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• The microalgal contribution to the circular
economy is substantial.

• AI/ML usage in algal cultivation assists in
effective decision-making.

• Application of ML tools in algal biorefinery
helps in increase in product yield.

• Novel deep-learning ML algorithms incor-
porating large databases are needed.
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The increased water scarcity, depletion of freshwater resources, and rising environmental awareness are stressing for
the development of sustainable wastewater treatment processes. Microalgae-based wastewater treatment has resulted
in a paradigm shift in our approach toward nutrient removal and simultaneous resource recovery from wastewater.
Wastewater treatment and the generation of biofuels and bioproducts from microalgae can be coupled to promote
the circular economy synergistically. A microalgal biorefinery transforms microalgal biomass into biofuels, bioactive
chemicals, and biomaterials. The large-scale cultivation ofmicroalgae is essential for the commercialization and indus-
trialization of microalgae biorefinery. However, the inherent complexity of microalgal cultivation parameters regard-
ing physiological and illumination parameters renders it challenging to facilitate a smooth and cost-effective
operation. Artificial intelligence (AI)/machine learning algorithms (MLA) offer innovative strategies for assessing,
predicting, and regulating uncertainties in algal wastewater treatment and biorefinery. The current study presents a
critical review of the most promising AI/MLAs that demonstrate a potential to be applied in microalgal technologies.
The most commonly used MLAs include artificial neural networks, support vector machine, genetic algorithms, deci-
sion tree, and random forest algorithms. Recent developments in AI have made it possible to combine cutting-edge
techniques fromAI research fields withmicroalgae for accurate analysis of large datasets. MLAs have been extensively
studied for their potential inmicroalgae detection and classification. However, theML application inmicroalgal indus-
tries, such as optimizing microalgae cultivation for increased biomass productivity, is still in its infancy. Incorporating
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smart AI/ML-enabled Internet of Things (IoT) based technologies can help the microalgal industries to operate
effectively with minimum resources. Future research directions are also highlighted, and some of the challenges and
perspectives of AI/ML are outlined. As the world is entering the digitalized industrial era, this review provides an in-
sightful discussion about intelligent microalgal wastewater treatment and biorefinery for researchers in the field of
microalgae.
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1. Introduction

The current scarcity and demand for freshwater resources and the antic-
ipated water stress due to ongoing climate changes highlight an immediate
need for sustainable technologies that allow wastewater treatment and si-
multaneous resource recovery. Microalgae-based technologies offer a
promising route for turning nutrients from wastewater into value-added
biomass for subsequent resource recovery. Conventional methods of algal
growing in high-rate algal ponds (HRAPs) and photobioreactors (PBRs)
focus primarily on removing nutrients and organicmatter fromwastewater.
However, in recent years, researchers have paid a lot more attention to
wastewater treatment combined with resource recovery. This is because
the generated biomass can be used to synthesize value-added bioproducts.
Microalgae are unicellular microorganisms that leverage natural resources
(e.g., carbon dioxide, sunlight, and nutrients) tomeet their metabolic needs
and, in turn, generate carbohydrates, lipids, and other useful products
(Chen et al., 2022). Microalgae are regarded as the third generation of
raw materials for biofuel production because of their carbon-neutral life
cycle, non - competition with food or agricultural crops, and prospects for
vertical and high-density culture system designs (Dragone et al., 2010).
Microalgal biomass can be processed into fuels (biodiesel, hydrogen, and
syngas) (Khoo et al., 2019), animal feedstocks, and platform chemicals
(Wang et al., 2022). Recently, there has been a rise in interest in other
areas of algal production, such as protein, phenolic compounds, and lutein
(Sun et al., 2015), due to their repurposing potential. Themajor bottlenecks
to the commercialization of micro-algal technologies lie in their high costs
of harvesting and the technical skill needed to cultivate algae. The algal sys-
tems are highly sensitive to environmental perturbations. This necessitates
constant monitoring andmanagement of these systems tomaintain optimal
conditions. These recurring challenges can be addressed by embracing
multidisciplinary, cutting-edge, automated, and smart technologies based
on real-time monitoring.

Artificial intelligence (AI)/Machine learning algorithms (MLAs) en-
abled intelligent systems and dynamic models can effectively optimize
the efficiency of algal systems. This is because theMLA approaches provide
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a more comprehensive insight into the uncertainty of biological processes
than the conventional phenomenological or kinetic models (Sundui et al.,
2021). AI/MLAs can be integrated seamlessly to effectively monitor, opti-
mize, predict uncertainty, and discover faults in real-time in complex
environmental systems. AI/MLAs can model the algal wastewater treat-
ment and optimize process parameters for resource recovery. Due to their
resilience and reliability, AI/MLAs have been widely employed for auto-
mating, predicting, and making decisions in complicated systems. They
have been extensively used in the areas of real-time monitoring and data
analysis. Artificial intelligence, or AI, is the process by which machines
are given the ability to mimic human intelligence. The incorporation of
AI requires a machine learning process. Machine learning is a subfield of
AI. The goal of machine learning is to train a machine to solve a problem
by itself using data obtained from various sources, including data collected
over time and statistical analysis of that information (Jha et al., 2019). ML
is a knowledge-acquisition and integration system that has been increas-
ingly used in environmental domains like air pollution, wastewater, and
solid waste treatments during the past few years. The fundamental princi-
ple of ML is to utilize inductive inference to generalize the relationships be-
tween input and output and then to use those generalizations to direct
decision-making in novel contexts (Andrade Cruz et al., 2022). Fig. 1 de-
picts a typical workflow for anMLmodel, from gathering raw data to deter-
mining the optimal solution. A typical end-to-end ML process consists of
three phases: training, cross-validation, and testing. During the training
phase, the ML model is taught by adjusting various model parameters
based on the training dataset. During the cross-validation phase, a valida-
tion dataset is used to fine-tune the model hyperparameters and identify
the best model. When choosingMLAs, hyperparameter tuning is used to ex-
plore the best feasible solution in the least amount of time using fewer com-
putational resources (Thornton et al., 2013). The selected optimum model
is tested during the testing phase by measuring its results on a separate
dataset. After that, the developed and optimized ML model can be utilized
for prediction (Guo et al., 2021). ML has been renowned for its high predic-
tion accuracy and its ability to save time and resources by reducing the need
for repeated tests when applied to complicated non-linear domains (Singh



Fig. 1. Typical workflow of an ML model (Guo et al., 2021).
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andMishra, 2022). The optimal predictor variable combinations and signif-
icant patterns can be found by quickly analyzing the huge dataset usingma-
chine learning algorithms (Dallora et al., 2017).

The objective of this review is to provide an overview of the ways in
which data-driven analytics, such as AI/MLAs, are being applied to
microalgae research and development. Very limited studies are available
that comprehensively discusses the fundamental aspects of AI/ML and
their potential application in integrated microalgal wastewater treatment
and resource recovery. This paper presents a critical review on the applica-
tion of MLAs in microalgal wastewater treatment and optimization of the
bioprocesses used in algal biorefinery based on the latest literature avail-
able. Also, we present a bibliometric analysis of the ML application in
microalgal wastewater treatment. The most commonly used MLAs in the
microalgal area were presented with their advantages, limitations, and
applicability. The benefits of using MLAs for microalgae and the potential
future prospects have been discussed. This review offers a fresh perspective
for microalgal researchers and biorefinery industrialists about the potential
of employing AI/ML enabled smart systems for efficient microalgal cultiva-
tion and resource recovery.

