric 0.80 0.66 0.72

service 1.00 0.25 0.40

traffic 0.60 0.60 0.60

qos_value 1.00 1.00 1.00

operation 0.76 0.76 0.76

middlebox 1.00 0.75 0.85

qos_unit 0.88 0.88 0.88

Table 7: Spacy Model Results

Spacy

Entity Type Precision Recall F1 Score

location 0.61 0.48 0.54

qos_constraint 0.66 0.90 0.76

group 0.84 0.64 0.73

hour 0.27 0.60 0.37

qos_metric 0.50 0.31 0.38

service 0.80 0.44 0.57

traffic 0.42 0.71 0.53

qos_value 0.55 0.90 0.69

operation 0.90 0.77 0.83

middlebox 0.62 0.62 0.62

qos_unit 0.72 0.90 0.79

Table 8: RASA DIET Model Results

RASA DIET

Entity Type Precision Recall F1 Score

location 0.97 0.99 0.98

qos_constraint 0.78 1.0 0.87

group 0.96 1.0 0.98

hour 1.0 0.87 0.93

qos_metric 0.91 0.92 0.92

service 0.96 0.96 0.96

traffic 0.95 0.80 0.87

qos_value 0.88 1.0 0.93

operation 0.90 0.99 0.94

middlebox 1.0 0.96 0.98

qos_unit 1.0 0.97 0.98

The NLTK model showed a high F1 Score for entity types like ‘hour’ (1.00) and ‘qos_unit’
(0.93). However, it performed poorly on ‘traffic’ with an F1 Score of 0.18. The model had a high
precision but low recall for entities like ‘qos_constraint’ and ‘service,’ indicating that while the
identified entities are accurate, many were missed.

StanfordNER demonstrated robust performance across multiple entities. It achieved an F1
Score of 1.00 for ‘hour’ and ‘qos_value’. However, the model had a relatively low F1 Score for
‘service’ (0.40), despite having a high precision of 1.00, indicating low recall.
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The Spacy model had a balanced performance with an F1 Score of 0.79 for ‘qos_unit’ and 0.76
for ‘qos_constraint’. However, it failed to properly identify entities of type ‘hour,’ and ‘qos_metric’
resulting in an F1 Score of 0.37 and 0.38 respectively. The model showed high recall but low
precision for ‘traffic’ and ‘qos_value,’ suggesting that it may be generating some false positives.

The RASA DIET model outperformed all other models with consistently high F1 Scores across
most entity types. It achieved a perfect F1 Score of 0.98 for ‘location’, ‘group’, ‘middlebox’ and
‘qos_unit’. The model also had high precision and recall, making it the most reliable among the
four models evaluated.

6.5..3 Intent-wise Comparision of Intent Classification Models:

The performance of six different Intent Classification algorithms—SVM Classifier, Logistic Regres-
sion, Naïve Bayes, Decision Tree, Random Forest, and RASA DIET—was evaluated using three
key metrics: Precision, Recall, and F1-Score. The algorithms were tested on various intent labels
such as add, allow, block, limit, and unblock.
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Table 9: SVM Classifier

