

| Title        | Progranulin plays crucial roles in preserving<br>bone mass by inhibiting $TNF-\alpha$ -induced<br>osteoclastogenesis and promoting osteoblastic<br>differentiation in mice |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)    | Noguchi, Takaaki; Ebina, Kosuke; Hirao, Makoto<br>et al.                                                                                                                   |
| Citation     | Biochemical and Biophysical Research<br>Communications. 2015, 465(3), p. 638–643                                                                                           |
| Version Type | АМ                                                                                                                                                                         |
| URL          | https://hdl.handle.net/11094/93267                                                                                                                                         |
| rights       | © 2015. This manuscript version is made<br>available under the CC-BY-NC-ND 4.0 license                                                                                     |
| Note         |                                                                                                                                                                            |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

### 1 Highlights

- Aged female PGRN-KO mice show severe low bone mass compared to WT mice.
- <sup>3</sup> PGRN inhibits TNF-α-induced osteoclastogenesis from PGRN-KO mouse spleen
- 4 cells.
- 5 PGRN promotes osteoblastic differentiation by down-regulating ERK1/2 pathway.

#### 1 Title

- 2 Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-α-induced
- 3 osteoclastogenesis and promoting osteoblastic differentiation in mice
- 4

#### 5 Author names

- 6 Takaaki Noguchi, M.D.<sup>a</sup>, Kosuke Ebina, M.D., Ph.D.<sup>a</sup>\*, Makoto Hirao, M.D., Ph.D.<sup>a</sup>,
- 7 Ryota Kawase, M.D., Ph.D.<sup>b</sup>, Tohru Ohama, M.D., Ph.D.<sup>bc</sup>, Shizuya Yamashita, M.D.,
- 8 Ph.D.<sup>bd</sup>, Tokimitsu Morimoto, M.D.<sup>a</sup>, Kota Koizumi, M.D.<sup>a</sup>, Kazuma Kitaguchi, M.D.<sup>a</sup>,
- 9 Hozo Matsuoka, M.D.<sup>a</sup>, Shoichi Kaneshiro, M.D., Ph.D.<sup>e</sup>, and Hideki Yoshikawa, M.D.,
- 10 Ph.D.<sup>a</sup>

#### 11

#### 12 Affiliations

- <sup>a</sup> Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine,
- 14 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- <sup>15</sup> <sup>b</sup> Department of Cardiovascular Medicine, Osaka University, Graduate School of
- 16 Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

| 17 | <sup>c</sup> Department of Dental Anesthesiology, Osaka Universit | y, Graduate School of Medicine, |
|----|-------------------------------------------------------------------|---------------------------------|
|    |                                                                   |                                 |

- 18 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- <sup>d</sup> Department of Community Medicine, Osaka University, Graduate School of Medicine,
- 20 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- <sup>e</sup> Department of Orthopaedic Surgery, Japan Community Health Care Organization,
- 22 Osaka Hospital, 4-2-78 Fukushima ward, Osaka 586-8521, Japan.
- 23

#### 24 **\*Corresponding author:**

- 25 Phone: +81 6 6879 3552; FAX: +81 6 6879 3559
- 26 E-mail address: k-ebina@umin.ac.jp (K. Ebina)

### 27

#### 28 Abstract

- 29 A close correlation between atherosclerosis, inflammation, and osteoporosis has been
- 30 recognized, although the precise mechanism remains unclear. The growth factor
- 31 progranulin (PGRN) is expressed in various cells such as macrophages, leukocytes,
- 32 and chondrocytes. PGRN plays critical roles in a variety of diseases, such as

| 33 | atherosclerosis and arthritis by inhibiting Tumor Necrosis Factor- $\alpha$ (TNF- $\alpha$ ) signaling.                                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 34 | The purpose of this study was to investigate the effect of PGRN on bone metabolism.                                                     |
| 35 | Forty-eight-week old female homozygous PGRN knockout mice (PGRN-KO) (n=8)                                                               |
| 36 | demonstrated severe low bone mass in the distal femur compared to age- and sex-                                                         |
| 37 | matched wild type C57BL/6J mice (WT) (n=8) [BV/TV (%): 5.8 vs. 16.6; p<0.001,                                                           |
| 38 | trabecular number (1/mm): 1.6 vs. 3.8; p<0.001]. In vitro, PGRN inhibited                                                               |
| 39 | TNF- $\alpha$ -induced osteoclastogenesis from spleen cells of PGRN-KO mice                                                             |
| 40 | (vehicle $\rightarrow$ 5 $\rightarrow$ 50 ng/ml PGRN: 172.3 $\rightarrow$ 138.0 $\rightarrow$ 132.0 number of osteoclasts per six       |
| 41 | fields; vehicle vs. 50 ng/ml, p<0.05). Moreover, PGRN significantly promoted ALP                                                        |
| 42 | activity (vehicle $\rightarrow$ 5 $\rightarrow$ 50 ng/ml PGRN: 28.1 $\rightarrow$ 36.5 $\rightarrow$ 51.7 ALP/protein units/µg protein; |
| 43 | vehicle vs. 50 ng/ml, p<0.05), osteoblast-related mRNA (ALP, osteocalcin) expression                                                    |
| 44 | in a dose-dependent manner and up-regulated osteoblastic differentiation by                                                             |
| 45 | down-regulating phosphorylation of ERK1/2 in mouse calvarial cells. In conclusion,                                                      |
| 46 | PGRN may be a promising treatment target for both atherosclerosis and                                                                   |
| 47 | inflammation-related osteoporosis.                                                                                                      |

