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1.  Introduction
The impacts of extreme weather and climate events can become amplified when occurring in close temporal 
proximity or succession. Compound extreme events continue to emerge as a growing and active area of research 
arising from complex interactions between multiple physical drivers and land-surface impacts, resulting in signif-
icant societal and/or environmental impacts (Zscheischler et al., 2018, 2020). Of particular concern are tempo-
rally compounding events, occurring as a succession of events at a given location. These may be of the same 
type (e.g., consecutive extreme precipitation events) or different (e.g., a tropical cyclone followed by a heat-
wave). Temporally compounding events have the potential to overwhelm natural and human systems, maximizing 
ecological and societal vulnerabilities due to diminished recovery time between impacts.

Drivers and impacts associated with temporally compounding events have been studied extensively for extratropi-
cal cyclones (ETCs) (Mailier et al., 2006; Pinto et al., 2014) and precipitation extremes (Barton et al., 2016; Kopp 
et al., 2021; Tuel & Martius, 2021a, 2021b, 2022). Sequences of cyclones are often linked to secondary cyclogen-
esis along trailing fronts, Rossby wave packets, and/or persistent favorable jet states (Dacre & Pinto,  2020). 

Abstract  The serial occurrence of atmospheric rivers (ARs) along the US West Coast can lead to prolonged 
and exacerbated hydrologic impacts, threatening flood-control and water-supply infrastructure due to soil 
saturation and diminished recovery time between storms. Here a statistical approach for quantifying subseasonal 
temporal clustering among extreme events is applied to a 41-year (1979–2019) wintertime AR catalog 
across the western United States (US). Observed AR occurrence, compared against a randomly distributed 
AR  timeseries with the same average event density, reveals temporal clustering at a greater-than-random rate 
across the western US with a distinct geographical pattern. Compared to the Pacific Northwest, significant AR 
clusters over the northern Coastal Range of California and Sierra Nevada are more frequent and occur over 
longer time periods. Clusters along the California Coastal Range typically persist for 2 weeks, are composed 
of 4–5 ARs per cluster, and account for over 85% of total AR occurrence. Across the northwest Coast-Cascade 
Ranges, clusters account for ∼50% of total AR occurrence, typically last 8–10 days, and contain 3–4 individual 
AR events. Based on precipitation data from a high-resolution dynamical downscaling of reanalysis, the 
fractions of total and extreme hourly precipitation attributable to AR clusters are largest along the northern 
California coast and in the Sierra Nevada. Interannual variability among clusters highlights their importance for 
determining whether a particular water year is anomalously wet or dry. The mechanisms behind this unusual 
clustering are unclear and require further research.

Plain Language Summary  Atmospheric rivers, or long narrow regions of enhanced water vapor 
transport, are an important component of the midlatitude water cycle, responsible for producing precipitation 
and associated extremes. Atmospheric rivers occurring close in time or one after another can lead to 
exaggerated impacts due to the decreased time between periods of precipitation. Based on the historical record, 
we identify the timescales at which wintertime atmospheric rivers cluster at a rate different from what would be 
expected by random chance over the western United States. Compared to the Pacific Northwest, atmospheric 
river clusters over the mountainous regions of California occur more frequently, over longer periods of time, 
and account for a larger proportion of total atmospheric river occurrence. Atmospheric rivers in this region 
are also responsible for a large fraction of total precipitation and are commonly associated with precipitation 
extremes. The year-to-year occurrence of clusters is important for determining wet versus dry years. Future 
work will identify the atmospheric patterns behind atmospheric river clustering over different geographies.
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Influ enced by large-scale teleconnection patterns, tropical forcing, and persistent atmospheric circulation 
patterns, cyclone clusters can lead to large socioeconomic impacts and cumulative losses (Vitolo et al., 2009). 
Similarly, due to an increased risk of flooding and landslides, clustering among extreme precipitation events has 
been examined (e.g., Martius et al., 2013; Priestley et al., 2017) and linked to patterns of upper-level Rossby wave 
breaking (Barton et al., 2016). The presence of clustering among these events also implies the periodic prolonged 
absence of precipitation, with associated impacts on water supply.

Various methodologies have been used to investigate temporal clustering. Of the most common are relative 
frequency metrics, involving a comparison between the variability in event occurrence to a mean or expected 
value of occurrence. Villarini et al. (2011) conducted a systematic analysis of extreme precipitation clustering 
annually across the midwestern US using a dispersion coefficient based on the variance-to-mean ratio of annual 
extreme counts. Using a point-process approach to quantify variability among monthly cyclone counts, Mailier 
et al. (2006) found statistically significant overdispersion among extratropical cyclone clusters affecting western 
Europe, implying more serial clustering than would be expected by chance. In both cases, homogeneous Poisson 
point processes were used to provide a frame of reference following assumptions of stationarity and independence 
among events. Here, a similar approach is applied to quantify subseasonal temporal clustering among atmos-
pheric river (AR) events across the western United States (US).

ARs are long, narrow corridors of enhanced water vapor transport in the lower troposphere (Zhu & Newell, 1998). 
Responsible for delivering large amounts of water to the western US, often related to flooding (e.g., Corringham 
et al., 2019), ARs are critical for determining the hydroclimate in the midlatitudes and poleward flank of the 
subtropics. Often related to the low-level convergence within extratropical cyclones, ARs are modulated by extra-
tropical dynamics through Rossby wave propagation and breaking (Payne & Magnusdottir, 2014). Favorable and 
unfavorable conditions for AR activity are further sensitive to large-scale modes of climate variability (Guirguis 
et al., 2018). Their interactive relationship within this larger, synoptic-scale dynamical system presents potential 
implications on frequency patterns (i.e., interannual variability) and storm intensity, as well as the severity of 
associated hydrologic impacts.

