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Abstract: Designing welding filler metals with low cracking susceptibility and high strength is
essential in welding low-temperature base metals, such as austenitic stainless steel, which is widely
utilized for various applications. A strength model for weld metals using austenitic stainless steel
consumables has not yet been developed. In this study, such a model was successfully developed.
Two types of models were developed and analyzed: conventional multiple regression and machine-
learning-based models. The input variables for these models were the chemical composition and
heat input per unit length. Multiple regression analysis utilized five statistically significant input
variables at a significance level of 0.05. Among the prediction models using machine learning, the
stepwise linear regression model showed the highest coefficient of determination (R2) value and
demonstrated practical advantages despite having a slightly higher mean absolute percentage error
(MAPE) than the Gaussian process regression models. The conventional multiple regression model
exhibited a higher R2 (0.8642) and lower MAPE (3.75%) than the machine-learning-based predictive
models. Consequently, the models developed in this study effectively predicted the variation in the
yield strength resulting from dilution during the welding of high-manganese steel with stainless-
steel-based welding consumables. Furthermore, these models can be instrumental in developing new
welding consumables, thereby ensuring the desired yield strength levels.

Keywords: multiple regression analysis; machine learning; yield strength; weld metal; austenitic
stainless steel

1. Introduction

Austenitic stainless steels exhibit high corrosion resistance, formability, and weld-
ability [1–5]; therefore, they are widely utilized in the energy industry (such as power
plants), petrochemical processes, and liquefied natural gas (LNG) transportation. In weld-
ing these metals, welding consumables with a similar chemical composition are primarily
employed [6,7]. These consumables have also been used for 9% nickel (Ni) steel and
high-manganese (Mn) steels [8]. Austenitic stainless-steel-based welding consumables
contribute to minimizing welding material costs while ensuring the sound weldability of
9% Ni and high-Mn steels [9–14].

The chemical composition of the weld metal for 9% Ni steel and high-Mn steel with
austenitic stainless-steel-based welding consumables varies based on the degree of dilution
between the base metal and filler metal [15,16]. This dilution affects the mechanical proper-
ties of the weld, such as the impact toughness, yield strength, and tensile strength [17,18].
It is noteworthy that the mechanical properties are influenced by process parameters such
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as the heat input, welding position, and arc inclination because these factors influence the
degree of dilution in dissimilar combinations of base metal and filler metal.

Several studies have focused on developing models to predict the mechanical prop-
erties of the base metal in stainless steels using multiple regression analyses [19–21]. In
addition, there is ongoing research on the development of machine-learning-based mod-
els to predict the mechanical properties of various steels, including carbon and stainless
steels [22–25]. However, studies on prediction models for the mechanical properties of
weld metals are limited, and there is a need for exploration using artificial intelligence
technology in addition to conventional multiple regression analysis. The properties of
the weld metal are influenced by its chemical composition and thermal history, making
the prediction model for the weld metal more sophisticated than that for the base metal.
Verma et al. [26] proposed a prediction model for the mechanical properties of welded
joints; however, their model was specifically developed for friction-stir-welded aluminum
alloys, which have limited applicability.

Given the increasing demand for cryogenic liquid tanks, low cracking susceptibility,
high strength, and cost-effectiveness are crucial factors in the design of welding filler
metals to accommodate low-temperature base metals. For austenitic stainless steels, the
Schaeffler phase diagram is used to estimate the phase of the weld metal based on its
chemical composition, as a measure of cracking susceptibility. However, a strength model
for austenitic stainless steel welds has not yet been developed.

Therefore, the objective of this study was to develop a machine-learning-based predic-
tion model for the mechanical properties of weld metals using austenitic stainless steel filler
metals. Specifically, the focus was on predicting the yield strength based on the chemical
composition of the weld metal and the welding heat input. A dataset comprising 100 data
points with various chemical compositions and heat inputs was utilized to train the pre-
diction model, while an additional 27 data points were reserved for model verification. To
establish yield strength models, various algorithms, including linear regression, support
vector machine (SVM), Gaussian process regression (GPR), decision tree, and tree ensemble,
were employed.