2. Bibliometric analysis through ML model

Scopus database has been used to gather the publication data on AI/
MLAs application in microalgal research in the last ten years, from 2012
3

to 2022. The keywords used for the data collection are “microalgae” and
“artificial intelligence” or “machine learning”. The Scopus database re-
sulted in 83 research articles for the selected keywords. Fig. 2(a) & (b)
shows the research trend of the articles published on this topic during the
last decade and country-wise contribution. From the figure, it can be ob-
served that there has been significant growth in the number of publications
in the last couple of years. This can be attributed to the increased interest
among researchers to employ AI/ML in microalgal applications. The coun-
tries at the forefront of research on this topic are China, US, India, and
Malaysia. The collected database of articles is interpreted and clustered
using VOSviewer software (version 1.6.18). The keywords co-occurrence
tool of the software was used to visualize the network between the most
recurrent keywords of AI/ML andmicroalgae. During the analysis, the min-
imumnumber of repetitions of keywordswas limited to three. The obtained
co-occurrence network map is shown in Fig. 3. The size of the circle
increases with an increase in the frequency with which the keywords are
featured in the titles and abstracts of the articles. Therefore, the circle size
for a given keyword is proportional to its occurrence. The keywords
“microalgae”, “machine learning” and “artificial intelligence” have occu-
pied the central position on the map, having a total signal strength of
534, 481, and 168, respectively. Subsequently, the two most frequently
used keywords were “wastewater treatment” and “biomass production,”
with a total signal strength of 164 and 152, respectively. This is because,
in most cases of the employed AI/ML models, the output variables are



Fig. 2. (a) Number of articles published in last decade (b) Country wise list of articles (Source: Scopus database search dated 17/11/2022; keywords – “microalgae” and
“machine learning” or “artificial intelligence”).
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biomass productivity and enhanced wastewater treatment efficiency. Chlo-
rella species also appeared in the network map because it is extensively
studied for its high wastewater treatment capability, biomass productivity,
and high lipid content (39–42 %), which is suitable for biodiesel synthesis
(Miranda et al., 2022). Some of themost commonly used phrases and topics
in the gathered literature include ML algorithms such as neural networks,
decision trees, random forest, support vector machines, and typical input/
output variables like pH, inoculum, carbon dioxide level, biomass produc-
tion, biofuels, optimization, wastewater treatment, etc.
Fig. 3. Keyword co-occurrence network ma
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3. Different AI/ML algorithms

3.1. Artificial neural networks (ANN)

ANNs are a set of algorithms that are part of machine learning. ANNs
mimic the behavior of the human brain and how learning occurs in a
human. ANNs are black-box models that employ the gradient descent
backpropagation technique to predict or anticipate a target output. As illus-
trated in Fig. 4(a), they are composed of a number of nodes that are
p of AI/ML application in microalgae.



Fig. 4. Schematic representation of different AI/MLAs (a) Artificial neural networks (ANN) (b) Support vector machine (SVM) (c) Genetic algorithm (GA) (d) Decision tree
(DT)/Random Forest (RF) algorithm.
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structured into layers, with each node having a set of outputs and inputs.
For a given layer, the input is from the output of the previous layer and pro-
vides an output function. After this, the node of the next layer gets this out-
put function as the input and so forth until the final layer is achieved
(Schmidhuber, 2015). From the information processing point of view,
an ANN is an operational model based on the human brain neuron network
that is non-linear, unconstrained, incredibly adaptive, and fault-tolerant
(Guo et al., 2021). Fig. 4(a) depicts a simplified example of a
feed-forward network, a type of ANN consisting of a fully linked multilayer
network that allows signals to travel only in one direction, from input to
output. Single-layer ANNs have the input layer directly connected to the
output layer, while multilayer ANNs have many hidden levels between
the input and the output (Andrade Cruz et al., 2022). The learning
technique used to train ANN is dependent on the mode in which the neural
networks were constructed. The success of ANNs depends heavily on the
network size, as this determines the complexity of the data processing,
network training, and optimal network architecture decisions. However,
increasing the number of hidden neurons beyond a certain point is not
necessarily connected with improved learning (Faris et al., 2019). Since
overfitting and underfitting can occur with any size of data used for train-
ing, limiting the model generalization ability is one of the most difficult
aspects of building an ANN model. If more fitting information is needed,
the number of hidden layers could be raised, leading to deeper learning
as the calculation process is stretched to accommodate the new data. How-
ever, as the number of neurons increases, overfitting may occur, in which
the error can be smaller during the training phase but significant in the test-
ing phase (Alrashed et al., 2018). Moreover, on the other hand, very few
neurons could hinder the ANNs capability to represent themechanism lead-
ing to overgeneralization.
5

ANNs have been widely employed in algal systems by several re-
searchers. Accurate performance predictions in algal systems necessitate
appropriate input-output mapping (Sundui et al., 2021). In a neural
networkmodel, the number of neurons in the input layer is directly propor-
tional to the number of process parameters utilized during training tomake
predictions about the external environment. In algal systems, environmen-
tal factors such as pH, CO2, illumination, temperature, hydraulic retention
time (HRT), DO, TSS, nutrient levels, COD, etc., are considered the input pa-
rameters for an ANNmodel. The combination of these variables could affect
the algal biomass growth and treatment efficacy. The hidden layer consists
of a suitable activation function. The output layer is part of the network that
communicates with the outside world, and its neuron count is typically cor-
related with the system's performance. For an algal system, the output layer
can be represented by the neuronsmeasuring the treatment efficacy param-
eters or the biomass production/growth. For example, Supriyanto et al.
(2018) used a multilayer backpropagation neural network ANN model for
predicting microalgal growth in an open raceway pond. The model consid-
ered the eight input parameters (initial biomass concentration, HRT,
harvesting period, solar radiation, acetate and nitrate concentrations, pH,
and temperature), one hidden layer, and the output layer as the algal
biomass on a dry basis. Results showed that the constructed three-layer
ANN achieved high prediction accuracy (R2 > 0.93) across all the input
configurations used.

However, since ANN is a “black box” model, it can sometimes produce
unexpected results (Kannangara et al., 2018). The disadvantage of neural
networks is their lack of ability to provide an explanation for their reason-
ing. They cannot be used for the mechanistic understanding of the process
because they use only empirical data rather than comprehending the reason
behind the change (Guo et al., 2021). Though ANN models are more
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accurate for kinetic modeling than conventional models, significant biolog-
ical factors such as kinetic constants cannot be studiedwithML. SinceANNs
converge slowly and tend to settle for local optima during training, this
makes them inappropriate for sparse data modeling (Dong and Chen,
2019). It is important to consider these constraints when working with
ANN models.

3.2. Support vector machine

SVM is an advanced supervised ML technique for regression and classi-
fication problems, first reported by Cortes and Vapnik (1995), and is now
considered one of themost effectiveML tools available. The SVM algorithm
employs a nonlinear mapping function to transform data into a high-
dimensional feature space. The SVM algorithm creates a decision boundary
called a hyperplane that segregates multi-dimensional space into different
classes so that the unknown data point can be classified accordingly. Sup-
port vectors are used to find the hyperplane that optimizes the distance be-
tween itself and the closest data sample in a high-dimensional space.
Support vectors are the data points that lie along the optimal hyperplane,
as depicted in Fig. 4(b). The kernel technique used by SVM to achieve opti-
mal data separation and its adoption of the structural risk minimization
(SRM) concept, as opposed to the empirical risk minimization (ERM) prin-
ciple used by ANN, make it less prone to overfitting (Andrade Cruz et al.,
2022). Several researchers have used the SVM algorithm inmicroalgal clas-
sification and wastewater treatment. For example, in a recent study,
Hossain et al. (2022) employed the SVM algorithm to predict the nitrogen
and phosphorus removal in municipal wastewater treatment using
microalgae. They have reported that SVM performed better compared to
multilayer perceptron artificial neural network (MLP-ANN) and response
surface methodology (RSM) for the same task. However, SVM has a low
training efficiency when working with large volumes of data and is suscep-
tible tomissing values. Therefore, when employing SVM, it is crucial to pay
close attention to factors such as kernel function, data size, and missing
values.

