

Title	The efficacy and safety of additional administration of tacrolimus in patients with rheumatoid arthritis who showed an inadequate response to tocilizumab
Author(s)	Kaneshiro, Shoichi; Ebina, Kosuke; Hirao, Makoto et al.
Citation	Modern Rheumatology. 2017, 27(1), p. 42-49
Version Type	АМ
URL	https://hdl.handle.net/11094/93266
rights	This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

1		
2 3	1	
4	1	Original Article
5		
6 7	2	
8		
9	3	Title:
10 11	5	11110.
12		
13	4	The efficacy and safety of additional administration of tacrolimus in patients with rheumatoid
14		
15 16	5	arthritis who showed an inadequate response to tocilizumab
17		
18	0	
19 20	6	
21		
22 23	7	Authors:
24		
25	8	Shoichi Kaneshiro ^{1,2)} , Kosuke Ebina ²⁾ , Makoto Hirao ²⁾ , Hideki Tsuboi ³⁾ , Masataka Nishikawa ¹⁾ ,
26 27	-	······································
28	0	
29	9	Akihide Nampei ⁴⁾ , Yoshio Nagayama ³⁾ , Koichiro Takahi ⁵⁾ , Takaaki Noguchi ²⁾ , Hajime Owaki ¹⁾ ,
30 31		
32	10	Jun Hashimoto ⁶ , Hideki Yoshikawa ²⁾
33		
34 35	11	
36	11	
37		
38 39	12	Affiliations:
40		
41 42	13	1) Department of Orthopaedic Surgery, Japan Community Healthcare Organization, Osaka
43		
44	14	Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003, Japan
45 46	11	Tosphai, 1 2 701 akusinina, 1 akusinina Ward, Osaka Orty, Osaka 555 0005, Japan
47		
48	15	2) Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2
49 50		
51	16	Yamada-oka, Suita, Osaka 565-0871, Japan
52 53		
53 54	17	3) Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-cho, Sakai
55	11	beparation of orthopacate bargery, osana rosan risspital, 1175 5 ragasone end, sana
56 57		
58	18	591-8025, Japan
59		
60 61		1
62		1
63		
64 65		

19	4) Department of Orthopaedic Surgery, National Hospital Organization Osaka Minami Medical
20	Center, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan
21	5) Department of Orthopaedic Surgery, Toneyama National Hospital, 5-1-1 Toneyama,
22	Toyonaka, Osaka 560-8552, Japan
23	6) Department of Rheumatology, National Hospital Organization Osaka Minami Medical
24	Center, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan
25	
26	Keywords (alphabetical order):
27	Biologics, Inadequate response, Rheumatoid arthritis, Tacrolimus, Tocilizumab
28	
29	Corresponding author:
30	Kosuke Ebina, MD, PhD, Assistant Professor
31	Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine,
32	2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
33	Phone: +81-6-6879-3552; Fax: +81-6-6879-3559
34	E-mail: k-ebina@umin.ac.jp
35	
36	This article contains 4 figures and 1 table.
	2

1 2 3 4 5	
3 4 5 7 8 9	
10 11 12 13 14	
15 16 17 18	
19 20 21 22 23	
$\begin{array}{c} 1\\ 1\\ 3\\ 1\\ 4\\ 1\\ 5\\ 1\\ 6\\ 1\\ 7\\ 1\\ 8\\ 1\\ 9\\ 20\\ 21\\ 22\\ 2\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 0\\ 3\\ 1\\ 3\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 4\\ 0\\ \end{array}$	
28 29 30 31	
33 34 35 36	
37 38 39 40	
41 42 43 44 45	
46 47 48 49	
50 51 52 53	
54 55 56 57 58	
59 60 61 62	
63 64 65	

37	
38	No supports or benefits in any form have been received for this report.
39	

40 Abstract

41 Objectives

42 Tocilizumab (TCZ) shows good retention in patients with rheumatoid arthritis (RA), but no

- 43 previous reports demonstrated hopeful treatment options against inadequate response to TCZ.
- 44 Tacrolimus (TAC) has proved to show efficacy against inadequate response to tumor necrosis

45 factor alpha inhibitors, yet its add-on effects on TCZ remain unknown.

46 Methods

47 Twenty patients with RA (17 women, age 58.6 y, disease duration 12.1 y, prior TCZ duration 2.6

48 y, 18 intravenous [8 mg/kg/month] and 2 subcutaneous [324 mg/month] TCZ treatment,

49 methotrexate 6.1mg/week [70.0%]) who showed an inadequate response to TCZ (clinical

50 disease activity index $[CDAI] \ge 5.8$, 18 secondary nonresponders) were additionally treated

51 with TAC (1.1 mg/day), and enrolled in this 24-week, prospective study.

52 Results

53 Seventeen patients (85.0%) continued the treatment for 24 weeks. Statistically significant

54 decreases in outcome measures were as follows: disease activity score based on 28 joints with

55 C-reactive protein (DAS28-CRP) from 3.3 at baseline to 2.1 at week 24 (P < 0.001), CDAI from

56 17.7 to 7.6 (P < 0.001), and serum matrix metalloproteinase-3 levels from 232.8 to 66.2 ng/mL

57 (P < 0.001). 15 patients (75%) achieved low disease activity or remission (DAS28-CRP \leq 2.7 or

58 CDAI \leq 10) at week 24.

59 Conclusions

60 Adding low-dose TAC to inadequate responders to TCZ may be a promising complementary

61 treatment option.