2. Materials and Methods
2.1. Data Preparation

A dataset consisting of 100 data points was used as the training dataset to estab-
lish a machine-learning-based prediction model for the weld metal strength. These
data points were obtained from evaluation reports conducted by welding consumable
manufacturers (Hyundai Welding Co., LTD Seoul, South Korea. and ESAB SeAH Corp.
Seoul, South Korea) and shipyards (HD Korea Shipbuilding & Offshore Engineering Co., LTD.
Seoul, South Korea and HD Hyundai Heavy industries Co., LTD. Seoul, South Korea)
to assess the mechanical properties of the welds. The flux cored arc welding (FCAW)
process was applied using the thyristor-controlled welding power sources commonly used
in shipyards, and CO2 was used alone as the shielding gas, so the globular transfer mode
was applied. The input variables considered in the model included the composition of the
weld metal, nine different alloying elements (C, Si, Mn, P, S, Ni, Cr, Mo, and Cu), and the
welding heat input per unit length. The output variable of the model was the yield strength
of the weld metal. Table 1 presents the statistical characteristics of the data. Various base
metals, such as high-Mn steel, stainless steel, and 9% Ni steel, were welded using austenitic
stainless steel filler metals.

To validate the predictive models developed in this study, additional yield strength
data points for austenitic stainless steel weld metals were obtained from previous stud-
ies [27–31] and mill test certificates for shipyards. In addition, 27 datasets were acquired,
surpassing 25% of the original 100 datasets, and were used for model training. The ranges
of each variable in the collected datasets are listed in Table 2.
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Table 1. Descriptive statistics of the dataset for model training.

No. Variable (Unit) Min. Max. Mean Std. Dev

1 C (wt%) 0.014 0.45 0.14 0.11
2 Si (wt%) 0.15 0.99 0.49 0.18
3 Mn (wt%) 1.01 22 4.19 4.52
4 P (wt%) 0.001 0.026 0.013 0.004
5 S (wt%) 0.001 0.015 0.004 0.003
6 Ni (wt%) 0.014 20.4 13.2 4.28
7 Cr (wt%) 1.21 25.4 15.6 6.26
8 Mo (wt%) 0 3.66 2.10 1.24
9 Cu (wt%) 0 0.3 0.04 0.05

10 Heat Input (kJ/cm) 9 37.4 11.8 3.63
11 Yield Strength (MPa) 335 565 442 47.56

Table 2. Descriptive statistics of the dataset for the verification test.

No. Variable (Unit) Min. Max. Mean Std. Dev

1 C (wt%) 0.02 0.19 0.05 0.04
2 Si (wt%) 0.3 0.96 0.59 0.17
3 Mn (wt%) 0.61 2.09 1.36 0.41
4 P (wt%) 0.011 0.043 0.024 0.010
5 S (wt%) 0.001 0.032 0.012 0.008
6 Ni (wt%) 8.32 18.04 11.54 2.82
7 Cr (wt%) 15.8 21.06 18.5 1.26
8 Mo (wt%) 0.03 3.41 1.28 1.29
9 Cu (wt%) 0.012 0.29 0.11 0.08

10 Heat Input (kJ/cm) 7 28 13.4 5.42
11 Yield Strength (MPa) 339 510 419 47.70

2.2. Multiple Regression Analysis

Pearson’s correlation analysis was performed to assess the relationships between the
input and output variables. Pearson’s correlation coefficients were calculated to determine
the strength and direction of the correlation between each input and output variable.

A multiple linear regression model was constructed using all the input variables in
relation to the output variable. Additionally, a simplified model was developed considering
only statistically significant input variables.

2.3. Machine Learning Prediction Models

Prediction models were developed using the MATLAB (version R2022a) Regression
Learner App. Several machine learning algorithms, such as linear regression, decision
tree, SVM, regression tree ensemble, and GPR [32,33], have been employed to establish
prediction models for yield strength. The inputs for the model included the chemical
composition of the weld metal and heat input.

The linear regression model is a regression model that predicts the value of a depen-
dent variable by assuming that the independent and dependent variables have a linear
relationship. Robust linear regression is a method used to reduce the effect of outliers that
distort data in linear regression and is a method of adjusting weights. Stepwise linear
regression is a method of optimization by adding terms step-by-step until the performance
no longer improves without inserting all terms. A decision tree is a multistage decision-
making algorithm that predicts the final dependent variable by composing a complex
decision-making process using a combination of several simple decisions. This method
matches the results by creating branching points using specific criteria in the dataset. This
is called a decision tree, because the shape of the overall model divided by the branching
points is similar to that of a tree. A regression tree ensemble is a technique that connects
multiple decision trees to create a robust model. Boosting and bagging were used in
this study. SVM is an algorithm designed to solve the binary classification problem; it
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finds a hyperplane that can classify data with the maximum margin. SVM has excellent
generalization properties and can be applied to regression problems. Six types of SVM
models (linear, quadratic, cubic, fine, medium, and coarse Gaussian) were used for the
training. GPR is a regression modeling technique that uses a Gaussian process. The squared
exponential, Matern 5/2, exponential GPR, and rational quadratic GPR were used. In the
Gaussian process, the mean and covariance functions are used to define the distribution of
the regression function; the covariance function is also called a kernel function.