As an emerging area of research (e.g., Fish et al., 2019, 2022), AR sequences have garnered significant atten-
tion due to their large cumulative impacts (e.g., 2017 Oroville Dam Crisis; White et al., 2019) and potential for 
generating megaflood conditions (Huang & Swain, 2022). Several case study analyses have examined the impacts 
of multiple sequential ARs (e.g., Cordeira et al., 2013; Dominguez et al., 2018; Michaelis et al., 2022; White 
et al., 2019) which often generate increased precipitation totals and elevated stream discharge rates compared 
to isolated ARs (Vano et al., 2018). Within the historical record, one of the most notable successive AR events 
occurred in the winter of 1861/1862, generating intense precipitation in Northern California over 43  days, 
capped by a warm storm event that produced catastrophic flooding over the Sacramento Valley (Dettinger & 
Ingram, 2013; Null & Hulbert, 2007). This precedent-setting event prompted the ARkStorm scenario, a hypo-
thetical storm intended to provide emergency responders, resource managers, and the public with a realistic 
assessment of the very real threat to human life, property, and ecosystems posed by extreme successive AR 
events along the West Coast (Porter et al., 2011). Extended periods of AR conditions are often accompanied by 
greater moisture content than less persistent ARs, enhancing the potential for hydrologic impacts. Storm duration 
has been shown to be a strong indicator for precipitation and streamflow magnitude (Lamjiri et al., 2017; Ralph 
et al., 2013, 2019). Understanding changing patterns in AR sequencing over space and time, therefore, has impor-
tant implications for forecasting applications associated with water availability and/or flood potential.

Recently, Fish et al. (2019) introduced the concept of AR families based on a single-point analysis using a 13-year 
data set of AR conditions observed at the Bodega Bay AR Observatory in Northern California. They found 
that ARs occurring within 120 hr of another exhibit distinct large-scale characteristics from those occurring in 
greater isolation. These synoptic environments are often characterized by lower geopotential heights throughout 
the North Pacific, an enhanced subtropical high, and a strong zonal North Pacific jet. A follow-on analysis, 
Fish et  al.  (2022), further linked AR families with specific phases of El Niño Southern Oscillation and the 
Madden-Julian Oscillation, pointing to the potential seasonal-to-subseasonal predictability of such events. This 
work suggests that ARs cluster in time under certain synoptic regimes useful for improving situational awareness 
and forecasting capabilities, yet synoptic atmospheric variability can produce weather sequences whose features 
(such as ARs) occur in sequence purely by chance. Thus, it remains unclear whether the ARs in the AR fami-
lies  are associated by chance or whether there is a mechanism that causes ARs to “stick” together. It also remains 
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to be determined whether and how AR clustering varies geographically along the pronounced meridional precip-
itation gradient stretching from Baja California to southwestern Canada.

Here a statistical framework to objectively identify subseasonal temporal clustering among AR events is applied 
to a reanalysis-based, 41-year, hourly AR catalog across the western US. A seasonal climatology of AR clusters, 
defined as temporal clustering beyond what would be expected by random chance, is presented to quan tify their 
climatological characteristics (frequency, duration, and influence on precipitation). Here, clustering is investi-
gated as a function of geographical location and is not dependent on the clustering time scales of other phenomena 
(i.e., ETC's) as in Fish et al., 2019. To improve the understanding of associated cumulative impacts, significant 
AR clusters are further linked to precipitation characteristics using a high-resolution, dynamically downscaled 
reanalysis product. Results aim to serve as a benchmark for measuring future change in AR cluster characteris-
tics and associated precipitation under warming as well as provide a target for a global/regional climate- and/or 
weather predication model evaluation.

2.  Data and Methodology
2.1.  Data

2.1.1.  Atmospheric Rivers

ARs are identified in the European Centre for Medium-range Weather Forecasting's Reanalysis v5 (ERA5; 
Hersbach et al., 2020) product for 1979–2019 at a 1° × 1° spatial resolution and hourly temporal resolution using 
an objective AR identification algorithm (Guan & Waliser, 2015; updated in Guan et al., 2018). The approach 
uses multiple sequentially higher IVT magnitude percentile-based thresholds (i.e., 85–95th percentile and fixed 
100 kg m −1 s −1 lower limit) to identify contiguous areas of connected grid points or “objects.” Objects are further 
filtered based on criteria for IVT direction (within 45° of the shape orientation with an appreciable poleward 
component of >50 kg m −1 s −1), length (>2,000 km), and length/width ratio (>2).

2.1.2.  Precipitation

Precipitation estimates from a dynamically downscaled reanalysis product are used to link with detected ARs. 
This product is a downscaling of ERA5 over the western US by the Weather Research and Forecasting (WRF) 
model on a 9-km grid with hourly output (ERA5-WRF; Rahimi et al., 2022). Compared to ERA5, ERA5-WRF 
has been shown to better represent orographic precipitation across the western US, as well as the timing and 
magnitude of AR-driven precipitation (Rahimi et al., 2022). A minimum distance-based interpolation scheme is 
used to link AR timesteps in ERA5 to precipitation in ERA5-WRF (as in Slinskey et al., 2020). This approach 
assigns the coarser resolution grid points to the finer resolution grid points with the shortest distance from the 
grid cell center.

2.2.  Methodology

2.2.1.  Defining ARs

Discrete AR events are isolated from the Guan and Waliser hourly AR catalog. First, AR conditions separated by 
≤6 hr are considered a continuous event. AR events then require at least eight consecutive hours of AR conditions 
over a given location, following Ralph et al. (2013). A sensitivity analysis examining the influence of applying 12 
and 24 hr minimum AR event duration thresholds on average AR cluster frequency and duration is provided in 
Figure S1 in Supporting Information S1. Results are minimally sensitive to the use of a 12 hr threshold, while a 
24 hr minimum produces less spatial heterogeneity in the metrics domain wide. The 8 hr threshold is retained as 
it allows for shorter-duration AR events to be included as a part of cluster which may contribute to impacts via a 
cascading effect within an AR sequence.

Here, we focus on AR events across the heart of the western US wet season, defined as December, January, Febru-
ary (DJF), due to its relevance for impacts, including precipitation extremes and associated flooding. However, 
we note that ARs can occur outside of these months, especially over the northern half of our study domain 
(Slinskey et al., 2020). AR event frequency, based on the above criteria, is characterized by a maximum (>11 
events/season) along the Oregon-Washington border stretching into the Olympic Peninsula as well as along the 
northern Coastal Range of California (Figure 1a). AR events are less frequent (<7 events/season) across Southern 
California and the interior following a negative southeastward gradient across the domain.
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2.2.2.  Quantifying the Subseasonal Temporal Clustering of ARs

The serial clustering of ARs refers to the passage of multiple AR events over a fixed location (i.e., grid point) 
within a given period-of-time. With the intention of focusing on clustering over longer timescales (i.e., weekly to 
monthly), the hourly timeseries of AR event occurrence is first filtered to disregard all AR timesteps except the 
first of each event (Barton et al., 2016). The outcome is a binary timeseries of AR events in which the first hour 
of each event is retained as the representative timestep.