# 48 Keywords

49 Progranulin, osteoclast, osteoblast, TNF- $\alpha$ , bone metabolism, ERK1/2.

50

### **1. Introduction**

| 52 | Recent reports have demonstrated a close correlation between atherosclerosis,                     |
|----|---------------------------------------------------------------------------------------------------|
| 53 | inflammation, and osteoporosis [1-7], and the existence of common factors has been                |
| 54 | assumed. TNF- $\alpha$ is strongly associated with both atherosclerosis and arthritis [8, 9], and |
| 55 | also promotes osteoclastogenesis and inhibits osteoblastogenesis [10, 11]. PGRN is a              |
| 56 | 593 amino acid autocrine growth factor, which shows protective effects against                    |
| 57 | Alzheimer's disease and wound healing [12, 13]. Recent reports demonstrated that                  |
| 58 | PGRN inhibits TNF- $\alpha$ signaling and plays critical roles in the pathology of                |
| 59 | atherosclerosis and arthritis [14-16]. Conversely, PGRN enhances endochondral                     |
| 60 | ossification during development and also acts as a critical mediator of the bone healing          |
| 61 | process modulating BMP-2 and TNF- $\alpha$ signaling [17]. However, another recent report         |
| 62 | demonstrated that serum PGRN levels were substantially higher in ovariectomized mice              |
| 63 | than in sham control mice and PGRN strongly induced osteoclastogenesis in the                     |
| 64 | presence of Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL) [18].                     |
| 65 | Collectively, the physiological role of PGRN in bone metabolism seems controversial. In           |
| 66 | this study, we demonstrate a difference in bone mass of the distal femurs between                 |
| 67 | homozygous PGRN-KO mice and WT mice and investigate the direct effect of PGRN on                  |
| 68 | TNF-α-induced osteoclastogenesis and osteoblastic differentiation in vitro.                       |

### 70 **2. Materials and methods**

71 2.1. Animals

| 72 | Homozygous PGRN-KO mice with a C57BL/6J background were obtained from Riken                |
|----|--------------------------------------------------------------------------------------------|
| 73 | BioResource Center (Tsukuba, Japan) [19], and WT mice with a C57BL/6J background           |
| 74 | were obtained from Charles River Laboratories (Osaka, Japan). Experiments were             |
| 75 | performed using age- and sex-matched PGRN-KO mice and WT mice, which were fed              |
| 76 | with normal chow and water from birth to 48 weeks in a temperature- and                    |
| 77 | humidity-controlled facility with a 12 hour light/dark cycle. Mice were anaesthetized with |
| 78 | an intraperitoneal injection of 5.0 mg/kg butorphanol, 4.0 mg/kg midazolam, and 0.3        |
| 79 | mg/kg medetomidine and then sacrificed [20]. All experimental protocols were approved      |
| 80 | by the Ethics Review Committee for animal Experimentation of Osaka University,             |
| 81 | Graduate School of Medicine.                                                               |
| 82 | 2.2 Micro-CT                                                                               |
| 83 | The distal femurs of mice (500 $\mu m$ above the growth plate) were evaluated by           |
| 84 | micro-computed tomography (micro-CT) (Rigaku Mechatronics, Tokyo, Japan) and the           |
| 85 | results were analyzed using Tri/3D Bon software (Ratoc System Engineering Co., Ltd.,       |

 $\mathbf{5}$ 

| 86  | Tokyo, Japan) for various parameters including total volume (TV), bone volume (BV),     |
|-----|-----------------------------------------------------------------------------------------|
| 87  | BV/TV, trabecular thickness (TbTh), trabecular number (TbN), trabecular space (TbS),    |
| 88  | cortical volume (Cv), all volume (Av), Cv/Av and mean cortical bone thickness.          |
| 89  | 2.3. Histology                                                                          |
| 90  | After micro-CT scans, specimens were fixed in 10% neutral-buffered and decalcified      |
| 91  | for embedding. Histological sections were stained with tartrate resistant acid          |
| 92  | phosphatase (TRAP) following the manufacturer's protocol (Cosmo bio, Tokyo, Japan).     |
| 93  | The area of TRAP-positive osteoclasts per unit trabecular surface was counted as        |
| 94  | previously described [21].                                                              |
| 95  | 2.4. Immunohistochemistry                                                               |
| 96  | Sections were incubated with anti-osteocalcin antibody (Takara bio, Shiga, Japan)       |
| 97  | according to the manufacturer's protocol. The next day, the sections were incubated for |
| 98  | 30 minutes with secondary antibody (Vectastain Elite ABC kit Rabbit IgG: Vector         |
| 99  | Laboratories, Inc., San Diego, CA, USA) and stained with 3, 3'-Diaminobenzidine         |
| 100 | tetrahydrochloride (DAB) (Dako, Tokyo, Japan).                                          |

