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ABSTRACT

Face detection is a fundamental task in computer vision with
applications spanning facial recognition, pose estimation, and
human-robot interaction. This thesis presents a comprehensive
comparative study of two modified versions of the YOLO (You
Only Look Once) algorithm, YOLOv5face and YOLOv7face,
tailored for landmark detection on a custom dataset of human
faces. The study evaluates these models on various aspects,
including architecture, accuracy, speed, generalization capa-
bility, and specific features.

YOLOv5face strikes a balance between accuracy and speed,
rendering it suitable for real-time or near-real-time appli-
cations. Equipped with a landmark regression head, it ex-
cels in tasks requiring precise facial landmark detection.
YOLOv7face, on the other hand, outperforms YOLOv5face
in accuracy, even in challenging conditions like occlusion and
varying lighting. Its robustness positions it as a reliable choice
for real-world applications.

The comparative analysis underscores the importance
of selecting the right model based on specific require-
ments. YOLOv5face offers efficiency and versatility, while
YOLOv7face prioritizes accuracy and robustness. Future re-
search directions include diversifying datasets, fine-tuning,
real-world testing, efficiency improvements, and applications
in human-robot interaction.

This study contributes to the advancement of facial keypoint
detection algorithms and guides researchers and practitioners
in choosing appropriate models for various computer vision
tasks.

Index Terms—YOLOv5face, YOLOv7face, Keypoint Detection,
Face Detection

I. INTRODUCTION

A. Background and motivation

Object detection is an important computer vision task that
has seen remarkable progress in recent years. YOLO (You
Only Look Once) is a widely used object detection algo-
rithm that has achieved state-of-the-art results in many tasks.
YOLOv5 and YOLOv7 are relatively recent versions of the

YOLO algorithm that have introduced significant improve-
ments in performance and speed. In this thesis, we propose to
compare YOLOv5face and YOLOv7face, which are YOLOv5
and YOLOv7 modifications for landmark/keypoint detection
on a custom dataset, e.g. comprising human faces, mostly
because of the availability of labelled datasets.

Keypoint detection is a specific task in object detection that
involves identifying key points on an object, such as corners,
edges, and other distinctive features. Keypoint detection is
crucial in applications related to face recognition, and also
for pose estimation, and even in robotics when we refer to
tasks involving Human-Robot Interaction (HRI) [41].

In this thesis, under the motivation of comparing the per-
formance of YOLOv5face and YOLOv7face for keypoint de-
tection on a custom dataset, we will explore the modifications
to the backbone network, the loss function, and the training
strategies with regard to, respectively, YOLOv5 and YOLOv7.
We will also compare in terms of accuracy the adapted
versions of YOLOv5 and YOLOv7 with other existing state-
of-the-art keypoint detection algorithms on the same custom
dataset.

B. Research objectives

The main goal of this work is to study comparatively several
keypoint detection algorithms. To be more precise, the goals
are:

1) To select a dataset of labelled faces, so that we can
obtain quantitative performance data..

2) To find implementations of the YOLOv5face and
YOLOv7face architectures and training strategies, so
that we can deploy them in a suitable way for face
detection evaluation on the chosen dataset.

3) To compare the performance on a specific dataset of
YOLOv5face and YOLOv7face with existing state-of-
the-art face detection algorithms on the chosen dataset.

4) To evaluate the impact of the different modifications
performed over YOLOv5 and YOLOv7 with respect to
their performance in face detection tasks.
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C. Significance of the study

The significance of this study lies in its potential to con-
tribute to the advancement in keypoint detection algorithms,
specifically in the context of facial landmark detection. By
comparing the performance of YOLOv5face and YOLOv7face
with other existing state-of-the-art algorithms, we aim to
provide insights into the strengths and weaknesses of these
modified YOLO versions. This knowledge can guide re-
searchers and practitioners in choosing appropriate algorithms
for keypoint detection tasks, especially in scenarios involving
human faces.

Additionally, comparing YOLOv5face and YOLOv7face to
other algorithms might help identify new techniques for im-
proving keypoint detection accuracy and speed. These findings
could have broader implications for object detection tasks
beyond facial landmarks. Moreover, advancements in keypoint
detection can potentially benefit various applications, such as
pose estimation and object tracking.

D. Scope and limitations

This study focuses specifically on comparing the perfor-
mance of YOLOv5face and YOLOv7face for face detection on
a custom dataset of human faces. The evaluation will include
metrics related to accuracy and speed. However, it is important
to note that the scope of this study is limited to facial detection
and does not cover all possible object detection scenarios.

The limitations of this study include potential biases in
the custom dataset, variations in lighting conditions, facial
expressions, and poses that might affect the accuracy of the
algorithms. Additionally, the modifications made to YOLOv5
and YOLOv7 are specific to the task of face detection and may
not be directly applicable to other object detection issues.

In the following sections, we will delve into a comprehen-
sive analysis of the literature related to face keypoint detection
algorithms, including the evolution of the YOLO algorithm,
the architectural details of YOLOv5face and YOLOv7face,
the methodologies employed in data collection and model
training, the comparative analysis of different algorithms,
and the presentation and discussion of results. The insights
gained from this study have the potential to inform future
developments in face keypoint detection algorithms and their
application in computer vision tasks.

II. LITERATURE REVIEW

A. Overview of keypoint detection algorithms

Keypoints detectors, also commonly referred to as interest
points detectors, are a class of algorithms that identify points
in an image that are likely to be distinctive and useful for a
given task. These points are then used to extract features that
can be used for further processing, such as object detection or
image registration [1, 19, 30].

The Harris corner detector is a simple and efficient key-
point detector that was introduced by Chris Harris and Mike
Stephens in 1988. The Harris corner detector works by cal-
culating the local intensity gradients in an image and then
identifying points where the gradients are both large and
correspond to a certain degree of curvature [20].

One of the most well-known interest point detectors is avail-
able through the SIFT (Scale-Invariant Feature Transform)
algorithm, introduced by David Lowe in 1999. SIFT is a scale-
invariant algorithm, which means that it can identify interest
points that are at different scales in the image. It is also
rotation-invariant, which means that it can identify interest
points at different orientations in the image [13, 17].

Another popular interest point detector is given by the
SURF (Speeded Up Robust Features) algorithm, introduced
by Herbert Bay et al. in 2004. SURF is a faster version of
SIFT that is also scale-invariant and rotation-invariant [3, 13].