3.3. Genetic algorithm (GA)

GA is an optimization model, which is based on the concept of natural
selection and the principle of genetic evolution through the processes
such as selection, crossover, and mutation (Guo et al., 2021). In the first
stage, a selector operator is used on the population to pass on the best
individuals to the next generation bymeasuring their fitness. The following
step involves recombining the genes from both parents with a crossover op-
erator to produce a new set of genes. The mutation operator is then em-
ployed to alter genes in some population members randomly. Eventually,
these three steps are iterated until the optimal solution is achieved. Fig. 4
(c) shows the schematic representation of the GA process. The advantage
of employing this model is that the algorithm tries to find the optimal solu-
tion by avoiding the local minimum. It was reported that GA performs bet-
ter in solving combinatorial optimization problems compared to other
models. GA has been used to optimize microalgal growth and resource re-
covery parameters. For example, Camacho-Rodríguez et al. (2015) em-
ployed GA for optimizing the composition of culture media for the
microalgal species Nannochloropsis gaditana cultivation. This optimization
helped in reducing the several nutrients requirement drastically. The
main advantage of GA is its extendibility, which can be integrated with
other models. Rodríguez-Miranda et al. (2021) have employed GA for
modeling the effect of temperature on the microalgal culture in a large-
scale raceway pond. Several studies have integrated GA with ANN and
SVM for increased model accuracy. For instance, Nayak et al. (2018) have
combined ANN with GA for optimizing the process parameters for treating
domestic wastewater using the microalgal Scenedesmus sp. They have re-
ported an enhanced biomass productivity of 57 % at the model-predicted
conditions. Very recently, Kushwaha et al. (2022) have used a hybrid tech-
nique of integrating an adaptive neuro-fuzzy inference system (ANFIS) with
GA for estimating microalgal CO2 fixation. They have reported that the
6

ANFIS-GA model showed an increased prediction capability than that of
the ANFIS model alone. The main disadvantage of the GA is premature
convergence, which can be caused by various factors such as selection oper-
ators, crossover, population size, and incorrect code. Also, GAs are compu-
tationally very intensive programs; thus, they require more resources.

3.4. Decision tree (DT) and random forest (RF) algorithms

DT and RF algorithms are the supervised learning MLAs, which are ex-
tensively used in both classification and regression tasks. DT process the
data based on a concept tree that summarizes the given information of
the training data set into a tree structure. DT uses binary discretization to
iteratively separate the information into smaller sub-datasets with the
goal of reducing variability within subsets before building a tree structure
to carry out the regression function or classification (Guo et al., 2021).
The advantage of DT is that it is quick to train, has an easy interpretation,
and can model a high degree nonlinear relationship between the input
and output variables. However, as the quantity of the dataset grows, DT is
more likely to overfit since it builds larger, more complicated trees. RF is
an ensemble learning model, which uses bagging, and random feature se-
lection features to build multiple uncorrelated decision tree structures
whose predictions are subsequently averaged (Bagherzadeh et al., 2021).
RF model selects a random set of features to construct the DTs instead of
training different DTs with the same dataset. RF exhibits a level of differen-
tiation among all trees by selecting a split feature at every node of the deci-
sion tree. RF can successfully mitigate the threat of overfitting within the
context of an ensemble learning approach (You et al., 2017). Fig. 4
(d) depicts the structure of both DT and RF. DT can quickly learn from con-
tinuous and discrete data with little or no preprocessing. The learning rate
of RF is significantly slower than that of DT. However, it overcomes some of
the shortcomings of DT, including its inability to handle nonlinear data and
its high overfitting risk (Andrade Cruz et al., 2022). Several researchers
have employed DT and RF algorithms for making predictions in microalgal
cultivation and bioproduct extraction. For instance, in a recent study, Singh
and Mishra (2022) used the DT algorithm for the various combinations of
cultivation parameters for wastewater treatment using the microalgal
class of Trebouxiophyceae and Chlorophyceae. They reported that the initial
nitrogen concentration and the initial biomass inoculum levels have consid-
erable effect on the biomass productivity of the class of studied microalgae.
They have also suggested the suitable combination of parameters required
for enhanced wastewater treatment and biomass productivity for both clas-
ses of microalgae. Similar to this, in their previous study Singh and Mishra
(2021) have employed DT algorithm to identify the predictor variables
such as microalgal class, factors influencing the cultivation and operating
variables, which could result in high biomass productivity along with
significant wastewater treatment potential. Reimann et al. (2020) have re-
ported that among the explored MLAs, the RF algorithm performed better
in classifying dead or alive microalgal populations of Chlorella vulgaris cul-
ture. Zhang et al. (2021) employed an RF algorithm to optimize bio-oil
yield from microalgae hydrothermal liquefaction.

From these reported literature, it could be understood that the ML algo-
rithms can swiftly interpret the large datasets associated with microalgae
and identify the most efficient predictor variable combinations that could
be employed while developing new experimental trials. It can help in
developing more advanced microalgal wastewater treatment along with
large-scale biomass production. The following sections provide an in-
detail discussion regarding the usage of different AI/MLAs in different
stages of microalgal cultivation, wastewater treatment, and bioproducts
extraction.

4. AI/MLAs in microalgal wastewater treatment

Microalgae are a type of aquatic photosynthetic microbial organism,
which uses carbon dioxide as a carbon source for photosynthesis, and
in return, they generate organic molecules like proteins, lipids, and carbo-
hydrates (Chen et al., 2022). Due to its vast potential uses in industries
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like food, pharmaceuticals, cosmetics, and bioenergy generation, cultivat-
ing microalgae on a large scale at a reasonable cost (Khoo et al., 2019). Op-
timizing resource input for producing sufficient biomass with predictable
quality is a necessary first step in developing microalgae-related products
and derivatives. The key to establishing a cost-effective microalgae produc-
tion system is achieving a high biomass yield. Multiple parameters, like il-
lumination, temperature, availability of nutrients, pH, aeration, and fluid
mechanics modulation, contribute to microalgal productivity (Li et al.,
2019). An increase in temperature, for instance, will trigger modifications
to cell metabolism, including growth and respiration, and so play a critical
part in microalgae growth. Additionally, photoinhibition caused by either
extremely low or extremely high temperatures can impede microalgal pho-
tosynthesis. This means that it is essential to regulate the temperature and
anticipate and prevent dangerous situations like a rise in the surface tem-
perature. Direct indications that can help in monitoring the dynamics of
culture include the size, morphology, cell density, community structure,
pigment, and lipid content ofmicroalgal cultivation systems. Real-time con-
tinuous control and monitoring of these factors are difficult since the
methods employed to measure them are either too time-consuming, too ar-
duous, or too destructive to microalgae. For example, low cell density cul-
tures present difficulties for photoautotrophic microalgae cultivation,
resulting in low yield. Therefore, a high-density cultivation technology is
a crucial step in achieving the goal of commercializing microalgae biomass
production. Researching microalgal metabolic versatility and developing
effective bioreactors for growing microalgae at a high cell density are the
two most common approaches.

4.1. AI/ML for microalgal cultivation

Recently microalgae have been employed as a sustainable alternative
wastewater treatment due to their high nutrient removal capacity and bio-
mass as the resource for producing valuable products. Several researchers
have employed ML algorithms in predicting the best combinations of the
variables for process optimization. The type of algal strain employed, and
the cultivation conditions provided have a considerable impact on the
microalgal wastewater treatment. The cultivation parameters such as tem-
perature, inoculum ratio, pH, type of reactor, light intensity, CO2, and nutri-
ent levels are highly dependent and specific to the species of microalgae
employed. Hence, it is very important to provide optimum growth condi-
tions suitable for the particular strain to achieve maximum treatment effi-
ciency along with high biomass productivity. MLAs can be employed for
the selection of appropriate strains for wastewater treatment and optimum
parameters for cultivation. Because microalgae development is intermit-
tent, optimizing its cultivation is a non-direct process that typically necessi-
tates dynamic optimization strategies (He et al., 2012). Despite having
multifaceted applications, microalgae cultivation is a complex process to
understand because of its biological nature. There are a lot of uncontrolla-
ble factors, such as culture conditions and reactor design, that could affect
biomass productivity. Conventionally, CFD is used for hydrodynamics and
shape optimization in photobioreactors. Physical models and correlations
can be used to account for the impact of factors like temperature and
light intensity. Kinetic equations, such as Monod-based models, are com-
monly used to model microalgal mass increase and transfer (He et al.,
2012). The integration of multiple complicated biological processes is a
challenge that must be met by conventional mathematical modeling. Con-
versely, ML has evolved as a data-driven technique that does not require
the complicated relationships inherent in mathematical models (Wang
et al., 2020). Indeed, all the information used in these models comes from
public sources such as the internet or recorded versions of the procedure
from the past. Even thoughML algorithms can deal withmissing data, man-
age multivariate data, and forecast nonlinear connections, it is still crucial
to select the best algorithm for a given problem (Alzubi et al., 2018).

