
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

12-2023

Preventing Inferences through Data Dependencies Preventing Inferences through Data Dependencies

on Sensitive Data on Sensitive Data

Primal Pappachan
Portland State University

Shufan Zhang
University of Waterloo

Xi He
University of Waterloo

Sharad Mehrotra
University of California, Irvine

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Pappachan, P., Zhang, S., He, X., & Mehrotra, S. (2023). Preventing Inferences through Data Dependencies
on Sensitive Data. IEEE Transactions on Knowledge & Data Engineering, (01), 1-18.

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Computer Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/335
mailto:pdxscholar@pdx.edu

2

Preventing Inferences through Data
Dependencies on Sensitive Data

Primal Pappachan, Member, IEEE, Shufan Zhang, Student Member, IEEE, Xi He, Member, IEEE,
and Sharad Mehrotra, Fellow, IEEE

Abstract—Simply restricting the computation to non-sensitive part of the data may lead to inferences on sensitive data through data
dependencies. Inference control from data dependencies has been studied in the prior work. However, existing solutions either detect
and deny queries which may lead to leakage – resulting in poor utility, or only protects against exact reconstruction of the sensitive data
– resulting in poor security. In this paper, we present a novel security model called full deniability. Under this stronger security model,
any information inferred about sensitive data from non-sensitive data is considered as a leakage. We describe algorithms for efficiently
implementing full deniability on a given database instance with a set of data dependencies and sensitive cells. Using experiments on
two different datasets, we demonstrate that our approach protects against realistic adversaries while hiding only minimal number of
additional non-sensitive cells and scales well with database size and sensitive data.

Index Terms—Inference Control, Data Dependencies, Inference Protection, Security & Privacy, Access Control

✦

1 INTRODUCTION

1 O RGANIZATIONS today collect data about individuals that2

could be used to infer their habits, religious affiliations, and3

health status — properties that we typically consider as sensitive.4

New regulations, such as the European General Data Protection5

Regulation (GDPR) [2], the California Online Privacy Protection6

Act (CalOPPA) [3], and the Consumer Privacy Act (CCPA) [4],7

have made it mandatory for organizations to provide appropriate8

mechanisms to enable users’ control over their data, i.e., (how—9

why— for how long) their data is collected, stored, shared, or10

analyzed. Fine Grained Access Control Policies (FGAC) supported11

by databases is an integral technology component to implement12

such user control. FGAC policies enable data owners/administra-13

tors to specify which data (i.e., tables, columns, rows, and cells14

) can/cannot be accessed by which querier (individuals posing15

queries on the database) and is, hence, sensitive [5] for that querier.16

Traditionally, Database Management Systems (DBMS) implement17

FGAC by filtering away data that is sensitive for a querier and18

computing the query on only the non-sensitive part of the data.19

Such a strategy is implemented using either query rewriting [6],20

[7] or view-based mechanisms [8]. It is well recognized that21

restricting query computation to only non-sensitive data may22

not prevent the querier from inferring sensitive data based on23

semantics inherent in the data [9], [10]. For instance, the querier24

may exploit knowledge of data dependencies to infer values of25

sensitive data as illustrated in the example below.26

Example 1. Consider an Employees table (Figure 1) and an27

FGAC policy by a user Bobby to hide his salary per hour28

(SalPerHr) from all the queries by other users. If the semantics of29

• A preliminary version of this article was accepted and presented in VLDB
2022 [1].

• P. Pappachan is with Portland State University, Portland, OR 97201. E-
mail: primal@pdx.edu.

• S. Zhang and X. He are with the University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1. E-mail: {shufan.zhang, xi.he}@uwaterloo.ca.

• S. Mehrotra is with University of California, Irvine, CA 92697 USA. E-
mail: sharad@ics.uci.edu.

the data dictates that any two employees who are faculty should 30

have the same SalPerHr, then hiding SalPerHr of Bobby would 31

not prevent its leakage from a querier who has access to Carrie’s 32

SalPerHr. 33

In general, leakage may occur from direct/indirect inferences 34

due to different types of data dependencies, such as conditional 35

functional dependencies (CFD) [11], denial constraints [12], ag- 36

gregation constraints [13], and/or functional constraints that exist 37

when dependent data values are derived/computed using other data 38

values as shown below. 39

Example 2. Consider the Employee and Wage tables shown in 40

Table 1. Let Danny specify FGAC policies to hide his SalPerHour 41

in Employee Table and Salary in Wage Table. Suppose there exists 42

a constraint that employees with role Staff cannot have a higher 43

salary per hour than a faculty in the state of California. Using 44

Bobby’s salary per hour that is leaked in Example 1, the new 45

constraint about the staff salary, and the functional constraint 46

between that Salary and the fields function of WorkHrs and 47

SalPerHr, information about the salary and the salary per hour 48

of Danny will be leaked even though they are sensitive. 49

To gain insight into the extent to which leakage could occur 50

due to data semantics, we conducted a simple experiment on a 51

synthetic dataset [12], [14] that contains the address and tax infor- 52

mation of individuals. The tax data set consists of 14 attributes and 53

has associated with it 10 data dependencies, an example of which 54

is a denial constraint “if two persons live in the same state, the one 55

earning a lower salary has a lower tax rate”. An adversary can 56

use the above dependency to infer knowledge about the sensitive 57

cells. Suppose the salary attribute of an individual is sensitive and 58

therefore hidden. If the disclosed data contains information about 59

another individual who lives in the same state and has a lower tax 60

rate, an adversary can infer the upper bound of this individual’s 61

salary using the dependency. To demonstrate this leakage, we 62

considered an attribute with a large number of data dependencies 63

defined on them (e.g., state) to be sensitive, and thus, replaced 64

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

Fig. 1. Employee and Wages Table

its values by NULL. We then used state-of-the-art data-cleaning65

software, Holoclean [15], as a real-world attacker to reconstruct66

the NULL values associated with the sensitive cells. Holoclean67

was able to reconstruct the actual values of the state 100% of the68

time highlighting the importance of preventing leakage through69

data dependencies on access control protected data.70

Prior literature has studied the challenge of controlling infer-71

ences about sensitive data using data dependencies and called it72

the “inference control problem”. [9]. Existing techniques used73

to protect against inferences can be categorized based on when74

the leakage prevention is applied [16]. In the first category,75

inference channels between sensitive and non-sensitive attributes76

are detected and controlled at the time of database design [17],77

[18]. A database designer uses methods in this category to detect78

and prevent inferences by upgrading classification of inferred79

attributes. However, they result in poor data availability if a80

significant number of attributes are marked as sensitive to prevent81

leakages. The second category of work includes detection and82

control at the time of query answering. Works such as [16], [19]83

determine if answers to the query could result in inferences about84

sensitive data using data dependencies, and reject the query if such85

an inference is detected. Such query control approaches can lead to86

the rejection of many queries when there is a non-trivial number of87

sensitive cells and background knowledge. Another limitation of88

the prior work is the weak security model used in determining how89

to process queries. All prior work on inference control considers90

a query answer to leak sensitive data if the answer can be used to91

reconstruct the exact value of a sensitive object. Leakages that do92

not reveal the exact value but, perhaps, limit the values a sensitive93

object may take are not considered as leakage. For instance, in94

Example 2 above, since the constraints do not reveal Danny’s exact95

salary but only that it is below $200 per hour, prior works will96

not consider it to be a leakage even though the querier/adversary97

could eliminate a significant number of possible domain values98

based on the data constraints. As we explain in detail in Section 9,99

the existing solutions to the inference control cannot be easily100

generalized to prevent such leakages.101

In this paper, we study the problem of answering user queries102

under a new, much stronger model of security — viz., full denia-103

bility. Under full deniability, any new knowledge learned about the104

sensitive cell through data dependencies is considered as leakage.105

Thus, eliminating a domain value as a possible value an attribute /106

cell can take violates full-deniability. One can, of course, naively,107

achieve full deniability by hiding the entire database. Instead, our108

goal is to identify the minimal additional non-sensitive cells that109

must be hidden so as to achieve full deniability. In addition, we110

require the algorithm that identifies data to hide in order to achieve111

full deniability to be efficient and scalable to both large data sets112

and to a large number of constraints.113

We study our approach to ensuring full deniability during 114

query processing under two classes of data dependencies 1: 115

• Denial Constraints (DCs): that are general forms of data 116

dependencies expressed using universally quantified first-order 117

logic. They can express commonly used types of constraints 118

such as functional dependencies (FD) and conditional func- 119

tional dependencies (CFD) and are more expressive than both 120

• Function-based Constraints (FCs): that establish relationships 121

between input data and the output data it is derived from, using 122

functions. Such constraints arise naturally when databases 123

store materialized aggregates or when data sensor data, col- 124

lected over time (e.g., from sensors), is enriched (using appro- 125

priate machine learning tools) to higher level observations. 126

To achieve full deniability, we first develop a method for 127

Inference Detection, that detects, for each sensitive cell, the non- 128

sensitive cells that could result in a violation of full deniability. 129

The candidate cells identified by Inference Detection are passed 130

to the second function, Inference Protection that minimally selects 131

the non-sensitive data to hide to prevent leakages. Our technique 132

is geared towards maximizing utility when preventing inferences 133

for a large number of sensitive cells and their dependencies. After 134

hiding additional cells, Inference Detection is invoked repeatedly 135

to detect any indirect leakages on the sensitive cells through 136

the new set of hidden cells and their associated dependencies. 137

These methods are invoked cyclically until no further leakages are 138

detected either on the sensitive cells or any additional cells hidden 139

by Inference Protection. Using these two different methods, we are 140

able to achieve the security, utility, and performance objectives of 141

our solution. 142

The main contributions in our paper are: 143

• A security model, entitled full deniability to protect against 144

leakage of sensitive data due to data semantics in the form of 145

Denial Constraints and Function-based Constraints. 146

• Identification of conditions under which full deniability can 147

be achieved and efficient algorithms for inference detection 148

and protection to achieve full deniability while only minimally 149

hiding additional non-sensitive data. 150

• A relaxed k-percentile deniability model, relaxations of secu- 151

rity assumptions, and algorithms to achieve these relaxations. 152

• A prototype middleware (∼10K LOC) that works alongside 153

DBMS to ensure full deniability given a set of dependencies 154

and policies. 155

• Experimental results on two different data sets show that our 156

approach is efficient and only minimally hides non-sensitive 157

1. Other data dependencies such as Join dependencies (JD) and Multivalued
dependencies are not common in a clean, normalized database and therefore
not interesting to our problem setting.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

cells while achieving full deniability.158

Paper Organization. We introduce the notations used in the paper159

and describe access control policies and data dependencies in160

Section 2. In Section 3, we present the security model — full161

deniability — proposed in this work. In Section 4, we describe162

how the leakage of sensitive data occurs through dependencies163

and introduce function-based constraints. We present in Section 5,164

the algorithms for inference detection and protection along with165

optimizations to improve utility. In Section 6, we extend the full166

deniability model to k-percentile deniability and in Section 7 we167

relax the security assumptions in our model. In Section 8, we168

present results from an end-to-end evaluation of our approach with169

two different data sets and different baselines. In Section 9 we go170

over the related work and we conclude the work by summarizing171

our contributions, and possible future extensions in Section 10.172

Comparison to Conference Version. In this version, new con-173

tents include 1) novel algorithms for improving scalability and174

utility, i.e., a binning-then-merging algorithm to scale up infer-175

ence protection and algorithms to achieve a weaker k-deniability176

security notion; 2) a detailed study of relaxing the assumptions177

w.r.t adversary presented in the preliminary version along with178

modified algorithms to achieve full deniability under new settings;179

3) more ablation experiments for evaluating performance and util-180

ity under different settings; 4) expanded related work along with181

more details on the datasets and models used for experiments.182

2 PRELIMINARIES183

Consider a database instance D consisting of a set of relations184

R. Each relation R ∈ R = {A1, A2, . . . , An} where Aj is an185

attribute in the relation. Given an attribute Aj in a relation R we186

use Dom(Aj) to denote the domain of the attribute and |Dom(Aj)|187

to denote the number of unique values in the domain (i.e. the188

domain size)2. A relation contains a number of indexed tuples, ti189

represents the ith tuple in the relation R, and ti[Aj] refers to the190

jth attribute of this tuple.191

We will use the cell-based representation of a relation to192

simplify notation when discussing the fine-grained access control193

policies and data dependencies. Figure 1 shows two tables, the194

Employee table with cells c1 to c28 and the Wages table with cells195

c29 to c40. Note that in the cell-based notation each table, row,196

column corresponds to a set of cells. For instance, the second197

tuple/row of Wages table is the set of cells {c32, c33, c34} and198

the column for attribute Zip in the Employee table is the set199

{c3, c10, c17, c24}. Each cell has an associated value. For instance,200

the value of cell c11 is “CA”.201

2.1 Access Control Policies202

Data sharing is controlled using access control policies, or simply203

policies. We classify users U as data owners, who set the access204

control policies, and as queriers, who pose queries on the data.205

Ownership of data is specified at tuple level and a data owner206

of a tuple may specify policies marking one or more cells (ci)207

in the tuple t as sensitive against queries by other users. When208

another user queries the database, the returned data has to be209

policy compliant (i.e., policies relevant to the user are applied210

2. We say the domain size in the context of an attribute with discrete domain
values and for continuous attributes we discretize their domain values into a
number of non-overlapping bins.