The FAST corner detector is a very fast and efficient
keypoint detector that was introduced by Edward Rosten and
Tom Drummond in 2006. The FAST corner detector works by
comparing the intensity of a pixel to the intensities of its eight
neighbors. If the pixel is significantly brighter or darker than
its neighbors, then it is considered to be a corner [38].

The ORB detector is a combination of the FAST corner
detector and the BRIEF descriptor. The ORB detector is fast
and efficient, and it is also fairly robust to noise and other
distortions [13].

In recent years, there has been a growing interest in us-
ing deep learning techniques for keypoint detection. Deep
learning-based keypoint detectors are able to learn features that
are more robust to noise and other distortions than traditional
interest point detectors [2, 6, 7].

Within the specific domain of facial keypoint detection, [42]
describes a Multi-Task cascaded Convolutional Neural Net-
work (MTCNN) that can be used to detect facial keypoints.
It is a popular solution that is known for its accuracy and
robustness to noise and changes in illumination. MTCNN
works by first detecting candidate facial regions in the image.
It then classifies each candidate region as a face or not-a-face.
Finally, it refines the location of the facial keypoints in the
face regions that have been classified as faces [42].

Face Alignment with Expanded Local Binary Patterns
(ELBP-FA) is a deep learning-based facial keypoint detection
algorithm that uses LBP features [10]. LBP features are local
binary patterns, which are a type of image descriptor that is
used to represent the texture of an image. ELBP-FA is robust
to noise and changes in illumination, and it has been shown
to be effective in detecting facial keypoints in a variety of
conditions.

The evolution of facial keypoint detection algorithms has
been driven by the need for more accurate, robust, and effi-
cient algorithms [11, 12]. The algorithms that are used today
are capable of detecting facial keypoints under a variety of
conditions, including noise, changes in illumination, and pose
variations. They are also fast enough to be used in real-time
applications.

Dlib is a popular open-source library that can be used
for facial keypoint detection. Dlib uses a variety of machine
learning techniques, including deep learning methodologies.
Dlib is known for its accuracy and speed, so that it becomes
a suitable choice for facial keypoint detection in a variety of
applications [15, 28].
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Figure 1. YOLO Timeline from 2015 to 2023 (updated version of the YOLO timeline by Zoumana Keita, https://www.datacamp.com/blog/yolo-object-
detection-explained)

B. Evolution of YOLO

Yolo is a generic object detector, as R-CNN and Faster
R-CNN. The R-CNN (Region-based Convolutional Neural
Network) algorithm was introduced by Ross Girshick et al.
in 2014. It is a two-stage algorithm that first proposes regions
of interest in the image and then classifies each region as
containing an object of interest or not [9]. The Faster R-CNN
algorithm, introduced by Shaoqing Ren et al. in 2015, is a
faster version of R-CNN that uses a region proposal network
to generate the regions of interest [27].

On the other side, Darknet, proposed by Joseph Redmon,
is a neural network framework that is used for training and
implementing deep neural networks [23, 24]. It is written in
C and CUDA, which makes it highly efficient for running on
both CPU and GPU hardware. It includes pre-trained models
for object detection and classification. Darknet provides the
backbone for implementing YOLO [18, 31, 36].

YOLO is the first of a series YOLO algorithms. It uses
a single neural network to predict the class and location of
objects in an image, making it faster and more efficient than
other object detection algorithms (this is why they are called
one-shot detectors). It has 24 convolutional layers followed by
2 fully connected layers [24].

YOLOv2 was introduced in 2016. It improved on the

original YOLO algorithm with the use of anchor boxes to
improve the accuracy of bounding box predictions. The idea
behind anchor boxes is to pre-define a set of bounding boxes
with different sizes and aspect ratios, to be placed at various
positions across the image, which are then used as a reference
during the object detection process. Another improvement was
a feature extraction network based on residual blocks [25].

YOLOv3 improved on YOLOv2 with the use of multi-
scale feature maps to improve the detection of small objects,
a more complex backbone network based on Darknet-53,
and improved training techniques such as data augmentation
and batch normalization [26]. Redmond quit computer vision
research after this paper due to some ethical issues.

Created by Alexey Bochkovskiy et al, the improvement in
YOLOv4 included features such as the use of spatial pyramid
pooling (SPP) to capture features at multiple scales, improved
anchor box design, and advanced training techniques such as
CutMix and the Mish activation function [4].

YOLOv5 was created by Glenn Jocher, Founder and CEO
at Ultralytics. The improvements in this version include: a
dynamic architecture (makes it easier to customize the model
for different use cases), an efficient backbone (a modified
EfficientNet backbone), improved training techniques (Au-
toML), and better performance on small objects [33]. There
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is currently a YOLOv8 from the same authors.
YOLOX is based on YOLOv3. It was introduced by Megvii

Technology and also includes some improvements: a decou-
pled backbone and head (meaning that feature extraction
and detection are separated), a cross-stage partial network,
ability to adjust the network size to achieve different trade-
offs between speed and accuracy, and better performance in
general [8]. The use of the YOLOX-Nano backbone, the
Feature Pyramid Network (FPN) neck, the head, and the
anchor-free detection mechanism are some of the key features
that make it popular for object detection.

YOLOR paper proposes a unified network for multiple tasks
that integrates implicit and explicit knowledge to generate
a general representation that can be used for various tasks.
The network combines compressive sensing and deep learning
and is based on previous work that uses sparse coding to
reconstruct feature maps of a CNN. The proposed network
is shown to improve model performance with a very small
amount of additional cost. The paper also discusses three
different ways for modeling implicit knowledge. [35]

YOLOv7 backbones do not use ImageNet pre-trained back-
bones. Rather, the models are trained using the COCO dataset
entirely. Nevertheless, some similarities with previous versions
can be expected because YOLOv7 is written by the same au-
thors as Scaled YOLOv4, which is an extension of YOLOv4.
E-ELAN (Extended Efficient Layer Aggregation Network) is
the computational block in the YOLOv7 backbone [34]. It also
used Scaling for Concatenation-based Models to increase the
depth, resolution of an image, and the width of the model.

Figure 1 presents a chronological overview of the evolu-
tionary progression of YOLO algorithms, spanning the years
from 2015 to 2023 [14].