To assess the performance of the developed model, a comparative evaluation was
conducted using various predictive models, enabling a comprehensive analysis of their ef-
fectiveness.

3. Results
3.1. Correlation Analysis

Table 3 presents the Pearson correlation coefficients and corresponding p-values for all
the input variables in relation to the yield strength, which served as the output variable.
Among the chemical compositions, Mo demonstrated the highest correlation coefficient,
i.e., 0.7032, with the yield strength. It is generally accepted that a correlation is appropriate
when the absolute value of the correlation coefficient exceeds the absolute value of 0.4 [34].
Based on this criterion, the input variables C, Si, S, and Mo were found to be significantly
correlated with the yield strength.

Table 3. Pearson correlation coefficients and p-values between input variables and yield strength.

C Si Mn P S Ni Cr Mo Cu Heat
Input

Pearson
correlation
coefficient

(r)

0.4341 −0.4445 −0.0209 −0.1743 −0.4003 0.3170 −0.1294 0.7032 0.2173 −0.0413

p-value 0.0000 0.0000 0.8360 0.0830 0.0000 0.0010 0.1990 0.0000 0.3000 0.6840

The statistical significance of the relationships was assessed using a significance level
of 0.05 [35]. When the p-value was below this threshold, the relationship was considered
statistically significant. Consequently, the input variables for C, Si, S, Ni, and Mo were
identified as statistically significant, based on their respective p-values.

3.2. Multiple Regression Analysis

A multiple regression model utilizing all the input variables was developed, and the
coefficients and p-values are presented in Table 4.

Table 4. Regression coefficients and p-values for yield strength regression using all input variables.

Variable Coefficient p-Value

Constant 346 0.000
C 369 0.000
Si −0.91 0.941

Mn −1.40 0.058
P −754 0.182
S −837 0.160

Ni −1.11 0.066
Cr 3.01 0.000
Mo 25.8 0.000
Cu 487 0.000

Heat input −3.68 0.000
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The multiple regression equation is represented by Equation (1) as follows:

Yield Strength (MPa) = 346 + 369C − 0.91Si − 1.40Mn − 754P − 837S − 1.11Ni + 3.01Cr + 25.8Mo + 487Cu −
3.68Heat Input (HI),

(1)

where the chemical composition is given in weight percent and the heat input is in kJ/cm.
The p-values for C, Cr, Mo, Cu, and HI were less than 0.05, which can be considered

statistically significant at a significance level of 0.05, and had a meaningful effect on
the model’s output. Owing to the limited number of training data points, the signs of
some coefficients may be inconsistent with the physical behavior caused by the respective
elements. However, the coefficients of the significant variables aligned with the actual role
of the element. For example, an increase in C content leads to increased yield strength
owing to interstitial solid solution strengthening [36–38], whereas an increase in heat input
results in decreased yield strength owing to an increase in primary dendrite arm spacing
(PDAS) [39].

At significance levels of 0.1 and 0.05, multiple regression models using only the
significant variables were derived, as shown in Equations (2) and (3), respectively.

Yield Strength (MPa) = 316 + 378C − 0.625Mn − 0.517Ni + 3.15Cr + 26.8Mo + 450Cu − 3.63Heat Input (HI) (2)

Yield Strength (MPa) = 310 + 363C + 3.10Cr + 26.7Mo + 456Cu − 3.66Heat Input (HI), (3)

where the chemical composition is given in weight percent and the heat input is in kJ/cm.
Table 5 summarizes the accuracy of the model with the mean absolute percentage

errors (MAPEs) and adjusted coefficient of determination (R2) values of Equations (1)–(3).
The MAPEs for Equations (1) and (3) are 2.1% and 2.2%, respectively, and the R2 values
are 0.9294 and 0.9278, respectively. Equation (3) utilizes only five input variables but
demonstrates performance comparable to that of Equation (1).