to the query results). We assume queries have associated metadata 211

that contains information about the querier 3. 212

Query model. The SELECT-FROM-WHERE query posed by a 213

user U is denoted by Q. In our model, we consider that queries 214

have associated metadata which consists of information about 215

the querier and the context of the query. This way, we assume 216

that for any given query Q, it contains the metadata such as the 217

identity of the querier (i.e., Qquerier) as well as the purpose of 218

the query (i.e., Qpurpose). For example, Qquerier=“John” and 219

Qpurpose=“Analytics”. 220

Policy model. A policy P is expressed as <OC, SC, AC>, 221

where AC corresponds to the action, i.e., either deny or allow, 222

SC corresponds to the subject condition i.e, the user to whom 223

the policy applies (e.g., the identity of the querier, or the group 224

for which the policy applies, in case queriers are organized into 225

groups), and OC corresponds to a set of object conditions that 226

identifies the cells on which the policy is to be enforced. Each 227

object condition OCi is represented using the following 3-tuple: 228

{R, σ, Φ} where R is the relation, σ and Φ are the selection and 229

projection conditions respectively that together select the cells that 230

are sensitive. The application of a policy is done by a function over 231

the database that returns NULL for a cell if it is disallowed by the 232

policy or the original cell value if it is allowed. This is modelled 233

after FGAC policy models used in previous works [7], [21]. We 234

denote the set of cells identified by OCi as COCi . 235

Definition 1 (Sensitive Cell). Given a policy P =<OC, SC, AC>, 236

we say that a cell c is sensitive to a user U if c ∈ COCi
where 237

OCi ∈ OC, U = SC.querier, and AC = deny. After applying 238

P , c is replaced with NULL. The set of cells sensitive to the user 239

U is denoted by CS
U or simply CS when the context is clear. 240

Example 3. An example policy from scenario in Section is 241

<{Employee, EName = “Carrie Sea”, SalPerHr}, {“John Doe”, 242

}, {deny}>. The policy specifies that the salary information 243

(SalPerHr) of Employee Carrie (EName = “Carrie Sea”) in the 244

Employee table should be denied (i.e., it is sensitive) to the Querier 245

= “John Doe” . 246

2.2 Data Dependencies 247

The semantics of data is expressed in the form of data dependen- 248

cies, that restrict the set of possible values a cell can take based 249

on the values of other cells in the database. Several types of data 250

dependencies have been studied in the literature such as foreign 251

keys, functional dependencies (FDs), and conditional functional 252

dependencies (CFDs), etc. We consider two types of dependencies 253

as follows: 254

Denial Constraints (DC), is a first-order formula of the form 255

∀ ti, tj , . . . ∈ D, δ : ¬(Pred1∧Pred2∧ . . .∧PredN) where Predi 256

is the ith predicate in the form of tx[Aj]θty[Ak] or tx[Aj]θconst 257

with x, y ∈ {i, j, . . .}, Aj ,Ak ∈ R, const is a constant, and 258

θ ∈ {=, >,<, ̸=,≥,≤}. DCs are quite general — they can 259

model dependencies such as FDs & CFDs and are flexible enough 260

to model much more complex relationships among cells. Data 261

dependencies in the form of DCs have been used in recent prior 262

literature for data cleaning [22], [23], query optimization [24], and 263

secure databases [16], [25]. Moreover, systems, such as [12], have 264

3. In general, policies control access to data based not just on the identity of
the querier, but also on purpose [20]. Thus, metadata associated with the query
will also contain purpose in addition to the querier identity.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
.

5

been designed to automatically discover DCs in a given database.265

This is the type of DCs considered throughout the paper. We used266

a data profiling tool, Metanome [26] to identify the complete set267

of denial constraints.268

Function-based Constraints (FCs) capture the relationships be-269

tween derived data and its inputs. As described in Example 2, the270

Salary in the Wages table (see Table 1) is a attribute derived using271

WorkHrs and SalPerHr i.e., Salary := fn(WorkHrs, SalPerHr).272

In general, given a function fn with r1, r2, . . . , rn as the input273

values and si as the derived or output value, the FC can be274

represented by fn(r1, r2, . . . , rn) = si.275

3 FULL DENIABILITY276

In this section, we discuss the assumptions in our setting and277

present the concept of view of a database for the querier and278

formalize an inference function with respect to the view and279

data dependencies. We formally define our security model —280

Full Deniability — based on the inference function and use it281

to determine the leakage on sensitive cells.282

3.1 Assumptions283

We will assume that tuples (and cells in tuples) are independently284

distributed except for explicitly specified dependencies that are285

either learnt automatically or specified by the expert. The database286

instance is assumed to satisfy the data dependencies. The querier,287

who is the adversary in our setting, is assumed to know the288

dependencies and can use them to infer the sensitive data values.289

This assumption leads to a stronger adversary than the standard290

adversary considered by many algorithms for differential privacy291

or traditional privacy notions like k-anonymity or access controls,292

which assumes the adversary knows no tuple correlations (or293

tuples are independent). A querier is free to run multiple queries294

and can attempt to make inferences about sensitive data based on295

the results of those queries. Two queriers, however, do not collude296

(i.e., share answers to the queries). We note that if such collusions297

were to be allowed, it would void the purpose of having different298

access control policies for different users.299

As queriers are service providers or third parties who are300

interested in obtaining user data to provide a service and therefore301

we assume that queriers and data owners do not overlap. We also302

assume that a querier cannot apriori determine if a cell is sensitive303

or not (i.e., they do not know the access control policies). To see304

why this is important, consider a FD defined on the Employee305

table (in Fig. 1) Zip→State. Suppose c11(State = “CA”) is306

sensitive based on the policy and in order to prevent inferences307

using the FD, let c24 be hidden. If the querier has knowledge that308

c24 is hidden due to our approach (and hence know that c11 was309

sensitive), they can deduce that c25 and c11 have the same value.310

3.2 Querier View311

For each querier, given the set of policies applicable to the querier,312

the algorithm first determines which cell is sensitive to them. Such313

cells are set to NULL in the view of the database shared with the314

querier. As noted in the introduction, if only the sensitive cells are315

set to NULL and all the non-sensitive cells retain their true values,316

the querier may infer information about the sensitive cells through317

the various dependencies defined on the database. It is necessary,318

therefore, to set some of the non-sensitive cells to NULL in order to319

prevent leakages due to dependencies. Henceforth, we will refer320

to the cells, both sensitive and non-sensitive, whose values will 321

be replaced by NULL as hidden cells, denoted by CH . We now 322

present the concept of a querier view on top of which queries are 323

answered. 324

Definition 2 (Querier View). The set of value assignments for a 325

set of cells C in a database instance D with respect to a querier is 326

denoted by V(C) or simply V when the set of cells is clear from 327

the context. The value assignment for a cell could be either the 328

true value of this cell in D or NULL value (if it is hidden). 329

We also define a concept of the base view of database for a 330

querier, denoted by V0. In V0, all the cells in D are set to be 331

NULL. We consider the information leaked to the querier based 332

on computing the query results over the base view V0 as the least 333

amount of information revealed to the querier. For instance, the 334

base view may provide querier with information about number of 335

tuples in the relation, but, by itself it will not reveal any further 336

information about the sensitive cells, despite what dependencies 337

hold over the database. Our goal in developing the algorithm to 338

prevent leakage would be to determine a view V for a querier 339

that hides the minimal number of cells, and yet, leaks no further 340

information than the base view. Next, we define an inference 341

function that captures what the querier can infer about a sensitive 342

cell in a view using dependencies. 343

3.3 Inference Function 344

Dependencies such as denial constraints are defined at schema 345

level, such as the dependency δ on Table 1: 346

δ : ∀ti, tj ∈ Emp¬(ti[State] = tj [State] ∧ ti[Role] = tj [Role]

∧ ti[SalPerHr] > tj [SalPerHr]).

Given a database instance D, the schema level dependencies 347

can be instantiated using the tuples. If the Employee Table has 4 348

tuples, then there are
(4
2

)
= 6 number of instantiated dependencies 349

at cell level. For example, one of the instantiated dependencies for 350

δ is 351

δ̃ : ¬((c11 = c18) ∧ (c12 = c19) ∧ (c14 > c21)) (1)

where {c11, c18, c12, c19, c14, c21} correspond to t2[State], 352

t3[State], t2[Role], t3[Role], t2[SalPerHr], and 353

t3[SalPerHr] in the Employee Table respectively. From 354

now on, we use S∆ to denote the full set of instantiated 355

dependencies for the database instance D at cell level. We use 356

Preds(δ̃), Preds(δ̃ , c), and Preds(δ̃\c) to represent the set of 357

predicates in the instantiated dependency δ̃ , the set of predicates 358

in δ̃ that involves the cell c, and the set of predicates in δ̃ that 359

do not involve the cell c respectively. We also use Cells(δ̃) 360

and Cells(Pred) to represent the set of cells in an instantiated 361

dependency and a predicate respectively. For each instantiated 362

dependency δ̃ ∈ S∆, when every cell ci ∈ Cells(δ̃) is assigned 363

with a value xi ∈ Dom(ci), denoted by δ̃(. . . , ci = xi, . . .), 364

the expression associated with an instantiated dependency can be 365

evaluated to either True or False. Note that since the database is 366

assumed to satisfy all the dependencies, all of the instantiated 367

dependencies must evaluate to True for any instance of the 368

database. 369

We use the notation I(c | V) to denote the set of values 370

(inferred by the querier) that the cell c can take given the view V 371

but without any knowledge of the set of dependencies. Likewise, 372

I(C | V) denote the cross product of the inferred value sets for 373

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

cells in the cell set C, i.e., I(C | V) = ×c∈CI(c | V). Clearly, if374

in a view, a cell is assigned its original/true value (and not NULL)375

then I(c | V) consists of only its true value. We will further376

assume that:377

Assumption 1. Let V be a view and c be a cell with value NULL378

assigned to it in V. I(c | V) = Dom(c). That is, a querier without379

knowledge of dependencies, cannot infer any further information380

about the value of the cell beyond its domain.381

Knowledge of the dependencies can, however, lead the querier382

to make inferences about the value of the cell. The following383

example illustrates that the querier may be able to eliminate some384

domain values as possible assignments of Dom(c).385

Example 4. Let c14 in Table 1 be sensitive for a querier and let386

the view V be the same as the original table with c14 replaced with387

NULL. Furthermore, let δ̃ (Eqn. (1)) (that refers to c14) hold. If the388

querier is not aware of this dependency δ̃ , the inferred value set389

for c14 is the full domain, i.e., I(c14 | V) = Dom(c14). However,390

knowledge of δ̃ leads to the inference that c14 ≤ 200 since the391

other two predicates (c11 = c18, c12 = c19) are True.392

Definition 3 (Inference Function). Given a view V and an instan-393

tiated dependency δ̃ for a cell ci ∈ Cells(δ̃), the inferred set of394

values for ci by δ̃ is defined as395

I(ci|V, δ̃):= {xi | ∃(. . . , xi−1, xi+1, . . .)

∈ I(Cells(δ̃)\{ci} | V)
s.t. δ̃(. . . , ci = xi, . . .) = True} (2)

where n denotes the size of the cell set |Cells(δ̃)| and xi ∈396

Dom(ci).397

Given a view V and a set of instantiated dependencies S∆ =398

{. . . , δ̃ , . . .}, the inferred value for a cell c is the intersection of399

the inferred values for ci over all the dependencies, i.e.,400

I(ci|V, S∆) :=
⋂

δ̃∈S∆

I(ci|V, δ̃) (3)

3.4 Security Definition401

We can now formally define the concept of full deniability of a402

view. Note that given a view V and a set of dependencies S∆, the403

following always holds: I(c|V, S∆) ⊆ I(c|V0, S∆). We say that a404

V achieves full deniability if the two set are identical i.e., the query405

results does not enable the querier to infer anything further about406

the database than what the querier could infer from the V0 (which,407

as mentioned in Sec. 3.2, is the least amount of information leaked408

to the querier).409

Definition 4 (Full Deniability). Given a set of sensitive cells CS
410

in a database instance D and a set of instantiated dependencies411

S∆, we say that a querier view V achieves full deniability if for412

all c∗ ∈ CS ,413

I(c∗|V, S∆) = I(c∗|V0, S∆). (4)

4 FULL DENIABILITY WITH DATA DEPENDENCIES414

In this section, we first identify conditions under which denial415

constraints could result in leakage of sensitive cells (i.e., violation416

of full deniability) and further consider leakages due to function-417

based constraints (discussed in Section 2).418

4.1 Leakage due to Denial Constraints 419

An instantiated denial constraint consists of multiple predicates in 420

the form of δ̃ = ¬(Pred1 ∧ . . . ∧ PredN) where each predicate 421

is either PredN = c θ c′ or PredN = c θ const. A valid value 422

assignment for cells in C(δ̃) has at least one of the predicates in 423

δ̃ evaluating to False so that the entire dependency instantiation 424

δ̃ evaluates to True. Based on this observation, we identify a 425

sufficient condition to prevent a querier from learning about a 426

sensitive cell c∗ ∈ CS in an instantiated DC δ̃i with value 427

assignments. 428

As shown in Example 4, for an instantiated DC δ̃ with 429

cell value assignments, when all the predicates except for the 430

predicate containing the sensitive cell (Pred(δ̃\c∗)) evaluates to 431

True, a querier can learn that the remaining predicate Pred(δ̃ , c∗) 432

evaluates to False even though c∗ is hidden. Thus, it becomes 433

possible for the querier to learn about the value of a sensitive cell 434

from the other non-sensitive cell values. We can prevent such an 435

inference by hiding additional non-sensitive cells. 436

Example 5. Suppose, in Example 4, we hide the non-sensitive cell 437

(e.g., c11) in addition to c14 (i.e., replace it with NULL). Now, the 438

querier will be uncertain of the truth value of c11 = c18, and as a 439

result, cannot determine the truth value of the predicate c14 > c21 440

containing the sensitive cell. Since the predicate, c14 > c21 could 441

either be true or false, the querier does not learn anything about 442

the value of the sensitive cell c14. 443

We can formalize this intuition into a sufficient condition that 444

identifies additional non-sensitive cells to hide which we refer to 445

as the Tattle-Tale Condition (TTC) 4 in order to prevent leakage 446

of sensitive cells, as follow: 447

Definition 5 (Tattle-Tale Condition). Given an instantiated DC δ̃ , 448

a view V, a cell c ∈ Cells(δ̃), and Preds(δ̃\c) ̸= ϕ 449

TTC(δ̃ ,V, c) =

True, ∀ Predi ∈ Preds(δ̃\c),
eval(Predi,V) = True

False, otherwise
(5)