101 2.5. Serum assay

Serum concentration of osteocalcin (Takara Bio), CTX-1 (CUSABIO, Hubei, China),
and TNF-α (R&D Systems, Minneapolis, MN, USA) were measured by ELISA kit
according to the manufacturer's protocol.
2.6. Cell culture
Mouse spleen-derived cells and mouse bone marrow-derived cells flushed from the

107 femur and tibia were cultured in  $\alpha$ -minimum essential medium ( $\alpha$ -MEM) containing 10%

108 fetal bovine serum (FBS) (Equitech-Bio, Kerrville, TX, USA) and 1% penicillin and

109 streptomycin overnight at 37°C in a humidified atmosphere of 5% CO<sub>2</sub>. Adherent cells

110 were seeded at  $1 \times 10^6$  cells per well in a 12-well plate and then stimulated with 10 ng/ml

111 M-CSF (R&D Systems) and 50 ng/ml RANKL (R&D Systems) as previously described

112 [22]. The following day, cells were stimulated with TNF- $\alpha$  (R&D Systems) (vehicle, 1, 5

113 or 10 ng/ml) and mouse recombinant PGRN protein (R&D Systems) (vehicle, 5 or 50

114 ng/ml) simultaneously for 5 days in a 48-well plate.

115 MC3T3-E1 cells were purchased from Riken Cell Bank (Tsukuba, Japan) and murine

116 primary osteoblasts were isolated from the calvaria of three-day old C57BL/6J mice.

117 Cells were seeded at  $1 \times 10^5$  cells per well in a 12-well plate or  $5 \times 10^4$  cells per well in a

118 24-well plate, and treated with mouse recombinant PGRN protein (vehicle, 5, 50 or 100

119 ng/ml) for 5 days. Media were changed to osteoblast differentiation medium containing

- 120 50 µg/ml ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA) and 10 mM
- β-glycerophosphate (Calbiochem, San Diego, CA, USA) after the cells reached 60-70%
  confluence.
- 123 2.7. TRAP staining
- 124 Cells were washed once with PBS and fixed with 10% formalin. TRAP staining was
- 125 performed using a TRAP staining kit (Cosmo Bio) according to the manufacturer's
- 126 protocol. The total number of TRAP-positive cells with three or more nuclei was counted

in six fields [23].

- 128 2.8. Alkaline phosphatase (ALP) staining, ALP activity assay, and Alizarin red staining
- 129 Osteoblastic cells were treated with PGRN (vehicle, 5 or 50 ng/ml) and incubated for 5

130 days. For ALP staining, cells were washed twice with PBS after fixation with 10%

- 131 formalin and incubated with ALP substrate solution, 0.1 mg/ml naphthol AS-MX
- 132 (Sigma-Aldrich), and 0.6 mg/ml fast violet B salt (Sigma-Aldrich) in 0.1 M Tris-HCl for 30
- 133 minutes. For the ALP activity assay, cells were washed twice with PBS and lysed with
- 134 Mammalian Protein Extraction Reagent (Pierce, Rockford, IL, USA), and ALP activity
- 135 was measured using a Lab Assay ALP activity kit (Wako Pure Chemical Industries, Ltd.,
- 136 Osaka, Japan) according to the manufacturer's protocol. ALP protein was quantified

| 137 | using the Bicinchoninic Acid Protein Assay Kit (Pierce). For Alizarin red staining, cells |
|-----|-------------------------------------------------------------------------------------------|
| 138 | were washed once with distilled water (DW) after fixation with 10% formalin and stained   |
| 139 | with alizarin red solution (PG Research Inc., Tokyo, Japan) according to the              |
| 140 | manufacturer's protocol. Absorbance of the released alizarin red was measured at 415      |
| 141 | nm with a microplate reader [24].                                                         |
| 142 | 2.9. Extraction of RNA from bone tissue and cells and first-strand cDNA synthesis         |
| 143 | RNA was extracted from the radial bone of PGRN-KO and WT mice according to the            |
| 144 | QIAzol standard protocol (Qiagen, Düsseldorf, Germany). RNA was extracted from cells      |
| 145 | in 12-well plate using a RNAeasy Mini Kit (Qiagen). First-strand cDNA was                 |
| 146 | reverse-transcribed from total RNA (1 $\mu$ g) using the SuperScript III First-Strand     |
| 147 | Synthesis system (Life Technologies, Tokyo, Japan).                                       |
| 148 | 2.10. Quantitative real-time PCR analysis                                                 |
| 149 | Real-time PCR was performed using a Step One Plus Real-Time PCR System (Life              |
| 150 | Technologies) and Fast SYBR Green Master Mix (Life Technologies), in which each           |
| 151 | cDNA sample was evaluated and expression values were normalized to GAPDH. PCR             |
| 152 | primers (forward and reverse, respectively) were as follows: GAPDH,                       |
| 153 | 5'-AGGTCGGTGTGAACGGATTTG-3' and 5'-TGTAGACCATGTAGTTGAGGTCA-3';                            |