The Ripley's K Function (Ripley, 1981) is used to quantify subseasonal clustering among AR events within the 
timeseries. The approach can be understood as the average number of events (i.e., ARs) that occur within time t 
centered around a randomly chosen event in the timeseries. Mathematically, K is estimated as

𝐾̂𝐾(𝑡𝑡) =
1

𝑛𝑛

𝑛𝑛∑

𝑖𝑖=1

∑

𝑗𝑗≠𝑖𝑖

𝐼𝐼|𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗 |≤𝑡𝑡,�

where n is the total number of events, ti is the time of an event, and tj are the times of all other events in the same 
season as ti. The sum of the indicator function,

Figure 1.  (a) AR event frequency (shading) is shown as events per season. Results are shown for December, January, 
February (DJF) at each grid point based on ARs identified between 1979 and 2019. Histograms of AR event frequency by 
month at (b) Portland, Oregon, (c) Bodega Bay, California, and (d) Los Angeles, California.
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𝐼𝐼|𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗 |≤𝑡𝑡 =

⎧
⎪
⎨
⎪
⎩

1 if|𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗| ≤ 𝑡𝑡

0 if |𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗| > 𝑡𝑡
�

increases as more events occur within time t, referred to as the aggregation period, before and after a given 
event in the timeseries. In other words, for a given event, all other events occurring within a set time period 
(i.e., aggregation period) are tallied and normalized by the total number of events in the timeseries. In turn, 
this statistical approach provides information about the tendency toward temporal clustering in the timeseries, 
such that the larger the value of 𝐴𝐴 𝐾̂𝐾 for a given aggregation period (t), the more clustered the events. The 
cumulative nature of the function allows clustering at shorter timescales to contribute to clustering at longer 
timescales.

Significance is determined at each grid point through a comparison between the empirical Ripley's 𝐴𝐴 𝐾̂𝐾 values 
and those obtained from a Monte Carlo sample of 1,000 simulated homogeneous Poisson processes with the 
same average event density as the observed series. Homogeneous Poisson processes assume events occur inde-
pendently from each other at a constant rate, exhibiting complete temporal randomness with clustering only 
occurring by chance. Several studies have utilized this technique for testing the significance of clustering among 
ETCs (Mailier et al., 2006; Vitolo et al., 2009) and extreme precipitation events (Barton et al., 2016; Tuel & 
Martius, 2021a, 2021b; Villarini et al., 2011).

A false detection rate procedure (Wilks, 2016) with a baseline significance level of 5% is implemented to identify 
aggregation periods with statistically significant clustering as in Tuel and Martius (2021a, 2021b). For a given 
aggregation period, an empirical p-value for the observed K is defined as one minus its percentile rank in the 
corresponding Monte-Carlo sample. For example, an observed K larger than all the K values in the Monte-Carlo 
sample would have a p-value of zero. A lower p-value, therefore, corresponds to a higher K-value. The observed 
series is said to exhibit a significant temporal clustering pattern if its p-value is lower than p*, expressed as

𝑝𝑝∗ = max
𝑖𝑖

(
𝑝𝑝𝑖𝑖 ≤

𝑖𝑖

𝑁𝑁
𝛼𝛼

)
�

where pi refers to the sorted p-values from all N Monte-Carlo simulations (i.e., 1,000) and α is the chosen signif-
icance level (i.e., α = 0.05).

All calculations are computed at each grid point across each DJF season individually. Histograms of AR event 
frequency by month for three locations along the West Coast show little month-to-month variation within DJF 
(Figures 1b and 1c). Sensitivity testing (not shown) revealed no change in the overall timescales with significant 
clustering for alternate definitions of the winter season (NDJF, DJF, and DJFM).

For simplicity, Ripley's K results are summarized over 10 aggregation periods ranging from 1 to 50 days at 5-day 
intervals (i.e., 1–5, 6–10, 11–15, etc.). Clustering is considered significant for a given t (i.e., individual aggre-
gation period) if at least half the years (i.e., >20 years) exhibit significant clustering at that t. Significance for a 
given 5-day aggregation period interval is assigned if the majority of t values (i.e., >2) within that interval are 
significant.

2.2.3.  Identification of AR Clusters

The Ripley's K function provides information about the tendency toward temporal clustering across different 
timescales. It does not directly identify clusters within the seasonal timeseries. To identify AR clusters, the AR 
event timeseries, described in Section 2.2.1, is filtered to establish AR event strings (i.e., series of AR events) in 
which each individual event must occur within 10 days of the previous event. Gap length criteria (i.e., ≤10-day 
threshold) was chosen based on a sensitivity analysis evaluating gap lengths spanning 2–24 days. The ratio of 
ARs meeting the gap length criteria relative to the total AR count levels off at around the 10-day period (see 
Figure S2 in Supporting Information S1). The length of time from the first timestep of the first event in the 
string to the first timestep of the last event in the string is checked against the significant aggregation periods 
defined at each grid point. Only strings occurring over statistically significant aggregation periods are retained for 
subsequent analysis. Resulting AR clusters refer to two or more AR events, in which each event occurs ≤10 days 
apart over a statistically significant aggregation period as defined by the Ripley's K analysis.
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Case study analyses presented in Section 3.2 illustrate examples of seasons with statistically significant AR clus-
tering. The chosen years have documented hydrologic significance and a high ratio of clustered ARs to total ARs. 
Latitudinally distinct locations provide additional insight into how clustering characteristics vary geographically.

3.  Results
3.1.  Significant AR Clustering Timescales

The observed and simulated Ripley's K output for three representative locations along the West Coast, illustrate 
variability in the range of significant clustering timescales (Figure 2). The difference between the observed K and 
synthetic K at the 5% significance level across aggregation periods is shown for each winter season between 1979 
and 2019. Positive values (red circles) along the y-axis therefore reflect a higher degree of observed clustering 
relative to the random series. Unshaded circles with a negative difference, represent individual winter seasons 
when the observed clustering characteristics did not meet the significance criteria. Significance for a particular 
aggregation period (gray shading) requires the fraction of significant seasons (blue line) be ≥0.5 for the majority 
of the 5-day interval (x-axis).