63 Introduction

64	Tocilizumab (TCZ) is a humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody
65	of the IgG1 subclass directed at the IL-6R α chain. It was originally developed in Japan and has
66	been widely used for the treatment of rheumatoid arthritis (RA) [1, 2] in clinical settings since
67	2008 in Japan, 2009 in Europe, and 2010 in the USA. Recently, the European League against
68	Rheumatism (EULAR) announced a 2013 update to the 2010 recommendations for the
69	management of RA with synthetic and biological DMARDs, in which TCZ is essentially
70	considered to be as efficacious and safe as tumor necrosis factor alpha (TNF- α) inhibitors and
71	should be considered as a first-line biologic agent [3]. In addition, we have previously
72	demonstrated that TCZ therapy is associated with reduced serum oxidative stress levels [4] and
73	may also promote osteoblast differentiation in patients with RA [5].
74	The EULAR recommendations support the use of all biological agents in combination with
75	methotrexate (MTX) [3]. In patients with MTX contraindications or intolerance, TCZ may be
76	considered as part of the first-line treatment strategy with biological agents [3]. Among all
77	biological agents, only TCZ has been demonstrated to be superior as a monotherapy over MTX
78	or other conventional DMARDs [1, 6]. In addition, TCZ is also effective and safe either with or
79	without low-dose MTX for patients with active RA who inadequately respond to DMARDs
80	and/or TNF- α inhibitors [7]. Therefore, TCZ tends to be chosen for patients who cannot tolerate
	6

81 MTX in real-world setting.

However, there are some patients who experience lack of efficacy or loss of efficacy with TCZ. In such cases, the EULAR recommendations suggest changing TCZ to another biologic with another mode of action or add-on therapy with conventional DMARDs [3]. To date, however, we lack reliable evidence for choosing alternative treatments for individual patients with RA who previously had an inadequate response to TCZ, and frequent changes of biologics may lead to multiple biologic failures. Tacrolimus (TAC) is an antibiotic that was isolated from the fungus Streptomyces tsukubaensis in Japan in 1984. In 1993, TAC was approved as a rejection inhibitor, and it is the most widely used immunosuppressive drug in the transplantation field globally. In 2005, it was also approved for use in RA, and the clinical efficacy of TAC as a single agent in RA has been reported [8, 9]. Moreover, the concomitant use of small doses of TAC has been shown to be effective when DMARDs [10] and TNF- α inhibitors have resulted in insufficient effects or in cases of secondary failure [11, 12]. Therefore, we hypothesized that adding TAC may be a hopeful complementary therapy for patients with an inadequate response to TCZ and examined the efficacy and safety in this 24-week, prospective study.

Patients and methods

99	All of the patients with RA included in this study fulfilled the 1987 classification criteria of the
100	American College of Rheumatology [13]. TCZ was infused every 4 weeks at a dose of 8 mg/kg
101	or subcutaneously injected every 2 weeks at a dose of 162 mg in accordance with drug labeling
102	and the TCZ therapy guidelines of the Japan College of Rheumatology (JCR) [14]. Twenty
103	patients who had an inadequate response to TCZ in four hospitals associated with the Osaka
104	University Graduate School of Medicine participated in this prospective study from January
105	2012 to April 2015. An inadequate response to TCZ was defined as having all of the following
106	conditions met: clinical disease activity index (CDAI) score > 2.8 [15, 16] when TAC was
107	started; both tender joint count and swollen joint count were the same or increased compared to
108	those at 4 to 8 weeks prior to TAC; and TCZ was used at same dose for at least 8 weeks prior to
109	TAC. The patients were treated with TAC combination without changing the dosage of TCZ.
110	Efficacy and safety were evaluated 8 weeks later, 16 weeks later, and 24 weeks later. This
111	observational study was conducted in accordance with the ethical standards of the Declaration
112	of Helsinki and approved by the ethical review boards of the Osaka University Graduate School
113	of Medicine (approval number, 11258) and informed consent was obtained from patients
114	included in the study.
115	
	8

Evaluation of the activity of RA

Efficacy and safety were assessed by comparing changes in tender joint count (TJC) 28, swollen joint count (SJC) 28, patient's global assessment of disease activity (Pt-GA, 100 mm), physician's global assessment of disease activity (Ph-GA, 100 mm), serum C-reactive protein (CRP), serum matrix metalloproteinase-3 (MMP-3), white blood cell (WBC) count, lymphocyte count, and functional assessments according to the modified Health Assessment Questionnaire (mHAQ) scores [17] over time. Disease activity was assessed by measures including: disease activity score on 28 joints (DAS28) alone and with CRP (DAS28-CRP) [19], and CDAI score. DAS28-CRP was divided into four categories: remission \leq (2.3), low disease activity (> 2.3 and \leq 2.7), moderate disease activity (> 2.7 and \leq 4.1), and high disease activity (> 4.1). CDAI was divided into four categories: remission (≤ 2.8), low disease activity (> 2.8 and ≤ 10), moderate disease activity (> 10 and \leq 22), and high disease activity (> 22) [16]. Observation points were set to the following five time points: 4-8 weeks prior to the start of TAC, at the start of TAC, 8 weeks after the start of TAC (week 8), 16 weeks after the start of TAC (week 16), and 24 weeks after the start of TAC (week 24). Clinical responses were defined by EULAR response criteria [19] and also with the American College of Rheumatology (ACR) 20% improvement criteria [20]. Trough whole-blood TAC concentrations were monitored, and any adverse events during the follow-up period were also examined.