C. Overview of YOLOv5face and YOLOv7face

1) YOLOv5face: The YOLOv5face paper presents a novel
approach to face detection using the YOLOv5 object detector.
The authors of the paper designed two super light-weight
models based on ShuffleNetV2, which are optimized for
embedded or mobile devices. The YOLOv5face models are
capable of achieving state-of-the-art performance on the Wider
Face validation dataset, including the Easy, Medium, and Hard
subsets [22].

The YOLOv5face paper presents several modifications
made to the YOLOv5 object detector to optimize it for face
detection. These modifications include changes to the network
architecture, the introduction of a landmark regression head,
and modifications to the loss function:

1) Network Architecture: The YOLOv5face detector uses
the YOLOv5 object detector as its baseline and opti-
mizes it for face detection. The network architecture
of YOLOv5face consists of backbone, neck, and head.
The backbone is based on the CSPNet design used in
YOLOv5, while the neck uses an SPP and a PAN to
aggregate features. The head includes both regression
and classification layers.

2) Stem Block: The authors of the paper experimented with
the use of a stem block versus a focus layer in the

network architecture. They found that using a stem block
improved the mAP by 0.57%, 0.33%, and 0.23% on the
easy, medium, and hard subsets, respectively.

3) SPP with Smaller Size Kernels: The authors also exper-
imented with the use of SPP with smaller size kernels.
They found that using smaller size kernels did not affect
performance significantly.

4) Landmark Regression Head: One of the key modifi-
cations made to YOLOv5 to create YOLOv5face is
the addition of a five-point landmark regression head.
This head allows for the detection of facial landmarks,
which can improve the accuracy of face detection and
alignment. The landmark outputs can be used to align
face images before they are sent to the face recognition
network.

5) Loss Function: The authors of the paper modified the
loss function used in YOLOv5 to optimize it for face
detection. They introduced a new loss term for landmark
regression, which penalizes the distance between pre-
dicted and ground-truth landmarks. They also modified
the classification loss term to include a focal loss term,
which helps to address class imbalance in the dataset.

The architecture of the YOLOv5face face detection network
is illustrated in Figure 2, comprising three main components:
the backbone, the neck, and the head [22]. In YOLOv5, a
newly designed backbone called CSPNet is employed. Within
the neck section, the authors utilize an SPP (Spatial Pyramid
Pooling) and a PAN (Path Aggregation Network) to aggregate
features effectively. The head of the network employs both
regression and classification components.

Figure 2(a) provides an overview of the entire network
architecture. Figure 2(b) introduces a critical building block
known as CBS (Convolutional Block Structure), consisting
of a Convolutional layer, Batch Normalization layer, and the
SILU activation function. This CBS block finds application in
various other blocks throughout the network.

In Figure 2(c), the authors present the output label format
for the head, encompassing bounding box (bbox) information,
confidence scores (conf), classification labels (cls), and five-
point facial landmarks. The inclusion of landmarks is a unique
feature that transforms YOLOv5 into a face detector with land-
mark prediction. If landmarks are excluded, the last dimension,
initially 16, should be reduced to 6. It is important to note
that the specified output dimensions e.g. 80 × 80 × 16 in P3
or 40 × 40 × 16 in P4, apply to each anchor, and the actual
dimensions need to be multiplied by the number of anchors.

Figure 2(d) illustrates the Stem structure, which replaces the
original Focus layer in YOLOv5. The integration of the Stem
block into YOLOv5 for face detection represents one of the
innovative contributions.

Figure 2(e) showcases the CSP block (also known as C3),
which takes inspiration from DenseNet. However, instead of
directly summing the full input with the output after some
CNN layers, the input is split into two halves. One half passes
through a CBS block, a series of Bottleneck blocks depicted in
Figure 2(f), followed by another Convolutional layer. The other
half undergoes a Convolutional layer, and then both halves are
concatenated, followed by another CBS block.
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Figure 2. YOLOv5face detector architecture: a) overall view, b) CBS block, c) format of P3-P6 output, d) STEM block, e) CSP (C3) block, f) bottleneck
block, g) SPP block.
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Figure 3. YOLOv7face detector architecture: a) ResNet-v1d Backbone, b) PANet Neck, d) Head.

Figure 2(g) introduces the SPP block, where the kernel sizes
13×13, 9×9 and 5×5 of YOLOv5 respectively become 7×7,
5 × 5 and 3 × 3 in YOLOv5face. This adjustment has been
identified as one of the innovations contributing to improved
face detection performance.

Overall, the modifications made to YOLOv5 to create
YOLOv5Face are designed to optimize the network for face
detection. The addition of a landmark regression head and
modifications to the loss function help to improve the accuracy
of face detection and alignment, while changes to the network
architecture help to optimize the network for real-time face
detection applications.

2) YOLOv7face: YOLOv7face is a modified version of
the YOLOv7 object detection algorithm that is specifically
designed for face detection. It was released in September
2022 [21]. YOLOv7face makes a number of changes to
the YOLOv7 algorithm to improve its performance for face
detection, including:

1) Incorporation of a ResNet-v1d backbone network
2) Replacement of the neck network with a PANet neck
3) Addition of a new head to the network that predicts the

keypoints for each face that is detected. The keypoint
head is a lightweight network that is trained on a dataset
of facial keypoint annotations. The keypoint head takes
the output of the detection head as input and predicts
the keypoints for each face that is detected.

4) Use of a new loss function for the keypoint head that
is specifically designed to optimize the accuracy of the
keypoint predictions. The new loss function for the

keypoint head is a combination of two loss functions:
a cross-entropy loss and a smooth L1 loss. The cross-
entropy loss is used to optimize the classification of the
keypoints, while the smooth L1 loss is used to optimize
the regression of the keypoints.

5) Incorporation of a new post-processing step to refine the
keypoint predictions. The new post-processing step for
the keypoint predictions uses a Gaussian filter to smooth
the keypoint predictions. This helps to reduce the noise
in the keypoint predictions and improve their accuracy.

Part of the architecture of the YOLOv7face face detection
network is illustrated in Figure 3, reflecting the modifica-
tions listed above: addition of a the ResNet-v1d backbone
and replacement of the neck in YOLOv7 with a PANet
neck [5, 16, 33, 40].

These changes enable YOLOv7face to detect facial key-
points with high accuracy, even in challenging conditions such
as low light and occlusion.

III. METHODOLOGY

A. Data collection and processing

The Wider Face dataset is a large-scale face detection bench-
mark that was introduced in a research paper by Shuo Yang et
al [39]. The dataset was created to address the limitations of
existing face detection benchmarks, which typically contain
only a few thousand faces with limited variations in pose,
scale, facial expression, occlusion, and background clutters.