SVM Classifier

Intent Label Precision Recall F1-Score

add 0.76 0.95 0.84

allow 0.75 0.67 0.71

block 1.00 0.83 0.91

limit 0.92 0.73 0.81

unblock 1.00 1.00 1.00

Table 10: Logistic Regression

Logistic Regression

Intent Label Precision Recall F1-Score

add 0.78 0.95 0.86

allow 0.80 0.44 0.57

block 0.86 1.00 0.92

limit 0.79 0.73 0.76

unblock 1.00 1.00 1.00

Table 11: Naïve Bayes

Naïve Bayes

Intent Label Precision Recall F1-Score

add 0.86 0.90 0.88

allow 0.57 0.44 0.50

block 0.50 0.67 0.57

limit 0.93 0.87 0.90

unblock 1.00 1.00 1.00

Table 12: Decision Tree

Decision Tree

Intent Label Precision Recall F1-Score

add 0.90 0.90 0.90

allow 0.57 0.89 0.70

block 1.00 0.83 0.91

limit 0.91 0.67 0.77

unblock 1.00 1.00 1.00

Table 13: Random Forest

Random Forest

Intent Label Precision Recall F1-Score

add 0.74 1.00 0.85

allow 0.83 0.56 0.67

block 1.00 0.83 0.91

limit 0.92 0.73 0.81

unblock 1.00 1.00 1.00

Table 14: RASA DIET

RASA DIET

Intent Label Precision Recall F1-Score

add 1.0 1.0 1.0

allow 1.0 0.56 0.67

block 0.92 1.0 0.96

limit 1.0 0.94 0.97

unblock 1.00 1.00 1.00

The SVM Classifier showed a high F1-Score for ‘unblock’ (1.00) and ‘block’ (0.91). However,
it had a relatively lower F1-Score for ‘allow’ (0.71), despite having a high precision of 0.75.

Logistic Regression achieved high F1-Scores for ‘add’ (0.86) and ‘block’ (0.92). However, it
had a low F1-Score for ‘allow’ (0.57), indicating that the model may have difficulty in accurately
classifying this particular intent.

Naïve Bayes had a balanced performance with high F1-Scores for ‘add’ (0.88) and ‘limit’ (0.90).
However, it had a low F1-Score for ‘allow’ (0.50), suggesting that the model may be generating
some false positives or negatives for this intent.

The Decision Tree model showed robust performance with high F1-Scores for ‘add’ (0.90) and
‘block’ (0.91). It also had a high F1-Score for ‘unblock’ (1.00), making it reliable for these intents.

Random Forest had high F1-Scores for ‘add’ (0.85) and ‘block’ (0.91). It also achieved a perfect
F1-Score for ‘unblock’ (1.00), indicating high precision and recall.

The RASA DIET model outperformed all other models with consistently high F1-Scores across
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all intent labels. It achieved perfect F1-Scores for ‘add’ (1.0), ‘block’ (0.96), and ‘unblock’ (1.00),
making it the most reliable among the six models evaluated.

6.5..4 Comparison of models based on system metrics:

The performance of four different Named Entity Recognition algorithms—NLTK, Spacy, Stanford
NER, and RASA DIET and six different Intent Classification algorithms—SVM Classifier, Logistic
Regression, Naïve Bayes, Decision Tree, Random Forest, and RASA DIET—was evaluated using
three key metrics: Computing Time, CPU Usage, and Memory Usage.

Figure 31: Computing Time Comparison for
Entity Extraction Models

Figure 32: Computing Time Comparison for
Intent Classification Models

Figure 33: CPU_Usage Comparison for
Entity Extraction Models

Figure 34: CPU_Usage Comparison for
Intent Classification Models

Figure 35: Memory_Usage Comparison for
Entity Extraction Models

Figure 36: Memory_Usage Comparison for
Intent Classification Models
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For the entity recognition task, the RASA DIET model had the highest computing time of 58
seconds, followed by Spacy at 40.46 seconds. Stanford NER had the lowest computing time of 12.7
seconds. The high computing time for RASA DIET and Spacy can be attributed to their more
complex architectures and additional training epochs.

Similarly, for the Intent recognition task, the DIET model had a significantly higher training
time of 58000 ms, which is orders of magnitude higher than the other models. Among the other
models, Random Forest had the highest training time of 5.12 ms, followed closely by Decision Tree
at 4.49 ms. Logistic Regression had the lowest training time of 3.58 ms. It is important to note
that the DIET model’s training time is considerably higher due to its more complex architecture
and additional training epochs.

For the entity recognition task, the RASA DIET model had the highest CPU usage at 55.73%,
which is considerably higher than the other models. Stanford NER had the lowest CPU usage at
21.35%. Despite its high computing time, Spacy had a moderate CPU usage of 34.57%.

In terms of CPU usage for the intent recognition task, the Random Forest model had the
highest CPU usage at 58.64%, followed by the SVM Classifier at 57.55%. The Naïve Bayes model
had the lowest CPU usage at 48.39%. Interestingly, despite its high training time, the DIET model
had a moderate CPU usage of 55.73%, which is likely optimized for longer training cycles.