AI/ML models can be used to model and predict biomass productivity.
Ansari et al. (2021) have employed a three-layer feed-forward back
propagation ANN model for the prediction of algal dry cell weight in race-
way ponds treating secondary wastewater under natural illumination
7

supplemented with nutrients. Nayak et al. (2018) developed an ANN-
Genetic Algorithm (GA) model to optimize microalgae strain Scenedesmus
cultivation parameters such as photoperiod, light intensity, initial pH, and
temperature. They have successfully reported a 57 % increase in biomass
productivity at the ANN-optimized conditions. Furthermore, in a recent
study, Hossain et al. (2022), have used soft computing techniques such as
multilayer perception artificial neural network (MLP-ANN), RSM, and
SVM for identifying the effect of operational parameters, including N:P
ratio, light-dark cycle, and temperature on the municipal wastewater treat-
ment usingmicroalgal species Chlorella kessleri. They have reported that the
SVR-GA hybridized model performance was better than the RSM andMLP-
ANN model in simultaneous prediction of nitrogen and phosphorus re-
moval efficiencies. Coşgun et al. (2021) employed the DT algorithm to
study the effect of crucial parameters such as microalgal species, growth
settings, CO2 levels, type of reactor, nutrient conditions, and lipid extrac-
tion methods. Morowvat and Ghasemi (2016) have used ANN for optimiz-
ing growth culturemedium constituents for maximizing lipid accumulation
during the cultivation of Chlorella vulgaris. The concentrations of nutrients
(nitrate and phosphate) and glucose in the growth medium served as the
model input parameters. Susanna et al. (2019) were able to predict the
growth of Spirulina and forecast the algal productivity three days in advance
by using a nonlinear autoregressive multilayer perception ANNmodel. The
input variables for the model are the initial biomass level, nitrogen, dis-
solved oxygen, and time while the output was the biomass concentration.

Microalgal culturing is not only affected by the macronutrients such as
carbon, nitrogen, and phosphorus but also is affected by the presence and
abundance of the micronutrients such as vitamins and trace elements in
culture media. However, most of the existing models are developed by
considering mainly macronutrients only. There are very limited studies
that considered the effect of micronutrients in microalgal models. For ex-
ample, López-Rosales et al. (2013) have employed the ANN algorithm
Feed-forward back-propagation neural networks (FBN) to represent the
nonlinear interactions between the 26 different components of the culture
medium. They have used the data from a data set of 500 batch culture ex-
periments of growing microalgal species Protoceratium reticulatum. Garson's
algorithm has been used for assessing the importance of the components on
algal growth. They reported that micronutrients and vitamins were more
important (>70 %) than macronutrients (only 25 %), regardless of the
fact that their concentrations in culture media are relatively low in magni-
tude when compared to macronutrients. Similarly, García-Camacho et al.
(2016) also used the FBN algorithm for estimating the algal growth dynam-
ics of Karlodinium veneficumin, in a culture medium with 25 different com-
positions of key nutrients. They used the data from 420 batch culture
experiments as the input and considered growth profiles as the output. Sim-
ilar to the earlier study, they have also reported that the combined effect of
micronutrients and vitamins on microalgal growth was greater than that of
the macronutrients. Banerjee et al. (2016) employed GA to optimize the
environmental parameters of nutrients, light intensity, NaCl, and NaHCO3

for maximizing the lipid productivity in Nannochloropsis sp. cultivation. In
another study, heterotrophic cultivation of Chlorella species using glucose
as the substrate was modeled using a hybrid neural network model
(Wu and Shi, 2007). The glucose concentration was employed as
an input variable in the model, and the predicted output was the
microalgal-specific growth rate. They demonstrated that a single-input
(glucose concentration) hybrid neural network model could provide a
good approximation of the experimental data, implying that it might be
used as a sufficient tool for optimizing heterotroph growth.

Light intensity is one of the significant factors affecting microalgal
growth. Hu et al. (2008) have employed Artificial Neural Network–Model
Predictive Control (ANN-MPC) for automatically controlling the
green microalgae Spirulina platensis cultivation in a continuous algal
photobioreactor. The developed ANN-MPC controller could intellectually
learn the dynamics of the reactor and self-adaptively regulate the light in-
tensity to facilitate microalgal growth. Furthermore, Del Rio-Chanona
et al. (2019) investigated the dynamic effect of light intensity and nitrate
content on lutein production from microalgae and developed a model for
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enhancing lutein production using data-driven modeling methods. They
have reported that lutein yields can be increased by 40–50 % using the cul-
tivation strategies from the data-driven models but only by 35 % using one
of the physical-based model cultivation techniques.

To effectively cultivate microalgae, conducting a preliminary screening
of strains is necessary before moving on to the construction of scaled-up re-
actors (Chen et al., 2011). This allows for the development of a microalgae-
based process specifically suited to the needs of the industrial sector. The
application of the AI/MLAmodels for screening, classifying, and estimating
algal cell populations is presented in the following Section 4.2.

4.2. AI/ML-assisted screening and classification of microalgae

Biotechnological production employing microalgae relies heavily on
suitable species and strain selection (Lim et al., 2022). The strains selection
for cultivation is dependent on the commercial objectives demanded by the
industries based on the applications such as feed, nutrition, biodiesel, etc.
The parameters such as growth rate, biomass production, high-value prod-
uct content, and pollutant removal capacity are employed to rank the
strains. To ensure long-term sustainability and cost-effective biotechnology
production, species fit for commercial use should have high biomass pro-
duction (Christenson and Sims, 2011). Microalgal identification and classi-
fication can be a time-consuming and costly process due to the high
diversity of microalgal species in even a small amount of water samples.
As a result, researchers have recently started employing a machine-
learning strategy for microalgae identification. Otálora et al. (2021) have
developed two ANN-based models for the identification of the microalgal
species Chlorella vulgaris and Scenedesmus almeriensis in a mixed composi-
tion. The ANN models were coupled with the FlowCAM, an instrument
that captures the particles in the sample and gives a set of descriptive fea-
tures for each particle. Pure samples of each species were used to train
the models and validated with the mixed culture. The findings show the
benefits of image analysis employing deep learning for microalgal culture
classification. Drews- et al. (2013) have used the Gaussian mixed semi-
supervised classification model and active learning to classify the
microalgae using the data obtained from the FlowCAM. They have used
microalgal features such as diameter, length, width, aspect ratio, etc., as
the input data. The proposed model was able to perform better than the su-
pervised classification algorithm SVM and achieved 92 % accuracy. Fur-
thermore, Harmon et al. (2020) employed an SVM model to accurately
classify six different microalgal species using the data obtained from fre-
quency division multiplexed fluorescence imaging flow cytometry. ANN
also can be used for microalgal classification. For instance, Liu et al.
(2020) have coupled single-excitation fluorescence spectroscopy and back
propagation neural network model optimized by genetic algorithm (BP-
GA) for accurately monitoring algal cell concentration in Chlamydomonas
reinhardtii culture. The input to the model was fluorescence emission
spectral data, while algal concentration was considered the model output.
The same study reported that the GA-optimized BP network model
outperformed the conventional BP network prediction model. This is be-
cause the genetic algorithm uses selection, crossover, and mutation pro-
cesses to identify the ideal values for the initial weights and thresholds of
a BP neural network in order to decrease the network's prediction error
(Wang et al., 2020). This implies that coupling conventional prediction
models with suitable optimization algorithms results in increased model
performance and accuracy. The microalgal growth is conventionally esti-
mated by measuring the chlorophyll content. However, this approach is
sometimes erroneous because of the overlapping of the spectrum of other
pigments such as carotenoids with the chlorophyll. In a recent study, Ying
Ying Tang et al. (2023) employed linear regression (LR) and ANN-
Multilayer perceptron algorithm to predict the chlorophyll from the color
models. The ANN model outperformed the conventional spectroscopy
and the linear regression model in accurately estimating the chlorophyll
content.