Statistically significant clustering occurs over timescales ranging from 1 to 15 days at Portland (PDX), Oregon 
(Figure 2a). The peak in the fraction of seasons with significance is positioned between the 5-10-day aggregation 
periods, with a value of 0.8. This indicates that 80% of the 41 seasons showed statistically significant clustering 
over these timescales. Beyond 15 days, the fraction of significant seasons is ∼0.4, meaning that significant clus-
tering is common at longer timescales but falls just short of the 50% requirement. At Bodega Bay (BBY), Cali-
fornia, significant clustering tends to occur over a wider range of timescales compared to PDX, extending from 1 
to 35 days (Figure 2b). Like PDX, the fraction of significant seasons at BBY peaks around the 7-day aggregation 
period at 0.8. At Los Angeles (LAX), California, significant clustering extends from the 5 to 20-day aggrega-
tion periods (Figure 2c). The fraction of significant seasons is characterized by two peaks at 8 and 10-days, 
with values just shy of 0.8. After 20 days, the fraction hovers between 0.4 and 0.5. All three locations there-
fore reveal greater-than-random AR clustering patterns with variability in the range of significant aggregation 
periods. Significant clustering is limited to shorter timescales at PDX and LAX but occurs over a wider range 

Figure 2.  Ripley's K values for (a) Portland, Oregon; (b) Bodega Bay, California; and (c) Los Angeles, California for DJF. Circles represent difference between the 
observed K-value and synthetic K-value at p* (y-axis) computed for each year (1979–2019) for each aggregation period (x-axis). Red filled circles represent years with 
significant clustering patterns based on exceedance of p*. Gray shading reflects aggregation periods with significance. The fraction of seasons with significance (blue 
line) is shown for each aggregation period.
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of timescales at BBY, up to about a month, implying the same string of ARs may be considered significantly 
clustered at one location and not another. For robustness, the false discovery rate procedure and significance 
requirements implemented here are relatively conservative. For example, when the observed K is compared 
against the average synthetic K, results show a systematically positive difference for all three locations (Figure 
S3 in Supporting Information S1), signifying that clustering occurs quite consistently, even when it does not meet 
the stringent statistical significance tests we imposed.

3.2.  Winter Season Case Studies

We further examine precipitation timeseries for winter seasons with a high ratio of clustered ARs to total ARs at 
PDX, BBY, and LAX, to provide concrete examples of AR clustering and the associated impacts (Figures 3–5). 
Each DJF season is illustrated as a timeseries of AR events (blue shading; panel a), including hourly precipitation 
(black line) and integrated water vapor (IVT; blue line), to which the AR clustering framework is applied (panel 
b). Clusters are further contextualized based on the probability distribution of storm total precipitation among all 
wintertime AR clusters at the given location (panel c). For comparison, winter seasons with no identified cluster-
ing, displaying pronounced regularity or underdispersion in AR occurrence, are shown in Figure S4 in Supporting 
Information S1 for each location.

3.2.1.  1996/1997 Portland, Oregon

In the winter of 1996/1997, the Pacific Northwest (PNW) experienced several sequential heavy precipitation events 
yielding notable hydrologic impacts and associated damages on the order of $1 billion (CNRFC NOAA, 2000). 
Characterized by a shift in the overall weather pattern from a polar air mass to a warmer, wetter tropical regime, 
the melting December snowpack generated excessive January runoff. During this season, PDX experienced 11 AR 

Figure 3.  (a) Hourly precipitation (black line; mm/hr), integrated water vapor transport (IVT; blue line; kg m −1 s −1) and identified AR events (pale blue shading) 
between December 1996 and February 1997, (top panel) recorded at Portland, Oregon. Each AR event is labeled with maximum hourly IVT as a measure of AR 
intensity. Dashed black line signifies 95th percentile hourly precipitation total for DJF computed over a 41-year study period. (b) Identified AR clusters labeled with AR 
event duration (blue), gap length duration (gray), and total AR cluster duration (red). (c) Histogram displaying distribution of storm total precipitation for all significant 
AR clusters recorded between 1979 and 2019 at PDX in DJF. The total accumulated precipitation, number of contributing AR events, and total duration per cluster is 
labeled in the corresponding table and noted on the histogram for context.
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events, with several hourly precipitation totals exceeding the 95th percentile (Figure 3a), comprising four statisti-
cally significant AR clusters (Figure 3b). These clusters persisted for 6, 9, 14, and 6 days, respectively, containing 
3, 3, 3, and 2 AR events, and producing 53, 308, 111, and 14 mm of precipitation. Based on the probability distri-
bution of storm total precipitation among all wintertime AR clusters at PDX (Figure 3c), the 1996/1997 clusters 
span the full distribution. All clusters are below the 95th percentile, barring the second cluster, which is situated at 
the end of the distribution's right tail and contains hourly IVT maximum exceeding 1,000 kg m −1 s −1.

3.2.2.  2016/2017 Bodega Bay, California

Northern California experienced a record wet water year in 2016/2017 associated with successive ARs. Among 
other impacts, the excessive runoff from snowpack over the Sierra Nevada damaged both the main and emergency 
spillways of the Oroville Dam, prompting the evacuation of over 188,000 people and over $1 billion in damages 
(Corringham et al., 2019). Based on the AR event definition applied here, 13 individual AR events occurred at BBY 
between December 2016 and February 2017, yielding several instances with hourly precipitation totals exceeding 
the 95th percentile (Figure 4a). Three AR clusters were identified, consisting of between 3 and 5 AR events each 
(Figure 4b). Like the PDX case (Figure 3), these clusters were equally distributed across the winter season. The 
shorter initial cluster persisted for just under a week, producing 190 mm of total precipitation. The latter two events 
each lasted ∼19 days, producing over 500 mm of precipitation each containing extremely intense AR events with 
IVT exceeding 1,000 kg m −1 s −1. Relative to other AR-cluster precipitation totals at BBY, the first cluster was 
relatively minor, but the latter two produced precipitation totals falling just shy of the 95th percentile (Figure 4c). 
These results align well with other cases in which flooding is shown to not always occur in conjunction with the 
heaviest storm totals (e.g., Tuel & Martius, 2021b). Precipitation phase and antecedent surface conditions, such as 
soil saturation, evaporative demand, or vegetation, can also be important factors (e.g., Berghuijs et al., 2019). It is 
likely that the clustered nature of the ARs played a critical role in exacerbating these hydrological impacts.