154 ALP, 5'-AATCGGAACAACCTGACTGACC-3' and

155 5'-TCCTTCCACCAGCAAGAAGAA-3'; Osteocalcin, 5'-CTCACTCTGCTGGCCCTG-3'

and 5'-CCGTAGATGCGTTTGTAGGC-3'; *TNF-\alpha*,

157 5'-GGACAGTGACCTGGACTGTGG-3' and 5'-AGTGAATTCGGAAAGCCCATT-3'; IL-6,

158 5'-ACAACCACGGCCTTCCCTACTT-3' and 5'-CACGATTTCCCAGAGAACATGTG-3'.

159 2.11. Western blotting

160 Cells from mouse calvaria were cultured in 12-well plates and homogenized with 100 µl

161 of RIPA buffer (Pierce), and complete cell lysis was obtained using a sonicator for 7.5

162 minutes. The lysates were centrifuged at 12,000 rpm for 5 minutes at 4°C and the

- 163 supernatants were used for electrophoresis after a protein assay using a BCA assay kit
- 164 (Pierce) [25]. Western blotting was performed using the following antibodies purchased

165 from Cell Signaling Technology (Danvers, MA, USA): phosphate anti-Akt antibody

166 (Ser473) (1:2000), anti-Akt antibody (pan) (1:1000), phosphate anti-ERK1/2 antibody

167 (Thr202/Tyr204) (1:2000), anti-ERK1/2 antibody (p44/42) (1:1000), phosphate anti-p38

- antibody (Thr180/Tyr182) (1:1000), anti-p38 antibody (1:1000), phosphate
- anti-SAPK/JNK antibody (Thr183/Tyr185) (1:1000), anti-SAPK/JNK antibody (1:1000),
- 170 phosphate anti-β-Catenin antibody (Ser675) (1:1000), anti-β-Catenin antibody (1:1000),
- 171 and anti- $\beta$ -actin antibody (1:2000).

#### 172 2.12. Statistical analysis

- 173 All data were expressed as mean ± standard deviation (SD). Differences between the
- 174 groups were assessed by a Mann-Whitney U-test. A probability value of <0.05 was
- 175 considered to indicate statistical significance.

```
177 3. Results
```

- 178 3.1. Decreased trabecular bone mass in homozygous PGRN-KO mice
- 179 Trabecular and cortical bone in the distal femur were assessed by micro-CT (Fig. 1A).
- 180 The values of BV/TV and TbN in PGRN-KO mice were significantly decreased
- 181 compared to WT mice, while TbS in PGRN-KO mice was significantly increased
- 182 compared to WT mice (Fig. 1B). No significant differences were observed in the cortical
- 183 bone parameters (Cv/Av, cortical bone thickness) between the groups (Fig. 1C). TRAP
- 184 staining of the distal femur demonstrated a significantly larger number of osteoclasts in
- 185 PGRN-KO mice compared to WT mice (Fig. 2A, B). On the other hand, immunostaining
- 186 of osteocalcin revealed that the number of osteocalcin–positive cells was smaller in
- 187 PGRN-KO mice compared to WT mice (Fig. 2C). Gene expression levels of TNF- $\alpha$  and
- 188 IL-6 in bone tissue were higher in PGRN-KO mice compared to WT mice as evaluated

| 189 | by real-time PCR (Fig. 2D). ELISA of serum bone turnover markers revealed that                      |
|-----|-----------------------------------------------------------------------------------------------------|
| 190 | osteocalcin levels were significantly lower and TNF- $\!\alpha$ levels were significantly higher in |
| 191 | PGRN-KO mice compared to WT mice (Fig. 2E).                                                         |
| 192 | 3.2. Effects of PGRN on osteoclastogenesis                                                          |
| 193 | The effect of PGRN on osteoclastogenesis in vitro was evaluated. Osteoclast                         |
| 194 | differentiation was induced by TNF- $\alpha$ (vehicle, 1, 5 or 10 ng/ml) using spleen cells of      |
| 195 | PGRN-KO and WT mice. The number of osteoclasts did not change in WT mice, while                     |
| 196 | they were significantly increased in PGRN-KO mice in a dose-dependent manner (Fig.                  |
| 197 | 3A, B). After inducing osteoclast differentiation by adding 10 ng/ml TNF- $\alpha$ to cells of      |
| 198 | PGRN-KO mice, treatment with PGRN recombinant protein (vehicle, 5, or 50 ng/ml)                     |
| 199 | significantly decreased the number of TRAP-positive cells in a dose-dependent manner                |
| 200 | (Fig. 3C, D).                                                                                       |
| 201 | 3.3. Effects of PGRN on osteoblasts                                                                 |
| 202 | PGRN significantly promoted ALP activity of MC3T3-E1 cells (Fig. 4A) and WT mouse                   |