Moreover, understanding the different symbiotic and competitive inter-
actions between the different species of microalgal is also very important in
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microalgal cultivation. For instance, Bi et al. (2019) have employed
hyperspectral imaging technology coupled with the SVM model to study
the survival traits of the three different classes ofmicroalgae under different
pH conditions. To determine which microalgal species were most preva-
lent, they employed an SVM classifier trained using fluorescence and trans-
mission spectra. These methods can also help understand the symbiosis
process between diverse microalgal species and microalgae-microbial com-
munities, which is crucial for advancing wastewater treatment. Photosyn-
thetic pigments in microalgae generate unique spectral signatures for
each strain, allowing for their classification into different classes. So, the
light absorption spectra of various types of diatoms, red/green/brown
microalgae, and cyanobacteria can be distinguished from one another
based on the relative concentration of chlorophyll, carotenoids, and other
pigments (Serive et al., 2017). For example, Franco et al. (2019) have clas-
sified four different microalgal species, Spirulina platensis, Scenedesmus
almeriensis, Chlorella vulgaris, and Nostoc sp., in both mixed and monoalgal
cultures. They have used to classify the microalgae using the data obtained
from the light absorption measurements from different microalgae species.
Using the ANN and SVM as a classification approach of pattern recognition,
Giraldo-Zuluaga et al. (2018) developed a methodology for the automated
identification of Scenedesmus coenobia usingmicroscopic image processing.
Accuracy levels of 98.63 % and 97.32 % were achieved in identifying
Scenedesmus coenobia, for SVM and ANN, respectively. Implementing ML
models for the classification and identification of microalgal species
would be extremely beneficial for the microalgal biorefineries searching
for microalgal strains with better traits and capabilities for attaining their
specific designated applications. The production of microalgae is typically
done on amassive scale, and in certain circumstances, several different spe-
cies of algae are cultivated, makingmonitoring and control challenging. For
microalgal cultivation, it is necessary to establish the basic cell concentra-
tion parameters. Traditional offline techniques of determination require a
lot of time and effort, and environmental factors might influence them.
The incorporation of a microscopy device included with an image process-
ing algorithm for real-time analysis of microalgae cultivation can drasti-
cally reduce the labor and time and cost of obtaining the necessary data
(such as size, morphology, and cell count) in the photobioreactor. Table 1
shows the summary of the different AI/MLAs along with their potential ap-
plication in microalgal cultivation, classification, and algal wastewater
treatment.

5. AI/ML in microalgal biorefinery

The concept of biorefinery revolves around the sustainable conversion
of biomass into a wide variety of bio-based products and bioenergy.
Biomass energy (bioenergy) is an important renewable energy source
with the potential to replace petroleum since it can be used to produce liq-
uid fuel. The effective conversion of biomass into energy, fuels, and
bioproducts may be attained by a number of different processes. Numerous
studies have explored the microalgal utilization for several bioproducts ex-
traction. Microalgal biorefinery entails both stages of upstream processing
(USP) and downstream processing (DSP) (Chew et al., 2017). USP is associ-
ated with microalgal cultivation, where several factors could affect
microalgal growth. The dominant factors that could affect microalgal
growth are microalgal strain, nutrient sources, carbon dioxide (CO2) sup-
ply, and illumination (Cheah et al., 2018). DSP includes the extraction
and purification of important bioproducts from microalgal biomass and
the systems and techniques employed in those processes (Lee et al.,
2021). Biochemical and thermochemical conversions are the two promi-
nent ways of biomass conversion (Tang et al., 2020). There are a lot of
promising routes for converting algal biomass into bio-oil and other alterna-
tive fuels. For instance, manufacturing bio-oil from algae using hydrother-
mal liquefaction (HTL) is preferable as it saves energy by eliminating the
need for the energy-intensive biomass drying phase. Because of its capacity
to handle a variety of wet biomass feedstocks, in recent years, hydrothermal
liquefaction has emerged as a central focus for biorefinery development.
However, the need for time-consuming and expensive tests makes it



Table 1
AI/ML tools for Microalgal cultivation/classification and wastewater treatment.

Application Employed AI/ML
algorithms

Details Remarks Reference

Microalgal cultivation Decision tree algorithm Trebouxiophyceae and Chlorophyceae class
microalgae; MATLAB; Classification and
Regression Trees algorithm

The combinations of cultivation parameters were
determined for enhanced wastewater treatment
for two different microalgae classes using
literature data. The study suggested suitable
optimum cultivation parameters for each class.

(Singh and Mishra, 2022)

Real-time monitoring
and predicting

Long short-term memory
(LSTM) neural network

Microbial potentiometric sensor (MPS); algal
cultivation pond

The developed AI model was trained from the
MPS data and used to predict the real-time water
quality parameters and algal concentrations

(Saboe et al., 2021)

Microalgal cultivation Association rule mining
(ARM)

Biomass productivity and nutrient removal
efficiency; Data mining; MATLAB

ARM was used to determine the specific
cultivation conditions for the increased
wastewater treatment using the 500 data entries
from the literature

(Singh and Mishra, 2022)

Optimizing
photobioreactor (PBR)
configuration

Convolutional Neural
Networks (CNN)

Data-driven surrogate model; Computational
fluid dynamics (CFD); kinetic model; hybrid
stochastic optimization algorithm

Developed a surrogate modeling framework
coupling CFD& kinetic model with CNN to reduce
the computational resources for optimizing
parameters for a pilot scale PBR

(del Rio-Chanona et al.,
2019)

Predicting nutrients (N
& P) removal

Multilayer perceptron
artificial neural network
(MLP-ANN) and Support
vector regression (SVR)

Chlorella kessleri; municipal wastewater
treatment; Genetic algorithm (GA)
hybridization; Operation parameters
(temperature, light-dark cycle; nitrate:
phosphate N:P ratio)

Identified the effect of operational parameters on
nutrient removal. Among the explored models,
SVM with GA hybridization showed maximum
nutrient removal efficiencies of >93 %, at 29.3 °C,
24 h:0 h light-darks cycle and N:P of 6:1

(Hossain et al., 2022)

Wastewater treatment Artificial neural network
(ANN) modeling and
forensic-based
investigation algorithm
(FBI)

Microalgae microbial fuel cell (MMFC);
Decision variables: wastewater concentration
(%) and yeast concentration (%)

Employed ANN for optimizing the variables for
maximum power density (R2 ~ 0.9783) and COD
removal (R2 ~ 0.9) in MMFC.

(Sayed et al., 2023)

Optimizing process
parameters for CO2

sequestration

Artificial neural network
coupled with Genetic
algorithm (GA)

Scenedesmus sp.; domestic wastewater;
coal-fired flue gas

ANN-GA model was used to optimize the process
parameters, photoperiod, light intensity, initial
pH, and temperature. The optimized parameters
enhanced biomass productivity by 57 %

(Nayak et al., 2018)

Microalgal classification Artificial neural networks Scenedesmus almeriensis and Chlorella
vulgaris; MATLAB; Deep learning toolbox

Employed two ANN models to classify the mixed
microalgal sample. FlowCAM data and captured
image data were used to train the ANN model

(Otálora et al., 2021)

Support vector machine
(SVM) classifier

Hyperspectral imaging technology; effect of
pH; survival competition; particle swarm
optimization algorithm (PSO)

Model was used to predict the effect of pH on the
survival traits in a mixed culture of the three
different microalgal species using hyperspectral
microscopic images

(Bi et al., 2019)

Genetic algorithm
optimized Back
propagation neural
network model (GA-BP)

Chlamydomonas reinhardtii; algal cell
concentration; fluorescence emission spectra;
MATLAB

GA-BP model was used to assess the algal cell
concentrations using the data from fluorescence
emission spectra

(Liu et al., 2020)

Linear Regression (LR)
and Artificial neural
network (ANN)

Predicting chlorophyll concentration from
color models; Desmodesmus sp. and
Scenedesmus sp.; image processing; solvent
extraction

LR (R2 ~ 0.58) and ANN (R2 ~ 0.66) models
were used to estimate the chlorophyll
concentration using image processing color
models

(Ying Ying Tang et al.,
2023)
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challenging to evaluate the quantitative and qualitative features of hydro-
thermal liquefaction (by)products (Shafizadeh et al., 2022). Recently,
there has been an increased application of AI/MLAs in optimizing process
parameters for biofuel production. For instance, Zhang et al. (2021) em-
ployed ML algorithms gradient boosting regression (GBR) and (RF) to pre-
dict and optimize the bio-oil production from the algal biomass. The model
inputs were the algal composition and HTL conditions, whereas the model
outputswere the bio-oil yield, nitrogen, and oxygen content of oil. The GBR
model was observed to perform better for single-task andmulti-task predic-
tions, with R2 >0.9. Very recently, Sultana et al. (2022) used Bayesian opti-
mization algorithm (BOA) assisted machine learning techniques i.e., ANN
and SVM, for predicting the bio-oil yield from microalgae. It was observed
that both developed ML models performed way better than the conven-
tional optimizing statistical tool such as Response surface methodology
(RSM). When comparing the two AI models developed, BOA-SVR had a
greater performance at predicting biodiesel production than BOA-ANN. Li
et al. (2021) have used three decision tree ML algorithms, RF, decision re-
gression tree (DRT) and gradient boosting regression (GBR), for multi-
task prediction of optimizing energy recovery, bio-oil yield, and nitrogen
content from the HTL of microalgae. Among the explored ML models, RF
performed better with R2 >0.8.