where eval(Pred,V) refers to the truth value of the predicate Pred 450

in the view V using the standard 3-valued logic of SQL i.e., a 451

predicate evaluates to true, false, or unknown (if one or both cells 452

are set to NULL). The predicates only compare between the values 453

of two cells or the value of a cell with a constant. 454

Note that TTC(δ̃ ,V, c) is True if and only if all the predicates 455

except for the predicate (s) containing c (Preds(δ̃ , c)) evaluate 456

to True in which case, the querier can infer that the one of 457

the predicates containing c must be false and, as a result, could 458

exploit the knowledge of the predicate (s) to restrict the set of 459

possible values that c could take. This leads us to a sufficient 460

condition to achieve full deniability as captured in the following 461

two theorems. In proving the theorems, we will assume that none 462

of the predicates in the denial constraints are trivial That is, there 463

always exist a domain value for which the predicate can be true 464

or false. This also means that in the base view V0 (where all 465

cells are hidden), for any cell ci ∈ cells(δ̃) and for any predicate 466

Pred ∈ Preds(δ̃ , c), there exists a possible assignment for ci in 467

I(ci | V0, δ̃) such that eval(Pred,V0) returns False. The proof is 468

inclduded in the appendix. 469

Theorem 1. Given an instantiated DC δ̃ , a view V, and a sensitive 470

cell c∗ ∈ Cells((δ̃)) whose value is hidden in this view. If the 471

4. Tattle-Tale refers to someone who reveals secret about others

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

Tattle-Tale Condition TTC(δ̃ ,V, c∗) evaluates to False, then the472

set of inferred values for c∗ from V is the same as that from the473

base view V0 (where all the cells are hidden), i.e., I(c∗|V, δ̃) =474

I(c∗|V0, δ̃).475

Corollary 1. Given a set of instantiated DCs S∆, a view V, and476

a sensitive cell c∗ whose value is hidden in this view. If for each of477

the instantiations δ̃i ∈ S∆, TTC(δ̃i,V, c∗) evaluates to False then478

the set of inferred values c∗ from the V is same as that from the479

base view V0 i.e., I(c∗ | V, S∆) = I(c∗ | V0, S∆).480

Proof. From Theorem 1, we know that for each δ̃i ∈ S∆ when the481

TTC is False, we have I(c∗|V, δ̃i) = I(c∗|V0, δ̃i). As each indi-482

vidual set based on individual dependency instantiation are equal483

in both the released view and base view, the joint set of values in484

both views computed by the intersection of all the sets should485

also be equal i.e.,
⋂

δ̃i∈S∆
I(c∗|V, δ̃i) =

⋂
δ̃i∈S∆

I(c∗|V0, δ̃i).486

According to Equation 3, this joint set is the final inferred set487

of values for c∗ based on S∆ in a given view and as they are equal488

we have I(c∗ | V, S∆) = I(c∗ | V0, S∆).489

If the dependency δ̃ only contains a single predicate, the Tattle-490

Tale condition evaluates to True even in V0 when all the cells491

are hidden TTC(δ̃ ,V0, ci) =True in the cases of Pred(ci) and492

therefore it is not possible to prevent querier from learning about493

the truth value of the sensitive predicate.494

4.2 Selecting Cells to Hide495

As shown in Theorem 1, the Tattle-Tale condition evaluating496

to False is the sufficient condition of achieving full deniability497

requirement. TTC(δ̃ ,V, c) evaluates to False when one of the498

following holds: (i) none of the predicates involve the sensitive499

cell i.e., Preds(δ̃ , c∗) = ϕ (trivial case); (ii) one of the other500

predicates in Preds(δ̃\c∗) evaluates to False in V; or (iii) one of501

the other predicates in Preds(δ̃\c∗) involve a hidden cell in V and502

thus evaluates to Unknown.503

We define cuesets5 as the set of cells in an instantiated DC that504

can be hidden to falsify the Tattle-Tale condition.505

Definition 6 (Cueset). Given an instantiated DC δ̃ , a cueset for a506

cell c ∈ cells(δ̃) is defined as507

cueset(c, δ̃) = Cells(Preds(δ̃\c)). (6)

If δ̃ only contains a single predicate, we consider the remaining508

cell in the cueset(c, δ̃) = cj given that Pred(c) = ciθcj .509

Example 6. In the instantiated DC from Example 4, the cueset510

for c14 based on δ̃4 is cueset(c14, δ̃4) = {c4, c11, c5, c12}.511

We could falsify the Tattle-Tale condition w.r.t. a given cell512

c and dependency δ̃ by hiding any one of the cells in the cueset513

independent of their values in V. The cuesets for a cell c is defined514

for a given dependency instantiation. We can further define cueset515

for c for given a set of instantiated DCs S∆ by simply computing516

the cueset(c, δ̃) for each instantiated dependency in the set δ̃ ∈517

S∆. In order to prevent leakage of c through δ̃ , we will hide one of518

the cells in the cueset(c, δ̃) corresponding to each of dependency519

instantiations δ̃ ∈ S∆.520

This, alone, however, might not still falsify the tattle-tale521

condition to achieve full-deniability. Leakage can occur indirectly522

since the value of the cell, say cj chosen from the cueset(c∗, δ̃i)523

5. These cells give a cue about the sensitive cell to the querier.

to hide (in order to protect leakage of a sensitive cell c∗) could, 524

in turn, be inferred due to additional dependency instantiation, say 525

δ̃j . If this dependency instantiation does contain c∗ (as in that case 526

c∗ is already hidden and therefore it cannot be used to infer any 527

information about cj), such a leakage can, in turn, lead to leakage 528

of c∗ as shown in the following example. 529

Achieving full deniability for the sensitive cells requires us 530

to recursively select cells to hide from the cuesets of not just 531

sensitive cells, but also, from the cuesets of all the hidden cells. 532

This recursive hiding of cells terminates when the cueset of a 533

newly hidden cell includes an already hidden cell. The following 534

theorem states that after the recursive hiding of cells in cuesets has 535

terminated, the querier view achieves full deniability. The proof is 536

included in the appendix. 537

Theorem 2 (Full Deniability for a Querier View). Let S∆ be 538

the set of dependencies, CS be the sensitive cells for the querier 539

and CS ⊆ CH be the set of hidden cells resulting in a V for 540

the querier. V achieves full deniability if ∀ci ∈ CH , ∀δ̃ ∈ S∆, 541

∀ non-empty cueset(ci, δ̃) ∈ cuesets(ci, S∆), there exists a 542

cj ∈ CH such that cj ∈ cueset(ci, δ̃). 543

4.3 Leakage due to Function-based Constraints 544

To study the leakages due to function-based constraints (FCs), we 545

define the property of invertibilty associated with functions. 546

Definition 7 (Invertibility). Given a function fn(r1, r2, . . . , 547

rn) = si, we say that fn is invertible if it is possible to 548

infer knowledge about the inputs (r1, r2, . . . , rn) from its out- 549

put si. Conversely, if si does not lead to any inferences about 550

(r1, r2, . . . , rn), we say that it is non-invertible 551

The Salary function, in Example 2, is invertible as given the 552

Salary of an employee, a querier can determine the minimum value 553

of SalPerHr for that employee given that the maximum number 554

of work hours in a week is fixed. Complex user-defined functions 555

(UDFs) (e.g., sentiment analysis code which outputs the sentiment 556

of a person in a picture), oblivious functions, secret sharing, 557

and many aggregation functions are, however, non-invertible. 558

Instantiated FCs can be represented similar to denial constraints. 559

For example, an instantiation of the dependency δ : Salary := 560

fn(WorkHrs, SalPerHr) is: δ̃ : ¬(c6 = 20∧c7 = 40∧c31 ̸= 800) 561

where c6, c7, c31 corresponds to Alice’s WorkHrs, SalPerHr and 562

Salary respectively. 563

For instantiated FCs, if the sensitive cell corresponds to an 564

input to the function, and the function is not invertible, then 565

leakage cannot occur due to such an FC. Thus, the TTC(c∗, δ̃ ,V) 566

returns False when the function is non-invertible. For all other 567

cases, the leakage can occur in the exact same way as in denial 568

constraints. We thus, need to to ensure the Tattle-Tale Condition 569

for all the instantiations of a FC evaluates False. 570

Cueset for Function-based Constraints. The cueset for a FC δ̃ is
determined depending on whether the derived value (si) or input
value ({. . . , rj , . . .}) is sensitive and the invertibility property of
the function fn.

cueset(c, δ̃) =

{ci} ∀ci ∈ {. . . , rj , . . .}, if c = si
{si} fn is invertible and if c ∈ {. . . , rj , . . .}
ϕ fn is non-invertible and if c ∈ {. . . , rj , . . .}

As the instantiation for FC is in DC form and their Tattle- 571

Tale Conditions and cueset determination are almost identical, in 572

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

Algorithm 1: Full Algorithm
Input: User U, Data dependencies S∆, A view of the

database V
Output: A secure view VS

1 CS = SensitivityDetermination(U, V)
2 CH = CS , VS = V
3 cuesets = InferenceDetect(CH , S∆,V)
4 while cuesets ̸= ϕ do
5 for cs ∈ cuesets do
6 if cs.overlaps(CH) then
7 cuesets.remove(cs)
8 end
9 toHide = InferenceProtect (cuesets)

10 CH .addAll(toHide)
11 cuesets = InferenceDetect(toHide, S∆,V)
12 end
13 for ci ∈ CH do
14 Replace ci.val in VS with NULL
15 end
16 return VS

the following section we explain the algorithms for achieving full573

deniability with DCs as extending it to handle FCs requires only574

a minor change (disregard cuesets when one of the input cell(s) is575

sensitive and function is non-invertible).576

Remark. We extend the invertibility notion to a more general577

model, i.e., (m,n)-invertibility, that can capture the partial leak-578

age due to function-based constraints. The details for this notion579

and computing partial leakage according to (m,n)-invertibility580

can be found in supplementary materials.581

5 ALGORITHM TO ACHIEVE FULL DENIABILITY582

In this section, we present an algorithm to determine the set of583

cells to hide to achieve full-deniability based on Theorem 2. Full-584

deniability can trivially be achieved by sharing the base view V0585

where all cell values are replaced with NULL. Our goal is to ensure586

that we hide the minimal number of cells possible while achieving587

full deniability.588

5.1 Full-Deniability Algorithm589

Our approach (Algorithm 1) takes as input a user U, a set of590

schema level dependencies S∆, and a view of the database V (ini-591

tially set to the original database). The algorithm first determines592

the set of sensitive cells CS (Sensitivity Determination function593

for U and V). Sensitivity determination identifies the policies594

applicable to a querier using the subject conditions in policies595

and marks a set of cells as sensitive thus assigning them with596

NULL in the view. The set of sensitive cells are added into a set of597

hidden cells (hidecells) which will be finally hidden in the secure598

view (VS) that is shared with the user U. Next, the algorithm599

generates the cuesets for cells in hidecells using S∆ and V600

(Inference Detection, Step 3). Given the cuesets, the algorithm601

chooses a set of cells to hide such that the selected cells cover602

each of the cuesets (Inference Protection). This process of cueset603

identification protection continues iteratively as new hidden cells604

get added. The algorithm terminates when for all of the cuesets605

there exists a cell that is already hidden. Finally, we replace the606

value of hidecells in VS (initialized to V) with NULL and return607

Algorithm 2: Inference Detection

Input: A set of sensitive cells CS , Schema-level data
dependencies S∆, A view of the database V

Output: A set of cuesets cuesets
1 Function InferenceDetect(CS , S∆, V):
2 cuesets = { }
3 for c∗ ∈ CS do
4 SS∆

= { } ▷ Set of instantiated dependencies.
5 for δ ∈ ∆ do
6 SS∆ = SS∆ ∪ DepInstantiation(δ, c∗, V)
7 end
8 for δ̃ ∈ S∆ do ▷ For each instantiated

dependency.
9 if |Preds(δ̃)| = 1 then

10 cueset = {ck} ▷ Note: Pred(c∗) = c∗θck
11 else if TTC(δ̃ ,V, c∗) = False then
12 continue
13 else
14 cueset = cells(Preds(δ̃\c))
15 end
16 cuesets.add(cueset)
17 end
18 end
19 return cuesets

this secure view to the user (Steps 13-16). The following theorem 608

states that the algorithm successfully implements the recursive 609

hiding of cells in CH which is required for generating a querier 610

view that achieves full deniability (as discussed in Theorem 2). 611

Theorem 3. When Algorithm 1 terminates, ∀ci ∈ CH , ∀δ̃ ∈ 612

S∆, for all cueset(ci, δ̃) that is non-empty, there exists cj ∈ 613

cueset(ci, δ̃) such that cj ∈ CH (i.e., Algorithm 1 has recursively 614

hidden ≥ 1 cell from all the non-empty cuesets of cells in CH). 615

Proof. By contradiction, we suppose there exists a cueset cs ∈ 616

cueset(ci, δ̃) in which no cell is not hidden. This means the 617

cueset cs has no overlap with the hidden cell set CH . Then 618

by lines 6-7 in Algorithm 1, the cueset cs exists in the cueset 619

list cueset(ci, δ̃), which indicates that the While loop will not 620

terminate. This contradicts the pre-assumed condition. 621

5.2 Inference Detection 622

Inference detection (Algorithm 2) takes as input the set of sensitive 623

cells (CS), the set of schema-level dependencies (S∆), and a 624

view of the database (V) in which sensitive cells are hidden by 625

replacing with and others are assigned the values corresponding to 626

the instance. For each sensitive cell c∗, we consider the given set of 627

dependencies S∆ and instantiate each of the relevant dependencies 628

δ using the database view V (Steps 5-7). The DepInstantiation 629

function returns the corresponding instantiated dependency δ̃ . For 630

each such dependency instantiation, if it is a dependency contain- 631

ing a single predicate i.e., δ̃ = ¬(Pred) where Pred = c∗θck, we 632

add the non-sensitive cell (ck) to the cueset (Steps 9, 10). If the 633

dependency contains more than a single predicate, we determine 634

if there is leakage about the value of the sensitive cell by checking 635

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

the Tattle-Tale Condition (TTC) for the sensitive cell c∗ (Step 11)6.636

If TTC(δ̃ ,V, c∗) evaluates to False, we can skip that dependency637

instantiation as there is no leakage possible on c∗ due to it (Step638

12). However, if TTC(δ̃ ,V, c∗) evaluates to True, we get all the639

cells except for Pred(c∗) (Step 14) 7. After iterating through all640

the dependency instantiations for all the sensitive cells, we return641

cuesets (Step 19).642

Note that in our inference detection algorithm, we did not643

choose the non-sensitive cell c′ in Pred(c∗) = c∗θc′ as a644

candidate for hiding. We illustrate below using a counter-example645

why hiding c′ might not be enough to prevent leakages.646

Example 7. Consider a relation with 3 attributes A1, A2, A3647

and 3 dependencies among them (δ1 : A1 → A2, δ2 : A2 →648

A3, δ3 : A1 → A3). Let there be two tuples in this relation649

t1 : 1(c1), 2(c2), 2(c3) and t2 : 1(c4), 2(c5), 2(c6). Suppose c6650

is sensitive. As leakage of the sensitive cell is possible through651

the dependency instantiation δ̃2 : ¬((c2 = c5) ∧ (c3 = c6)),652

c5 is hidden. In the next iteration of the algorithm, to prevent653

leakages on the hidden cell c5 through dependency instantiation654

δ̃1 : ¬((c1 = c4) ∧ (c2 = c5)), c2 is also hidden. Note that c2655

is in the same predicate as c5 in δ̃1. However, the querier can still656

infer the truth value of the predicate c2 = c5 as True based on the657

two non-hidden cells, c1 and c4, and the dependency instantiation658

δ̃3 : ¬((c1 = c4) ∧ (c3 = c6)). The querier also learns that659

c3 = c6 evaluates to True in δ̃2 which leads to them inferring that660

c6 = 2 (same as c3) and complete leakage.661

To prevent any possible leakages on the sensitive cell c∗ and its662

corresponding predicate Pred(c∗), we only consider the solution663

space where a cell from a different predicate (Preds(δ̃\c∗)) is664

hidden.665

Query-based method. For each dependency and each sensitive666

cell, inference detection instantiates the dependency to generate667

|D| − 1 instantiations. The algorithm then iterates over each668

instantiation and checks the Tattle-tale condition and if satisfied669

generates a cueset. The inference detection algorithm will be time670

and space-intensive given a substantial number of dependencies671

and/or sensitive cells. To improve upon this, we propose a query-672

based technique for implementing inference detection.673

Instead of generating one instantiation per sensitive cell and674

dependency, this method produces one query for all the sensitive675

cells. First, this method retrieves the tuples containing sensitive676

cells, sets the values of sensitive cells to NULL and stores them677

in a temporary table called temp. Next, the Tattle-tale condition678

check is turned into a join query between this temp table and the679

original table.680

The join condition in this query is based on the tuples being681

unique (T1.tid ̸= T2.tid). Furthermore, this query checks for each682

relevant attribute in the tuple whether it is sensitive i.e., it is set683

to NULL in the temp table (T2.Zip is NULL), or whether the684

corresponding predicate from the dependency evaluates to True685

(T1.Zip=T2.Zip). The WHERE condition in this query is only686

satisfied if all the predicates in a dependency instantiation except687

for the sensitive predicate evaluate to True. Thus, the result of688

6. While not shown in the algorithm for simplicity, when an input cell is
sensitive in an FC instantiation, if the FC is non-invertible we ignore its cuesets
as they are empty.