- 203 calvarial cells (Fig. 4B). In addition, PGRN significantly promoted osteoblast-related
- 204 mRNA (ALP, osteocalcin) expression in a dose-dependent manner (Fig. 4C).
- 205 Consequently, PGRN promoted mineralization of MC3T3-E1 cells as evaluated by

| 206 | Alizarin red stain (Fig. 4D). Western blotting revealed that PGRN down-regulated the |
|-----|--------------------------------------------------------------------------------------|
| 207 | phosphorylation of ERK1/2 and p38 in a dose dependent manner (Fig. 4E).              |
|     |                                                                                      |

## **4. Discussion**

| 210 | We have previously demonstrated that PGRN plays important roles in atherogenesis           |
|-----|--------------------------------------------------------------------------------------------|
| 211 | by modulation of local and systemic inflammation [26]. Pro-inflammatory cytokines such     |
| 212 | as TNF- $\alpha$ enhance osteoclastogenesis partially by inducing RANKL from various cells |
| 213 | [10, 11]. Previous reports showed that PGRN binds directly to the Tumor Necrosis           |
| 214 | Factor receptor (TNFR) and disrupts TNF- $\alpha$ signaling [14, 15, 17]. Therefore, we    |
| 215 | hypothesized that PGRN may play an important role in bone metabolism, especially in        |
| 216 | inflammatory conditions. In this study, we have demonstrated for the first time that       |
| 217 | physiological levels of PGRN (35-70 ng/ml) [27] inhibits TNF- $\alpha$ -induced            |
| 218 | osteoclastogenesis and also promotes osteoblastogenesis. Furthermore, aged                 |
| 219 | homozygous PGRN-KO mice showed an increased number of osteoclasts and severe               |
| 220 | trabecular bone loss in the distal femur compared to WT mice.                              |
| 221 | Concerning osteoclastogenesis, a recent report demonstrated that PGRN-KO mice              |
| 222 | showed a higher number of osteoclasts and lower bone mineral density (BMD) in              |

| 223 | vertebra compared to WT mice, but no <i>in vitro</i> data were shown [28]. However, another |
|-----|---------------------------------------------------------------------------------------------|
| 224 | recent report showed hyper-physiological levels of PRGN (500 ng/ml) promotes                |
| 225 | multinucleated osteoclast formation and bone resorption from mouse bone marrow cells        |
| 226 | when stimulated with M-CSF (30 ng/ml) and RANKL (100 ng/ml) [18]. In this study, we         |
| 227 | demonstrate that physiological levels of PGRN inhibited osteoclastogenesis of               |
| 228 | PGRN-KO mouse spleen cells induced by TNF- $\alpha$ . However, even hyper-physiological     |
| 229 | levels of PRGN (200 ng/ml) showed no significant effects on osteoclastogenesis of WT        |
| 230 | mice spleen cells induced by TNF- $\alpha$ or of WT mouse bone marrow cells induced by      |
| 231 | M-CSF and RANKL (data not shown). Taken together, a depletion of physiological              |
| 232 | levels of PGRN may lead to elevated serum and local TNF- $\alpha$ levels, which may promote |
| 233 | osteoclastogenesis and consequent bone loss in aged mice.                                   |
| 234 | Concerning osteoblastogenesis, a previous report demonstrated that PGRN was                 |
| 235 | required for BMP-2-induced osteoblastogenesis in vitro, although they only showed the       |
| 236 | effect of recombinant PGRN protein on Runx2 gene expression of C2C12 cells [17]. In         |
| 237 | this study, PGRN-KO mice showed significantly lower levels of serum osteocalcin             |
| 238 | compared to WT mice. In addition, physiological levels of PGRN down-regulated the           |
| 239 | phosphorylation of ERK1/2 which signaling inhibition leads to osteoblast differentiation    |
| 240 | [29], and consequently promoted ALP activity, osteoblast-related gene expression            |

| 241 | (ALP, osteocalcin), and mineralization of mouse calvarial cells and MC3T3-E1 cells.  |
|-----|--------------------------------------------------------------------------------------|
| 242 | These results clearly demonstrate that physiological levels of PGRN are effective in |
| 243 | promoting osteoblastogenesis.                                                        |
| 244 | In conclusion, PGRN may be one of the crucial factors to maintain bone mass,         |
| 245 | especially in aged mice, where it may play interactive roles in both inhibiting      |
| 246 | TNF- $\alpha$ -induced osteoclastogenesis and promoting osteoblastogenesis by        |
| 247 | down-regulating phosphorylation of ERK1/2.                                           |
| 248 |                                                                                      |
| 249 | Acknowledgments                                                                      |
| 250 | We are grateful to M. Shinkawa and A. Tada for excellent technical assistance. We    |
| 251 | thank all the members of Dr. Yoshikawa's and Dr. Yamashita's laboratories for the    |
| 252 | helpful discussion and comments.                                                     |
| 253 |                                                                                      |