Hydrothermal carbonization (HTC) is a chemical process that converts
high moisture content feedstock such as microalgae and sewage sludge
9

into hydrochar, hydrogen-rich fuel gas, liquid bio-oil, and several valued
added chemicals. Khoo et al. (2020) reported the conversion of algal bio-
mass into hydrochar using HTC conversion. In a recent study, Gruber
et al. (2022) employed the Bayesian regularization ANN algorithm for
predicting the green hydrogen production from formic acid catalytic HTC
conversion of Chlorella vulgaris biomass. The input variables considered
for the model development are feedstock to suspension ratio and combined
severity factor based on reaction conditions such as temperature, pH, and
time. Whereas the output target variables are the solid, liquid, and gaseous
product yield. The developed BR-ANNmodel predicted the HTC process ac-
curately with an R2 of >0.99. Chen et al. (2018) analyzed the pyrolysis ki-
netics of thermal degradation of carbohydrates, lipids, and proteins of three
different microalgal species using the independent parallel reaction (IPR)
model. They used the evolutionary algorithm particle swarm organization
(PSO) for fitting the experimental kinetics data and predicted the
microalgal thermal degradation curves with 97.9 % accuracy.

Other than biofuels,microalgae are also the source of several other valu-
able biomaterials, such as phenolics, phycobiliproteins, and nutrition com-
pounds. Phenolic compounds as the secondary metabolites extracted from
Spirulina species could be employed as a natural source of food preservative
as it has antimicrobial properties. Very recently, Asnake Metekia et al.
(2022) have used AI models, Multilayer perception (MLP) models,
Adaptive-Neuro Fuzzy Inference System (ANFIS), and Step-Wise-Linear
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Regression (SWLR) to predict the total phenolic compounds (TPC) extraction
from the Spirulina algae. TPC was considered the model output, whereas the
model inputs were the algal productivity, extraction yield, and percent of
phenols and flavonoids. It was observed that ANFIS and SWLR models per-
formed better compared to the MLP model. Furthermore, Saini et al.
(2021) have employed multi-objective hybrid machine learning approach
for simultaneously optimizing the biomass and phycobiliproteins (PBS) pro-
duction from Nostoc sp. CCC-403. The input parameters considered for the
model are the pH and three different BG-11 media compositions. They
have reported a 90% increase in biomass production and a 61.76% increase
in PBS production at the optimal conditions obtained from the model.

The drying of the microalgal biomass is the most energy-intensive stage
in the downstream processes of the microalgal biorefinery. Accurate bio-
mass parameters modeling, especially its moisture content, can enable ef-
fective regulation of the drying process to reduce operational costs. After
harvesting or dewatering, the microalgae must be dried so that the water
content of the cells is reduced. Approximately 75 % to 85 % of the energy
consumed in algal biorefineries is spent on the drying of microalgae
Table 2
AI/ML tools in microalgal biomass conversion technologies.

Conversion
technology

Feed
biomass/species

Employed
AI/ML
algorithms

Input parameters

Transesterification Chlorella CG12 ANN and GA reaction temperature,
reaction time, and MeOH: oil
molar ratio.

Hydrothermal
liquefaction

Chlorella GBR and RF Biomass elemental and
biochemical composition,
Ratios of elementary
composition

Combustion Spirulina ANN Fuel load, blending, and
injection pressure

Thermal conversion Chlorella Vulgaris PDSE deep
neural
network
algorithm

Temperature, heating rate,
and the catalyst type

Enzymatic Hydrolysis Mixed
microalgal
culture

ANN Biomass concentration, pH,
temperature, and hydrolysis
time

Catalytic
Transesterification

Jatropha-algal
oil blend

RSM, ANFIS Blending molar ratio,
reaction time, temperature,
and catalyst dosage

Acid mediated
Hydrothermal
carbonization (HTC)

Chlorella vulgaris ANN Temperature, catalyst to
suspension ratio, feedstock
to suspension ratio

Microalgal secondary
metabolites extraction

Spirulina ANFIS, MLP,
SWLR

Spirulina productivity, total
flavonoids, extraction yield,
percent of flavonoid, percent
of phenols

Transesterification Nannochloropsis
oculate

BOA
hybridization
with ANN
and SVM

Catalyst dose, algal oil to
methanol ratio, reaction
time, and temperature

Acid catalytic direct
transesterification

Chlorella
pyrenoidosa

ANN and
RSM

Time, temperature,
solvent-to-wet biomass ratio,
hydrochloric acid
concentration

Catalytic
transesterification

Nannochloropsis
salina

ANN-MLP
and RSM

Temperature, time, catalyst
concentration, Oil: Methanol
ratio

Transesterification Explored
different algal
species

N2IC model Reaction temperature, time,
type of algae, and
methanol-to-algal-oil ratio

Phycobiliproteins (PBS)
production

cyanobacterium
Nostoc sp.
CCC-403

CNN and
MOGA model

Three BG-11 media
compositions and pH (6–10)

ANN-Artificial Neural Networks, GA-Genetic Algorithm, FAME-Fatty Acid Methyl Ester
Swarm Evolution, RSM-Response Surface Methodology, ANFIS- Adaptive Neuro-Fuzzy
SVM-Support Vector Machine, BOA-Bayesian optimization algorithm, Neural-network-in
jective genetic algorithm.
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(Khoo et al., 2019). In essence, lowering the drying operational costs
through efficient control is necessary formicroalgal products to be commer-
cially viable. Algal drying requires realistic models for process control to be
effective. For example, Sonkar and Mallick (2020) have applied ML algo-
rithm logistic regression to optimize the temperature and rotational speed
of a rotary drum dryer for drying Chlorella minutissima biomass. Further-
more, Ching et al. (2021) demonstrated the use of AI models such as ANN
networks, SVM, and extreme gradient boosting machine (XBG) for model-
ing vacuum drying of Chlorococcum infusionum for producing algal biofuel.
They reported that the XBG approach performed better than competing
models and showed improved ability at approximating sample points at
the extremes of the dataset. In extension to this very recently, Pilario
et al. (2022) have used Gaussian process autoregressive (GPAR) models
for the prediction of moisture content during the vacuum drying of the bio-
mass. It was reported that GPAR models outperformed the other studied
models, such as ANN, SVM, RF, and XBG, for the same task.