Statistical analysis Longitudinal changes of each parameter before and after TAC administration for 24 weeks were examined by the Wilcoxon signed-rank test. Differences in variables between the DAS28-CRP moderate- or good-response group and the no-response group after 24 weeks of TAC administration were assessed by the Mann-Whitney U test or chi-square test. Statistical data are expressed as the mean \pm standard deviation (SD), and P values of < 0.05 were considered statistically significant. All statistical analyses were carried out with IBM SPSS version 19 software (IBM, Armonk, NY, USA). Results Demographic data and drug therapy Twenty patients (17 women) had inadequate responses to TCZ (2 primary non-responders and 18 secondary non-responders), and were then treated with add-on low-dose TAC (0.5-2)mg/day). Eighteen patients were treated with intravenous TCZ infusion, and two were treated with subcutaneous TCZ injection (Table 1). Their mean age was 58.6 y (range, 40–73 y), and mean disease duration was 12.1 y (range, 1–25 y). Of all the patients, 80.0% were in Steinbrocker's stage III or IV, and 25.0% were in

152	functional class 3 or 4. Both the rheumatoid factor (RF) and anti-cyclic citrullinated peptide
153	(anti-CCP) antibody were positive in 17 patients (85.0%). TCZ was introduced as the first
154	biologic in 7 patients, and the remaining 13 were bio-switched. 5 patients were switched from
155	infliximab (IFX) and etanercept (ETN), 2 patients from golimumab (GOL), and 1 patient from
156	adalimumab (ADA). TAC was started at 2.6 years (0.3–5.1) after the initiation of TCZ. The
157	mean dose and usage rates of combined MTX were 6.1 mg/week (0-16) and 70.0% at baseline,
158	and 5.6 mg/week (0-16) and 65.0% at week 24. Likewise, those of PSL were 1.1 mg/day (0-6)
159	and 30.0% at baseline, and 0.7 mg/day (0-5) and 20.0% at week 24, respectively. Only 2
160	patients (10.0%) received bucillamine (BUC) and 3 patients received salazosulfapyridine
161	(SASP) at baseline. Three patients (15.0 %) were treated without any conventional DMARDs
162	(MTX, BUC, and SASP). No significant changes in the mean dose and prescription rate of
163	MTX, PSL, BUC, and SASP were observed throughout the study.
164	
165	Retention rate and combined TAC dose
166	Among all of the patients, 17 (85.0%) continued the combination treatment until week 24. Two
167	patients discontinued for lack of efficacy, and one for digestive symptoms. Mean daily dose of
168	TAC was 1.1 mg/day (0.5–2.0) at baseline and 1.1 mg/day (0.5–2.0) at week 24, which wasn't
169	significantly changed throughout the study.

70	
71	Adverse effects
72	During the follow-up period, 1 patient developed leukopenia (< $3500/\mu$ L) and 3 patients
73	developed lymphopenia (< 1000/ μ L), although no apparent signs of infection were observed.
74	Serious adverse events that required medical intervention were not observed during the
75	follow-up period.
76	
77	
78	Efficacy
79	Figs. 1, 2, and 3 show changes in clinical variables. The graphs include the data at 4-8 weeks
80	prior to TAC initiation as representative data before an inadequate response to TCZ. The mean
81	scores of DAS28-CRP were 2.6 \pm 0.8 at 4–8 weeks prior to the start of TAC, 3.3 \pm 0.8 at start of
82	TAC, 2.4 ± 0.7 at week 8, 2.4 ± 0.9 at week 16, and 2.1 ± 0.6 at week 24 (Fig. 1a); the mean
83	scores of CDAI were 11.5 ± 7.8 , 17.7 ± 7.6 , 9.6 ± 4.6 , 8.9 ± 7.3 , and 7.6 ± 4.4 , for the same
84	periods, respectively (Fig. 1b). The mean serum MMP-3 level was 175.1 ± 203.4 ng/mL, 232.8
85	\pm 241.2 ng/mL, 85.6 \pm 70.3 ng/mL, 82.0 \pm 98.2 ng/mL, and 66.2 \pm 39.7 ng/mL, for the same
86	periods, respectively (Fig. 1c). The mean serum CRP level was 0.16 ± 0.46 mg/dL, 0.27 ± 0.73
87	mg/dL, 0.05 \pm 0.06 mg/dL and 0.05 \pm 0.08 mg/dL, 0.05 \pm 0.06 mg/dL, for the same periods,
88	respectively (Fig. 1d). All scores were significantly improved from 8 weeks after TAC treatment.
89	The mean serum RF level was 154.5 ± 192.5 at baseline and 173.4 ± 252.0 at week 24, which
	12

didn't show significant change throughout the study.

191	The mean SJC was 3.3 ± 3.8 at 4–8 weeks prior to the start of TAC, 5.4 ± 4.0 at the start of TAC,
192	2.5 ± 2.7 at week 8, 1.6 ± 2.7 at week 16, and 1.4 ± 1.3 at week 24, respectively (Fig. 2a). The
193	mean TJC was 2.2 \pm 3.1, 2.7 \pm 3.4, 1.4 \pm 2.3, 2.2 \pm 3.5, 1.2 \pm 2.3, for the same periods,
194	respectively (Fig. 2b). The mean Pt-GA was 42.1 \pm 19.7, 54.8 \pm 19.6, 36.4 \pm 20.4, 35.0 \pm 22.7,
195	29.5 \pm 16.7, for the same periods, respectively (Fig. 2c). The mean Ph-GA was 31.5 \pm 13.5, 45.4
196	\pm 16.4, 24.2 \pm 9.7, 19.6 \pm 13.6, 18.9 \pm 11.2, for the same periods, respectively (Fig. 2d). All of
197	which declined over time after the start of TAC.
198	No significant differences in changes in the WBC and lymphocyte counts were observed from
199	the initiation of TAC to after the initiation of TAC (Fig. 3a and b). The mean serum trough TAC
200	concentration (ng/ml) was 3.2 ± 3.0 at week 8, 3.7 ± 3.7 at week 16, and 3.2 ± 3.1 at week 24,
201	respectively (Fig. 3c). Only 10.0% (2/20) of patients obtained recommended reference value of
202	serum trough TAC concentration (5.0 - 20.0 ng/ml) at week 24. However, 83.3% (10/12) of
203	patients who showed lower serum trough TAC concentration than 5.0 ng/ml achieved low
204	disease activity (CDAI ≤ 10) at week 24. Improvements were also seen in physical function.
205	The mean mHAQ score was 0.9 \pm 0.4 at the start of TAC, which significantly improved to 0.5 \pm
206	0.4 after 24 weeks of TAC therapy (Fig. 3d).
207	At week 24, 10 patients (50.0%) were in remission, five (25.0%) had low disease activity, and
	13