The Wider Face dataset, on the other hand, consists of
32,203 images with 393,703 labeled faces, making it 10 times
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larger than the current largest face detection dataset. The faces
in the dataset vary largely in appearance, pose, and scale, as
shown in Figure 4. In order to quantify different types of
errors, the dataset includes annotations for multiple attributes,
including occlusion, pose, and event categories, which allows
for in-depth analysis of existing algorithms.

The dataset is divided into three subsets: training, validation,
and testing, represented as WIDER_train, WIDER_val, and
WIDER_test. The training set contains 12,880 images with
158,446 labeled faces, while the validation set contains 3,226
images with 40,282 labeled faces. The testing set contains
16,097 images with no annotations.

The Wider Face dataset has become a popular benchmark
for face detection research, and has been used to evaluate
the performance of many state-of-the-art face detection algo-
rithms. The dataset has also been used to study the impact
of different factors on face detection performance, such as the
effect of occlusion, pose, and scale. This can be seen in Figure
4. Overall, the Wider Face dataset has significantly contributed
to the advancement of face detection research and has helped
to bridge the gap between current face detection performance
and real-world requirements.

B. Training data requirements

To adapt the dataset for use with YOLO-based models, the
provided labels, i.e. the ground truth data, were converted into
YOLO format, as the original dataset contains information
about object bounding boxes in a specific proprietary format.
This information was transformed so as to include the object
class index, the normalized coordinates of the bounding box
center, and its width and height relative to the image dimen-
sions.

The label conversion process was performed separately for
the training, validation, and test subsets, resulting in separate
ground truth files for each subset.

The downloaded files and folders are organized as follows:

./Widerface
- WIDER_test/

- images/
- 0–Parade/
- ...

- labels.txt
- WIDER_train/

- images/
- 0–Parade/
- ...

- labels.txt
- WIDER_val/

- images/
- 0–Parade/
- ...

- labels.txt
- ground_truth/

- wider_easy_val.mat
- wider_medium_val.mat
- wider_hard_val.mat

- wider_face_val.mat

As mentioned in the previous section, the images have been
split in accordance with the ratios 40:10:50 for the training,
validation and testing sets. The training set was used to teach
the model, the validation set for hyperparameter tuning and
monitoring, and the testing set for the final assessment of the
models.

C. Model training

In this section, we delve into the critical aspect of model
training, a fundamental step in the development of keypoint de-
tection models based on YOLOv5 and YOLOv7 modifications.
Proper training is pivotal for achieving high-performance re-
sults in custom datasets. The training process involves several
key components, including dataset processing, hyperparameter
tuning, and optimization techniques.

On execution of the code for model training, the cus-
tom dataset was subjected to meticulous preprocessing. This
step includes data augmentation techniques such as mosaic,
rotation, scaling, and flipping to enhance model robustness
and reduce overfitting. Additionally, data normalization was
applied to standardize pixel values, ensuring consistent input
to the models.

The choice of batch size affects training efficiency and
memory usage. Batch sizes of 16 and 32 were used for the
YOLOv5face and YOLOv7face respectively. Regarding train-
ing epochs, we have employed 250 epochs for YOLOv5face
and 300 for YOLOv7face. Early stopping was employed to
monitor validation loss, terminating training when improve-
ments plateaued. On the other side, we have kept the same cus-
tom loss function tailored for keypoint detection implemented
by the developers, given the criticality of this component
for the training of any neural model. Transfer learning was
implemented in each of YOLOv5face and YOLOv7face by
respectively initializing the model weights with YOLOv5s and
YOLOv7-tiny-face pre-trained models.

Model training was performed on an Apple M2 fitted with
an 8-core CPU, 10-core GPU, 8GB unified memory, 512GB
storage. Training progress was regularly monitored and logged
for analysis. Checkpoints were saved periodically to allow
for resuming training from the most recent point in case of
interruption.

In summary, model training, as a multifacted process, has
involved careful data processing, hyperparameter tuning and
optimizaction stages. During training, its effectiveness has
signifitcantly impacted the performance of YOLOv5face and
YOLOv7face in keypoint detection on the dataset.

D. Evaluation metrics and performance measures

In the context of face detection, the terms easy, medium and
hard are often used to describe different subsets of a dataset
based on the difficulty of detecting faces within the images.
These subsets help evaluate the performance of face detection
algorithms under varying conditions and challenges [29]. We
explain in the following what each term typically means:
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Figure 4. Examples of images of the Wider Face dataset depicting variations in scale, pose, occlusion, expression, makeup, and illumination.

1) Easy Dataset: Images in the easy subset of a face detec-
tion dataset typically contain faces that are well-lit, well-
posed, and easily distinguishable from the background.
Faces in easy images may have minimal occlusions
(objects covering part of the face) or variations in scale,
rotation, or facial expressions. The background of the
images is usually simple and uncluttered, making it
relatively straightforward for a face detection algorithm
to locate and identify faces.

2) Medium Dataset: The medium subset of a face detec-
tion dataset includes images with a moderate level of
difficulty. Faces in medium images may have some
occlusions, variations in lighting conditions, moderate
pose variations, or facial expressions. The background
in medium images might be more cluttered or contain
distractions, making it somewhat challenging for a face
detection algorithm.

3) Hard Dataset: Images in the hard subset are the most
challenging for face detection algorithms. Faces in hard
images may have significant occlusions, extreme lighting
conditions (e.g., strong shadows or overexposure), sub-
stantial pose variations, or complex facial expressions.
The background in hard images may be highly cluttered
or contain multiple faces in close proximity, making
it difficult for a face detection algorithm to accurately
locate and distinguish individual faces.

Researchers and practitioners use these subsets to assess
the robustness and performance of face detection algorithms
in real-world scenarios. Algorithms that perform well across
all subsets, including the hard dataset, are considered more
reliable and suitable for practical applications where face
detection can be challenging, such as surveillance, image
analysis, or facial recognition systems under various lighting
and environmental conditions.

The evaluation process has considered both quantitative
and qualitative aspects, including the visual inspection of
predictions as seen in Figure 5, in Figure 6 and in Figure
7.

Model performance has been quantitatively assessed by

means of the mean Average Precision (mAP), the localization
error of the bounding boxes for the highest overlapping pair,
error in the width and height predictions and the average time
taken to predict (the average inference time) across each of
the easy, medium and hard subsets.