Algal biomass harvesting is a critical stage in algal biorefinery, account-
ing for roughly 30 % of the overall expenses of algal biomass production.
Output
parameters

Remarks Reference

Percentage
FAME
conversion

Optimized reaction conditions for algal oil
conversion to FAME. ANN performed
better than RSM (R2 ~ 0.99)

(Srivastava et al., 2018)

Oil yield,
oxygen, and
nitrogen
contents of oil

Optimized conditions for increased bio-oil
yield. GBR (R2 > 0.9) exhibited better
performance than RF

(Zhang et al., 2021)

Combustion,
performance,
and emission
characteristics

ANN was employed to characterize the
microalgal biodiesel combustion
properties

(Salam and Verma,
2019)

Microalgal
biomass
conversion

Employed deep neural networks for
optimizing the thermal catalytic
conversion of microalgae

(Teng et al., 2019)

Reducing sugars
yield

Modeled and predicted the optimum
experimental conditions for enzymatic
hydrolysis of mixed microalgae

(Shokrkar et al., 2017)

Biodiesel yield ANFIS model was more robust with R2 of
>0.99 in predicting the KOH
catalyst-mediated transesterification

(Kumar et al., 2018)

HTC products of
gas, liquid, and
solid phases

ANN model applied to HTC conversion of
microalgal biomass to green hydrogen and
obtained high accuracy (R2 ~ 0.99)

(Gruber et al., 2022)

Total phenolic
compounds

Employed AI algorithms to predict the
effect of growth mediums on total phenolic
compounds. ANFIS and SWLR gave
superior results than MLP

(Asnake Metekia et al.,
2022)

Biodiesel yield BOA-based ANN and SVM were used for
the prediction of biodiesel yield from
microalgal oil

(Sultana et al., 2022)

FAME yield Biodiesel yield from C. pyrenoidosa was
modeled using ANN model with high
accuracy (R2 ~ 0.94)

(Muhammad et al.,
2022)

Biodiesel yield CaO catalyst for biodiesel production from
Nannochloropsis salina optimized using
ANN-MLP (R2 ~ 0.94) and RSM
(R2 ~ 0.875)

(Vinoth Arul Raj et al.,
2021)

Biodiesel
production

Experimental conditions from the
literature were modeled and optimized
using N2IC model (R2 ~ 0.972)

(Mahfouz et al., 2023)

Biomass and
PBS production

Employed multi-objective hybrid machine
learning optimization for PBS production
from Nostoc sp. CCC-403

(Saini et al., 2021)

, GBR-Gradient Boosting Regression, RF-Random Forest, PDSE- Progressive Depth
Inference System, MLP-Multilayer perception, SWLR-Step Wise Linear Regression,
spired correlation (N2IC) model, CNN-Connected neural network, MOGA-Multi ob-
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Pre-concentrating biomass using flocculation reduces microalgal harvest-
ing costs and energy use. The physical features of the biomass, such as the
structure and shape of the flocs, are critical for designing downstream sep-
arating or concentrating units in biorefineries at an industrial scale. The
harvesting performance depends on the composition of floc structures, ge-
ometry, and settling velocity. Hence, understanding these flocs features is
crucial in industrial harvesting setups. Applying ML models for enhancing
algal harvesting could significantly reduce the costs associated with it.
For instance, Lopez-Exposito et al. (2019) have used the ML model RF re-
gression algorithm for estimating the Chlorella sorokiniana flocs dimensions
by correlating the suspension chord length distributionwith the average ge-
ometry of the flocs. Hence, these AI/ML models could be used to create au-
tonomous, intelligent flocculation control systems that modify floc shape to
suit the needs of following concentration operations by controlling the pro-
cess stirring intensity. In converting microalgae to biodiesel, the grown
microalgae must be harvested, and microalgal flocculation is an important
step in harvesting and dewatering. Flocculation modeling can be used to
evaluate and forecast the performance of a flocculation system under a
variety of influencing conditions. Zenooz et al. (2017) have modeled the
Chlorella sp. flocculation with ferric chloride under different using ANN
models Radial Basis Function (RBF) and Multilayer perception (MLP).
Based on the results, the MLP algorithm performed better in predicting
microalgal flocculation.

The harvested microalgal biomass can be converted into biodiesel via
transesterification. However, transesterification is affected by factors such
as temperature, time, solvent ratio, etc. These process parameters can be
optimized by using AI/ML models. For instance, Srivastava et al. (2018)
employed an ANN model coupled with GA for optimizing the conversion
of microalgal oil derived from Chlorella to Fatty acids methyl esters
(FAME) via supercritical methanol transesterification. The input variables
considered in the model are temperature, reaction time, and methanol:
oil ratio, whereas the output variable was the percentage conversion.
They have shown that the developed ANN model performed better than
the conventional statistical optimization technique RSM. Improved biodie-
sel yield from themicroalgal lipid has been obtained by using a fuzzymodel
coupled with particle swarm optimization (Nassef et al., 2019). Salam and
Verma (2019) have employed the ANN model to analyze the combustion
properties of microalgal biodiesel. Kumar et al. (2018) have used ANFIS
and RSMmodels to predict the biodiesel yield during the transesterification
of jatropha and algal oil blend and demonstrated that ANFIS performed bet-
ter than the RSM. In similar, Muhammad et al. (2022) have used the ANN
model to optimize the reaction conditions such as reaction time, tempera-
ture, acid concentration, and solid-biomass ratio in the conversion of
Chlorella pyrenoidosa biomass into biodiesel via acid-mediated direct
transesterification.

Enzymatic hydrolysis is also an approach in the algal biorefinery to con-
vert microalgal biomass into reducing sugars for ethanol production.
Shokrkar et al. (2017) employed the ANN model to predict the optimum
condition for maximizing the reducing sugars yield during the enzymatic
hydrolysis of mixed microalgae. The input process variables considered
for optimization are the pH, biomass inoculum, temperature, and hydroly-
sis time, while the model output variable was the yield of reducing sugars.
The application of different AI/ML models in various processes of algal
biorefinery has been summarized in Table 2.

6. AI/ML integrated framework for optimized algal systems

Integratingmicroalgae with wastewater treatment can recover valuable
resources by employing cutting-edge process control systems for optimized
treatment and biorefinerys. Fig. 5 represents an integrated AI/ML-enabled
smart systems framework for microalgal cultivation and resource recovery.
Inmicroalgal biorefinery industries, it is essential to incorporatemicroalgal
productivity with the subsequent process operations. During microalgal
cultivation, it is crucial to regulate the physicochemical parameters that af-
fect its growth, such as the light intensity, pH, nutrients, CO2, and algal bio-
mass concentrations. There are numerous sensors available that can
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monitor these physiochemical parameters during algal cultivation. Differ-
ent sensors andmeasuring tools/techniques can be employed in algal biore-
actors to maintain the optimal conditions. This huge amount of datasets
generated from these monitoring systems can be used as the input for the
AI/ML models for parameter optimization. Biomass productivity and treat-
ment efficiency could be enhanced by using online sensors for real-time
monitoring and automation and by developing ML models from the ac-
quired data. Based on the end product requirement, the output from these
models can be used as feedback for maintaining optimum cultivation pa-
rameters. Recently, several researchers have started exploring the imple-
mentation of smart control systems for microalgal cultivation. For
example, Zhu et al. (2022) have used a smart and precise control strategy
for efficient paddle mixing in Spirulina open pond cultivation based on
the feedback from light intensity and temperature and reported a decrease
in 30 % energy input compared to the control. Tham et al. (2022) have de-
signed and fabricated an Internet of Things (IoT) enabled up-scaled
photobioreactor for facilitating remote monitoring of the parameters via
smartphone. Furthermore, Lee et al. (2022) developed a 3D-printed real-
time optical densitymonitoring instrument andwere able to accurately pre-
dict themicroalgal growth kinetics from the real-time data. These examples
from the literature indicate that employing AI/ML-enabled smart systems
in microalgal cultivation could significantly minimize resource consump-
tion and aid microalgal biorefinery industries in better decision-making.

7. Challenges and future perspectives

Microalgal cultivation involves moving microalgae from their natural
habitat into a laboratory or other artificial setting where their parameters
have to be adjusted for optimal growth. Successful cultivation of microalgae
requires optimal growth conditions. The produced algal biomass can be con-
verted into several value-added products. Multiproduct algal biorefineries
could be integrated with wastewater treatment systems to provide a sustain-
able method of synthesizing bioproducts in a circular bioeconomy frame-
work while maintaining the sustainability of the water-energy environment
nexus. Very recently, Malik et al. (2022) have demonstrated a novel
biorefinery route by cultivating microalgae in wastewater and converting
the biomass into biodiesel. Also, the biomass leftover after the biodiesel ex-
traction was used for fermentation.