7. If we wish to relax the assumption that queriers and data owners do not
overlap stated in Section 3.1, we can do so here by only including the cells in
the cueset that do not belong to the querier. We show algorithms to achieve so
and prove the correctness of this modification in Section 7

Algorithm 3: Inference Protection (Minimum Vertex
Cover)

Input: Set of cuesets cuesets
Output: A set of cells selected to be hidden toHide

1 Function InferenceProtect(cuesets):
2 toHide = {} ▷ Return list initialization.
3 while cuesets ̸= ϕ do
4 cuesetCells = Flatten(cuesets)
5 dict[ci, freqi] =

CountFreq(GroupBy(cuesetCells))
6 cellMaxFreq = GetMaxFreq(dict[ci, freqi])
7 toHide.add(cellMaxFreq) ▷ Greedy heuristic.
8 for cs ∈ cuesets do
9 if cs.overlaps(toHide) then

10 cuesets.remove(cs)
11 end
12 end
13 return toHide

this join query contains all instantiations for which the Tattle-tale 689

condition evaluates to True from which the cuesets can be readily 690

identified. 691

5.3 Inference Protection 692

After identifying the cuesets for each sensitive cell based on their 693

dependency instantiations, we now have to select a cell from each 694

of them to hide to prevent leakages. The first strategy for cell 695

selection, described in Algorithm 7, randomly selects a cueset and 696

a cell from it to hide (if no cells in it have been hidden already). 697

We use this approach as our first baseline (Random Hiding) 698

in Section 8. The second strategy for cell selection, described 699

in Algorithm 3 utilizes Minimum Vertex Cover (MVC) [27] to 700

minimally select the cells to hide from the list of cuesets. In this 701

approach, each cueset is considered as a hyper-edge and the cell 702

selection strategy finds the minimal set of cells that covers all 703

the cuesets. MVC is known to be NP-hard [28] and therefore we 704

utilize a simple greedy heuristic based on the membership count 705

of cells in various cuesets. Algorithm 3 takes as input the set 706

of cuesets and returns the set of cells to be hidden to prevent 707

leakages. First, we flatten all the cuesets into a list of cells and 708

insert this list into a dictionary with the cell as the key and their 709

frequency count as the value (Steps 4-5). Next, we select the cell 710

from the dictionary with the maximum frequency and add it to the 711

set of cells to be hidden and remove any cuesets that contain this 712

cell (steps 7-10). These steps are repeated until all the cuesets are 713

covered i.e., at least one cell in it is hidden, and finally, we return 714

the set of cells to be hidden. 715

5.4 Convergence and Complexity Analysis 716

Algorithm 1 starts with s number of hidden cells. At each iteration, 717

we consider that each hidden cell (including cells that are hidden 718

in previous iterations) is expanded to f number of cuesets on 719

average by the Inference Detection algorithm (Algorithm 2). 720

Among the cuesets, the average number of cells that are hidden, 721

such that it satisfies full deniability, is given by f
m where m is 722

the coverage factor determined by minimum vertex cover (MVC). 723

Then, at the end of ith iteration, the number of average hidden 724

cells will be si = s(f
m)i, and the average number of cuesets will 725

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

be csi = sf(f
m)i−1. As si is bounded by the total number of726

cells in the database, denoted by N , the number of iterations (T)727

to converge is bounded by logf/m(N/s), when f > m (which728

was verified in our experiments).729

Given |∆| which is the number of schema-level dependencies,730

we can estimate the time complexity with respect to I/O cost. At731

ith iteration of Algorithm 1, the I/O cost of (i) the dependency732

instantiation is O(|∆|(N + si)) (where inference detection is733

implemented using the query-based method given sufficient, i.e.734

Θ(N), memory) and (ii) minimum vertex cover (MVC) with735

an I/O cost of O(csi). Hence, the overall estimated I/O cost736 ∑T
i=1O(|∆|(N +si))+O(csi) in which is equivalent to O(N)737

given T ≤ logf/m(N/s) and thus is linear to the data size.738

The cost of the dependency instantiation for the ith iteration739

depends on the I/O cost of the join query which is O(N + si)740

when given sufficient (i.e., Θ(N)) memory. This query is executed741

|∆| times. Hence, the cost for the dependency instantiation is742

O(|∆|(N + si)).743

Hence, the total estimated I/O cost for T iterations can be744

derived as follows given T ≤ logf/m(N/s).745

T∑
i=1

(|∆|(N + si)) + ci

= |∆|(N + s
T∑

i=1

(f/m)i) + sf
T∑

i=1

(f/m)i−1

≤ |∆|(N + s(f/m)T+1) + sf(f/m)T

= |∆|(N + s(N/s)(f/m)) + sf(N/s)

= N |∆|(1 + f/m) + fN

We complement the complexity analysis with the required746

sufficient memory storage discussion. For (i) dependency instanti-747

ation, the join query between two tables of size N and si, we need748

memory size Ω(N + si) = Ω(N) since si ≤ N . In (ii) the al-749

gorithm of computing MVC, all cuesets are read into the memory,750

which requires the memory size Ω(ci) = Ω(N ∗m) = Ω(N) for751

constant m. Thus we need Ω(N) memory to finish all operations752

in our system implementation, which is feasible in practice. We753

also note that this complexity analysis only holds with Θ(N)754

size of memory, in which case the cost of memory operations is755

much cheaper than the overhead of I/O operations. Given Ω(N2)756

memory, which can be impractical, all the operations can then757

be finished within memory and the total computational cost is758

bounded by O(N2), according to the following analysis.759

If all operations are taken within memory, then the cost of760

dependency instantiation is bounded by O(Nsi) and the compu-761

tational cost of the MVC algorithm is bounded by O(c2i). Then762

we derive the following bound similarly.763

T∑
i=1

(N |∆|si) + c2i

= N |∆|s
T∑

i=1

(f/m)i + s2f2
T∑

i=1

(f/m)2i−2

≤ N |∆|s(f/m)T+1 + s2f2(f/m)2T

= N |∆|s(N/s)(f/m) + s2f2(N/s)2

= N2|∆|(f/m) + f2N2

Fig. 2. An Illustration of the Binning-then-Merging Algorithm (with bin-
ning size b = 7 and merging size m = 3).

5.5 Wrapper for Scaling out Full-Deniability Algorithm 764

The complexity analysis above shows that, given sufficient mem- 765

ory, full deniability algorithm is linear to the size of the database. 766

On larger databases, the memory requirement becomes unsustain- 767

able due to the substantial number of dependency instantiations 768

and cuesets. We present a wrapper which partitions the database in 769

order so that our algorithm is able to run with a smaller memory 770

footprint. The high-level idea of the algorithm is illustrated in 771

Figure 2. 772

Algorithm 4 partitions the full database into a number of 773

bins, where b is the bin size parameter. It then calls the Full 774

Algorithm (presented in Section 5.1 and denoted by runMain() 775

in Algorithm 4) on each of these bins in order to generate a 776

view per bin that satisfies full deniability. As the full algorithm is 777

executed on smaller bins, the memory requirement is much lower 778

than the entire database. Next, it merges m number of these bins, 779

where m is the merge size parameter, and executes Full Algorithm 780

on the merged bins. The wrapper iterates over the merged bins 781

until there is only 1 bin left. It then executes Full Algorithm on 782

this last bin which is full database and the final view that satisfies 783

full deniability is returned. As each of the bins has achieved 784

full deniability, the number of relevant dependency instantiations 785

and cuesets will be much lower in the merged bin compared to 786

running the full algorithm on the entire database. The output view 787

generated by Algorithm 4 trivially satisfies full-deniability as the 788

Full Algorithm is executed on each of the individual bins as well 789

as the full database in the final step. 790

6 WEAKER SECURITY MODEL 791

Achieving full deniability on a view can lead to hiding a number of 792

non-sensitive cells to prevent leakages. In this section we describe 793

how to relax full deniability to a weaker security model which 794

we call, k-percentile deniability, in order to potentially hide fewer 795

cells and thus improve utility. 796

6.1 k-Percentile Deniability 797

The weaker security notion of k-Percentile Deniability is defined 798

as follows. 799

Definition 8 (k-percentile Deniability). Given a set of sensitive 800

cells CS in a database instance D and a set of instantiated 801

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

Algorithm 4: Binning-then-Merging Wrapper Algo-
rithm

Input: User U, Data dependencies S∆, A view of the
database V, Bin size b, Merge size m

Output: A secure view VS

1 Function BinningThenMerging(U, S∆, V, b, m):
2 V1, . . . ,Vk ← Binning(V, b) ▷ k := ∥V∥

b , no. of bins.
3 binQueue = [V1, . . . ,Vk]
4 mergeQueue = { }
5 while ∥binQueue∥ ̸= 1 or mergeQueue ̸= ∅ do
6 Vi ← binQueue.pop()
7 mergeQueue.push(runMain(U, S∆, Vi))
8 if ∥mergeQueue∥ ≥ m or ∥binQueue∥ = 0

then
9 Vj ←Merge(mergeQueue)

10 binQueue.push(runMain(U, S∆, Vj))
11 mergeQueue.clear()
12 end
13 return binQueue.pop()

dependencies S∆, we say that a querier view V achieves k-802

percentile deniability if for all c∗ ∈ CS ,803

|I(c∗|V, S∆)| ≥ (k · |I(c∗|V0, S∆)|) (7)

where 1
|I(c|V0,S∆)| ≤ k ≤ 1.804

Note that if k = 1, then k-percentile deniability is the same as805

full deniability, where the set of values inferred by the adversary806

from view V is the same as the set from the base view. With k < 1,807

it allows for a bounded amount of leakage. We also note that the808

security models used in prior works is subsumed by the notion of809

k-percentile deniability as defined above. For instance, the model810

used in [16] ensures that the querier cannot reconstruct the exact811

value of the sensitive cell using data dependencies, which can be812

viewed as a special case of k-percentile deniability with the value813

of k = 2
|I(c|V0,S∆)| , i.e., the number of values sensitive cell can814

take is more than 1.815

6.2 Algorithms to Achieve k-Percentile Deniability.816

In k-percentile deniability or simply k-den, we quantify the817

leakage on the sensitive cell in a given view V and the set of818

instantiated data dependencies S∆. The decision to hide additional819

cells is only made if the set of possible values inferred by the820

querier is larger than the given threshold (k). Stated differently,821

given the fan-out tree of the cuesets as selected in the full-822

deniability algorithm, we can prune some of the cuesets at the823

first fan-out level based on this threshold.824

To show this, we need to first find a good representation of825

the set of inferred values for a cell. The set of inferred values for826

a c∗ given by the I(c | V, S∆) (defined in Section 3.3) can be827

represented as follows828

I(c | V, S∆) =

{
minus set, Dom(c) is discrete
Dom(c)− [low, high] Dom(c) is continuous

When attribute for the cell c is discrete, the operator θ in829

Pred(c) is limited to either ̸= or =. Therefore, we represent the830

inferred set of values by a set, called minus set, containing the831

values that cannot be assigned to the cell in the view V. On832

the other hand, when the attribute for the cell c is continuous, 833

the operator θ could be one of the following: {>,≥, <,≤} and 834

therefore we use a range, denoted by (low, high) to represent 835

the set of values. Computing the set of inferred values for a cell 836

is relatively easy and due to space constraints, we deferred the 837

details to supplementary materials. 838

This function computes the exact leakage on a sensitive cell 839

with respect to various instantiated dependencies. We utilize this 840

to implement k-den where for each sensitive cell after we detect 841

the cuesets (Step 3 in Algorithm 1), we compare the leakage on 842

a sensitive cell due to the instantiated dependencies (associated 843

with the cuesets). The k parameter, specified as a fraction of the 844

maximum domain size of a sensitive cell, provides a bound on the 845

acceptable leakage on a sensitive cell. If the sensitive cell c∗ has 846

a discrete domain and |c∗.minus set| ≤ |Dom(c∗)| × (1 − k) 847

evaluates to True, we do not hide any cells from any of its cuesets. 848

On the other hand, for a sensitive cell c∗ with a continuous domain 849

we check if high − low ≥ |Dom(c∗)| × (k) evaluates to True. 850

The difference between low and high gives the actual domain 851

size after taking into count leakages due to dependencies. 852

When the leakage is under the threshold, k-den approach can 853

halt earlier than the full-den algorithm, pruning out a large number 854

of cuesets and cells to hide. If the leakage is above the threshold, 855

then we order the cuesets in the descending order of leakage 856

and hide cells from them (using Inference Protection) until the 857

leakage is below the threshold. We execute Maximum Vertex 858

Cover (MVC) in Inference Protection on all the cuesets of the 859

sensitive cell even if only a portion of them have hidden cells. We 860

note that this k-pruning step is only executed in the first fan-out 861

level as an early stop condition. This ensures that the final solution 862

generated by k-den is strictly an improvement over the strict full 863

deniability model. 864

Theorem 4. The algorithm to achieve k-percentile deniability 865

(i.e. algorithm 5) always performs as well as (or better than) the 866

algorithm to achieve full-deniability (i.e. algorithm 1). 867

Proof. We note that the KPrune algorithm implicitly simulates 868

the full-deniability algorithm. It does not immediately prune the 869

cuesets or the cells to hide from the fan-out tree generated by 870

the full-deniability algorithm (since this can change the result of 871

running the greedy minimum vertex cover). Instead, we collect 872

those cuesets that can be pruned but actually prune out them after 873

simulating the overall full-deniability algorithm. Therefore, the 874

KPrune algorithm won’t hide more cells than the algorithm to 875

achieve full-deniability. 876

In Section 8, we show through experiments that the algorithm 877

that achieves k-percentile deniability only marginally improves on 878

full deniability even with low values of k (i.e., complete leakage). 879

Therefore this approach is not useful in improving the utility in 880

realistic settings. It is possible that in more complex domains with 881

large number of sensitive cells, k-percentile deniability is more 882

effective and this needs to be studied further. 883

7 RELAXING SECURITY ASSUMPTIONS 884

In this section, we explore relaxing an important assumption stated 885

in Section 3.1 about the adversary, that the adversary cannot 886

apriori determine whether a cell is sensitive or not. There may 887

be scenarios where the adversary can accurately guess the relative 888

sensitivity of the attributes in a database schema. For example, in 889

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

Algorithm 5: KPrune: An Early-stop Algorithm to
Achieve k-percentile Deniability

Input: Last level hidden cells trueHide, Current level
hidden cells to prune toHide, Current level level,
Leakage parameter k