Table 5. Accuracy of multiple regression models.

Model MAPE
(%) R2 Remark

Equation (1) 2.1 0.9294 All input variables
Equation (2) 2.2 0.9273 α = 0.1
Equation (3) 2.2 0.9278 α = 0.05

3.3. Machine Learning Models

Figure 1 presents the R2 values for the prediction models developed using linear
regression, decision trees, SVM, and GPR. For the decision tree models, the R2 values
for the fine, medium, and coarse tree models were less than 0.50; therefore, they were
not plotted.

Among the prediction models developed using the Regression Learner App, the
stepwise linear regression model exhibited the highest R2 value, i.e., 0.93. Among the
different SVM models, only the linear SVM model surpassed the value of 0.90, with an R2

value of 0.91. Table 6 lists the MAPEs and R2 values for the prediction models, with the R2

values exceeding 0.90.
Table 6 lists the excellent prediction performance of both the linear regression and GPR

models. The stepwise linear regression model demonstrated a marginally higher MAPE
than the GPR model. However, the stepwise linear regression model also exhibited a higher
R2 value, surpassing the GPR model by 0.01. To assess the residual tendency of the model,
residual analysis was conducted for both linear regression and GPR. Figure 2 illustrates
the residuals from the prediction models, depicting a random distribution without any
discernible trends in the measured yield strength. Because linear regression models require
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fewer computing resources, they are generally preferred over GPR models. Despite the
slightly higher MAPE in the stepwise linear regression, the model’s higher R2 value and
practical advantages make it a favorable choice.
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Figure 1. Prediction models using Regression Learner App.

Table 6. Accuracy of regression models.

Model MAPE
(%) R2

Linear Regression 2.15 0.92
Stepwise Linear Regression 1.72 0.93

Linear SVM 2.11 0.91
Squared Exponential GPR 1.62 0.92

Matern 5/2 GPR 1.57 0.92
Rational Quadratic GPR 1.62 0.92

Figure 3 summarizes the MAPE and R2 of models with R2 exceeding 0.90 among the
prediction models developed through the Regression Learner App and Equations (1)–(3)
through multiple regression analysis. Among the models shown in Figure 3, the ideal
models are the model developed using Equation (3) with the highest R2, stepwise linear
regression with the lowest MAPE and highest R2, and Matern 5/2 GPR with the lowest
MAPE selected from the GPR models.
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3.4. Model Verification Results Using Additional Data Points

The machine learning models developed in this study were verified using additional
data points that were not used in the training in the previous step. The yield strength
was predicted using Equation (3), the stepwise linear regression model, and the Matern
5/2 GPR model, which were confirmed to have excellent prediction performance. Figure 4
compares the measured yield strengths in the additional data with the yield strengths
predicted by the developed models. The linear SVM model with a higher MAPE and a
lower R2 value than the stepwise linear regression and Matern 5/2 GPR, but with an R2

value exceeding 0.90 among SVM models, was also included in the model validation.
According to Figure 4, the highest R2 for the correlation between the measured and

predicted yield strengths was 0.8642 in Equation (3), and a prediction model was developed
using a multiple regression analysis. In contrast, the stepwise linear regression model
was confirmed to have the lowest R2 at 0.6383; however, the model had an R2 of 0.7537,
except for one outlier with a measured yield strength of 348 MPa, as shown in Figure 4.
The linear SVM model, which had lower accuracy than stepwise linear regression and
Matern 5/2 GPR in the process of prediction model development, indicated high prediction
accuracy in model validation. Table 7 summarizes the MAPE and R2 to ensure the accuracy
of the model during validation.
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Table 7. Accuracy of regression models for model validation.

Model MAPE
(%) R2

Multiple Regression using Equation (3) 3.75 0.8462
Stepwise Linear Regression 8.07 0.6383

Matern 5/2 GPR 5.24 0.7596
Linear SVM 4.25 0.8164

In model validation, the accuracy of the model developed through multiple regression
analysis was the highest; however, the R2 and MAPE of machine-learning-based prediction
models may be lowered depending on the attributes and quantity of data points.

4. Discussion
4.1. Dilution and Yield Strength of Stainless-Steel-Based Weld Metal in High-Mn Steel

The yield strength prediction models for the weld metal developed in this study can
predict the variation in the yield strength of the weld metal by considering the dilution
when welding high-Mn steel with stainless-steel-based welding consumables.