The mAP is the current benchmark metric used by the com-
puter vision research community to evaluate the robustness of
object detection models. This metric is defined in terms of
precision (P) and recall (R). The precision is calculated as the
ratio of true positives TP against the total positive predictions,
i.e. TP + FP, while the recall is calculated as the ratio of
true positives TP versus the total of true positives, i.e. TP +
FN. Hence, P is affected by false positives, i.e. wrong positive
predictions, while R is affected by false negatives, i.e. missing
positives.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

The Average Precision (AP) and the mAP encapsulate the
tradeoff between precision and recall as shown in the following
equations: (the approximation of AP reproduced next is one
among several others suggested in the literature, in connection
with the PASCAL VOC challenge)

AP =

∫ 1

0

P (R)dR ≈
∑

R=0:0.1:1

P (R)/11

mAP =
∑
c

AP (c)

In the context of object detection evaluation, positives
correspond to detections with an Intersection over Union (IoU)
above 0.5, where the IoU is defined as follows:

IoU(bbp) =
bbp ∩ bbgt

bbp ∪ bbgt

where bbp is a predicted bounding box, bbgt is the bounding
box from the ground truth with the largest overlap, and ∩
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and ∪ mean, respectively, the intersection and the union of
bounding boxes.

On the other side, the localization error measures the
accuracy in object detection tasks. It is calculated as the
distance between the center points of the predicted bounding
box and the true bounding box for the pair with the highest
overlap. This error quantifies how well the predicted bounding
box aligns with the ground truth, providing insight into the
precision of object localization.

Errors in width and height prediction in object detection
tasks are also crucial metrics because they directly impact
the accuracy and reliability of the detected bounding boxes.
Large errors can indicate that the model is failing to accurately
predict the size and location of objects in an image. They can
also significantly impact the IoU score

Inference time is another relevant metric for assessing the
models’ performance. It is the time required by the model
to process an input image and produce predictions. Assessing
inference time helps determine whether the model can operate
efficiently in practical scenarios. Models with faster inference
times are better suited for applications where quick responses
are required, as they can process images in near-real-time or
real-time. Therefore, inference time is a critical performance
metric when evaluating the suitability of a face detection
model for specific use cases.

IV. COMPARATIVE ANALYSIS

In this section, we will delve into the comparative analysis
of YOLOv5face and YOLOv7face modifications for face de-
tection on the custom dataset. As already mentioned, we eval-
uate various aspects of both models including the qualitative
evaluation of models’ predictions, the mAP, the localization
and size errors, the inference speed, the properties of the
architecture, the generalization capability, and specific features
and advancements [32].

A. Qualitative evaluation of YOLOv5face and YOLOv7face

We next comment at a qualitative level the performance
observed from YOLOv5face and YOLOv7face. For a start,
with regard to the easy dataset, Figure 5(a) and (k) shows
the detection of faces on the same image of a swimmer
with YOLOv5face and YOLOv7face respectively. In Figure
5(a), the YOLOv5face wrongly predicts the hand of the
swimmer as a face, while YOLOv7face is unable to detect
any face on the particular image. In Figure 5(b), YOLOv5face
detects the reflection as another face, but in Figure 5(l) the
YOLOv7face is able to demonstrate the capacity to differen-
tiate between genuine human faces and reflections in water
surfaces, thus avoiding false positives. In Figure 5(d) and (g)
the YOLOv5face wrongly identifies the shoulder of the little
boy and the camera as faces in the images. Figure 5(h) and (i)
show the YOLOv5face detection on people queuing to vote
and spectators in an ice hockey game. The YOLOv7face is
able to identify more faces as seen in Figure 5(r) and 5(s)

Now regarding the medium dataset, in Figure 6(a),
YOLOv5face is unable to detect a face whereas YOLOv7face
identifies three faces from the people having a picnic in Figure

6(k). In Figure 6(b), YOLOv5face detects only one face, and
surprisingly YOLOv7face does not identify any faces in Figure
6(l). YOLOv5face does not seem to work well from far away
and under direct sunlight, as it fails to identify any faces in
Figure 6(d), while YOLOv7face identifies a good number as
seen in Figure 6(n). As seen in Figure 6(e), YOLOv5face
does not do well on blurred images when compared with
YOLOv7face in Figure 6(o). YOLOv7face does better in
detecting faces in the background, as shown in Figure 6(q),
compared to YOLOv5face in Figure 6(g).

Finally, in the hard dataset, from Figure 7(a) through (e)
and Figure 7(k) through (o), we illustrate gatherings of people
demonstrating or protesting. While both models do a good job
of identifying faces in the crowd, YOLOv7face is significantly
better than YOLOv5face. Figure 7(f), (p), (g), (q), (h) and
(r) show accident scenes with people there and the detections
from YOLOv5face and YOLOv7face look similar, although
upon closer inspection, YOLOv7face is capable of more useful
detections, including not-face detections. Figure 7(i), (j), (s)
and (t) show images from concerts under varied illumination
conditions and YOLOv7face is able to detect more faces than
YOLOv5face.

B. Detection performance of YOLOv5face and YOLOv7face

Table I
YOLOV5FACE AND YOLOV7FACE FACE DETECTION MAP

Model Easy mAP Medium mAP Hard mAP
YOLOv5face 0.75 0.71 0.44
YOLOv7face 0.93 0.91 0.83

Table I and Figure 8 present a comparative analysis of the
YOLOv5face and YOLOv7face models’ performance in terms
of mAP categorized into the three subsets easy, medium and
hard. The corresponding mAP scores provide insights into how
well each model handles different scenarios.

It is noteworthy that YOLOv7face consistently outper-
forms YOLOv5face across all difficulty levels. This superior
performance, particularly in the hard subset, suggests that
YOLOv7face has a remarkable ability to detect faces accu-
rately, even in challenging conditions. The table underscores
the advancements made by YOLOv7face, positioning it as a
promising choice for high-precision facial keypoint detection
tasks, such as face recognition and expression analysis. This
heightened level of accuracy can be attributed to the robust
architecture and dedicated keypoint head of the model.

C. Localization error

As mentioned before, localization error measures the ac-
curacy of predicting the bounding boxes that encapsulate
detected faces compared to the ground truth bounding boxes.
The localization error results provide valuable insights into the
precision and accuracy of the models in describing the exact
location and extent of detected faces.