### 254 **References**

- 255 [1] J.R. Shaffer, C.M. Kammerer, D.L. Rainwater, D.H. O'Leary, J.M. Bruder, R.L. Bauer,
- B.D. Mitchell, Decreased bone mineral density is correlated with increased subclinical

- atherosclerosis in older, but not younger, Mexican American women and men: the San
- Antonio Family Osteoporosis Study, Calcified tissue international, 81 (2007) 430-441.
- [2] K. Ebina, A. Fukuhara, W. Ando, M. Hirao, T. Koga, K. Oshima, M. Matsuda, K. Maeda, T.
- 260 Nakamura, T. Ochi, I. Shimomura, H. Yoshikawa, J. Hashimoto, Serum adiponectin
- 261 concentrations correlate with severity of rheumatoid arthritis evaluated by extent of joint
- destruction, Clinical rheumatology, 28 (2009) 445-451.
- 263 [3] K. Ebina, K. Oshima, M. Matsuda, A. Fukuhara, K. Maeda, S. Kihara, J. Hashimoto, T.
- 264 Ochi, N.K. Banda, H. Yoshikawa, I. Shimomura, Adenovirus-mediated gene transfer of
- 265 adiponectin reduces the severity of collagen-induced arthritis in mice, Biochemical and
- biophysical research communications, 378 (2009) 186-191.
- [4] S. Khosla, The bone and beyond: a shift in calcium, Nature medicine, 17 (2011) 430-431.
- [5] B.I. Freedman, T.C. Register, Effect of race and genetics on vitamin D metabolism, bone
- and vascular health, Nature reviews. Nephrology, 8 (2012) 459-466.
- [6] K. Ebina, K. Shi, M. Hirao, S. Kaneshiro, T. Morimoto, K. Koizumi, H. Yoshikawa, J.
- 271 Hashimoto, Vitamin K2 administration is associated with decreased disease activity in
- 272 patients with rheumatoid arthritis, Modern rheumatology / the Japan Rheumatism
- 273 Association, 23 (2013) 1001-1007.

| 274 | [7] S. Kaneshiro, K. Ebina, K. Shi, C. Higuchi, M. Hirao, M. Okamoto, K. Koizumi, T.         |
|-----|----------------------------------------------------------------------------------------------|
| 275 | Morimoto, H. Yoshikawa, J. Hashimoto, IL-6 negatively regulates osteoblast differentiation   |
| 276 | through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro, Journal of bone and mineral           |
| 277 | metabolism, 32 (2014) 378-392.                                                               |
| 278 | [8] I.A. Ku, J.B. Imboden, P.Y. Hsue, P. Ganz, Rheumatoid arthritis: model of systemic       |
| 279 | inflammation driving atherosclerosis, Circulation journal : official journal of the Japanese |
| 280 | Circulation Society, 73 (2009) 977-985.                                                      |
| 281 | [9] L. Rodriguez-Rodriguez, C. Gonzalez-Juanatey, R. Palomino-Morales, T.R.                  |
| 282 | Vazquez-Rodriguez, J.A. Miranda-Filloy, B. Fernandez-Gutierrez, J. Llorca, J. Martin, M.A.   |
| 283 | Gonzalez-Gay, TNFA -308 (rs1800629) polymorphism is associated with a higher risk of         |
| 284 | cardiovascular disease in patients with rheumatoid arthritis, Atherosclerosis, 216 (2011)    |

- 285 **125-130**.
- 286 [10] K. Kobayashi, N. Takahashi, E. Jimi, N. Udagawa, M. Takami, S. Kotake, N. Nakagawa,
- 287 M. Kinosaki, K. Yamaguchi, N. Shima, H. Yasuda, T. Morinaga, K. Higashio, T.J. Martin, T.
- 288 Suda, Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism
- 289 independent of the ODF/RANKL-RANK interaction, The Journal of experimental medicine,
- 290 191 (2000) 275-286.