208	two (10.0%) had moderate disease activity, except three (15.0%) who discontinued TAC based
209	upon DAS28-CRP disease activity (Fig. 4a). In the same fashion, 14 (70.0%) had low disease
210	activity, and three (15.0%) had moderate disease activity, except three patients (15.0%) who
211	discontinued TAC based upon CDAI disease activity (Fig. 4b). At week 24, 12 of 19 (63.2%)
212	patients achieved more than a moderate response according to the improvement criteria for
213	response to treatment proposed by the EULAR (Fig. 4c). Percentages of patients who attained
214	ACR 20 were 64.7%, 58.8%, and 70.6% at 8 weeks, 16 weeks, and 24 weeks, respectively (Fig.
215	4d).
216	Concerning the difference in the response to TAC between primary and secondary
217	non-responders to TCZ, 100% (2/2) primary non-responders and 66.7% (12/18) secondary
218	non-responders achieved low disease activity (CDAI \leq 10) at week 24. Likewise, difference in
219	the response to TAC between bio-naïve and bio-switched patients, 57.1 % (4/7) bio-naïve and
220	76.9% (10/13) bio-switched patients achieved low disease activity (CDAI \leq 10) at week 24.
221	There was no significant difference in the achievement ratio of low disease activity between the
222	groups, respectively.
223	
224	Discussion
225	Previously, Mori reported the efficacy of additional use of TAC after switching to TCZ in
	14

226	patients who showed inadequate response to IFX, although the number of patients was only
227	three, and also prior treatment was limited to IFX [21]. Recently, Ishida et al. reported the
228	add-on effect of TAC in RA who showed inadequate response to biologics, although the ratio of
229	TCZ was only 16.3%, and the clinical results were not distinguished between each biologics
230	[22]. Taken together, this may be the first prospective report that focused on the safety and
231	efficacy of additional treatment with TAC in a constant number of patients with RA, who
232	showed an inadequate response to TCZ.
233	The efficacy might be explained by several mechanisms. Firstly, TAC forms a complex with
234	FK506 binding protein 12 (FKBP-12), which in turn binds to calcineurin, blocking its activity.
235	This process suppresses T-cell and B-cell activation, the production of antibodies by B cells
236	[23], and also the production of pro-inflammatory cytokines such as TNF- α and IL-6 by
237	activated T cells [24, 25]. This process may synergistically suppress the production of
238	pro-inflammatory cytokines with TCZ and may also inhibit the production of autologous
239	antibodies against biologics, which may lead to loss of efficacy [26]. Secondly, TAC also
240	suppresses IL-6-induced inflammatory processes such as up-regulation of the receptor activator
241	of NF-κB ligand (RANKL) in fibroblast-like synoviocytes, by up-regulation of a suppressor of
242	cytokine (SOCS3) signaling and consequent down-regulation of IL-6/Janus activated kinase
243	(JAK2)/signal transducer and an activator of transcription-3 (STAT3) [27]. Moreover, TAC has
	15

244	been proved to inhibit nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1
245	(NFATc1) signaling and consequent osteoclasts differentiation [28]. TAC add-on therapy may
246	enhance or restore the anti-inflammatory and anti-bone resorption effects of TCZ through these
247	mechanisms. Thirdly, the long-term use of conventional DMARDs can result in a gradual
248	decrease in their primary effects, such as "escape phenomenon" [29]. It has been reported that
249	P-glycoprotein, which exports steroids and immunosuppressants from inside the target cells and
250	mitigates their therapeutic effects, are induced when the transcription of multidrug resistance-1
251	is induced [30]. By contrast, calcineurin inhibitors, such as TAC, bind to P-glycoprotein
252	antagonistically, preventing drug export from target cells [30-32]. From these mechanisms,
253	TAC may also restore the effects of other combined conventional DMARDs or glucocorticoids.
254	Concerning the effective dose and serum concentration of TAC, the prescription dose of TAC
255	was relatively small (1.1mg/day; range 0.5-2mg/day), and only 10.0% (2/20) of patients
256	obtained the reference value of serum trough TAC concentration (5.0 - 20.0 ng/ml) at week 24.
257	However, 83.3% (10/12) of patients who showed lower serum trough TAC concentration than
258	5.0 ng/ml achieved low disease activity (CDAI \leq 10) at week 24. Taken together, lower serum
259	TAC concentration than reference value may suffice for rescuing inadequate response to TCZ.
260	Naniwa et al. [12] demonstrated the efficacy of additional TAC (1.5-2 mg/day) in patients with
261	RA who were resistant to TNF- α inhibitors in combination with MTX. Recently, the efficacy
	16

262	and safety of the combination of abatacept and TAC have been reported [33, 34]. Taken together,
263	TAC seems to be a realistic therapeutic option in the treatment of active RA, especially for
264	patients who cannot tolerate MTX and have an inadequate response to biologics.
265	There are several limitations to this study. First, this study lacks control group such as
266	adding-on other DMARDs and is not a randomized comparative study. Second, leukopenia,
267	lymphopenia, and consequent infection is major concerns when combining immunosuppressive
268	agents, and the rates of these adverse effects might have been underestimated due to the small
269	numbers of patients and short durations of follow-up. Third, precise mechanisms explaining
270	how add-on TAC restores the efficacy of TCZ, even in low serum concentration, could not be
271	specifically elucidated and should be evaluated in further studies. Fourth, whether this
272	combination therapy consequently protects the joints from radiographic damage should be
273	evaluated in large-cohort, longer-duration, randomized studies.
274	In conclusion, the results of this prospective study demonstrate that additional use of TAC can
275	be considered as an effective complementary therapy for TCZ-refractory RA patients, especially
276	those with intolerance to MTX.
277	
278	Conflict of interest
279	No authors have any conflicts of interest.
	17