Output: An updated minimum set of hidden cells in this
level that satisfy k-deniability trueHide

1 Function KPrune(trueHide, toHide, level, k):
2 bestCuesets = {} ▷ Cuesets cannot be pruned.
3 for cell ∈ trueHide do
4 cellCuesets = cell.getCuesets()
5 cell.leakage = InferredValues(cell, cellCuesets)
6 if isDeniable(cell, k) then
7 continue
8 for cs ∈ cellCuesets do
9 if level > 1 then ▷ Simulate full-den.

10 bestCuesets.add(cs)
11 end
12 if level = 1 then ▷ KPrune early-stop.
13 cellCuesets.Sort(leakageToParent, ‘desc’)
14 while not isDeniable(cell, k) do
15 lcs = cellCuesets.head ▷ Max leakage.
16 bestCuesets.add(lcs)
17 cellCuesets.remove(lcs)
18 ▷ Recalculate the leakage of the cell.
19 cell.leakage = InferredValues(cell,

cellCuesets)
20 end
21 end
22 for bestCS ∈ bestCuesets do
23 ▷ Update trueHide based on the pruning.
24 trueHide = trueHide ∪ (toHide ∩

bestCS.cells)
25 end
26 return trueHide
27 Function isDeniable(cell, k):
28 if |Dom(c∗)| − |cell.leakage| ≥ k · |Dom(c∗)| then
29 return True ▷ Based on k-deniability.
30 return False

an employee table Salary is more likely to be sensitive than Zip890

Code and if both are hidden in a tuple the adversary can guess891

that one was due to policy and the other due to the algorithm.892

This situation can be handled by our algorithm with a slight893

modification under the assumption that any tuple in the database894

instance could contain a sensitive cell. This means that while the895

adversary knows that salary is more likely to be sensitive, they do896

not know salaries of exactly which employees are sensitive.897

The key idea behind this modified algorithm is to hide the898

sensitive cell in a tuple where only the non-sensitive cell is899

hidden. From the previous example, we would also hide the Salary900

attribute of a tuple (even when it is not sensitive) if our algorithm901

chooses to hide Zip Code. Therefore the adversary cannot be902

certain whether all the hidden cells under Salary attribute were903

done so by policy or the algorithm. We slightly modify the904

original Inference Protection algorithm (Algorithm 3) and propose905

Algorithm 6 in order to handle this relaxed assumption.906

First, the original Inference Detection algorithm (Algorithm 2)907

identifies the cuesets based on dependency instantiations as an908

Algorithm 6: Modified Inference Protection
Input: Map<sensitive cell c∗: Set of cuesets cuesets >,

A view of the database V
Output: A set of tuples to hide toHide

1 Function InferenceProtection∗(Map):
2 toHide = {} ▷ Return set initialization.
3 while Map.cuesets ̸= ϕ do
4 cuesetCells = Flatten(Map.cuesets)
5 dict[ci, freqi] =

CountFreq(GroupBy(cuesetCells))
6 cellMaxFreq = GetMaxFreq(dict[ci, freqi])
7 toHide.add(cellMaxFreq) ▷ Greedy heuristic.
8 for cs ∈ Map.cuesets do
9 if cs.overlaps(toHide) then

10 Map.cuesets.remove(cs)
11 end
12 end
13 additionalHiddenCells = {} ▷ Hiding additional cells.
14 for ch ∈ toHide do
15 tid = ch.getTupleID() ▷ Hidden cell’s tuple ID.
16 for c∗ ∈ Map.sensitiveCells do
17 sensitiveAttr = c∗.attributeID ▷ Sensitive cell’s

attribute.
18 additionalHiddenCells.add(V.get(tid,

sensitiveAttr))
19 end
20 end
21 toHide = toHide ∪ additionalHiddenCells
22 return toHide

input to the Inference Protection algorithm. Second, the original 909

Inference Protection algorithm will select at least 1 cell from each 910

cueset to hide. Third, the steps in the modified Inference Protection 911

Algorithm (Steps 13-21) go through the set of hidden cells and for 912

each of them check if they belong to a non-sensitive attribute. If 913

it does, then add the cells under the sensitive attribute from the 914

corresponding tuple to the set of hidden cells. 915

We note that the assumption of equal likelihood of tuple 916

containing sensitive cell can be further relaxed by adopting a 917

probabilistic approach (motivated by OSDP [29]) in which certain 918

non-sensitive cells are randomly hidden to prevent adversary from 919

inferring if it was part of a sensitive cell’s cueset. However, such 920

an approach will be a non-trivial extension and is an interesting 921

future direction to explore. 922

Remark. In supplementary materials, we discuss ideas on how to 923

relax another assumption that an adversary can be a data owner. 924

8 EXPERIMENTAL EVALUATION 925

In this section, we present the experimental evaluation results 926

for our proposed approach to implementing full-deniability. First, 927

we explain our experimental setup including details about the 928

datasets, dependencies, baselines used for comparison, evaluation 929

metrics, and system setup. Second, we present the experimental 930

results for each of the following evaluation goals: 1) comparing 931

our approach against baselines in terms of utility, performance, 932

and the number of cuesets generated; 2) evaluating the impact of 933

dependency connectivity; 3) testing the scalability of our system; 934

4) validating k-percentile deniability presented in Section 6 and 935

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

the modified inference protection algorithm in Section 7; 5)936

evaluating the query-driven utility in a case study when query937

workloads are presented; and 6) testing effectiveness against real-938

world adversaries.939

8.1 Evaluation Setup940

Datasets. We perform our experiments on 2 different datasets.941

Some statistics of the datasets are summarized in the supplemen-942

tary materials. The first one is Tax dataset [14], a synthetic dataset943

with 10K tuples and 14 attributes, where 10 of them are discrete944

domain attributes and the rest are continuous domain attributes.945

Every tuple from the tax table specifies the tax information of an946

individual with information such as name, state of residence, zip,947

salary earned, tax rate, tax exemptions etc. The second dataset is948

the Hospital dataset [12] which is a 100K dataset where all of the949

15 attributes are discrete domain attributes. We select a subset of950

this dataset (which includes the first 10K tuples of the dataset),951

called Hospital10K, for the experiments included in the paper.952

We then conduct a scalability experiment that makes use of the953

binning-then-merging wrapper on the original Hospital dataset,954

i.e. 100, to show the scalability of our system. It is also notable955

that both datasets have a large domain size, as shown in Table 2.956

The active domain size in the table refers to the domain of the957

attributes participating in the data dependencies that we consider958

in the experiments.959

Data Dependencies. For both datasets, we identify a large number960

of denial constraints by using a data profiling tool, Metanome961

[26]. Many of the output DCs identified by Metanome were soft962

constraints which are only valid for a small subset of the database963

instance. After manually analyzing and pruning these soft DCs, we964

selected 10 and 14 hard DCs for the Tax dataset and the Hospital965

dataset respectively. We also added an FC based on the continuous966

domain attribute named “tax” which is calculated as a function967

“tax = fn(salary, rate)”. Since the Hospital dataset does not968

have continuous domain attributes, we cannot create a function-969

based constraint on it and just use the 14 DCs for evaluation.970

If any of them were soft DCs, we updated/deleted the violating971

tuples to turn them into hard DCs. The data dependencies used for972

experiments can be found in supplementary materials.973

Policies control the sensitivity of a cell. The number of sensitive974

cells is equivalent to the number of policies and it helps us in975

precisely controlling the number of sensitive cells in experiments976

using policies. We randomly sample each policy by first sampling977

a tuple ID among all the tuples and an attribute from a selected978

group of attributes without replacement, until obtaining a certain979

number of policies determined by a control parameter. For each980

experiment (with the same set of control parameters), we generate981

4 different access control views with different policies to represent982

4 users. We execute our algorithm independently over these 4983

views and report the mean and standard deviation in the results.984

Metrics. We compare our approach against the baselines using the985

following metrics: 1) Utility: measures the number of total cells986

hidden; 2) Workload-driven utility, i.e., visibility percentage: mea-987

sures the percentage of visible cells in queries from a workload;988

3) Performance: measures the run time in seconds.989

Besides, we study the fan-out of the number of cuesets, the990

attack precision of real-world adversary, and the distribution of991

the hidden cells in access control and inference control views.992

System Setup. We implemented the system in Java 15 and993

build the system dependencies using Apache Maven. We ran994

Fig. 3. (a) Data utility (b) Performance. Experiments done on Tax dataset
for Our Approach, Random Hiding, and Oblivious Cueset .

Fig. 4. (a) Data utility (b) Performance. Experiments on Hospital10K
dataset for Our Approach, and Oblivious Cueset .

the experiments on a machine with the following configuration: 995

Intel(R) Xeon(R) CPU E5-4640 2.799 GHz, CentOS 7.6, with 996

RAM size 64GB. We chose the underlying database management 997

system MySQL 8.0.3 with InnoDB. For each testcase, we perform 998

4 runs and report the mean and standard deviation. 999

Reproducibility. We open-source our codebase (including ∼10K 1000

lines of code) on GitHub (https://github.com/zshufan/Tattle-Tale). 1001

This codebase includes the implementation of our system as well 1002

as scripts to set up databases, generate testcases, run end-to- 1003

end experiments, and plot the empirical results. For experiment 1004

reproducibility instructions please follow the guidelines in the 1005

Readme file in the GitHub repository. 1006

Baselines. In the following experiments, we test our approach 1007

which implements Algorithm 1, denoted by Our Approach against 1008

baselines. To the best of our knowledge, there exist no other 1009

systems which solve the same problem and therefore we have 1010

developed 2 different baseline strategies for comparison. In each 1011

baseline method, we replace one of the key modules in our system, 1012

determining cuesets and selecting cells to hide from the cueset, 1013

with a naı̈ve strategy but without compromising the full deniability 1014

of the generated querier view. 1015

• Baseline 1: Random selection strategy for hiding (Random 1016

Hiding): which replaces the minimum vertex cover approach with 1017

an inference protection strategy that randomly selects cells from 1018

cuesets to hide. 1019

• Baseline 2: Oblivious cueset detection strategy (Oblivious 1020

Cueset): which disregards Tattle-Tale Condition and uses an 1021

inference detection strategy that creates as many dependency 1022

instantiations as the number of tuples in the database for each 1023

dependency and generates cuesets for all of them. 1024

8.2 Experiment 1: Baseline Comparison 1025

We compare our approach against the aforementioned baselines 1026

and measure the utility as well as performance (see Figure 3(a)). 1027

We increase the number of policies from 10 to 100 (step=10) 1028

where each sensitive cell participates in at least 5 dependencies. 1029

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/zshufan/Tattle-Tale

14

Fig. 5. (a) Number of cuesets generated in each invocation of Inference
Detection (b) Number of cells hidden in each invocation of Inference
Protection. Experiments run with 10 sensitive cells on Tax dataset.

This ensures that there are sufficient inference channels through1030

which information about sensitive cells could be leaked. The1031

number of cells hidden by Our Approach increases linearly1032

w.r.t the increase in number of policies/sensitive cells compared1033

to Random Hiding (5.3×Our Approach) and Oblivious Cueset1034

(1.4×Our Approach). Random Hiding performs the worst because1035

it randomly hides cells without checking the membership count1036

of a cell in cuesets (as with using MVC in Algorithm 3). The1037

performance of Oblivious Cueset is better because it uses the1038

same Inference protection strategy as Our Approach. However,1039

it generates a larger number of cuesets as it doesn’t check the1040

Tattle-Tale Condition for the dependency instantiations (like in1041

Algorithm 2)) and therefore has to hide more cells to ensure full1042

deniability.1043

We also compare the performance (run time in seconds)1044

against number of policies of these 3 approaches (see Figure3(b)).1045

The run time of Our Approach is almost linear w.r.t the increase1046

of the number of policies. On the other hand, Oblivious Cueset1047

is exponential w.r.t number of policies, because it generates1048

O(|∆| × n2) cuesets where n denotes the number of tuples in D1049

and it is expensive to run inference detection on such a large num-1050

ber of cuesets. In Random Hiding, we restrict the execution to the1051

fifth invocation of the inference detection algorithm (Algorithm1052

2) i.e., if the execution doesn’t complete by then, we force stop1053

the execution. In order to study this further, we analyzed the total1054

number of cuesets generated by Random Hiding vs. Our Approach1055

(see Figure 5) in each invocation of Inference Detection. Due1056

to the usage of MVC optimization in Inference Protection, Our1057

Approach terminates after a few rounds where as with Random1058

Hiding the number of cuesets generated in each invocation keeps1059

increasing. We also note that Our Approach is more stable in1060

different test cases and has a lower standard deviation on number1061

of cuesets and hidden cells compared to Random Hiding.1062

We show the supplementary evaluation results on the Hos-1063

pital10K dataset. Figure 4 presents the end-to-end comparison1064

between Our Approach and Oblivious Cueset, and supports our1065

claim. In supplementary materials, we show experimental results1066

with more sensitive cells (i.e., access control policies). Interest-1067

ingly if the access control view is highly sensitive (e.g., 10%1068

cells of the view are marked as NULL) and the sensitive cells are1069

distributed over different columns, the sensitive cells can cancel1070

out the channels leading to inference to each other. Therefore, in1071

this case, our experimental results show that few additional cells1072

are required to hide to achieve inference control.1073

Fig. 6. Data utility experiments run with sensitive cells selected from
(low, medium, high) dependency connectivity attributes in (a) Tax
dataset (b) Hospital10K dataset.