The mean localization error of YOLOv5face for the easy,
medium, and hard datasets are 6px, 1px, and 0px respectively,
while the mean localization error of YOLOv7face for the easy,
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Figure 5. Examples of face detections from the easy dataset: (a)-(j) are detections from YOLOv5face, while (k)-(t) are detections from YOLOv7face.

medium, and hard datasets is 5px, 1px, and 1px, respectively.
These mean values indicate that YOLOv7face slightly excels
above the YOLOv5face in accurate face localization.

The minimum localization error of both YOLOv5face and
YOLOv7face for the easy, medium, and hard datasets are all
0px. The 0px indicates cases where both YOLOv5face and
YOLOv7face achieve perfect localization.

The maximum localization error of YOLOv5face for the
easy, medium, and hard datasets are 114px, 122px, and
0px respectively, while the maximum localization error of
YOLOv7face for the easy, medium, and hard datasets is
116px, 155px, and 80px, respectively.

Figure 9 clearly highlights the distribution of localization
errors across different error levels. It is evident that a signif-
icant proportion of these errors falls within the category of
very low errors.

These localization error results demonstrate the impressive
accuracy of both YOLOv5face and YOLOv7face, particularly
YOLOv7face, in localizing faces within images. The mean
errors, especially in the hard dataset for YOLOv7face, sig-
nify their suitability for high-precision facial analysis tasks.
These models exhibit consistent performance, and occasional
challenges are reflected in the maximum error.

Overall, these results reinforce the robustness and preci-
sion of YOLOv5face and YOLOv7face in face detection,

emphasizing their potential for various real-world applications,
including facial recognition, expression analysis, and more.

D. Error in width and height prediction

The mean error in the width prediction of YOLOv5face for
the easy, medium, and hard datasets are 4px, 51px, and 36px
respectively, while the mean error in the width prediction of
YOLOv7face for the easy, medium, and hard datasets is 3px,
52px, and 34px, respectively. These mean values indicate that
YOLOv7face excels above the YOLOv5face.

The minimum error in the width prediction of YOLOv5face
and YOLOv7face for the easy, medium, and hard datasets are
0px, 1px, and 1px respectively. This indicates cases where both
YOLOv5face and YOLOv7face the predicted width exactly
matches the ground truth width.

The maximum error in the width prediction of YOLOv5face
for the easy, medium, and hard datasets are 114px, 202px, and
82px respectively, while the mean error in the width prediction
of YOLOv7face for the easy, medium, and hard datasets are
145px, 193px, and 121px, respectively.

For the errors in the height prediction of YOLOv5face
for the easy data set, they range from 0px to 131px. The
medium and hard datasets range from 4px to 150px and
6px to 97px, respectively. The errors in the height prediction
of YOLOv7face for the easy, medium, and hard datasets
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Figure 6. Examples of face detections from the medium dataset: (a)-(j) are detections from YOLOv5face, while (k)-(t) are detections from YOLOv7face.

range from 0px to 115px, 0px to 132px, and 0px to 218px
respectively. The mean error value in the height predictions of
YOLOv5face for the easy, medium, and hard datasets are 6px,
49px, and 38px, respectively, while for YOLOv7face they are
4px, 44px, and 59px, respectively.

Figure 11 and Figure 10 show the distribution of errors
in width and height between ground truth and predictions. A
wider range of error values can also be observed among the
height predictions compared to the width.

E. Inference speed

Efficiency and speed are crucial considerations for real-
time applications, and YOLOv5face is designed with these
priorities in mind [22]. For YOLOv5face, the mean inference
times for the easy, medium, and hard datasets have resulted to
be 80.85 ms, 86.68 ms, and 81.65 ms, respectively, for images
ranging from 640× 640 pixels to 1024× 1538 pixels. Images
of any size is accepted as input and is then resized to 640×640
which is accepted by the backbone. The minimum inference
times for these datasets are 61.0 ms, 50.2 ms, and 44.8 ms,
while the maximum times are 131.9 ms, 128.9 ms, and 150.1
ms.

The average frames per second (fps) for YOLOv5face on
the easy dataset has been calculated as 12.37. This indicates
that, on average, the model is capable of processing video

frames at a rate of 12.37 frames per second for images falling
under the easy category. For the medium and hard datasets,
the average frames per second are 11.54 fps and 12.25 fps
respectively.

The model’s speed performance is noteworthy, allowing for
swift keypoint detection. This makes it a suitable choice for
applications where real-time or near-real-time processing is
required.

Similarly, YOLOv7face maintains a high level of speed
while achieving superior accuracy. Its use of a ResNet-v1d
backbone, along with other optimizations, ensures efficient
keypoint detection [21]. For YOLOv7face, the mean inference
times for the easy, medium, and hard datasets are 116.10
ms, 124.74 ms, and 120.05 ms, respectively. The minimum
inference times for these datasets are 89.5 ms, 67.7 ms, and
72.1 ms, while the maximum times are 209.8 ms, 193.0 ms,
and 179.3 ms.

The average fps for YOLOv7face on the easy, medium and
hard datasets, are 8.61 fps, 8.02 fps and 8.33 fps respectively

Figure 12 visualizes the distribution of the times required
to make inference on an image.

While YOLOv5face offers lower mean inference times
across the datasets, YOLOv7face demonstrates competitive
performance, particularly considering its higher accuracy.
YOLOv7face’s slightly longer mean inference times are still
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Figure 7. Examples of face detections from the hard dataset: (a)-(j) are detections from YOLOv5face, while (k)-(t) are detections from YOLOv7face.

Figure 8. Mean Average Precision (mAP) over the easy, medium & hard
datasets.

well within the range for real-time or near-real-time appli-
cations. Therefore, both models are suitable for various real-
time face detection scenarios, with YOLOv7face excelling in
accuracy and YOLOv5face excelling in speed. The choice
between the two would depend on the specific requirements
of the application.

F. Comparison with Other Existing Models

In this section, we conduct a comparative analysis of
several face detection models based on their mean Average
Precision (mAP) scores. Specifically, we evaluate the per-
formance of four other models, together with YOLOv5face
and YOLOv7face, namely Bresee_team2, WeFace, cv3ifly and
RERe. These models resulted from the competition ’Wider
Face & Person Challenge 2019 - Track 1: Face Detection’ [37].