Thefirst and foremost difficulty in implementing theseAI/MLmodels in
any area is that a lot of information is needed for the training and validation
of these models. Generally, the accuracy of ML models increases with the
increase in data availability. However, obtaining a huge amount of data
can be expensive in terms of both time and cost in a real-world setting. In
case of limited data availability, data preprocessing can be employed to in-
crease the overall quality of the data. Data augmentation (DA) can artifi-
cially increase datasets based on known invariances, allowing the trained
model to learn these invariances with better generalization. For instance,
Correa et al. (2017) reported that data augmentation supported deep learn-
ing models have shown better accuracy than that without DA in microalgal
classification. It must be stressed that irrational data augmentation may re-
sult in inaccurate forecasts.

Most of the existing studies employ a single ML model for making pre-
dictions. However, combinations of different algorithms have the potential
to achieve better results and should be the subject of future research. In
most cases, integrated models (such as ANN/SVM/RF coupled with GA)
outperform standalone models in terms of prediction performance,
overfitting risk, and robustness (Beltramo and Hitzmann, 2019). In addi-
tion, cutting-edge ML techniques like Reinforcement Learning and Deep
Learning have garnered a lot of interest for their potential to forecast and
optimize various energy-producing processes. One of the most popular
types of machine learning is called deep learning, which also goes by the
names “Deep Structured Learning,” “Hierarchical Learning,” and “Deep
Machine Learning” (Lecun et al., 2015). Deep learning aims to find previ-
ously unknown features in data by extracting highly specialized low-level
features and then forming more generalized high-level features (Lecun
et al., 2015). Different types of DL networks that are used most frequently



Fig. 5. Integrated framework for AI/ML enabled smart systems for microalgal cultivation and resource recovery.
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are Convolutional neural networks (CNNs), Recursive neural networks
(RNN), and auto-encoders (AE) (Lv and Lei, 2020). Naturalistic
metaheuristic methods (such as the genetic algorithm, particle swarm opti-
mization, differential evolution, etc.) might be used in place of exact algo-
rithms to speed up the optimization process for microalgae reactors
(Hernández-Pérez et al., 2019).

Providing ideal parameters, including pH, temperature, CO2 supply and
dissolved O2, is essential for optimizing the reactor configuration/design,
and increasing production at a reasonable cost is necessary. To achieve
this, developing models and implementing complex control procedures is
necessary. Conventionally, this has been handled by testing a variety of de-
sign configurations using integrated physical models that connect CFD and
kinetic modeling. However, when simulating large-scale systems, this ap-
proach becomes computationally intractable and numerically unstable, ne-
cessitating time-consuming computing efforts and rendering mathematical
optimization impracticable. These limitations can be overcome by coupling
the physical models with the data-driven deep learning models. For
instance, del Rio-Chanona et al., (2019) employed a data-driven deep learn-
ing surrogate modeling framework for optimizing the design configuration
and operating conditions in a pilot scale photobioreactor. The developed
framework was able to bring down the computational time from months
to days. To begin, a CFDmodelwas built to analyze the fundamental biolog-
ical system behavior and produce sufficient data sets. Next, a convolutional
neural network (CNN) was built to replicate the original model's nonlinear-
ity and complexity. Further, a form of hybrid stochastic optimization was
then used to determine the best possible settings for cultivation and PBR
design. A recent study also has proposed employing a deep learning
algorithm Mask-RCNN (Region-based Convolutional Neural Network)
model, for instant segmentation in diatom algae detection from water sam-
ples (Ruiz-santaquiteria et al., 2020). On average, Mask-RCNN achieved
0.86 % sensitivity and 0.91 % specificity from microscopic images of a va-
riety of mixed species of algae in the water.
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Different reactor configurations and goals necessitate distinct ap-
proaches to automating algal bioreactor systems. However, in conjunction
with online sensors, MLAs can be used to reduce costs and maximize the
efficiency of algal systems for increased biomass production by using the
fundamental computational concepts of intelligently controlling process
parameters using algorithms. The operational costs of a microalgal
biorefinery can be reduced through the automation of the algal cultivation
and harvesting system. The operators may also be able to monitor the
microalgal growth and productivity in real-time using a network of AI/
ML-enabled plug-and-play Internet of Things (IoT) sensors (Lim et al.,
2022). When applied to the training of deep learning algorithms, the data
from IoT sensors can ensure that these AI/ML models can perform tasks
like analysis, monitoring, and prediction that are unique to each applica-
tion. The process of identifying microalgal strains and species, which now
relies on microscopic pictures and spectroscopic analysis, might be greatly
accelerated and automated with AI-based algorithms. The microalgal
biorefinery has been challenged with forecasting microalgae biomass pro-
duction. The operators of the culturing reactor were tasked withmeasuring
the biomass of the microalgae on a daily basis. However, the implementa-
tion of IoT sensors and an optimization strategy based on machine learning
has the potential to improve resource utilization. This could be accom-
plished by optimizing the culture conditions to produce high levels of
microalgal biomass while simultaneously reducing the amount of invest-
ment required. In a very recent study, Peter et al. (2023) employed an AI-
enabled IoT-based unique digital architecture framework for intelligent
microalgae growth surveillance and optimizing the nutrient media
recycling strategy that could result in high biomass production in semi-
batch cultivation of Chlorella vulgaris. Furthermore, a biorefinery organiza-
tion's production plan and operations can be enhanced with the use of an
AI/ML predictive model that estimates microalgae productivity.

It takes a lot of time and effort on the part of researchers to conduct ex-
perimental studies in the process of microalgae conversion into valuable
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products. Numerous methods, including thermochemical and biochemical
processes, are being explored for their potential to be used in the
microalgae conversion process (Suali and Sarbatly, 2012). Conversion
mechanisms in microalgae are difficult to anticipate because of their di-
verse chemical composition (Teng et al., 2019). AI/MLAs are being widely
used for performance prediction and determining optimum experimental
conditions in biomass conversion technologies. Recent advances in AI algo-
rithm development have made it possible for optimizing experimental con-
ditions for increased yield under uncertainty (Chen et al., 2018). Advances
in neural network design currently allow for the successful simulation of
temporal effects, which makes them suitable for studying dynamic
microalgae conversion technologies. In addition, neuro-evolutionary
meta-learning can be used to forecast the most efficient thermal conversion
of microalgae. Teng et al. (2019) used the neuro-evolutionary approach to
determine the optimum thermal conversion of Chlorella vulgaris. They have
employed the neuro-evolutionary algorithm Progressive Depth Swarm-
Evolution (PDSE) to model the thermogravimetric analysis (TGA) data of
catalytic thermal degradation. The proposed model was able to generate
accurate predictions compared to conventional approaches. At the model-
predicted optimum conditions, 83 % of biomass conversion was reported.

Integrating wastewater treatment with the microalgal biorefinery
significantly contributes to the United Nation's sustainable development
goals (SDGs) both directly and indirectly. The microalgae directly contrib-
ute to the SDGs - SDG-2 (zero hunger), SDG-6 (clean water and sanitation),
SDG-7 (affordable and clean energy), SDG-9 (industry, innovation and in-
frastructure), SDG-12 (responsible consumption and production), SDG-14
(life below water), and SDG-15 (life on land). Microalgal biotechnology in-
tegrates and helps in achieving different SDGs (Olabi et al., 2023;
Sutherland et al., 2021). Microalgal biotechnology must achieve product
optimization and cost-effective large-scale cultivation to achieve SDGs
and needs significant investment to expedite technological progress. How-
ever, microalgal biotechnology offers viable alternatives that have reduced
environmental impacts. Incorporating AI/ML models into microalgal bio-
technology can assist in effective decision-making, significantly lowering
associated process costs and in effectively contributing to the attainment
of the SDGs.

8. Conclusions

The complex and diverse nature of microalgae necessitates a large
amount of data and knowledge frommultiple disciplines, including species
selection, cultivation parameters, reactor design, and conversion technolo-
gies for integrating wastewater treatment with algal biorefinery. This arti-
cle discussed the benefits of using various AI/ML models such as ANN,
ANFIS, SVM, RF, and GA in microalgal applications. Several AI algorithms
can cut down the time and effort needed to optimize growing conditions for
microalgae and increase yields. Using AI/ML models could help the
microalgae biorefinery to meet production goals in a more eco-friendly, in-
telligent, autonomous, and cost-effective way.
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