- [11] M.S. Nanes, Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal
   pathology, Gene, 321 (2003) 1-15.
- 293 [12] Z. He, C.H. Ong, J. Halper, A. Bateman, Progranulin is a mediator of the wound
- 294 response, Nature medicine, 9 (2003) 225-229.
- [13] S. Pereson, H. Wils, G. Kleinberger, E. McGowan, M. Vandewoestyne, B. Van Broeck,
- 296 G. Joris, I. Cuijt, D. Deforce, M. Hutton, C. Van Broeckhoven, S. Kumar-Singh, Progranulin
- 297 expression correlates with dense-core amyloid plaque burden in Alzheimer disease mouse
- 298 models, The Journal of pathology, 219 (2009) 173-181.
- 299 [14] C.J. Liu, Progranulin: a promising therapeutic target for rheumatoid arthritis, FEBS
- 300 letters, 585 (2011) 3675-3680.
- 301 [15] W. Tang, Y. Lu, Q.Y. Tian, Y. Zhang, F.J. Guo, G.Y. Liu, N.M. Syed, Y. Lai, E.A. Lin, L.
- 302 Kong, J. Su, F. Yin, A.H. Ding, A. Zanin-Zhorov, M.L. Dustin, J. Tao, J. Craft, Z. Yin, J.Q.
- 303 Feng, S.B. Abramson, X.P. Yu, C.J. Liu, The growth factor progranulin binds to TNF
- 304 receptors and is therapeutic against inflammatory arthritis in mice, Science, 332 (2011)
- **305 478-484**.
- 306 [16] H.J. Hwang, T.W. Jung, H.C. Hong, H.Y. Choi, J.A. Seo, S.G. Kim, N.H. Kim, K.M. Choi,
- 307 D.S. Choi, S.H. Baik, H.J. Yoo, Progranulin protects vascular endothelium against

- 308 atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-kappaB pathways,
- 309 PloS one, 8 (2013) e76679.
- 310 [17] Y.P. Zhao, Q.Y. Tian, S. Frenkel, C.J. Liu, The promotion of bone healing by progranulin,
- a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling,
- Biomaterials, 34 (2013) 6412-6421.
- [18] J. Oh, J.Y. Kim, H.S. Kim, J.C. Oh, Y.H. Cheon, J. Park, K.H. Yoon, M.S. Lee, B.S. Youn,
- 314 Progranulin and a five transmembrane domain-containing receptor-like gene are the key
- 315 components in receptor activator of nuclear factor kappaB (RANK)-dependent formation of
- multinucleated osteoclasts, The Journal of biological chemistry, 290 (2015) 2042-2052.
- [19] Y. Kayasuga, S. Chiba, M. Suzuki, T. Kikusui, T. Matsuwaki, K. Yamanouchi, H. Kotaki,
- R. Horai, Y. Iwakura, M. Nishihara, Alteration of behavioural phenotype in mice by targeted
- disruption of the progranulin gene, Behavioural brain research, 185 (2007) 110-118.
- 320 [20] S. Kawai, Y. Takagi, S. Kaneko, T. Kurosawa, Effect of three types of mixed anesthetic
- 321 agents alternate to ketamine in mice, Experimental animals / Japanese Association for
- 322 Laboratory Animal Science, 60 (2011) 481-487.

- 323 [21] Y. He, S.D. Rhodes, S. Chen, X. Wu, J. Yuan, X. Yang, L. Jiang, X. Li, N. Takahashi, M.
- 324 Xu, K.S. Mohammad, T.A. Guise, F.C. Yang, c-Fms signaling mediates neurofibromatosis
- 325 Type-1 osteoclast gain-in-functions, PloS one, 7 (2012) e46900.
- 326 [22] M. Okamoto, J. Murai, Y. Imai, D. Ikegami, N. Kamiya, S. Kato, Y. Mishina, H.
- 327 Yoshikawa, N. Tsumaki, Conditional deletion of Bmpr1a in differentiated osteoclasts
- 328 increases osteoblastic bone formation, increasing volume of remodeling bone in mice,
- 329 Journal of bone and mineral research : the official journal of the American Society for Bone
- and Mineral Research, 26 (2011) 2511-2522.
- 331 [23] C.T. Ritchlin, S.A. Haas-Smith, P. Li, D.G. Hicks, E.M. Schwarz, Mechanisms of
- 332 TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic
- arthritis, The Journal of clinical investigation, 111 (2003) 821-831.
- [24] T. Miyazaki, S. Miyauchi, A. Tawada, T. Anada, S. Matsuzaka, O. Suzuki, Oversulfated
- 335 chondroitin sulfate-E binds to BMP-4 and enhances osteoblast differentiation, Journal of
- 336 cellular physiology, 217 (2008) 769-777.
- 337 [25] Y. Imura, H. Yasui, H. Outani, T. Wakamatsu, K. Hamada, T. Nakai, S. Yamada, A.
- 338 Myoui, N. Araki, T. Ueda, K. Itoh, H. Yoshikawa, N. Naka, Combined targeting of mTOR and