Similarly, for the entity recognition task, in terms of memory usage, Spacy consumed the most
memory at 0.0025 MB, followed by RASA DIET at 0.0021 MB. NLTK had the lowest memory
footprint at 0.0013 MB.

In the meanwhile, for the Intent recognition task, in terms of memory usage, the DIET model
consumed the most memory at 0.0021 MB. The Random Forest model was a close second at 0.0019
MB. Naïve Bayes had the lowest memory footprint at 0.0009 MB. The memory usage generally
correlates with the complexity of the models, with more complex models requiring more memory.

Additionally, none of our models utilized GPU resources, thus obviating the need to assess
GPU usage.

7. Discussions:

The results presented in the previous section offer a comprehensive analysis of the performance,
system metrics, and implications of various Named Entity Recognition (NER) and Intent Clas-
sification models. These findings provide valuable insights into the strengths, weaknesses, and
potential improvements of each model, facilitating advancements in natural language interfaces for
improved developer experiences and broader applications.

To fully appreciate the outcomes of our experimental findings, this section discusses and reviews
the findings to reconnect them to the research questions we posed at the onset of this study.

• RQ1: In the broader landscape of AI conversational assistants, which NLP al-
gorithms, especially concerning entity extraction and intent classification, are
prominently discussed?
In addressing this question, our investigation delved into prevailing literature and discerned
a range of algorithms that are widely discussed in the context of AI conversational systems.
While many preceding investigations regarding entity and intent categorization in the realm
of natural language interfaces lean heavily towards deep learning approaches, our exploration
veered towards simpler algorithms. Notably, prior studies in the network-related domain of-
ten zoomed in on a singular model, predominantly the deep learning-based RASA. However,
our research took a broader lens, examining multiple models. Through our literature review,
we identified and evaluated four distinct entity recognition methods: MaxEnt Classifier with
NLTK, Spacy, Conditional Random Fields with Stanford NER, and RASA DIET. Likewise,
for intent classification, six distinct algorithms were analyzed: SVM Classifier, Logistic Re-
gression, Naïve Bayes, Decision Tree, Random Forest, and RASA DIET. The examination of
these models gives a comprehensive overview of the prevalent techniques in this space. The
selection of these models was primarily based on their popularity and frequent mentions in
previous research, coupled with their applicability to the domain of network management.
With the variety of models evaluated, it is evident that while some models are general-
purpose and applicable in diverse scenarios, others are optimized for specialized tasks or
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environments. This diverse assessment underscores the importance of a model’s contextual
relevance, particularly within the network management domain.

Given the specific use case of Nokia and the challenges associated with seamlessly integrating
a natural language interface without compromising system agility and performance, this
research fills a significant gap in the existing literature. Unlike previous studies that primarily
assessed the performance of NLP algorithms in the network management domain based solely
on performance metrics, this research goes a step further by incorporating system metrics,
which are paramount in evaluating the feasibility of these models in real-world scenarios.

• RQ2: Upon evaluation, how effective and efficient are these NLP models selected
from the literature review in terms of system metrics and performance metrics?

The assessment of NER models, including NLTK, StanfordNER, Spacy, and RASA DIET,
revealed diverse performances across different entity types. The RASA DIET model demon-
strated remarkable effectiveness by achieving the highest average F1 Score, indicating its
ability to accurately identify a wide array of entity types. In contrast, NLTK exhibited high
precision but suffered from low recall in certain categories, impacting its overall F1 Score.
StanfordNER and Spacy displayed competitive performance, excelling or lagging in specific
areas. StanfordNER faced difficulties in effectively identifying ’service’ entities, while Spacy
showcased balanced performance, except for recognizing ’hour’ entities. Interestingly, these
variations in performance were also reflected in the system metrics.

Within the realm of Intent Classification, a comparison between SVM Classifier, Logistic Re-
gression, Naïve Bayes, Decision Tree, Random Forest, and RASA DIET highlighted distinct
performance trends. RASA DIET consistently outperformed other models, demonstrating
high precision, recall, and F1-Scores across various intent labels. Notably, its superior pre-
cision and recall characteristics established RASA DIET as the most reliable model for this
task. However, SVM Classifier and Logistic Regression models struggled with low recall
for the ’allow’ intent, impacting their F1-Scores. Similarly, Naïve Bayes and Decision Tree
models exhibited limitations in accurately classifying the ’allow’ intent. The Random Forest
model displayed competitive performance, albeit with slightly lower F1-Scores for ’allow’ and
’limit’ intents. Notably, these differences in performance also correlated with the computa-
tional demands of the models.