3.2.3.  2004/05 Los Angeles, California

The winter of 2004/05 was a record setting wet season for Los Angeles County. According to the National Weather 
Service, this season was characterized by a relatively dry November and December before a series of major storms 
hit from the end of December onward (NWS, 2005). There were eight total AR events with intensities (i.e., event 
maximum hourly IVT) ranging between ∼250 and 600 kg m −1 s −1, generating two statistically significant clusters 
with several exceedances of 95th percentile hourly precipitation (Figures 5a and 5b). The first cluster comprised 
four ARs over a 16-day period (Figure 5b) and generated >220 mm of precipitation (Figure 5a). Making landfall 
on already saturated ground, the final event in the cluster was characterized by roughly four straight days of AR 
conditions. This particular event has been linked to widespread flash flooding and landslides across Southern 
California (NWS, 2005), likely worsened by the antecedent conditions created by the three preceding ARs. This 
cluster has also been highlighted as producing a large fraction of the annual precipitation in Los Angeles, support-
ing insights that the majority of California's climatological precipitation is attributable to just a small number of 
ARs (Rutz et al., 2014). Occurring over 11 days in mid-February, the second cluster contained 3 AR events and 
generated 158 mm of precipitation. According to the distribution of AR cluster driven precipitation, this cluster 
produced slightly above average precipitation, whereas the first was just shy of the 95th percentile (Figure 5c).

3.3.  Regional Patterns of Significant AR Clustering Timescales

The grid point-specific results from Figure 2 are consistent with regional patterns of significant clustering times-
cales (Figures 6 and 7). The fraction of seasons with significant clustering, shown as an average across 5-day 
aggregation period intervals, reveals the highest values in the 6–10-day range, with values universally >0.6 
(Figure 6). As the aggregation period increases, a distinct pattern emerges at the 16–20-day interval with higher 
values over the southern half of the domain and lower values over the northern half. Above the 15-day times-
cale, most of Oregon, Washington, and Idaho show values below 0.5, with a broad minimum (0.1–0.2) across 
central Oregon and the Cascade Range extending into Washington (geographic features identified in Figure S5 
in Supporting Information S1). Minima are also visible across the interior and along the lee side of mountain 
ranges. This is likely from infrequent AR intrusion due to water vapor depletion following orographic lift. Along 
the Coastal Ranges of the Southwest, a large majority (0.8) of seasons are significant out to the 15-day timescale. 
Values exceeding 0.5 persist across most of California out to 25 days. As aggregation periods increase, values 
exceeding 0.5 are confined to a small region just south of Cape Mendocino in Northern California out to 35 days 
and across parts of the Sierra Nevada out to 50 days.
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Figure 4.  As in Figure 3, except for December 2016 through February 2017, at Bodega Bay, California.

Figure 5.  As in Figure 3, except for 1 December 2004 through February 2005, at Los Angeles, California.
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Patterns of the maximum aggregation periods with significance (Figure 7) are characterized by higher values 
across the South compared to the North. Values reaching the 50-day timescale are visible across the Sierra Nevada 
and portions of the northern California coast. Across Central and Southern California values range between 
20 and 35 days. In contrast, Washington and coastal Oregon show significance out to 20 days. Central Oregon 
displays a broad minimum of less than 15 days. The absence of significant clustering across the PNW past the 
15–20-day timescale occurs despite relatively high AR event occurrence during the winter months (Figure 1). 
Thus, ARs are frequent and randomly distributed once time intervals longer than a couple of weeks are consid-
ered. Significant clustering is seen over longer timescales across the Great Basin, which is characterized by a rela-
tively lower AR occurrence (Figure 1). This indicates that although infrequent, when ARs do occur, they cluster 
together at a greater-than-random rate, for timescales out to ∼35 days. Landfalling ARs in this region have been 
known to penetrate this far inland, although related precipitation is rare (Rutz et al., 2014). Broad consistency is 
found in the North/South patterns of short/long maximum aggregation periods using an alternative (i.e., fixed 
IVT threshold) AR detection algorithm (Figure S6b in Supporting Information S1). The greatest differences are 

apparent across portions of the interior where AR frequency characteristics 
are most uncertain (Figure S6a in Supporting Information S1).

3.4.  Characteristics of AR Clusters

3.4.1.  AR Cluster Frequency

Having highlighted the timescales at which ARs are clustered across the west-
ern US, we proceed to analyze the climatological characteristics of western 
US AR clusters. AR cluster frequency (i.e., average clusters/season) is char-
acterized by a maximum (>2/season) along the coast of Northern California 
south of Cape Mendocino (Figure  8a). Secondary maxima (>1.6/season) 
are visible across the Coast-Cascade Ranges of Oregon and Washington 
(Figure 8a). Minima (∼0.5/season) in AR cluster frequency are found across 
lower elevations of Washington and Oregon. Across California, AR cluster 
frequency reveals a negative North-South gradient ranging from greater than 
2 in the north, to 1.6 across the Central Valley, to between 1 and 1.2 across 
Southern California. Uncertainty in AR cluster frequency stemming from AR 
detection tool (ARDT) choice is provided in Figure S6c in Supporting Infor-
mation S1. Algorithms tend to agree on areas of maximum clustering, with 
the largest disagreement found across the interior and southern portions of 
the domain likely due to differences in the algorithm's IVT threshold tech-
nique (i.e., relative vs. fixed).

Computed as the fraction of the total length of the season (Figure 8b), AR 
clusters (i.e., any time from the first timestep of first AR event in the cluster 
to the last timestep of the last AR event in the cluster, including the gap 
time between events) account for the largest fraction of time (30%) across 
portions of Northern California. Broad minima (5%–10%) are visible across 

Figure 6.  Average fraction of seasons with statistical significance across aggregation periods (days) at 5-day intervals at each grid point for DJF.