Fig. 7. Performance experiments run with sensitive cells selected
from (low, medium, high) dependency connectivity attributes in (a) Tax
dataset (b) Hospital10K dataset.

8.3 Experiment 2: Dependency Connectivity 1074

In the next set of experiments, we study the impact of dependency 1075

connectivity on the utility as well as performance. The relationship 1076

between dependencies and attributes can be represented as a hy- 1077

pergraph wherein the attributes are nodes and they are connected 1078

via data dependencies. We define the dependency connectivity of 1079

a node, i.e., an attribute, in this graph based on the summation 1080

of the degree (number of edges incident on the node) as well 1081

as the degrees of all the nodes in its closure. Using dependency 1082

connectivity, we categorize attributes on Tax dataset into three 1083

groups: low, medium, and high where attributes in high, low, and 1084

medium groups have the highest, lowest, and average dependency 1085

connectivity respectively. In Tax dataset, the high group contains 1086

3 attributes (e.g. State), while the medium group has 3 attributes 1087

(e.g. Zip) and the low group includes 4 attributes (e.g. City). 1088

The results (see Figure 6) show that when sensitive cells are 1089

selected from attributes with higher dependency connectivity, Our 1090

Approach hides more cells than when selecting sensitive cells with 1091

lower dependency connectivity. The results are verified on both 1092

the Tax dataset and Hospital10K dataset (as shown in Figure 6(a) 1093

and Figure 6(b)). This is because higher dependency connectivity 1094

leads to a larger number of dependency instantiations and therefore 1095

a larger number of cuesets from each of which at least one cell 1096

should be hidden. Figure 7 demonstrates the evaluation among the 1097

dependency connectivity groups, on both datasets. 1098

8.4 Experiment 3: Scalability Experiments 1099

The results of the scalability experiments are shown in Figure 1100

8. The y axis records the time consumption while the x axis 1101

denotes the size of the database (spanning from 10K tuples to 1102

100K tuples). We consider two different settings for selecting 1103

sensitive cells, 1) randomly sample a fixed number of sensitive 1104

cells regardless of the database size, and 2) incrementally sample 1105

a fixed ratio of sensitive cells w.r.t the database size. The results 1106

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

15

Fig. 8. (a) The results for randomly sampling a fixed number of sensitive
policies (b) The results for incremental sampling a fixed ratio of sensitive
policies. Evaluation was done using the Binning-then-Merging Wrapper
Algorithm on the Hospital dataset.

of these two settings are presented in Figure 8(a) and Figure 8(b),1107

resp. In both cases, we set the bin size as 10K tuples and the1108

merging size as 5. In the first setting, the number of sensitive cells1109

is set as 30 whereas, in the second setting, the ratio of sensitive1110

cells to the total number of cells is 30 cells per 10K tuples. We note1111

that the starting point of the plot (x = 10K tuples) corresponds1112

to the experiments presented in Section 8 i.e., running our main1113

algorithm on the dataset of size 10K (as there is only 1 bin).1114

As shown in Figure 8, the time consumption scales near-linearly1115

(depending on the data itself) to the size of the datasets.1116

8.5 Experiment 4: k-Percentile Deniability1117

We implemented Our Approach with a relaxed notion of security,1118

k-percentile deniability, where k is a relative parameter based on1119

the domain size of the sensitive cell. We analyze the utility of Our1120

Approach when varying k and measure the utility. For the results1121

shown in Figure 9(a), the sensitive cell is selected from “State”1122

which is a discrete attribute with high dependency connectivity.1123

Clearly, when k = 0, i.e., full leakage, Our Approach will only1124

hide sensitive cells and when k = 1 i.e, Full deniability, Our1125

Approach hides the maximum number of cells. When k = 0.5,1126

i.e., the inferred set of values is half of that of the base view, Our1127

Approach hides almost the same number of cells as k = 1 i.e.,1128

full deniability. When k = 0.1, i.e, the inferred set of values is 1
101129

of that of the base view, Our Approach hides ≈ 15% less cells1130

than the one that implements full deniability. On the Hospital1131

dataset, the utility improvement was marginal with k set to the1132

smallest value possible (besides full leakage) i.e., k = 1
|Dom(c∗)| .1133

Our Approach that implements full deniability is able to provide1134

high utility with a stronger security model on both datasets1135

compared to the one that implements k-percentile deniability. We1136

measure the runtime performance of k-deniability for different k1137

values and compare the results with full-deniability. As shown1138

in Figure 9(b), algorithms to achieve k-deniability take longer1139

time to complete than the full-deniability algorithms, because k-1140

deniability algorithms reduce the fan-out of the cuesets in the1141

first iteration, but more iterations are thus taken to converge. For1142

different tested k values, the more we relax the k constraint, the1143

less execution time the algorithm will take, because fewer cuesets,1144

thus a smaller fan-out, are considered in calculating leakage.1145

8.6 Experiment 5: Modified Inference Protection1146

We implemented and tested the modified inference protection1147

algorithm (Algorithm 6) on the Tax dataset and compare the1148

results with our inference protection (w. MVC) to achieve full-1149

deniability. As one can observe from Figure 10, the price of1150

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No. of Policies

0

20

40

60

80

100

120

140

Se
co

nd

Our approach (full-den)
k-den: k=0.5
k-den: k=0.1
Unconstrained: k=0

Fig. 9. (a) Data utility on Tax dataset. Experiments done with full de-
niability and k-deniability (varying values of k); (b) Performance on Tax
dataset (varying values of k).

10 20 30 40 50 60 70 80 90 100
No. of Policies

0

100

200

300

400

500

N
o.

of
H

id
de

n
Ce

lls

Modi�ed Inference Control (MVC)
Inference Control (MVC)
Access Control

10 20 30 40 50 60 70 80 90 100
No. of Policies

0

20

40

60

80

100

120

140

Se
co

nd

Modi�ed Inference Control (MVC)
Inference Control (MVC)

Fig. 10. Modified Inference Protection: (a) Data utility (b) Performance
on Tax dataset for modified inference protection, inference protection,
and access control.

relaxing the assumptions is compensating for utility and efficiency. 1151

Compared to our approach to achieving inference control, the 1152

modified inference control hides 1.3x cells and requires an average 1153

of 2-3x more time to converge (with a non-linear growth). 1154

8.7 Experiment 6: Case Study over Query Workloads 1155

We further study how inference control algorithms can affect the 1156

utilities of query workloads, especially when a large portion of 1157

the database view is marked as NULL by access control policies. 1158

We first investigate the distribution of the hidden cells (NULL’s) 1159

across the views. We take the run with the access control view with 1160

1,000 policies and execute our approach (w. MVC) to generate the 1161

inference control view and use these two views throughout this 1162

case study. Since this study involves a large number of policies 1163

that baseline methods take too much time to converge, we only 1164

compare the inference control view based on our approach with 1165

the access control view. We present in Figure 11 the heatmap, 1166

where a darker color represents more cells hidden in this column, 1167

and the density distributions of data that support the visualization. 1168

The distributions of NULL cells are similar in both views – 1169

most additional hidden cells in the inference control view are 1170

concentrated in the first 3 attributes that are directly correlated 1171

with the access control policies. Some but fewer additional cells 1172

from other columns are hidden as well in the inference control 1173

view, while none of the cells are hidden from the attributes not 1174

participating in dependencies. 1175

Evaluating workload-driven utility metric. Next, we evalu- 1176

ate the utility of the database views over two types of query 1177

workloads: randomized range queries over one column and cross 1178

columns. In particular, for the first case, we randomly generate 1179

1,000 set queries per column with randomly sampled range specifi- 1180

cations (w. 300-1100 cells, varying). For the cross-column queries, 1181

we consider every possible pairwise combination of the attributes 1182

and similarly generate 1,000 queries for each combination. The 1183

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

16

St
at

e

Ra
te

Sa
la

ry

A
re

aC
od

e

H
as

Ch
ild

Si
ng

le
Ex

em
p

Zi
p

M
ar

ita
lS

ta
tu

s

Ch
ild

Ex
em

p

Ci
ty

FN
am

e

LN
am

e

Ge
nd

er

Ph
on

e0

100

200

300

St
at

e

Ra
te

Sa
la

ry

A
re

aC
od

e

H
as

Ch
ild

Si
ng

le
Ex

em
p

Zi
p

M
ar

ita
lS

ta
tu

s

Ch
ild

Ex
em

p

Ci
ty

FN
am

e

LN
am

e

Ge
nd

er

Ph
on

e0

200

400

Fig. 11. Distribution of NULL’s: (a) as policies in access control view; (b)
as hidden cells in the inference control view.

range queries cover both attributes in each combination. As1184

mentioned, we consider visibility (i.e., percentage of non-NULL1185

cells in the query result) as the utility metric in this case study.1186

Figure 12 shows the empirical results. We take the workload1187

that executes 1,000 queries on the “Rate” column to present the1188

results in Figure 12(a) and (b) for access control and inference1189

control views, resp. We use histograms to show the number of1190

queries that has a certain percentage of visibility. As observed,1191

most queries remain high visibility (∼93-96% cells visible) in1192

both views, indicating good utility for downstream analytics.1193

We then present results for cross-column queries in Figure1194

12(c) and (d) as heatmaps. Each block in the heatmap represents1195

the average visibility percentage among 1,000 queries executed1196

over this attribute combination. While the overall visibility is over1197

95% for both views, a darker color in the heatmap suggests more1198

cells are visible from the query. The similarity between the two1199

heatmaps indicates that inference control does not affect the query-1200

driven utility much compared to the access control views.1201

8.8 Experiment 7: Case Study against Real-World Ad-1202

versaries1203

A potential limitation of our security model is based on the1204

assumption that no correlations exist between attributes and tu-1205

ples i.e., they are independently distributed other than what1206

is explicitly stated through dependencies (that is either learnt1207

automatically or specified by the expert). However, typically in1208

databases, other correlations do exist which can be exploited to1209

infer the values of the hidden cells. These correlations can be1210

also learned by the database designer using dependency discovery1211

tools or data analysis tools. If the correlations are very strong1212

(e.g. hard constraints with no violations in the database), we call1213

them out as constraints and consider them in our algorithms. For1214

weak correlations, or soft constraints that only apply to a portion1215

of the data, we do not consider them. Otherwise, everything in1216

the database will become dependent, in which case our algorithm1217

would be too conservative and hide more cells than necessary1218

based on these soft constraints.1219

Therefore, we study the effectiveness of Our Approach against1220

inference attacks, i.e., to what extent can an adversary reconstruct1221

the sensitive cells in a given querier view. We consider two1222

types of adversaries. The first type of adversary uses weighted1223

sampling where for each sensitive cell c∗, the adversary learns1224

the distribution of values in Dom(c∗) by looking at the values of1225

other cells in the view. The querier, then tries to infer the sensitive1226

cell value by sampling from this learned distribution. The second1227

type of adversary utilizes a state-of-the-art data cleaning system,1228

Holoclean [15], which compiles data dependencies, domain value1229

frequency, and attribute co-occurrence and uses them into training1230

a machine learning classifier. The adversary then leverages this1231

classifier to determine values of sensitive cells by considering 1232

them as missing data in the database. The sensitive cell for this 1233

experiment is selected from “State” which is a discrete attribute 1234

with high dependency connectivity. We consider the 10 depen- 1235

dencies and drop the FC because Holoclean doesn’t support it. 1236

We increase the number of policies from 10 to 90 and input the 1237

querier view (in which the values of hidden cells are replaced 1238

with NULL) to both adversaries. We measure the effectiveness 1239

by repair precision =
#correct repairs
#total repairs

(where a repair is an 1240

adversary’s guess of the value of a hidden cell) and therefore 1241

lower the repair precision of the adversary is, the more effective 1242

Our Approach is. 1243

The results “Holoclean (before)” in Figure 13 show that when 1244

only sensitive cells are hidden, an adversary such as Holoclean, 1245

is able to correctly infer the sensitive cells. When additional cells 1246

are hidden by Our Approach, indicated by “Holoclean (after)”, 1247

the maximum precision of Holoclean is 0.15. On the other hand, 1248

the weighted sampling employed by the other type of adversary, 1249

indicated by “Weighted Sampling (after)”, could reconstruct be- 1250

tween 3% and 10% of the sensitive cells. Note that Holoclean uses 1251

the learned data correlations (and attribute co-occurrence, domain 1252

value frequency) in addition to the explicitly stated data depen- 1253

dencies. However, it only marginally improves upon weighted 1254

sampling given the view generated by Our Approach. 1255

9 RELATED WORK 1256

The challenge of preventing leakage of sensitive data from query 1257

answers has been studied in many prior works on inference con- 1258

trol [9]. Early work by Denning et al. [30] designed commutative 1259

filters to ensure answers returned by a query are equivalent to 1260

that which would be returned based on the authorized view for 1261

the user. This work, however, did not consider data dependencies. 1262

We categorize them based on when and how inference control is 1263

applied and what security model is used. 1264

Design-time Prevention Methods which mark attributes that lead 1265

to inferences on sensitive data items as sensitive. Qian et al. [31] 1266

developed a tool to analyze potential leakage due to foreign keys 1267

in order to elevate the clearance level of data if such leakage is 1268

detected. Delugachi et al. [17] generalized the work in [31] and 1269

developed an approach based on analyzing a conceptual graph 1270

to identify potential leakage from more general types of data 1271

associations (e.g., part-of, is-a). Later works such as [32], however, 1272

established that inference rules for detecting inferences at database 1273

design time are incomplete and hence are not a viable approach for 1274

preventing leakage from query answers. Design time approaches 1275

for disclosure control have successfully been used in restricted 1276

settings such as identifying the maximal set of non-sensitive data 1277

to outsource such that it prevents inferences about sensitive data 1278

[25], [33], [34], [35], however, do not extend to our setting. 1279

Query-time Prevention Methods that reject queries which lead to 1280

inferences on sensitive data items. Thuraisingham [19] developed 1281

a query control approach in the context of Mandatory Access 1282

Control (MAC) wherein policies specify the security clearances 1283

for the users (subject) and the security classification/label for the 1284

data. [19] presented an inference engine to determine if query 1285

answers can lead to leakage (in which case the query is rejected). 1286

While [19] assumed a prior existence of an inference detection 1287

engine, Brodsky et al. [16] developed a framework, DiMon, based 1288

on chase algorithm for constraints expressed as Horn clauses. 1289

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

17

0

200

400

600

N
o.