280	Figure Legends
281	
282	Figure 1. Changes in clinical variables for all patients
283	Mean values of (a) DAS28-CRP, (b) CDAI, (c) MMP-3, (d) CRP; bars indicate SD.
284	* P < 0.05, ** P < 0.01, *** P < 0.001
285	IR, inadequate response; TCZ, tocilizumab; DAS28-CRP, disease activity score assessing 28
286	joints with CRP; CDAI, clinical disease activity index; MMP-3, matrix metalloproteinase-3;
287	CRP, C-reactive protein
288	
289	Figure 2. Changes in clinical variables for all patients
290	Mean values of (a) SJC, (b) TJC, (c) Pt-GA, (d) Ph-GA; bars indicate SD.
291	* P < 0.05, ** P < 0.01, *** P < 0.001
292	IR, inadequate response; TCZ, tocilizumab; SJC, swollen joint count; TJC, tender joint count;
293	Pt-GA, patient's global assessment of disease activity; Ph-GA, physician's global assessment of
294	disease activity
295	
296	Figure 3. Changes in clinical variables for all patients
297	Mean values of (a) WBC count (cells/µl), (b) lymphocyte count (cells/µl), (c) serum trough
	18

298	TAC concentration (ng/ml), and (d) mHAQ; bars indicate SD.
299	* P < 0.05, ** P < 0.01, *** P < 0.001
300	IR, inadequate response; TCZ, tocilizumab; WBC, white blood cell; TAC, tacrolimus; mHAQ,
301	modified Health Assessment Questionnaire
302	
303	Figure 4. Changes in distribution of disease activity and clinical responses
304	(a) Distribution of disease activity at the time of TAC initiation, 8 weeks, 16 weeks, and 24
305	weeks after TAC initiation; disease activity was defined using DAS28-CRP scores as follows:
306	remission, DAS28-CRP \leq 2.3; low disease activity, 2.3 < DAS28-CRP \leq 2.7; moderate disease
307	activity, $2.7 < DAS28$ -CRP ≤ 4.1 ; high disease activity, $4.1 < DAS28$ -CRP.
308	(b) Distribution of disease activity at the time of TAC initiation, 8 weeks, 16 weeks, and 24
309	weeks after TAC initiation; disease activity was defined using CDAI scores as follows:
310	remission, CDAI \leq 2.8; low disease activity, 2.8 < CDAI \leq 10; moderate disease activity, 10 <
311	CDAI \leq 22; high disease activity, 22 < CDAI.
312	(c) Response to treatment according to the EULAR criteria at the time of TAC initiation, 8
313	weeks, 16 weeks, and 24 weeks after TAC initiation.
314	(d) Response to treatment according to the ACR 20% criteria at the time of TAC initiation, 8
315	weeks, 16 weeks, and 24 weeks after TAC initiation.
	19

1 2		
3 4	316	TAC, tacrolimus; DAS28-CRP, disease activity score assessing 28 joints with CRP; CDAI,
5 6 7	317	clinical disease activity index; ACR20, American College of Rheumatology 20% improvement
8 9 10	318	criteria
11 12 13	319	
14 15 16 17	320	
18 19 20	321	
21 22 23	322	
24 25 26	323	
27 28 29	324	
30 31 32	325	
33 34 35	326	
36 37 38	327	
39 40 41	328	
42 43 44	329	
45 46 47		
48 49 50	330	
51 52 53	331	
54 55 56 57	332	
57 58 59 60	333	
61 62 63		20
64 65		

References

6 7 8	335	1.	Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T et al.
9 10 11	336		Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor
12 13 14	337		(SAMURAI): evidence of clinical and radiographic benefit from an x ray
15 16 17	338		reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis.
18 19 20 21	339		2007;66(9):1162-7.
21 22 23 24	340	2.	Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E et al.
25 26 27	341		Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid
28 29 30	342		arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet.
31 32 33	343		2008;371(9617):987-97.
34 35 36	344	3.	Smolen JS, Landewe R, Breedveld FC, Buch M, Burmester G, Dougados M et al.
37 38 39 40	345		EULAR recommendations for the management of rheumatoid arthritis with synthetic
40 41 42 43	346		and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis.
44 45 46	347		2014;73(3):492-509.
47 48 49	348	4.	Hirao M, Yamasaki N, Oze H, Ebina K, Nampei A, Kawato Y et al. Serum level of
50 51 52	349		oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated
53 54 55	350		with tocilizumab. Rheumatol Int. 2012;32(12):4041-5.
56 57 58 59	351	5.	Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M et al. IL-6 negatively
59 60 61 62 63 64 65			21

regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab. 2014;32(4):378-92. Jones G, Sebba A, Gu J, Lowenstein MB, Calvo A, Gomez-Reino JJ et al. Comparison 6. of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann Rheum Dis. 2010;69(1):88-96. Izumi K, Kaneko Y, Yasuoka H, Seta N, Kameda H, Kuwana M et al. Tocilizumab is 7. clinically, functionally, and radiographically effective and safe either with or without low-dose methotrexate in active rheumatoid arthritis patients with inadequate responses to DMARDs and/or TNF inhibitors: A single-center retrospective cohort study (KEIO-TCZ study) at week 52. Mod Rheumatol. 2014. 8. Kawai S, Hashimoto H, Kondo H, Murayama T, Kiuchi T, Abe T. Comparison of tacrolimus and mizoribine in a randomized, double-blind controlled study in patients with rheumatoid arthritis. J Rheumatol. 2006;33(11):2153-61. Aramaki T, Kawakami A, Iwamoto N, Fujikawa K, Kawashiri SY, Tamai M et al. 9. Prediction of DAS28-CRP remission in patients with rheumatoid arthritis treated with tacrolimus at 6 months by baseline variables. Mod Rheumatol. 2009;19(6):652-6. Suzuki K, Saito K, Tsujimura S, Nakayamada S, Yamaoka K, Sawamukai N et al. 10.