Figure 7.  Maximum aggregation period (days) with statistically significant 
clustering for DJF at each grid point.
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the PNW, with slightly elevated values across the Coastal-Cascade Ranges (∼15%). Less heterogeneity is appar-
ent across Central and Southern California, where clustered events comprise 15%–20% of the season. While 
cluster frequency (Figure 8a) is influential here, similarities are also apparent between this pattern and that of the 
maximum aggregation periods with significance (Figure 4). Regions where ARs cluster at longer timescales (e.g., 
the Southwest) will naturally experience a greater amount of seasonal time under a cluster than regions where 
ARs cluster at shorter timescales (e.g., the Northwest).

The ratio of clustered AR events to total AR events (Figure 8c) displays a similar pattern to that of AR cluster 
frequency (Figure 8a). ARs occurring as a part of a cluster account for >85% of total AR occurrence along the 
coast of Northern California and in the Sierra Nevada. Elevated values are also found over the Central Valley of 
California and to the north along the Cascade Range and Olympic Peninsula (60%–70%). Values are generally 
lower (20%) across central Oregon and on the lee sides of the Olympic-Cascade Ranges of Washington. A high 
degree of correlation is apparent across all three frequency metrics (Figures 8a–8c), highlighting the northern half 
of California as the region where AR clusters are most common and comprise the greatest fraction of ARs. The 
southern half of California is a secondary center of action, followed by the PNW.

3.4.2.  AR Cluster Duration and Contributing Events

Mean AR cluster duration is defined as the average number of hours of AR cluster conditions (including gaps) 
at a given location. The longest duration (>336  hr) clusters are found on the Olympic Peninsula, along the 
Coast-Cascade Ranges of Washington and across Northern California (Figure 9a). Comparatively, broad minima 
(<192 hr) reflecting shorter-lived clusters are apparent across Central Oregon and inland across portions of Idaho 
and northern Nevada. Across Central and Southern California values range from 192 to 198 hr, with a pocket 
of elevated values over the Transverse Range. Differences among regional patterns in Figure 4 versus Figure 9a 

Figure 8.  AR cluster frequency shown as (a) average clusters per season, (b) fraction (%) of time with AR cluster conditions, and (c) fraction (%) of total AR events 
that are clustered. Results are shown for DJF calculated at each grid point for 1979–2019.
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(e.g., Washington) suggests maximum significant clustering timescales are not necessarily determinant of aver-
age cluster duration. Histograms of AR cluster duration for three select locations provide insight into why this 
might be the case, revealing substantial variability in the shape and spread of the duration distribution. At PDX 
(Figure 9b), AR clusters range from a few hours to just over two weeks in length, but most commonly persist for 
about a week. BBY has a much broader distribution, with a long right tail extending to over 700 hr or ∼30 days 
in length. At LAX (Figure 9d), the distribution is relatively narrow with a higher degree of uniformity compared 
to the other locations. The shortest-lived clusters at this location are at least 150 hr in length but can last up to 
500 hr or ∼20 days. ARDT choice uncertainty surrounding average AR cluster duration is shown in Figure S6d 
in Supporting Information S1. Although some areas with longest-lived clusters are retained (e.g., Olympic Penin-
sula and Northern California), algorithms tend to diverge across portions of the interior.

Mean AR count per cluster refers to the average number of individual AR events contributing to a cluster at a given 
location (Figure 9e). Patterns align well with AR cluster duration (Figure 9a), indicating longer (shorter) duration 
clusters tend to be composed of a higher (lower) count of individual AR events. The maximum (5 AR events) is 
found on the northern California Coast just south of Cape Mendocino. Corridors of secondary maxima (4 AR events) 
are visible across Northern California and the Transverse Range of Southern California, as well as on the Olympic 
Peninsula along coastal Washington. AR clusters across Central California and the Washington Cascade Range tend 
to be composed of 3 AR events on average. Broad minima (<3 AR events) are found across central Oregon and the 
Northwest interior, as well as across portions of Southern California. Histograms indicate that AR clusters at PDX 
(Figure 9f) are composed of 2–4 AR events. A larger spread in the distribution at BBY (Figure 9g) is characterized 
by a long right-tail, indicating clusters can contain up to 9 individual AR events. A more uniform distribution at LAX 
(Figure 9h) shows clusters range between 2 and 6 AR events, with 3–4 events being the most common.

3.5.  AR Cluster Precipitation

3.5.1.  Fraction of Precipitation Associated With AR Clusters

We subsequently analyze AR cluster precipitation at a high spatial resolution based on the co-occurrence of 
AR clusters and 9-km precipitation data from ERA5-WRF. The fraction of AR cluster-driven precipitation is 

Figure 9.  Average (a) AR cluster duration (hours; blue shading) and (e) AR event count per cluster (magenta shading) are shown at each grid point. Histograms of 
(b–d) AR cluster duration and (f–h) AR events per cluster at Portland, Oregon; Bodega Bay, California; and Los Angeles, California. Results are shown for DJF for 
1979–2019.
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largest (65%) across the coastal mountains of Northern California, over 
portions of the Sierra Nevada, and along the windward side of the Trans-
verse Range (Figure 10a). There is a stark contrast between the fraction in 
the northern half of the domain compared to the southern half. Lower frac-
tions (<35%) across the Northwest likely reflect shorter aggregation peri-
ods (10–15 days) with significance (Figure 4), yielding short-lived clusters 
(Figure 9a) accounting for a smaller proportion of total precipitation. ARs 
unassociated with significant clusters are likely responsible for the majority 
of wintertime precipitation in the PNW, while the opposite is true throughout 
most of California.

The extreme precipitation fraction (i.e., fraction of 95th percentile hourly 
precipitation totals associated with AR clusters; Figure 10b) follows a simi-
lar pattern to the precipitation fraction (Figure 10a) but with stronger gradi-
ents and a higher degree of spatial variability. Domain-wide 95th percentile 
hourly precipitation thresholds are illustrated in Figure S7 in Supporting 
Information  S1 for context. The extreme precipitation fraction is largest 
(85%) over the northern extent of the Sierra Nevada. Secondary maxima 
(>65%) are visible across Northern California and the Transverse Range. 
Across the Northwest, larger values (50%) coincide with regions of complex 
terrain, including the Olympic Peninsula and Coast-Cascade Ranges, as well 
as portions of the Central Idaho Mountains. Minima (5%–25%) are found 
over regions of lower elevation across central Oregon and portions of the 
northern interior.