Comparing these models based on their mAP scores re-
veals interesting insights as seen in Figure 13. YOLOv7face
and YOLOv5face outperform the other models, with
YOLOv7face achieving the highest precision. This suggests
that YOLOv7face is well-suited for applications where precise
facial keypoint detection is crucial.

The relative differences in mAP scores highlight the sig-
nificance of model selection. Depending on the specific re-
quirements of an application, one might prioritize precision
over other factors like speed. Moreover, the choice of the best
model should consider factors such as computational resources
and real-time processing constraints.

G. Architecture

The architecture of YOLOv5face is rooted in the YOLOv5
object detector, a renowned model known for its efficiency
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Figure 9. Distribution of the localization error for YOLOv5face and YOLOv7face over the easy, medium & hard datasets: (a)-(c) are from YOLOv5face,
while (d)-(f) are from YOLOv7face.

and speed. YOLOv5face builds upon this foundation by intro-
ducing key modifications that tailor it for keypoint detection,
particularly in the context of facial landmarks. These modifi-
cations encompass the addition of a landmark regression head
and adjustments to the loss function to accommodate keypoint
predictions.

The backbone network of YOLOv5face incorporates a
CSPNet design, an architectural choice that enhances feature
extraction and aids in the localization of facial keypoints.
Additionally, a PANet neck is employed for feature aggre-
gation, contributing to the model’s ability to capture context
and spatial relationships within an image [22].

In contrast, YOLOv7face takes a unique approach to its
architecture. It ditches the traditional ImageNet pre-trained
backbones and relies solely on training with the COCO
dataset. The backbone network utilizes a ResNet-v1d archi-
tecture, which is known for its depth and capacity to extract
high-level features. A PANet neck is also integrated into
the architecture, facilitating feature fusion and enhancing the
model’s understanding of the image.

A distinguishing feature of YOLOv7face is the incorpora-
tion of a dedicated keypoint head. This head is responsible for
predicting the facial keypoints, and it is trained on a dataset
specifically annotated for facial keypoint detection. To refine
keypoint predictions, a Gaussian filter is introduced in the post-
processing step, reducing noise and enhancing the accuracy of
keypoint localization [21].

H. Generalization Capability

The generalization capability of a model refers to its ability
to perform well on unseen or previously unencountered data.
It is a critical aspect of a model’s performance as it determines
its reliability and adaptability to real-world scenarios. In the
context of face detection, a model’s generalization capability
is tested by its performance on subsets of a dataset that vary
in difficulty, lighting conditions, occlusions, and other factors.

YOLOv5face demonstrates a noteworthy degree of general-
ization capability. It achieves competitive mAP scores on both
the easy and medium subsets of the Wider Face dataset. These
subsets encompass a wide range of scenarios, from well-lit and
well-posed images to images with moderate challenges such as
occlusions and variations in lighting conditions. The model’s
ability to maintain accuracy across these diverse scenarios
indicates its versatility and robustness in handling common
real-world conditions.

On the other hand, YOLOv7face excels in terms of gen-
eralization. It consistently delivers high accuracy across all
subsets of the Wider Face dataset, including the easy, medium,
and hard categories. YOLOv7face’s capacity to maintain its
performance under these adverse conditions demonstrates its
exceptional generalization capability.

Additionally, YOLOv7face’s adaptability to blurred images
and its ability to distinguish between genuine faces and reflec-
tions in water surfaces highlight its robustness in handling a
wide spectrum of real-world scenarios.
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Figure 10. Distribution of the error in width predictions for YOLOv5face and YOLOv7face over the easy, medium & hard datasets: (a)-(c) are from
YOLOv5face, while (d)-(f) are from YOLOv7face.

I. Specific Features and Advancements

YOLOv5face introduces a landmark regression head as a
notable feature. This addition allows the model to detect
and predict facial landmarks accurately. Facial landmarks are
pivotal in tasks such as face alignment, which is crucial
for subsequent face recognition or expression analysis. The
landmark regression head enhances the model’s versatility
and its suitability for applications requiring fine-grained facial
analysis.

Additionally, YOLOv5face leverages the CSPNet-based
backbone and PANet neck for feature extraction and aggre-
gation. These architectural choices contribute to its ability
to capture both local and global context, aiding in accurate
keypoint detection [22].

YOLOv7face builds upon the success of YOLOv7, focusing
its capabilities on face detection. Its unique features include the
utilization of a ResNet-v1d backbone, which offers increased
depth and capacity for feature extraction. The PANet neck
enhances feature fusion, enabling the model to understand
complex spatial relationships within an image.

One of the key advancements in YOLOv7face is the
dedicated keypoint head, which is specifically trained for
facial keypoint detection. This head incorporates a novel
loss function that combines cross-entropy and smooth L1
loss terms to optimize both classification and regression of
keypoints. Furthermore, the inclusion of a Gaussian filter in
post-processing refines keypoint predictions, reducing noise
and enhancing accuracy.

V. DISCUSSION

A. Discussion of Strengths and Weaknesses of Each Model

In the following we discuss the strengths and weaknesses of
YOLOv5face and YOLOv7face in view of the results reported
so far and the performance observed throughout the different
tests carried out:

• YOLOv5face strengths. YOLOv5face demonstrates a
remarkable balance between accuracy and speed, ren-
dering it exceptionally suitable for real-time or near-
real-time applications. Its efficiency in processing images
at impressive speed as observed in Figure 12 makes
it an attractive choice for scenarios demanding timely
responses.
Moreover, the inclusion of a landmark regression head
significantly enhances YOLOv5face’s versatility as ob-
served in Figure 5, in Figure 6, and in Figure 7. This
feature empowers the model to excel in tasks requiring
precise facial keypoint detection, such as facial recogni-
tion and emotion analysis.

• YOLOv5face weaknesses. Despite its promising perfor-
mance in several subsets of the Wider Face dataset, the
poor performance on the hard subset in Table I, requires
further evaluation to assess YOLOv5face’s adaptability to
diverse and varying environmental conditions. The need
for such evaluations arises from the inherent complexi-
ties encountered in real-world scenarios, where lighting
conditions, occlusions, and facial variations may differ
significantly from the benchmark datasets.

• YOLOv7face strengths. YOLOv7face emerges as a
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Figure 11. Distribution of the error in height predictions for YOLOv5face and YOLOv7face over the easy, medium & hard datasets: (a)-(c) are from
YOLOv5face, while (d)-(f) are from YOLOv7face.