Tacrolimus, a calcineurin inhibitor, overcomes treatment unresponsiveness mediated by P-glycoprotein on lymphocytes in refractory rheumatoid arthritis. J Rheumatol. 2010;37(3):512-20. 11. Yokota K, Akiyama Y, Asanuma Y, Miyoshi F, Sato K, Mimura T. Efficacy of tacrolimus in infliximab-refractory progressive rheumatoid arthritis. Rheumatol Int. 2009;29(4):459-61. Naniwa T, Watanabe M, Banno S, Maeda T. Adding low dose tacrolimus in rheumatoid 12. arthritis patients with an inadequate response to tumor necrosis factor inhibitor therapies. Rheumatol Int. 2009;29(11):1287-91. 13. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315-24. Koike R, Harigai M, Atsumi T, Amano K, Kawai S, Saito K et al. Japan College of 14. Rheumatology 2009 guidelines for the use of tocilizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, in rheumatoid arthritis. Mod Rheumatol. 2009;19(4):351-7. 15. Aletaha D, Nell VP, Stamm T, Uffmann M, Pflugbeil S, Machold K et al. Acute phase reactants add little to composite disease activity indices for rheumatoid arthritis:

1 2			
3 4 5	388		validation of a clinical activity score. Arthritis Res Ther. 2005;7(4):R796-806.
6 7 8	389	16.	Aletaha D, Smolen J. The Simplified Disease Activity Index (SDAI) and the Clinical
9 10 11	390		Disease Activity Index (CDAI): a review of their usefulness and validity in rheumatoid
12 13 14	391		arthritis. Clin Exp Rheumatol. 2005;23(5 Suppl 39):S100-8.
15 16 17 18	392	17.	Pincus T, Summey JA, Soraci SA, Jr., Wallston KA, Hummon NP. Assessment of
19 20 21	393		patient satisfaction in activities of daily living using a modified Stanford Health
22 23 24	394		Assessment Questionnaire. Arthritis Rheum. 1983;26(11):1346-53.
25 26 27	395	18.	Prevoo ML, van 't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel
28 29 30	396		PL. Modified disease activity scores that include twenty-eight-joint counts.
31 32 33	397		Development and validation in a prospective longitudinal study of patients with
34 35 36	398		rheumatoid arthritis. Arthritis Rheum. 1995;38(1):44-8.
37 38 39 40	399	19.	van Gestel AM, Prevoo ML, van 't Hof MA, van Rijswijk MH, van de Putte LB, van
41 42 43	400		Riel PL. Development and validation of the European League Against Rheumatism
44 45 46	401		response criteria for rheumatoid arthritis. Comparison with the preliminary American
47 48 49	402		College of Rheumatology and the World Health Organization/International League
50 51 52	403		Against Rheumatism Criteria. Arthritis Rheum. 1996;39(1):34-40.
53 54 55	404	20.	Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C et al. American
56 57 58 59	405		College of Rheumatology. Preliminary definition of improvement in rheumatoid
60 61 62 63			24
64			

arthritis. Arthritis Rheum. 1995;38(6):727-35. 7 Mori S. Additional use of tacrolimus after switching to tocilizumab therapy in patients 21. with primary lack of efficacy of infliximab therapy for rheumatoid arthritis. Mod Rheumatol. 2012;22(6):947-50. 22. Ishida K, Shiraki K, Yoshiyasu T. Evaluation of the safety and effectiveness of add-on tacrolimus in patients with rheumatoid arthritis who failed to show an adequate response to biological DMARDs: the interim results of a specific drug use-results survey of tacrolimus. Drugs R D. 2015;15(4):307-17. 23. Miwa Y, Hosaka M, Ohtsuka K, Sato M, Takahashi R, Wakabayashi K et al. Depression is improved when low-dose tacrolimus is given to rheumatoid arthritis patients showing an inadequate response to biologic agents. Mod Rheumatol. 2013;23(5):920-4. 24. Sakuma S, Kato Y, Nishigaki F, Sasakawa T, Magari K, Miyata S et al. FK506 potently inhibits T cell activation induced TNF-alpha and IL-1beta production in vitro by human peripheral blood mononuclear cells. Br J Pharmacol. 2000;130(7):1655-63. Magari K, Miyata S, Nishigaki F, Ohkubo Y, Mutoh S. Comparison of anti-arthritic 25. properties of leflunomide with methotrexate and FK506: effect on T cell activation-induced inflammatory cytokine production in vitro and rat adjuvant-induced arthritis. Inflamm Res. 2004;53(10):544-50.

Natsumeda M, Yamashita M, Takasugi K, Yamanaka R, Ezawa K, Ezawa K et al. Study on the usefulness of adalimumab plus tacrolimus concomitant treatment given to rheumatoid arthritis patients intolerant to methotrexate (in Japanese). J New Rem & Clin. 2014;63(1):95-104.

Choe JY, Park KY, Park SH, Lee SI, Kim SK. Regulatory effect of calcineurin inhibitor, tacrolimus, IL-6/sIL-6R-mediated expression through on RANKL JAK2-STAT3-SOCS3 signaling pathway in fibroblast-like synoviocytes. Arthritis Res

Ther. 2013;15(1):R26.

Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation. Biochem Biophys Res Commun. 2012;427(2):404-9.