of
�

er
ie

s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Visability Percentage (%)

0

100

200

300

400

N
o.

of
�

er
ie

s

St
at

e

Ra
te

Sa
la

ry

Ar
ea

Co
de

H
as

Ch
ild

Si
ng

le
Ex

em
p

Zi
p

M
ar

ita
lS

ta
tu

s
Ch

ild
Ex

em
p

Ci
ty

FN
am

e

LN
am

e

Ge
nd

er

Ph
on

e

State

Rate

Salary

AreaCode

HasChild

SingleExemp

Zip

MaritalStatus

ChildExemp

City

FName

LName

Gender

Phone

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Av
g

Vi
sa

bi
lit

y
Pe

rc
en

ta
ge

(%
)

St
at

e

Ra
te

Sa
la

ry

Ar
ea

Co
de

H
as

Ch
ild

Si
ng

le
Ex

em
p

Zi
p

M
ar

ita
lS

ta
tu

s
Ch

ild
Ex

em
p

Ci
ty

FN
am

e

LN
am

e

Ge
nd

er

Ph
on

e

State

Rate

Salary

AreaCode

HasChild

SingleExemp

Zip

MaritalStatus

ChildExemp

City

FName

LName

Gender

Phone

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Av
g

Vi
sa

bi
lit

y
Pe

rc
en

ta
ge

(%
)

Fig. 12. Workload-driven utility: (a) Upper left: visibility percentage for queries in the workload over the access control view; (b) Bottom left: visibility
percentage for queries in the workload over the inference control view; (c) Middle: average visibility percentage in cross-column workload over the
access control view; (d) Right: average visibility percentage in cross-column workload over the inference control view.

Fig. 13. Against real-world adversaries: Reconstruction precision of
sensitive cells with two types of adversaries.

DiMon takes in current query results, the user’s query history,1290

and Horn clause constraints to determine the additional data that1291

may be inferred by the subject. Similar to [19], if inferred data1292

is beyond the security clearance of the subject then their system1293

refuses the query. Such work (that identifies if a query leaks/does1294

not leak data) differs from ours since it cannot be used directly1295

to identify a maximal secure answer that does not lead to any1296

inferences — the problem we study in this paper. Also, the above1297

work on query control is based on a much weaker security model1298

compared to the full-deniability model we use. It only prevents an1299

adversary from reconstructing the exact value of a sensitive cell1300

but cannot prevent them from learning new information about the1301

sensitive cell.1302

Perfect Secrecy Models that characterizes inferences on any1303

possible database instance as leakage. The most relevant of these1304

works is from Miklau & Suciu [36] who study the challenge of1305

preventing information disclosure for a secret query given a set1306

of views. Our problem setting is different as we check for a given1307

database instance whether it is possible to answer the query hiding1308

as few cells as possible while ensuring full deniability. Applying1309

their approach to our problem setting will be extremely pessimistic1310

as most queries will be rejected on a database with a non-trivial1311

number of dependencies.1312

Randomized Algorithms for Inference Prevention that suppress1313

too many cells and does not look at dependencies as inference1314

channels The most relevant of these are Differential Privacy (DP)1315

mechanisms promise to protect against an adversary with any prior1316

knowledge and thus have wide applications nowadays [37], [38],1317

[39]. In our problem setting of access control, called the Truman 1318

model of access control [8], the data is either hidden or shared 1319

depending upon whether it is sensitive for a given querier. In such a 1320

model, the expectation of a querier is that the result doesn’t include 1321

any randomized answers. Weaker notions of DP such as One-sided 1322

differential privacy (OSDP) [29] aims to prevent inferences on 1323

sensitive data by using a randomized mechanism when sharing 1324

non-sensitive data. However, such techniques offer only proba- 1325

bilistic guarantees (and cannot implement security guarantees such 1326

as full deniability), and therefore may allow some non-sensitive 1327

data to be released even when their values could lead to leakage 1328

of a sensitive cell. These techniques also lead to suppression of a 1329

large amount of data (suppresses approx. 91% non-sensitive data 1330

at ϵ = 0.1 and approx. 37% at ϵ = 1). The current model of 1331

OSDP only supports hiding at the row level and is designed for 1332

scenarios where the whole tuple is sensitive or not. It is non- 1333

trivial to extend to suppress cells with fine-grained access control 1334

policies considered in our setting. Furthermore, most DP-based 1335

mechanisms (including OSDP) assume that no tuple correlations 1336

exist even through explicitly stated data dependencies. 1337

Inference Control in Other Settings. Among these, [40] stud- 1338

ies the problem of secure data outsourcing in the presence of 1339

functional dependencies. Access control policies are modelled 1340

using confidentiality constraints which define what combination 1341

of attributes should not appear together in a partition. They use 1342

a graph-based approach built upon on functional dependencies 1343

to detect possible inference channels. The goal is to then derive 1344

optimal partitioning so as to prevent inferences through these 1345

functional dependencies while efficiently answering queries on 1346

distributed partitions. Vimercati et al [25] also studied the problem 1347

of improper leakage due to data dependencies in data fragmen- 1348

tation. Similar to [40], they mark attributes as sensitive (using 1349

confidentiality constraints) and block the information flow from 1350

non-sensitive attributes to sensitive attributes through dependen- 1351

cies. In general, the works in this category look at sensitivity at 1352

the level of attributes and not at the level of cells through fine- 1353

grained access control policies, studied in our work. In our work, 1354

we enforce fine-grained access control policies and allow minimal 1355

hiding of additional cells to prevent inferences. 1356

10 CONCLUSIONS AND FUTURE WORK 1357

We studied the inference attacks on access control protected data 1358

through data dependencies, DCs and FCs. We developed a new 1359

stronger security model called full deniability which prevents a 1360

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

18

querier from learning about sensitive cells through data dependen-1361

cies. We presented conditions for determining leakage on sensitive1362

cells and developed algorithms that uses these conditions to1363

implement full deniability. The experiments show that we are able1364

to achieve full deniability for a querier view without significant1365

loss of utility for two different datasets.1366

The Tattle-Tale problem from the paper can be extended and1367

more discussions may be spawned by considering other access1368

control research. We thereby envision future directions as follows.1369

• (Extending Constraint Modelling) We would like to extend the1370

security model to not only consider hard constraints explicitly1371

specified in the form of data dependencies but also soft1372

constraints that exist as correlations between data items. The1373

invertibility model in FCs could also be extended to model1374

the probabilistic relationship between input and output cells,1375

instead of being deterministic as in the current model. One1376

potential approach is to use Markov Logic Network to encode1377

the fuzzy constraint in our system.1378

• (Improving Utility) One may want to improve utility while im-1379

plementing full deniability or by further exploring k-percentile1380

deniability. To achieve so, one direction to go is to con-1381

sider releasing non-sensitive values (like in OSDP) randomly1382

instead of hiding all. However, this requires addressing the1383

challenges of any inadvertent leakages through dependencies1384

when sharing such randomized data.1385

• (Towards Other Use Cases in Access Control) While this work1386

focuses on the Truman model of access control, future work1387

can consider other settings, such as non-Truman models or a1388

cryptographic modelling of access control [41], [42] or web1389

applications [43]. Since data are stored in relational models1390

and are thus often correlated via constraint, the Tattle-tale1391

problem also exists in those directions. Future directions can1392

consider similar problems in other use cases of access control.1393

SUPPLEMENTARY MATERIAL1394

Due to space constraints, we defer omitted proofs, algorithms,1395

discussions, and some experimental details to the supplementary1396

materials of this paper.1397

ACKNOWLEDGMENTS1398

This work was supported by NSF under Grants 2032525, 1952247,1399

2008993, and 2133391. This material was based on research1400

sponsored by DARPA under Agreement Number FA8750-16-2-1401

0021. The U.S. Government is authorized to reproduce and dis-1402

tribute reprints for Governmental purposes not withstanding any1403

copyright notation there on. The views and conclusions contained1404

here in are those of the authors and should not be interpreted1405

as necessarily representing the official policies or endorsements,1406

either expressed or implied, of DARPA or the U.S. Government.1407

We thank the reviewers for their detailed comments which helped1408

to improve the paper during the revision process.1409

REFERENCES1410

[1] P. Pappachan, S. Zhang, X. He, and S. Mehrotra, “Don’t be a tattle-tale:1411

Preventing leakages through data dependencies on access control1412

protected data,” vol. 15, no. 11. VLDB Endowment, 2022, pp. 2437–1413

2449. [Online]. Available: https://doi.org/10.14778/3551793.35518051414

[2] P. Voigt and A. Von dem Bussche, “The EU general data protection1415

regulation (GDPR),” A Practical Guide, 1st Ed., Cham: Springer Inter-1416

national Publishing, vol. 10, p. 3152676, 2017.1417

[3] C. L. I. website, “California online privacy protection act (CalOPPA),” 1418

https://leginfo.legislature.ca.gov/faces/codes displaySection.xhtml?law 1419

Code=BPC§ionNum=22575, 2020, [Online; accessed 01-Jul-2022]. 1420

[4] S. of California Department Justice Office of the Attorney General, “Cal- 1421

ifornia consumer privacy act CCPA,” https://oag.ca.gov/privacy/ccpa, 1422

2020, [Online; accessed 01-Jul-2022]. 1423

[5] E. Ferrari, “Access control in data management systems,” Synthesis 1424

lectures on data management, vol. 2, no. 1, pp. 1–117, 2010. 1425

[6] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic databases,” 1426

in Proceedings of 28th International Conference on Very Large Data 1427

Bases, VLDB 2002, Hong Kong, August 20-23, 2002. Hong Kong, 1428

China: Morgan Kaufmann, 2002, pp. 143–154. [Online]. Available: 1429

http://www.vldb.org/conf/2002/S05P02.pdf 1430

[7] P. Pappachan, R. Yus, S. Mehrotra, and J.-C. Freytag, “Sieve: A 1431

middleware approach to scalable access control for database management 1432

systems,” Proc. VLDB Endow., vol. 13, no. 12, p. 2424–2437, jul 2020. 1433

[Online]. Available: https://doi.org/10.14778/3407790.3407835 1434

[8] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending 1435

query rewriting techniques for fine-grained access control,” in 1436

Proceedings of the 2004 ACM SIGMOD International Conference 1437

on Management of Data. New York, NY, USA: Association 1438

for Computing Machinery, 2004, p. 551–562. [Online]. Available: 1439

https://doi.org/10.1145/1007568.1007631 1440

[9] C. Farkas and S. Jajodia, “The inference problem: A survey,” 1441

SIGKDD Explor., vol. 4, no. 2, pp. 6–11, 2002. [Online]. Available: 1442

https://doi.org/10.1145/772862.772864 1443

[10] J. Chen, J. He, L. Cai, and J. Pan, “Disclose more and risk less: 1444

Privacy preserving online social network data sharing,” IEEE Trans. 1445

Dependable Secur. Comput., vol. 17, no. 6, pp. 1173–1187, 2020. 1446

[Online]. Available: https://doi.org/10.1109/TDSC.2018.2861403 1447

[11] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional functional 1448

dependencies for capturing data inconsistencies,” ACM Transactions on 1449

Database Systems (TODS), vol. 33, no. 2, pp. 1–48, 2008. 1450

[12] X. Chu, I. F. Ilyas, and P. Papotti, “Discovering denial constraints,” 1451

Proc. VLDB Endow., vol. 6, no. 13, pp. 1498–1509, 2013. [Online]. 1452

Available: http://www.vldb.org/pvldb/vol6/p1498-papotti.pdf 1453

[13] K. A. Ross, D. Srivastava, P. J. Stuckey, and S. Sudarshan, 1454

“Foundations of aggregation constraints,” Theoretical Computer 1455

Science, vol. 193, no. 1-2, pp. 149–179, 1998. [Online]. Available: 1456

https://doi.org/10.1016/S0304-3975(97)00011-X 1457

[14] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, 1458

“Conditional functional dependencies for data cleaning,” in Proceedings 1459

of the 23rd International Conference on Data Engineering, ICDE 2007. 1460

Istanbul, Turkey: IEEE Computer Society, 2007, pp. 746–755. [Online]. 1461

Available: https://doi.org/10.1109/ICDE.2007.367920 1462

[15] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, “Holoclean: 1463

Holistic data repairs with probabilistic inference,” Proc. VLDB 1464

Endow., vol. 10, no. 11, pp. 1190–1201, 2017. [Online]. Available: 1465

http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf 1466

[16] A. Brodsky, C. Farkas, and S. Jajodia, “Secure databases: Constraints, 1467

inference channels, and monitoring disclosures,” IEEE Trans. Knowl. 1468

Data Eng., vol. 12, no. 6, pp. 900–919, 2000. [Online]. Available: 1469

https://doi.org/10.1109/69.895801 1470

[17] H. S. Delugach and T. H. Hinke, “Wizard: A database inference analysis 1471

and detection system,” IEEE Trans. Knowl. Data Eng., vol. 8, no. 1, pp. 1472

56–66, 1996. [Online]. Available: https://doi.org/10.1109/69.485629 1473

[18] T. D. Garvey, T. F. Lunt, X. Qian, and M. E. Stickel, “Toward a tool 1474

to detect and eliminate inference problems in the design of multilevel 1475

databases,” in Results of the Sixth Working Conference of IFIP Working 1476

Group 11.3 on Database Security on Database Security, VI: Status and 1477

Prospects: Status and Prospects. USA: Elsevier Science Inc., 1993, p. 1478

149–167. 1479

[19] B. M. Thuraisingham, “Security checking in relational database 1480

management systems augmented with inference engines,” Comput. 1481

Secur., vol. 6, no. 6, pp. 479–492, 1987. [Online]. Available: 1482

https://doi.org/10.1016/0167-4048(87)90029-0 1483

[20] J.-W. Byun and N. Li, “Purpose based access control for privacy 1484

protection in relational database systems,” The VLDB Journal, 1485

vol. 17, no. 4, p. 603–619, jul 2008. [Online]. Available: 1486

https://doi.org/10.1007/s00778-006-0023-0 1487

[21] P. Colombo and E. Ferrari, “Efficient enforcement of action-aware 1488

purpose-based access control within relational database management 1489

systems,” IEEE Transactions on Knowledge and Data Engineering, 1490

vol. 27, no. 8, pp. 2134–2147, 2015. 1491

[22] F. Geerts, G. Mecca, P. Papotti, and D. Santoro, “The LLUNATIC 1492

data-cleaning framework,” Proc. VLDB Endow., vol. 6, no. 9, pp. 1493

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://doi.org/10.14778/3551793.3551805
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=BPC§ionNum=22575
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=BPC§ionNum=22575
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=BPC§ionNum=22575
https://oag.ca.gov/privacy/ccpa
http://www.vldb.org/conf/2002/S05P02.pdf
https://doi.org/10.14778/3407790.3407835
https://doi.org/10.1145/1007568.1007631
https://doi.org/10.1145/772862.772864
https://doi.org/10.1109/TDSC.2018.2861403
http://www.vldb.org/pvldb/vol6/p1498-papotti.pdf
https://doi.org/10.1016/S0304-3975(97)00011-X
https://doi.org/10.1109/ICDE.2007.367920
http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf
https://doi.org/10.1109/69.895801
https://doi.org/10.1109/69.485629
https://doi.org/10.1016/0167-4048(87)90029-0
https://doi.org/10.1007/s00778-006-0023-0