Using the models used for model validation, the predicted yield strength according
to the chemical composition variation due to dilution between the high-Mn steel and the
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three welding consumables, listed in Table 8, is as shown in Figure 5. Because the dilution
rate varies depending on the welding position, current, speed, and heat input [40–42], the
heat input per unit length was fixed at 10 kJ/cm.

Table 8. Chemical composition of base metal and welding consumables (wt%).

C Si Mn P S Ni Cr Mo Cu

Base metal 0.42 0.27 23.84 0.014 0.002 0.027 3.16 0.01 0.43

Welding consumable
Type 308L 0.03 0.62 1.31 0.014 0.011 9.68 18.16 0.03 0.01

Welding consumable
Type 316L 0.03 0.6 1.35 0.013 0.01 11.59 17.48 2.73 0.02

Welding consumable
Fully austenitic 0.19 0.3 1.05 0.011 0.004 18.04 16.86 3.33 0
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The stepwise linear regression and linear SVM models showed similar trends for
various material combinations and dilutions; however, they exhibited slight differences
compared with the multiple regression model, which had the highest prediction accuracy.

For the Matern 5/2 GPR model, the predicted yield strength increased linearly with
the dilution rate up to a certain point. However, in certain dilution ranges (40–80%), the
increase became nonlinear, leading to a relatively high deviation compared to the multiple
regression model.

According to ASTM A1106/A1106M-17 [43], a yield strength of at least 400 MPa
is required for high-Mn steel used for cryogenic applications. It was confirmed that
the type 308L welding material did not satisfy the predicted yield strength of 400 MPa
until the dilution rate was less than 20%; however, the predicted strength of the other
welding consumables exceeded 400 MPa at all dilution rates. Considering the requirement
for a maximum yield ratio of 0.9 (the yield strength/tensile strength) by engineering
specifications [44], and the minimum tensile strength of 600 MPa for welding consumables
according to KS D 7143 (flux-cored arc welding wires for high-Mn steel) [45], the maximum
yield strength of austenitic stainless-steel-based welding consumables for high-Mn steel
is considered to be 540 MPa. Because the high-strength properties of steel can lead to
cracking [46], it is desirable to set an appropriate upper limit for the yield strength.

4.2. Establishment of Main Chemical Composition Content of Austenitic Stainless-Steel-Based
Welding Consumables for High-Mn Steel

Models based on multiple regression, such as Equation (3), have relatively high
prediction accuracy and can be compared with other machine-learning-based predic-
tion models for accuracy validation. C, Cu, and Mo had relatively high coefficients in
Equations (2) and (3); however, the Cu content in the welding consumables was minimal.
Therefore, C and Mo were selected as the variables, and contour plots were drawn to deter-
mine the yield strength, as shown in Figure 6. For C and Mo, the minimum and maximum
content of the dataset used for model training were used as domains, whereas, for other
chemical components, the chemical composition was extracted from one experimental data
point where the heat input was 14 kJ/cm and the base metal and weld metal were high-Mn
steel and fully austenitic welding consumables, respectively. Their chemical compositions
are listed in Table 9.

According to Figure 6, when the C content is 0.10 wt%, the Mo content must be at least
1.25 wt% to obtain yield strength of at least 400 MPa. Therefore, it is possible to predict
the minimum Mo content at a specific value of C content, or the minimum C content at a
specific value of Mo content, to satisfy the minimum yield strength requirement. Likewise,
when the C content is 0.35 wt% and the Mo content exceeds 3.2 wt%, excessive yield
strength exceeding 540 MPa can be predicted.

4.3. Prediction of Microstructure According to Dilution of Stainless-Steel-Based Welding
Consumable in High-Mn Steel

Figure 7 shows the Cr and Ni equivalents in a Schaeffler diagram based on the variation
in the chemical composition according to the dilution rate. Stainless steel type 308L and
316L welding consumables were predicted to have ferrite content of less than 10% when
undiluted, and to have a fully austenitic structure when the dilution rate exceeded 5%.
Welding consumables with a fully austenitic structure maintained the structure because the
variation in the Ni equivalent was small, even when the Cr equivalent decreased as the
dilution rate increased.
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Table 9. Chemical composition for contour line of yield strength (wt%).