Table II
SUMMARY OF THE QUALITATIVE COMPARATIVE ANALYSIS OF YOLOV5FACE AND YOLOV7FACE

Aspect YOLOv5face YOLOv7face

Architecture Architecture based on YOLOv5, CSPNet design, PANet
neck

Unique architecture, ResNet-v1d backbone, PANet neck,
dedicated keypoint head

Generalization Capability Demonstrates robust generalization Strong generalization, resilient in adverse conditions

Inference speed Shorter inference time Slightly longer time for inference, but not significant

mean Average Precision (mAP) mAP scores: 0.75 (Easy), 0.71 (Medium), 0.44 (Hard) mAP scores: 0.93 (Easy), 0.91 (Medium), 0.83 (Hard)

Specific Features Landmark regression head, CSPNet, PANet ResNet-v1d backbone, dedicated keypoint head, Gaus-
sian filter

leader in terms of accuracy, consistently outperforming its
counterparts across all subsets of the challenging Wider
Face dataset as seen in Table I. Its superior accuracy
makes it an attractive choice for applications demanding
precision, even in the face of challenging scenarios.
This model demonstrates robustness in adverse condi-
tions, such as occlusion and variations in lighting as
observed in Figure 5, in Figure 6, and in Figure 7.
Its ability to maintain high accuracy under challenging
circumstances positions it as a reliable choice for real-
world applications where environmental factors can vary
unpredictably.

The introduction of a dedicated keypoint head and a
novel loss function in YOLOv7face significantly en-
hances its performance in facial keypoint detection tasks.
This specialization ensures precise localization of facial
keypoints, making it particularly valuable in applications
such as facial feature analysis and tracking.

• YOLOv7face weaknesses. While YOLOv7face excels
in accuracy, it may require slightly more computational
resources compared to YOLOv5face due to its utilization
of a deeper ResNet-v1d backbone. This trade-off should
be considered when selecting the model for applications
with strict resource constraints.
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Figure 12. Inference times for YOLOv5face and YOLOv7face over the easy, medium & hard datasets: (a)-(c) are from YOLOv5face, while (d)-(f) are from
YOLOv7face.

Figure 13. mAP of Several Models on the Wider Face Dataset.

Additionally, it is important to note that, despite its
superior accuracy, YOLOv7face sacrifices a slight amount
of speed compared to YOLOv5face highlighted in Figure
12. Therefore, the choice between the two models should
also take into account the specific requirements of the
application, as speed may be a critical factor in certain
scenarios.

In summary, both YOLOv5face and YOLOv7face offer
unique strengths and exhibit certain weaknesses, making them
suitable for different contexts and use cases.

B. Concluding Remarks

In conclusion, both YOLOv5face and YOLOv7face exhibit
strong performance in keypoint detection on the custom dataset
of human faces. While YOLOv5face excels in efficiency and
offers competitive accuracy, YOLOv7face stands out with
its exceptional accuracy and robustness, positioning it as a
promising choice for high-precision facial keypoint detection.
Further evaluation and real-world testing will provide valuable
insights into the practical applications and strengths of these
models. The summary of the above points can be found in
Table II.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

In this comparative study, we explored the performance of
two modified versions of the YOLO algorithms, YOLOv5face,
and YOLOv7face, for keypoint detection on a custom dataset
of human faces. Our analysis encompassed various aspects,
including the mAP, the localization error, the inference speed,
the architecture, the generalization capability, and the specific
features.

YOLOv5face demonstrated commendable efficiency and
versatility. It strikes a balance between accuracy and speed,
making it suitable for real-time or near-real-time applications.
The addition of a landmark regression head enhances its adapt-
ability to tasks requiring precise facial keypoint detection.
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While it performed well on subsets of the Wider Face dataset,
further testing in diverse scenarios is warranted.

In contrast, YOLOv7face excelled in accuracy across all
subsets of the Wider Face dataset, demonstrating remarkable
performance even in challenging conditions. Its robustness in
handling occlusions, variations in lighting, and pose variations
positions it as a reliable choice for real-world applications. The
dedicated keypoint head and novel loss function contribute to
its precise keypoint detection capabilities.

B. Future Work

The comparative analysis presented in this study opens the
door to several avenues for future research and improvement:

• Dataset diversity. Expanding the training and evaluation
to include a wider variety of datasets can provide a
more comprehensive understanding of the models’ gener-
alization capabilities. Testing on datasets with even more
different lighting conditions, ethnicities, and age groups
can further assess their real-world applicability.

• Fine-tuning and hyperparameter tuning. Fine-tuning
the models on specific applications or domains can op-
timize their performance further. Hyperparameter tuning
may reveal configurations that maximize accuracy while
maintaining efficiency.

• Real-world testing. Here, we refer to conducting real-
world tests in practical applications, such as robotics,
and healthcare, can validate the models’ performance and
identify potential challenges in deployment.

• Improvements on efficiency. Exploring techniques to
enhance the efficiency of YOLOv7face, such as model
quantization or hardware acceleration, can make it more
accessible for resource-constrained environments.

• Enhancing the generalization capability. Ensuring reli-
able performance across a broader spectrum of situations.

• Transfer learning. Investigating the effectiveness of
transfer learning from YOLOv7face to other keypoint
detection tasks beyond facial landmarks can extend the
models’ applicability.

• Human-Robot Interaction. Applying the models to HRI
scenarios, such as gesture recognition or emotion analy-
sis, can demonstrate their utility in enhancing human-
robot interactions.

The field of face detection has witnessed remarkable
advancements, exemplified by models like YOLOv5face,
YOLOv7face and many others. These models have brought
us closer to achieving the delicate balance between accuracy
and speed. The integration of landmark regression heads,
specialized loss functions, and robust backbones has propelled
the accuracy and versatility of these models.

However, the journey towards perfecting face detection is far
from over. As we move forward, we must continue to address
the challenges posed by real-world scenarios, including vary-
ing environmental conditions, occlusions, and diverse facial
expressions.

Moreover, the ethical considerations surrounding face de-
tection and its applications will play a pivotal role in shaping
the field. Striking the right balance between innovation and

privacy, ensuring fairness and inclusivity, and guarding against
misuse will be ongoing challenges.

In the years to come, we can anticipate even more exciting
developments in face detection technology. As we continue
to push the boundaries of what is possible, the future of
face detection holds the promise of safer, smarter, and more
inclusive applications that benefit society as a whole.
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