19

625–636, 2013. [Online]. Available: http://www.vldb.org/pvldb/vol6/p61494

25-mecca.pdf1495

[23] X. Chu, I. F. Ilyas, and P. Papotti, “Holistic data cleaning:1496

Putting violations into context,” in 29th IEEE International1497

Conference on Data Engineering, ICDE 2013. Brisbane, Australia:1498

IEEE Computer Society, 2013, pp. 458–469. [Online]. Available:1499

https://doi.org/10.1109/ICDE.2013.65448471500

[24] J. Kossmann, T. Papenbrock, and F. Naumann, “Data dependencies for1501

query optimization: a survey,” VLDB J., vol. 31, no. 1, pp. 1–22, 2022.1502

[Online]. Available: https://doi.org/10.1007/s00778-021-00676-31503

[25] S. D. C. di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi,1504

and P. Samarati, “Fragmentation in presence of data dependencies,”1505

IEEE Trans. Dependable Secur. Comput., vol. 11, no. 6, pp. 510–523,1506

2014. [Online]. Available: https://doi.org/10.1109/TDSC.2013.22957981507

[26] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann,1508

“Data profiling with metanome,” Proc. VLDB Endow., vol. 8, no. 12, pp.1509

1860–1863, 2015. [Online]. Available: http://www.vldb.org/pvldb/vol8/1510

p1860-papenbrock.pdf1511

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction1512

to Algorithms, Third Edition, 3rd ed. Cambridge, MA, USA: The MIT1513

Press, 2009.1514

[28] I. Dinur and S. Safra, “On the hardness of approximating minimum1515

vertex cover,” Annals of mathematics, vol. 162, no. 1, pp. 439–485, 2005.1516

[29] I. Kotsogiannis, S. Doudalis, S. Haney, A. Machanavajjhala,1517

and S. Mehrotra, “One-sided differential privacy,” in 36th IEEE1518

International Conference on Data Engineering, ICDE 2020. Dallas,1519

TX, USA: IEEE, 2020, pp. 493–504. [Online]. Available: https:1520

//doi.org/10.1109/ICDE48307.2020.000491521

[30] D. E. Denning, “Commutative filters for reducing inference threats in1522

multilevel database systems,” in 1985 IEEE Symposium on Security1523

and Privacy, Oakland, CA, USA, April 22-24, 1985. Oakland, CA,1524

USA: IEEE Computer Society, 1985, pp. 134–146. [Online]. Available:1525

https://doi.org/10.1109/SP.1985.100171526

[31] X. Qian, M. E. Stickel, P. D. Karp, T. F. Lunt, and T. D.1527

Garvey, “Detection and elimination of inference channels in multilevel1528

relational database systems,” in 1993 IEEE Computer Society1529

Symposium on Research in Security and Privacy. Oakland, CA,1530

USA: IEEE Computer Society, 1993, pp. 196–205. [Online]. Available:1531

https://doi.org/10.1109/RISP.1993.2876321532

[32] R. W. Yip and K. N. Levitt, “Data level inference detection in1533

database systems,” in Proceedings of the 11th IEEE Computer1534

Security Foundations Workshop. Rockport, Massachusetts, USA:1535

IEEE Computer Society, 1998, pp. 179–189. [Online]. Available:1536

https://doi.org/10.1109/CSFW.1998.6831681537

[33] M. Haddad, J. Stevovic, A. Chiasera, Y. Velegrakis, and M. Hacid,1538

“Access control for data integration in presence of data dependencies,”1539

in Database Systems for Advanced Applications - 19th International1540

Conference, DASFAA 2014, ser. Lecture Notes in Computer Science,1541

vol. 8422. Bali, Indonesia: Springer, 2014, pp. 203–217. [Online].1542

Available: https://doi.org/10.1007/978-3-319-05813-9 141543

[34] K. Y. Oktay, S. Mehrotra, V. Khadilkar, and M. Kantarcioglu,1544

“SEMROD: secure and efficient mapreduce over hybrid clouds,” in1545

Proceedings of the 2015 ACM SIGMOD International Conference on1546

Management of Data. Melbourne, Victoria, Australia: ACM, 2015, pp.1547

153–166. [Online]. Available: https://doi.org/10.1145/2723372.27237411548

[35] K. Y. Oktay, M. Kantarcioglu, and S. Mehrotra, “Secure and efficient1549

query processing over hybrid clouds,” in 33rd IEEE International1550

Conference on Data Engineering, ICDE 2017. San Diego, CA,1551

USA: IEEE Computer Society, 2017, pp. 733–744. [Online]. Available:1552

https://doi.org/10.1109/ICDE.2017.1251553

[36] G. Miklau and D. Suciu, “A formal analysis of information1554

disclosure in data exchange,” in Proceedings of the ACM SIGMOD1555

International Conference on Management of Data, 2004. Paris,1556

France: ACM, 2004, pp. 575–586. [Online]. Available: https:1557

//doi.org/10.1145/1007568.10076331558

[37] C. Dwork and A. Roth, “The algorithmic foundations of differential1559

privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp.1560

211–407, 2014. [Online]. Available: https://doi.org/10.1561/04000000421561

[38] L. Yu, S. Zhang, L. Zhou, Y. Meng, S. Du, and H. Zhu, “Thwarting1562

longitudinal location exposure attacks in advertising ecosystem via edge1563

computing,” in 2022 IEEE 42nd International Conference on Distributed1564

Computing Systems (ICDCS), 2022, pp. 470–480. [Online]. Available:1565

https://doi.org/10.1109/ICDCS54860.2022.000521566

[39] S. Zhang and X. He, “DProvDB: Differentially private query processing1567

with multi-analyst provenance,” Proc. ACM Manag. Data, 2023.1568

[40] A. Jebali, S. Sassi, A. Jemai, and R. Chbeir, “Secure data outsourcing in1569

presence of the inference problem: A graph-based approach,” Journal of1570

Parallel and Distributed Computing, vol. 160, pp. 1–15, 2022. [Online]. 1571

Available: https://www.sciencedirect.com/science/article/pii/S0743731 1572

521001842 1573

[41] Y. Bao, W. Qiu, X. Cheng, and J. Sun, “Fine-grained data sharing with 1574

enhanced privacy protection and dynamic users group service for the 1575

iov,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 1576

2022. 1577

[42] T. V. X. Phuong, G. Yang, and W. Susilo, “Hidden ciphertext policy 1578

attribute-based encryption under standard assumptions,” Trans. Info. 1579

For. Sec., vol. 11, no. 1, p. 35–45, jan 2016. [Online]. Available: 1580

https://doi.org/10.1109/TIFS.2015.2475723 1581

[43] W. Zhang, E. Sheng, M. A. Chang, A. Panda, M. Sagiv, and 1582

S. Shenker, “Blockaid: Data access policy enforcement for web 1583

applications,” CoRR, vol. abs/2205.06911, 2022. [Online]. Available: 1584

https://doi.org/10.48550/arXiv.2205.06911 1585

[44] X. Xiao, Y. Tao, and N. Koudas, “Transparent anonymization: Thwarting 1586

adversaries who know the algorithm,” ACM Transactions on Database 1587

Systems (TODS), vol. 35, no. 2, pp. 1–48, 2010. 1588

[45] N. Dalvi, G. Miklau, and D. Suciu, “Asymptotic conditional probabili- 1589

ties for conjunctive queries,” in International Conference on Database 1590

Theory. Springer, 2005, pp. 289–305. 1591

Primal Pappachan is an Assistant Professor in 1592

the Department of Computer Science at Port- 1593

land State University. He received a Ph.D. in 1594

Computer Science from University of California, 1595

Irvine in 2021. Afterwards, he was a postdoctoral 1596

scholar in the College of Information Sciences 1597

and Technology at Pennsylvania State Univer- 1598

sity. His research interests include data man- 1599

agement and privacy, particularly designing and 1600

implementing data protection mechanisms. 1601

1602

Shufan Zhang received the M.Math degree 1603

from the University of Waterloo, Waterloo, ON, 1604

Canada, in 2022. He is currently working to- 1605

ward the Ph.D. degree in computer science at 1606

the University of Waterloo. His research inter- 1607

ests include computer security and data privacy, 1608

on both theory and system aspects, as well as 1609

their intersections with database systems and 1610

machine learning. 1611

1612

1613

Xi He is an Assistant Professor in the Cheriton 1614

School of Computer Science at the University 1615

of Waterloo, and Canada CIFAR AI Chair at the 1616

Vector Institute. Her research focuses on the ar- 1617

eas of privacy and security for big data, including 1618

the development of usable and trustworthy tools 1619

for data exploration and machine learning with 1620

provable security and privacy guarantees. She 1621

has given tutorials on privacy at VLDB 2016, 1622

SIGMOD 2017, and SIGMOD 2021. She is a re- 1623

cipient of the Meta Privacy Enhancing Technolo- 1624

gies Research Award in 2022 and Google Ph.D. Fellowship in Privacy 1625

and Security in 2017. Her book “Differential Privacy for Databases,” co- 1626

authored by Joseph Near, was published in 2021. Xi graduated with a 1627

Ph.D. from the Department of Computer Science, Duke University, and 1628

a double degree in Applied Mathematics and Computer Science from 1629

the University of Singapore. 1630

Sharad Mehrotra received the PhD degree in 1631

computer science from the University of Texas, 1632

Austin, Austin, Texas, in 1993. He is currently 1633

a professor with the Department of Computer 1634

Science, University of California, Irvine, Irvine, 1635

California. Previously, he was a professor with 1636

the University of Illinois at Urbana Champaign, 1637

Champaign, Illinois. He has received numerous 1638

awards and honors, including the 2011 SIGMOD 1639

Best Paper Award, 2007 DASFAA Best Paper 1640

Award, SIGMOD Test of Time Award, 2012, 1641

DASFAA ten year best paper awards for 2013 and 2014, 1998 CAREER 1642

Award from the US National Science Foundation (NSF), and ACM ICMR 1643

Best Paper Award for 2013. His primary research interests include the 1644

area of database management, distributed systems, secure databases, 1645

and Internet of Things. 1646

1647

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3336630

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

http://www.vldb.org/pvldb/vol6/p625-mecca.pdf
http://www.vldb.org/pvldb/vol6/p625-mecca.pdf
http://www.vldb.org/pvldb/vol6/p625-mecca.pdf
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1007/s00778-021-00676-3
https://doi.org/10.1109/TDSC.2013.2295798
http://www.vldb.org/pvldb/vol8/p1860-papenbrock.pdf
http://www.vldb.org/pvldb/vol8/p1860-papenbrock.pdf
http://www.vldb.org/pvldb/vol8/p1860-papenbrock.pdf
https://doi.org/10.1109/ICDE48307.2020.00049
https://doi.org/10.1109/ICDE48307.2020.00049
https://doi.org/10.1109/ICDE48307.2020.00049
https://doi.org/10.1109/SP.1985.10017
https://doi.org/10.1109/RISP.1993.287632
https://doi.org/10.1109/CSFW.1998.683168
https://doi.org/10.1007/978-3-319-05813-9_14
https://doi.org/10.1145/2723372.2723741
https://doi.org/10.1109/ICDE.2017.125
https://doi.org/10.1145/1007568.1007633
https://doi.org/10.1145/1007568.1007633
https://doi.org/10.1145/1007568.1007633
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/ICDCS54860.2022.00052
https://www.sciencedirect.com/science/article/pii/S0743731521001842
https://www.sciencedirect.com/science/article/pii/S0743731521001842
https://www.sciencedirect.com/science/article/pii/S0743731521001842
https://doi.org/10.1109/TIFS.2015.2475723
https://doi.org/10.48550/arXiv.2205.06911

	Preventing Inferences through Data Dependencies on Sensitive Data
	Let us know how access to this document benefits you.
	Citation Details

	Introduction
	Preliminaries
	Access Control Policies
	Data Dependencies

	Full Deniability
	Assumptions
	 Querier View
	Inference Function
	Security Definition

	Full Deniability with Data Dependencies
	Leakage due to Denial Constraints
	Selecting Cells to Hide
	Leakage due to Function-based Constraints

	Algorithm to Achieve Full Deniability
	Full-Deniability Algorithm
	Inference Detection
	Inference Protection
	Convergence and Complexity Analysis
	Wrapper for Scaling out Full-Deniability Algorithm

	Weaker Security Model
	k-Percentile Deniability
	Algorithms to Achieve k-Percentile Deniability.

	Relaxing Security Assumptions
	Experimental Evaluation
	Evaluation Setup
	Experiment 1: Baseline Comparison
	Experiment 2: Dependency Connectivity
	Experiment 3: Scalability Experiments
	Experiment 4: k-Percentile Deniability
	Experiment 5: Modified Inference Protection
	Experiment 6: Case Study over Query Workloads
	Experiment 7: Case Study against Real-World Adversaries

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Primal Pappachan
	Shufan Zhang
	Xi He
	Sharad Mehrotra