Models C Mn Ni Cr Mo Cu Heat Input
(kJ/cm) Remark

- 0.21 3.35 15.06 16.21 3.23 0.04 14 Referred
data point

Equation (2) 0.014–0.45 3.35 15.06 16.21 0–3.66 0.04 14
Equation (3) 0.014–0.45 - - 16.21 0–3.66 0.04 14
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Schaeffler diagram for austenitic stainless-steel-based welding consumables.

In particular, the fully austenitic welding consumable had a relatively high Ni equiv-
alent of 24.3–24.5% according to dilution with high-Mn steel, which was advantageous
in maintaining the fully austenitic microstructure. However, there is a need to reduce the
cost of welding consumables through the optimization of chemical compositions, while
ensuring that the required mechanical properties are satisfied. In fully austenitic welding
materials, the Ni content, which is expensive and relatively large, was adjusted to 5% and
10%, respectively, and did not significantly change the yield strength, as shown in Table 10.

Table 10. Chemical composition of base metal and modified welding consumables (wt%).

Welding Consumable C Si Mn P S Ni Cr Mo Cu

Fully austenitic 0.19 0.3 1.05 0.011 0.004 18.04 16.86 3.33 0
Modified fully austenitic

Case 1 0.19 0.3 1.05 0.011 0.004 10.00 16.86 3.33 0

Modified fully austenitic
Case 2 0.19 0.3 1.05 0.011 0.004 10.00 10.00 3.33 0

Modified fully austenitic
Case 3 0.19 0.3 1.05 0.011 0.004 5.00 10.00 3.33 0

Figure 8 shows the Cr and Ni equivalents according to the dilution rate, with the
chemical compositions of the welding consumables listed in Table 10 on the Schaeffler
diagram. The original fully austenitic welding consumable is expected to have a fully
austenitic microstructure even if the Ni content is lowered to 10% and the Cr content
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is further reduced to 10%. However, when the Ni content was further reduced to 5%,
martensite with a brittle microstructure was generated. Therefore, it was confirmed that a
fully austenitic microstructure can be maintained even when the Ni content is lowered to
10% in the original fully austenitic welding consumable and can be utilized when designing
a new welding consumable.
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Table 11 shows the results of predicting the yield strength using the chemical composi-
tion change data according to the increase in the dilution rate in the prediction models using
the welding consumables (Case 2 in Table 10), in which the fully austenitic microstructure
was maintained even when the Ni content was lowered to 10%. According to Table 11,
a yield strength of at least 461 MPa is expected with the chemical composition of the
undiluted welding consumable. When the dilution rate is 50% or more, it exceeds 540 MPa,
which is considered the upper limit of the yield strength. In general, because it is difficult
for a dilution rate above 50% to occur in multilayer welds, it is advantageous to refer only
to the information on excessive dilution rates.

Table 11. Results of predicting the yield strength according to the increase in dilution rate with the
optimized welding consumable.

Dilution Rate
(%)

Predicted Yield Strength
(MPa)

Equation (3) Stepwise Linear
Regression Matern 5/2 GPR Linear SVM

0 462 465 461 470
10 479 480 479 485
20 496 496 497 499
30 513 512 517 514
40 530 527 536 529
50 547 543 554 543
60 564 559 571 558
70 581 574 587 573
80 598 590 602 588
90 615 606 614 602

100 632 621 625 617
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5. Conclusions

This study developed multiple regression and machine-learning-based models to
predict the yield strength of weld metals using austenitic stainless-steel-based welding
consumables, and the following conclusions were drawn.

1. Through multiple regression analysis, a model with high accuracy was developed
with five input variables satisfying a significance level of 0.05, and conventional
multiple regression models showed excellent prediction performance with an MAPE
of 2.2%.

2. Among the prediction models developed using machine learning, the stepwise linear re-
gression model was identified as the best, with the highest R2 and a practical advantage.

3. Comparing the prediction models developed based on the multiple regression analysis
and machine learning, the multiple regression model showed a higher R2 than the
machine learning models used in this study. In the model validation, the multiple
regression model showed an R2 of 0.8642 and an MAPE of 3.75%.

Consequently, the models developed in this study can effectively predict the variation
in yield strength resulting from thermal history and dilution during the welding of high-Mn
steel with stainless-steel-based welding consumables. Furthermore, these models play an
important role in developing new welding consumables, thereby ensuring the desired yield
strength levels.
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