- Kawasaki Y, Moriyama M, Shibata K, Gomita Y. Effectiveness of methotrexate for the escape by salazosulfapyridine (in Japanese). Yakugaku Zasshi. 2005;125(7):579-82.
- Tsujimura S, Saito K, Nakayamada S, Nakano K, Tsukada J, Kohno K et al. Transcriptional regulation of multidrug resistance-1 gene by interleukin-2 in lymphocytes. Genes Cells. 2004;9(12):1265-73.
 - Tsujimura S, Saito K, Nakayamada S, Nakano K, Tanaka Y. Clinical relevance of the

1 2			
3 4	442		expression of P-glycoprotein on peripheral blood lymphocytes to steroid resistance in
5 6 7	443		patients with systemic lupus erythematosus. Arthritis Rheum. 2005;52(6):1676-83.
8 9 10 11	444	32.	Tsujimura S, Saito K, Nawata M, Nakayamada S, Tanaka Y. Overcoming drug
12 13 14	445		resistance induced by P-glycoprotein on lymphocytes in patients with refractory
15 16 17	446		rheumatoid arthritis. Ann Rheum Dis. 2008;67(3):380-8.
18 19 20	447	33.	Takahashi N, Fujibayashi T, Kida D, Hirano Y, Kato T, Kato D et al. Concomitant
21 22 23	448		methotrexate and tacrolimus augment the clinical response to abatacept in patients with
24 25 26	449		rheumatoid arthritis with a prior history of biological DMARD use. Rheumatol Int.
27 28 29 30	450		2015;35(10):1707-16.
31 32 33	451	34.	Fujibayashi T, Takahashi N, Kida D, Kaneko A, Hirano Y, Fukaya N et al. Comparison
34 35 36	452		of efficacy and safety of tacrolimus and methotrexate in combination with abatacept in
37 38 39	453		patients with rheumatoid arthritis; a retrospective observational study in the TBC
40 41 42	454		Registry. Mod Rheumatol. 2015;25(6):825-30.
43 44			
45 46			
47 48			
49			
50 51			
52			
53 54			
55			
56			
57 58			
59			
60 61			97
62			27
63			
64			

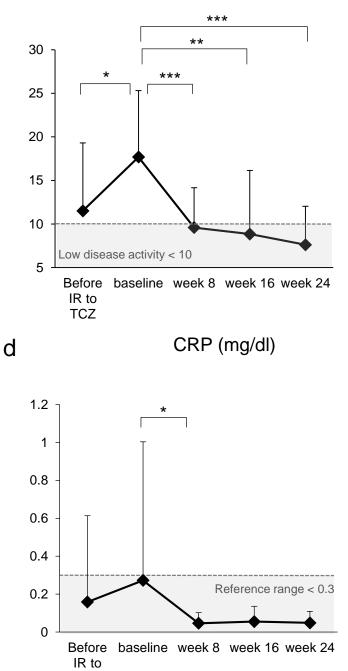
1 Tab	le 1. Baseline characteristics of 20 patients
-------	---

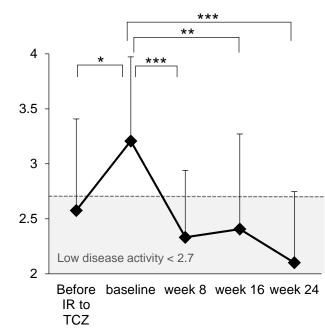
Gender	17 females, 3 males		
Age (years)	58.6 ± 9.3 (40-73)		
Body weight (kg)	53.3 ± 5.8 (42.8-63)		
Steinbrocker's stage (n)	Stage I 1 II 3 III 5 IV11		
Steinbrocker's functional class (n)	Class I 5 II 10 III 5 IV0		
Duration of disease (years)	12.1± 6.9 (1-25)		
Duration of TCZ treatment (years)	$2.6 \pm 1.6 \ (0.3-5.1)$		
Formulation of TCZ	i.v. 18, s.c. 2		
Type of TCZ failure (n)	2 primary non-responders,		
Type of TCZ failure (n)	18 secondary non-responders		
Drigg was of high gives (n)	7 bio-naïve, 13 bio-switched		
Prior use of biologics (n)	IFX(5) ETN (5) GOL (2) ADA (1)		
MTX dose (mg/week), usage (% patients)	6.1 ± 5.0 (0-16), 70.0%		
PSL dose (mg/day), usage (% patients)	1.1 ± 2.0 (0-6), 30.0%		
BUC dose (mg/day), usage (% patients)	22.2 ± 64.7 (0-200), 10.0%		
SASP dose (mg/day), usage (% patients)	147.1 ± 343.0 (0-1000), 15.0%		
RF positivity, n/N (%)	17/20, 85.0%		
ACPA positivity, n/N (%)	17/20, 85.0%		
DAS28-CRP	$3.2 \pm 0.8 \; (1.8 \text{-} 4.8)$		
SJC (swollen joint count), 0-28	4.8 ± 3.9 (1-16)		
TJC (tender joint count), 0-28	$2.6 \pm 3.2 \ (0-14)$		
CRP (mg/dL)	$0.26 \pm 0.71 \ (0.01 \text{-} 2.92)$		
Pt-GA (0-100 mm)	54.9 ± 22.0 (10-95)		
Ph-GA (0-100 mm)	44.1 ± 18.2 (8-85)		
CDAI	17.2 ± 7.5 (5.8-38.5)		
MMP-3 (ng/mL)	215.1 ± 226.1 (24.6-771)		
WBC count (cells/µl)	$6799 \pm 3559 \ (2840\text{-}17700)$		
Lymphocyte count (cells/µl)	1418 ± 608 (621.6-2534.4)		

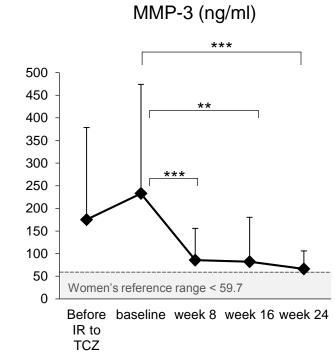
 $\mathbf{2}$

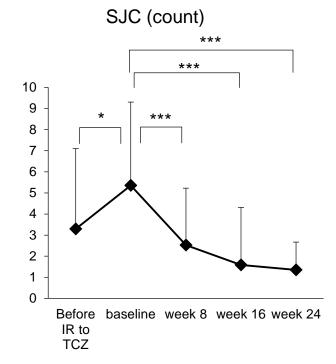
3 Data are expressed as mean \pm SD.