- c-MET signaling pathways for effective management of epithelioid sarcoma, Molecular
  cancer, 13 (2014) 185.
- [26] R. Kawase, T. Ohama, A. Matsuyama, T. Matsuwaki, T. Okada, T. Yamashita, M.
- 342 Yuasa-Kawase, H. Nakaoka, K. Nakatani, M. Inagaki, K. Tsubakio-Yamamoto, D. Masuda,
- 343 Y. Nakagawa-Toyama, M. Nishida, Y. Ohmoto, M. Nishihara, I. Komuro, S. Yamashita,
- 344 Deletion of progranulin exacerbates atherosclerosis in ApoE knockout mice, Cardiovascular
- 345 research, 100 (2013) 125-133.
- 346 [27] A. Tanaka, H. Tsukamoto, H. Mitoma, C. Kiyohara, N. Ueda, M. Ayano, S. Ohta, Y.
- 347 Inoue, Y. Arinobu, H. Niiro, T. Horiuchi, K. Akashi, Serum progranulin levels are elevated in
- 348 patients with systemic lupus erythematosus, reflecting disease activity, Arthritis research &
- 349 therapy, 14 (2012) R244.
- 350 [28] Y.P. Zhao, Q.Y. Tian, B. Liu, J. Cuellar, B. Richbourgh, T.H. Jia, C.J. Liu, Progranulin
- knockout accelerates intervertebral disc degeneration in aging mice, Scientific reports, 5
- 352 (2015) 9102.
- 353 [29] S.J. Kono, Y. Oshima, K. Hoshi, L.F. Bonewald, H. Oda, K. Nakamura, H. Kawaguchi, S.
- Tanaka, Erk pathways negatively regulate matrix mineralization, Bone, 40 (2007) 68-74.
- 355

#### 356Figure Legends

| 357 | Fig. 1. (A) Micro-C | images of the | distal femur from | forty-eight-week | old WT and |
|-----|---------------------|---------------|-------------------|------------------|------------|
|-----|---------------------|---------------|-------------------|------------------|------------|

- PGRN-KO mice. (B) Quantitation of trabecular bone parameters (BV/TV, TbN, TbTh 358
- 359and TbS). (C) Quantitation of cortical bone parameters (Cv/Av and Mean cortical bone
- thickness). Data are the mean  $\pm$  SD for 8 mice of each group. \*\*\*p<0.001 WT vs. 360
- PGRN-KO mice. 361

362

| 363 | Fig. 2. (A) TRAP staining in the distal femur of WT and PGRN-KO mice (200×). (B) The    |
|-----|-----------------------------------------------------------------------------------------|
| 364 | number of TRAP-positive cells per unit trabecular surface (200x). ***p<0.001 WT vs.     |
| 365 | PGRN-KO mice. (C) Immunostaining of osteocalcin in the distal femur of WT and           |
| 366 | PGRN-KO mice (200×). (D) Gene expression of TNF- $\alpha$ and IL-6 in bone tissue of WT |
| 367 | and PGRN-KO mice assessed by real-time PCR. (E) Serum levels of osteocalcin, CTX1       |
| 368 | and TNF- $\alpha$ of WT and PGRN-KO mice assessed by ELISA. **p<0.01, *p<0.05 WT vs.    |
| 369 | PGRN-KO mice. All data are expressed as the mean $\pm$ SD.                              |
| 370 |                                                                                         |
| 371 | Fig. 3. (A) (B) Induction of osteoclasts from spleen cells of WT and PGRN-KO mice       |

372under TNF-α stimuli assayed by TRAP-staining. \*p<0.05 WT vs. PGRN-KO mice,

| 373 | p<0.05 vs. vehicle (200×). (C) (D) Induction of osteoclasts from spleen cells of            |
|-----|---------------------------------------------------------------------------------------------|
| 374 | PGRN-KO mice under TNF- $\alpha$ stimuli and treatment with PGRN assayed by                 |
| 375 | TRAP-staining *p<0.05 vs. vehicle (200×). All data are expressed as the mean $\pm$ SD.      |
| 376 |                                                                                             |
| 377 | Fig. 4. (A) ALP activity in MC3T3-E1 cells treated with PGRN. *p<0.05 vs. vehicle. (B)      |
| 378 | ALP activity in mouse calvarial cells treated with PGRN. $p<0.05$ vs. vehicle. (C) ALP      |
| 379 | and osteocalcin gene expression change in mouse calvarial cells treated with PGRN.          |
| 380 | *p<0.05 vs. vehicle. (D) Mineralization of MC3T3-E1 cells treated with PGRN assayed         |
| 381 | by Alizarin red staining. $*p<0.05$ vs. vehicle. (E) Western blotting analysis of the       |
| 382 | phosphorylation of osteoblast differentiation-related signals in mouse calvarial cells. All |
| 383 | data are expressed as the mean $\pm$ SD.                                                    |
| 384 |                                                                                             |
| 385 | The word count is 3839.                                                                     |
|     |                                                                                             |





PGRN KO

WΤ

**PGRN KO** 

WΤ

**PGRN KO** 

WT