When examining system metrics, it became evident that different models vary significantly
in terms of computational requirements. The superior performance of RASA DIET came
at the cost of increased computational resources, making it suitable for applications without
strict resource constraints. Conversely, Spacy’s high computing time and memory usage
could limit its feasibility in resource-constrained environments. Stanford NER demonstrated
efficient computing time but with lower CPU usage. NLTK stood out for its low memory
usage, rendering it suitable for lightweight applications.

The interplay between system metrics and model performance highlights the trade-offs that
developers must consider. High-performing models, like RASA DIET, while offering accurate
entity and intent recognition, demand more computational resources. This intricate balance
between system metrics and performance metrics aligns with our findings that a model’s
appropriateness is often dictated by the application’s specific constraints and requirements.
Spacy and StanfordNER serve as examples of models that strike a balance between perform-
ance and resource usage for entity extraction tasks while Random Forest and Decision Tree
exhibit a similar balance for intent classification. This observation is particularly noteworthy
since most studies in the past focused solely on performance metrics. Our inclusion of system
metrics offers a more holistic view, allowing for informed decisions that consider not just the
accuracy but also the practicality of deploying these models in real-world systems, especially
in scenarios similar to Nokia’s low-code/no-code environment.

The study, while conducted with a focus on the network management domain, covered al-
gorithms and techniques that are widely used across various domains. The nature of Named
Entity Recognition (NER) and Intent Classification is such that while training data may differ,
the underlying techniques can often be adapted across industries and use cases. As a result, the
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insights obtained on performance and efficiency can be of relevance to other sectors, albeit with
necessary adjustments and fine-tuning.

This research’s broader implications, beyond Nokia’s specific case, provide a template for eval-
uating NLP algorithms for their suitability in other low-code/no-code platforms, which are inher-
ently lightweight. The findings underscore the need for a holistic assessment of NLP algorithms,
encompassing both their efficacy in task execution and their compatibility with the overarching
system they are intended to be integrated with, especially where decisions related to computational
costs versus performance trade-offs are important.

In summary, the observed results underscore the importance of employing a diverse range
of NLP algorithms to enhance the accuracy and efficiency of NLP applications. The identified
challenges in entity and intent recognition offer directions for future research. Models could be
fine-tuned to improve performance on specific entity types or intent labels that proved challenging.
Given the variability in model performance across different entity types and intent labels, there’s an
opportunity to optimize results by combining models via an ensemble method. As demonstrated,
some models excel in recognizing specific entities, while others perform better for different entities.
By strategically amalgamating these models, their individual strengths can be leveraged for a
more comprehensive entity extraction process. Similarly, in intent classification, models proficient
in specific intent labels can be combined to improve overall accuracy. Additionally, expanding
the study to larger and more diverse datasets would validate the generalizability of these models
across various scenarios. The observed trade-off between performance and computational resources
emphasizes the need to develop lightweight yet accurate models, especially for resource-constrained
environments.

8. Limitations:

As is the case with any scholarly investigation, the present study is not without its limitations,
which frame the scope and interpretability of the research findings. While this work offers a
comprehensive exploration of various NLP algorithms for entity extraction and intent classification,
as well as a comparative analysis of their efficiency in implementing a Natural Language Interface
within a low-code/no-code software system, several constraints inevitably bound the investigation.

One notable limitation pertains to data availability. The low-code/no-code system developed by
Nokia, which is the subject of this study, is still in its developmental stage and consequently lacks
an adequate dataset for robust model training. Furthermore, due to confidentiality clauses, we
were restricted from utilizing Nokia’s proprietary data for our work. To address this challenge, we
collected publicly available network-related data from online sources. However, given the limited
research conducted in this specific domain and for our particular use case, the amount of available
online data was scarce. The data acquired from the Lumi Nile dataset was also insufficient in
terms of size. When attempting to augment this dataset through synthetic means, we were unable
to generate high-quality data, thereby leaving us with a final dataset that is still small in size.