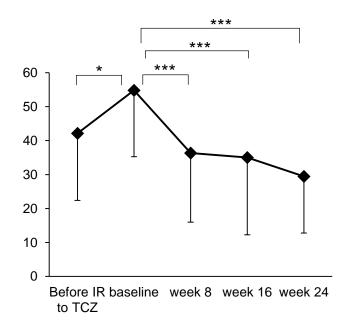
4 TCZ, tocilizumab; i.v., intravenous; s.c., subcutaneous; IFX, infliximab; ETN, etanercept; GOL,

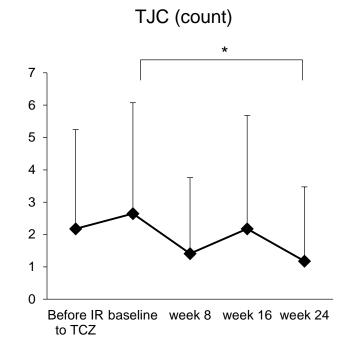

5	golimumab; ADA, adalimumab; MTX, methotrexate; PSL, prednisolone; BUC, bucillamine;
6	SASP, salazosulfapyridine; RF, rheumatoid factor; ACPA, anti-cyclic citrullinated peptide
7	(anti-CCP) antibody; CRP, C-reactive protein; DAS28-CRP, disease activity score assessing 28
8	joints with CRP, SJC, swollen joint count; TJC, tender joint count; Pt-GA, patient's global
9	assessment of disease activity; Ph-GA, physician's global assessment of disease activity; CDAI,
10	clinical disease activity index; MMP-3, matrix metalloproteinase-3; WBC, white blood cell
11	n/N (%) = number of patients with measurements/total number of patients (%)

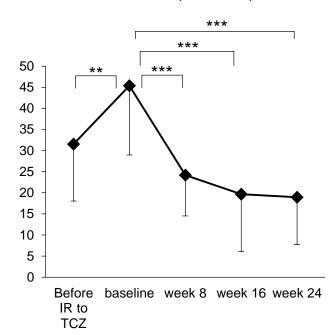

DAS28-CRP




CDAI

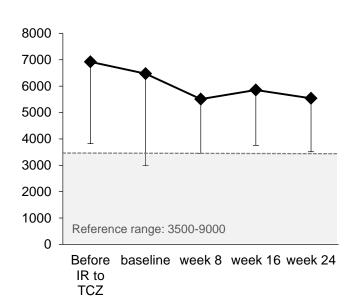

TCZ

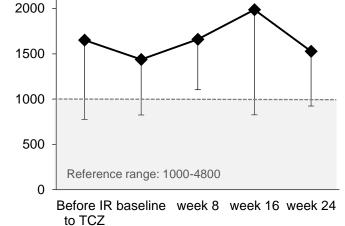




b

d

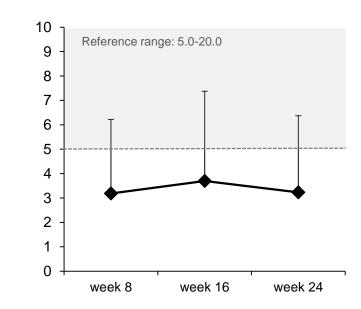

Ph-GA (100 mm)



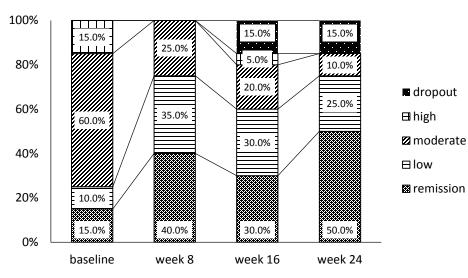
WBC (cells/µl)

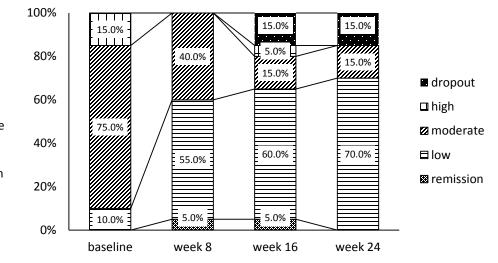
b

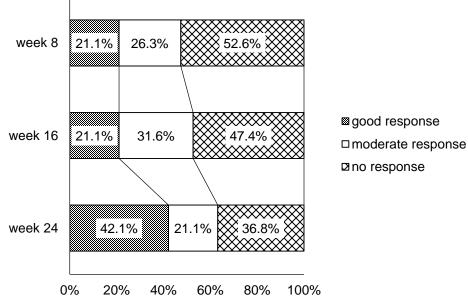
2500



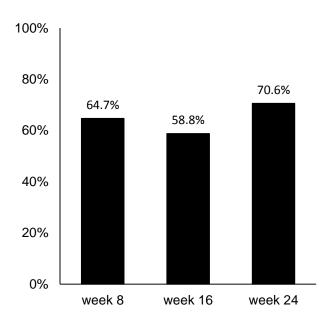
Trough TAC concentration (ng/ml)


mHAQ




a Distribution of DAS28-CRP disease activity

b Distribution of CDAI disease activity



C Response to treatment according to the EULAR criteria

d

ACR 20 response rate

....