3.5.2.  Interannual AR Cluster Characteristics

The interannual characteristics of AR clusters and associated precipita-
tion for PDX, BBY, and LAX display a high degree of variability. At PDX 
(Figure 11a), the clustered events (gray bar) comprise all the AR events for 
several seasons including, 1997, 1998, 2011, and 2016. Years with a high 

ratio of clustered to total AR events also tend to be associated with unusually heavy precipitation. For example, 
the 1997 and 2016 seasons coincide with exceedances (black line) of the 95th percentile threshold (dashed line) 
for wintertime total precipitation accumulation which are mirrored by peaks in AR cluster-driven precipitation 
(red line). A detailed look into the 1997 winter season is provided in Figure 5. In 2016, all 11 AR events occurred 
as a part of a cluster, generating 500 mm of the 600 mm total accumulation for the season. Clustering accounts 
for 43% of the interannual variance in precipitation at PDX, despite the fact that AR clusters do not contribute to 
the majority of the precipitation at this location (Figure 10a).

At BBY (Figure 11b), a higher variation in the number of clustered AR events is apparent from year to year. 
As at PDX, the variation in the number of clustered AR events accounts for much of the variation in both the 
number of ARs themselves and the interannual variation in precipitation. The 1998 and 2017 winter seasons 
stand out as having total seasonal precipitation accumulations exceeding the 95th percentile. It is interesting that 
although the 1998 winter season had high AR occurrence, only a small percentage occurred as a part of a cluster. 
This is unlike the 2017 case (see Figure 6 for more detail), or indeed all other years except for 2000. The 1983 
season is also notable with a precipitation total just shy of the 95th percentile, characterized by 17 clustered AR 
events responsible for a large proportion of the precipitation. Seasons with low AR event frequency and total 
precipitation, such as 1985 and 1989, reveal zero AR clusters. Overall, 28% of the interannual variance of total 
precipitation is explained by clustering at BBY, supporting their importance for water availability at this location.

The interannual distribution of AR events at LAX exhibits generally lower seasonal precipitation and AR 
frequency compared to the other locations, consistent with Figures 1a and 1c. Clustering is present for 26 of the 
41 seasons analyzed, unlike the other locations where almost every season contains clusters. The 1993 and 1998 
winter seasons have the highest total accumulated precipitation, both associated with 11 AR events, however 
only 1993 shows clustering, while 1998 shows no clustering, as at BBY. The 2017 season stands out as having 
the highest AR count of 18 events, 12 of which were clustered, generating ∼400 mm of total precipitation with 
∼250 mm attributable to clustering. Several years show a strong presence of clustering coinciding with peaks in 

Figure 10.  Fraction (%) of (a) total precipitation amount and (b) extreme 
precipitation occurrences (i.e., exceedance of the 95th percentile hourly 
precipitation shown in Figure S7 in Supporting Information S1) associated 
with AR clusters. Results are shown for DJF calculated at each grid point for 
1979–2019.
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the distribution of precipitation. The interannual variance of AR cluster driven precipitation accounts for 36% of 
the total precipitation variance at LAX.

4.  Conclusions and Discussion
AR clusters are temporally compounding events consisting of extended periods of AR conditions and potentially 
devastating cumulative impacts. This study applies a novel statistical framework for quantifying subseasonal 

Figure 11.  The distribution of AR events per year for DJF as total AR events (blue bars) and clustered AR events (gray 
bars). Interannual precipitation is shown as total accumulated seasonal precipitation per year (black line) and precipitation 
associated with AR clusters (red line). The dashed line reflects the 95th percentile of cumulative seasonal precipitation. 
Results are shown at (a) Portland, Oregon, (b) Bodega Bay, California, and (c) Los Angeles, California for 1979–2019.
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temporal clustering to a 41-year (1979–2019) AR timeseries over the western US in DJF. Timescales in which 
clustering occurs preferentially over the historical record are determined based on a comparison between observed 
AR occurrence and a synthetic timeseries of random AR event occurrence. Results provide a definition for AR 
clustering alongside an evaluation of their climatological characteristics including, frequency, duration, and asso-
ciated precipitation.

Here an AR cluster is defined as a sequence of AR events occurring over a statistically significant period of 
overdispersion (i.e., more clustered than expected due to chance). Across the western US, AR clusters display 
spatiotemporal variability in their characteristics constituting a distinct spatial pattern that separates the North-
west from the Southwest. Compared to simulations of random event occurrence, ARs are significantly clustered 
over shorter  timescales in the Northwest (two weeks or less) but over a wider range of timescales in the South-
west (over a month in places) (Figures 6 and 7). For perspective, a case study analysis placing notable winter 
seasons within this statistical framework illustrates a coincidence with multiple clusters at three locations along 
the US West Coast (Figures 2–4). Cluster storm total precipitation for these events seldom exceeded the 95th 
percentile of all collocated cluster event accumulated precipitation. This suggests the outsized impacts of the 
events stem from antecedent surface conditions and land-surface interactions linked to the sequential nature of the 
events (e.g., soil saturation, evaporative demand, vegetation). How these effects may amplify AR cluster impacts 
deserves a more detailed investigation.

AR cluster frequency is largest (>2/season) over the northern Coastal Range of California (Figure 8a). In this 
region, clustering occurs >30% of the time (Figure 8b) and accounts for ∼85% of total AR occurrence (Figure 8c). 
These clusters are characterized by long durations (up to a month) composed of high individual AR counts (∼5 
AR events; Figure 9b). Long-lived clusters are also found across the Transverse Range, a region dependent on 
just a few ARs for the majority of its annual precipitation (Dettinger et al., 2011; Neiman et al., 2013). Clustering 
is less frequent across portions of Oregon and Washington. Here clusters account for a smaller fraction of time 
in DJF (∼15%), constituting roughly 50% of total AR occurrence, suggesting that a large proportion of ARs are 
occurring independently or over timescales not considered significant by Ripley's K. High cluster frequency 
visible in Washington follows a northeast-southwest orientation collocated with the Cascade Range (Figures 8a 
and 8c). The increased presence of clustering over portions of the interior domain may be related to inland/inte-
rior penetrating ARs which tend to have a more amplified flow pattern compared to coastal-decaying ARs (Rutz 
et al., 2015).