Additionally, the obtained data was not pre-annotated to meet the specific requirements of our
model, necessitating a time-consuming manual annotation process. The limitations imposed by
the small and manually annotated dataset could compromise the generalizability of our findings.

Another constraint lies in the unavailability of pre-trained models suitable for our specific use
case. This absence precluded us from harnessing the benefits of transfer learning for model fine-
tuning. Lastly, the scope of this research was intentionally narrowed to focus on simpler NLP
algorithms, thereby restricting us from exploring the potential advantages of more complex deep
learning models.

9. Conclusion and Future Work

The principal objective of this thesis was to investigate the efficiency and effectiveness of vari-
ous Natural Language Processing (NLP) algorithms in implementing Natural Language Interfaces
(NLIs) to improve developer experience in low-code/no-code software systems, with specific ap-
plication to a system developed by Nokia Corporation. This study pursued a comparative analysis
of multiple NLP algorithms mainly for Entity Recognition (ER) and Intent Classification tasks,
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emphasizing their performance, and computational requirements to understand their suitability
for this specific use-case. Based on the understanding from the literature review, we selected
four different Entity Recognition techniques: MaxEnt Classifier with NLTK, Spacy, Conditional
Random Fields with Stanford NER, and RASA DIET, and six different algorithms for the task of
intent classification: SVM Classifier, Logistic Regression, Naïve Bayes, Decision Tree, and Random
Forest, along with RASA DIET. For training the model, network-related utterances were used as
training data which was further annotated and processed to meet the training requirements of
each model. The model, once trained, was subsequently assessed using the test dataset to gauge
both its predictive accuracy and overall system performance. A thorough comparative analysis
was performed based on the results of the model evaluation to provide Nokia with insights into
the available models, their efficiency and effectiveness and the suitability of their application on
Nokia’s system.

Our empirical evaluations revealed the trade-offs that must be navigated when selecting an NLP
algorithm for practical implementation. For example, the RASA DIET model, while excelling in
terms of accuracy metrics, demands a higher computational load. Other models like Spacy and
StanfordNER demonstrated balanced performance but varied in their strengths and weaknesses for
specific entity types. In the realm of intent classification, models like Random Forest and Decision
Tree showed potential despite certain limitations. These findings are of particular significance for
industry applications, especially for companies like Nokia Corporation, where the implementation
choices can have far-reaching implications for both user experience and operational overhead.

The comprehensive understanding offered by this thesis contributes to the scholarly dialogue
on the adaptability and utility of NLP algorithms in low-code/no-code platforms. It provides an
empirically-grounded foundation upon which practitioners can make informed decisions that take
into account not just algorithmic performance but also computational efficiency. These findings
inspire further research, enabling the development of more accurate and efficient natural language
interfaces that enhance the developer experience and find applications in a broader spectrum of
domains.

Several directions for future research emerge from this study. Firstly, the variability in al-
gorithmic performance across different entity types and intent labels suggests that a hybrid or
ensemble approach, leveraging the strengths of multiple algorithms, could offer improved overall
performance. Further, fine-tuning the existing models for specific challenges encountered in our
tests, such as low recall rates for certain entity types or intents, could also lead to performance
improvements. Secondly, as our study was limited by the availability and size of the dataset, invest-
igating the performance of these models on a more substantial and domain-specific corpus would
add considerable value. The limited availability of domain-specific, annotated datasets for training
and validation presents an opportunity for the creation and public release of such resources to
further accelerate research in this area. Lastly, given that our work does not extend to integrating
these algorithms into Nokia’s existing system, future research could focus on the practical imple-
mentation aspects, studying the real-world applicability and scalability of these NLP algorithms
within low-code/no-code platforms. Undertaking a user-centric study involving the actual users
of these low-code/no-code platforms could provide additional insights into the real-world usability
and effectiveness of implemented NLP algorithms.

Further research should also explore the potential advantages of more complex deep-learning
models, and their feasibility in terms of computational cost and ease of integration, to paint a
more comprehensive picture of the options available for implementing NLIs in low-code/no-code
systems.
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