AR's clustering more than what would be expected by chance suggests dynamical mechanisms favor cluster 
development. Although outside the scope of this study, longer versus shorter clustering durations may be driven 
by differing meteorological environments and/or mechanisms, which may have implications for their predicta-
bility (Fish et al., 2022). Long duration clustering among ETCs has been linked to persistent large-scale flow 
patterns and their interaction with successive Rossby wave-breaking patterns (Dacre & Pinto, 2020). Shorter 
duration sequences composed of fewer AR events may be characterized by different synoptic environments (e.g., 
mesoscale frontal waves or migratory eddies) (Fish et al., 2019; Nakamura, 1992; Nakamura & Sampre, 2002). 
Amplified flow patterns associated with interior penetrating ARs (i.e., more southwesterly flow (vs. westerly) 
and larger water vapor transport than coastal decaying ARs; see Rutz et al., 2015) may be favorable to a cluster 
of ARs that are sufficiently strong/moist to penetrate and be detected over interior/leeside regions. The distinct 
statistically significant clustering timescales presented here can be leveraged to investigate the dynamics and 
synoptic environments that favor AR cluster development for improved predictability and situational awareness.

As expected, the contribution of AR cluster-related precipitation, represented by the fractions of total (55%–65%) 
and extreme precipitation (70%–85%) (Figure 10), is largest over Northern California, along the Sierra Nevada, and 
across the Transverse Range. This result is consistent with the spatial pattern of average total precipitation  accu-
mulation for AR family events over California in Fish et al., 2022, displaying higher values collocated with areas 
of enhanced topography. Less precipitation is attributable to clustering across the PNW (≤35%), suggesting a 
larger contribution from ARs that are randomly distributed in time and/or a role for other precipitation-generating 
mechanisms (e.g., closed lows; see Abatzoglou, 2016). Alternatively, lower fractions across portions of the North-
west interior and Great Basin likely reflect water vapor depletion due to orographic precipitation processes (e.g., 
Smith et al., 2005, 2010) resulting in fewer, less moisture laden ARs further inland. The contrasting north-south 
pattern is attributable to the relatively shorter timescales at which ARs significantly cluster in the north. AR clus-
ters display large interannual variability across winter seasons (Figure 11). Histograms of AR cluster frequency 
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and associated precipitation over 41 winter seasons suggest AR clusters may be responsible for modulating wet 
versus dry years consistent with Fish et al., 2022 and AR family frequency characteristics during active/inactive 
water years. This is particularly true farther south where the presence/absence of a single cluster may drastically 
alter the annual precipitation.

Although the statistical framework applied here is intuitive, it has its limitations. Significance testing requiring the 
majority of years and aggregation periods within each 5-day interval to have significance reflects a high degree of 
stringency. Less conservative requirements would have the potential to produce a higher occurrence of clustering, 
accounting for a higher proportion of the interannual variance of total precipitation. These results are somewhat 
sensitive to the gap length (i.e., ≤10 days) chosen to define AR strings prior to filtering against the Ripley's K 
output. A narrower gap length definition requiring fewer timesteps (i.e., ≤5 days) between individual AR events 
would result in a higher count of shorter duration clusters but would not largely change the fraction of AR cluster 
time per season. Sensitivity to ARDT choice indicates uncertainty in AR cluster characteristics when comparing 
relative versus fixed IVT threshold techniques (Figure S6 in Supporting Information S1). Broad consistency was 
found in areas where AR clusters are most frequent and long-lived (Figures S6c and S6d in Supporting Informa-
tion S1). Algorithm disagreement was most apparent across the drier interior where AR event frequency is most 
uncertain (Figure S6a in Supporting Information S1). Permissive ARDTs (e.g., Guan & Waliser, 2015) detect 
non-traditional AR shapes that can influence spatial patterns of AR cluster metrics (e.g., high spatial variability 
across Washington in Figures 8a and 8c). The spatiotemporal progression of large AR features with appendages 
can lead to persistence and breaks (i.e., noise) in AR conditions at a grid point contributing to heterogeneity 
among AR cluster climatologies. Ultimately, the main conclusions relating to the distinctions between the North-
west and California would be qualitatively similar and robust to the methodological choices discussed above.

Results from this analysis aim to improve our understanding of the characteristics and impacts associated with 
multiple sequential ARs affecting the western US. This largely understudied topic has important ramifications for 
the occurrence of megaflood events, such as ARkstorm, as well as drought, which pose a significant ecological 
and socioeconomic threat. More broadly, changing spatiotemporal patterns of extended periods of AR conditions 
(i.e., cluster duration) are critical for improved situational awareness informing AR predictability and forecasting. 
As a historical analysis, results are intended to serve as a benchmark for measuring future change in AR clustering 
under warming. We also plan to extend this methodology geographically to characterize spatiotemporal patterns of 
AR clustering globally. Although outside the scope of this study, dynamical mechanisms acting on longer tempo-
ral and spatial scales than AR events, such as Rossby wave breaking and North Pacific jet dynamics, have been 
shown to foster AR and cyclone development (Griffin & Martin, 2017; Hu et al., 2017; Mundhenk et al., 2016). 
Future work examining the primary synoptic environments and potential AR/ETC cluster co-occurrence has the 
potential to improve our understanding of AR cluster formation and the dynamics driving heavy precipitation and 
flooding. With warming likely to induce change, a robust understanding of the tendency of ARs to cluster in time 
and space is imperative to mitigate risk and inform effective adaptation strategies.

Data Availability Statement
All AR data are available from the Climate Data Gateway (ARTMIP,  2022). WRF outputs are available on 
Amazon S3 and are accessible with Amazon Web Services Command Line Interface (AWS CLI, 2022). See 
https://registry.opendata.aws/wrf-cmip6/ for data access information. ERA5 data is available from the Copernicus 
Climate Change Service (C3S) Climate Data Store at https://cds.climate.copernicus.eu/ (Hersbach et al., 2023).
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