

Title	Low serum albumin concentration is associated with increased risk of osteoporosis in postmenopausal patients with rheumatoid arthritis
Author(s)	Nagayama, Yoshio; Ebina, Kosuke; Tsuboi, Hideki et al.
Citation	Journal of Orthopaedic Science. 2022, 27(6), p. 1283–1290
Version Type	АМ
URL	https://hdl.handle.net/11094/93242
rights	© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

1	Original Article
2	
3	Title:
4	Low serum albumin concentration is associated with increased risk of osteoporosis in
5	postmenopausal patients with rheumatoid arthritis
6	
7	Authors:
8	Yoshio Nagayama, MD ^a , Kosuke Ebina, MD, PhD ^b *, Hideki Tsuboi, MD, PhD ^c , Makoto
9	Hirao, MD, PhD ^d , Jun Hashimoto, MD, PhD ^e , Hideki Yoshikawa, MD, PhD ^f , Seiji Okada,
10	MD, PhD ^d , and Ken Nakata, MD, PhD ^g
11	
12	Affiliations:
13	^a Nagayama Rheumatology and Orthopaedic Clinic, 4-3-25 Hiokisounishi-machi,
14	Higashi-ku, Sakai 599-8114, Japan
15	^b Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate
16	School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
17	^c Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-cho, Kita-
18	ku, Sakai 591-8025, Japan
19	^d Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-
20	2 Yamada-oka, Suita, Osaka 565-0871, Japan
21	^e Department of Rheumatology, National Hospital Organization Osaka Minami Medical
22	Center, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan
23	^f Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibahara-

24 cho, '	Toyonaka,	Osaka	560-	8565,	Japan
-----------	-----------	-------	------	-------	-------

- 25 ^gDepartment of Health and Sport Sciences, Osaka University Graduate School of
- 26 Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- 27

```
28 *Corresponding author:
```

- 29 Phone: +81-6-6210-8439 Fax: +81-6-6210-8438
- 30 E-mail: k-ebina@ort.med.osaka-u.ac.jp
- 31 ORCID: 0000-0002-2426-1024
- 32
- 33 Funding
- 34 None
- 35

36 Conflict of Interest

KE is affiliated with, and KN supervise the Department of Musculoskeletal Regenerative
Medicine, Osaka University, Graduate School of Medicine, which is supported by Taisho.
KE has received payments for lectures from Amgen, Asahi-Kasei, Astellas, Chugai,
Daiichi Sankyo, Eisai, Eli Lilly, Ono, and Pfizer, and received consultant fee from AsahiKasei. KE and MH have received research grants from Amgen, Asahi-Kasei, Astellas,
Chugai, Daiichi Sankyo, Eisai, Eli Lilly, and Ono. YN has received payments for lectures
from Asahi-Kasei, Astellas, Chugai, Daiichi Sankyo, Eisai, Eli Lilly, and Ono. HT has

44	received payments for lectures from Asahi-Kasei, Astellas, Chugai, Eisai, Eli Lilly, and
45	Pfizer, and has received a research grant from Chugai. JH have received payments for
46	lectures from Chugai, and research grants from Astellas, Chugai, and Eisai. HY have
47	received research grants from Astellas, Daiichi Sankyo, Eisai, and MSD. KN has received
48	a research grant from Astellas. SO declare that he has no conflicts of interest.

50 Ethical Statement

51 This study was conducted in accordance with the ethical standards of the Declaration of 52 Helsinki and approved by the institutional ethical review board of our institute (Osaka 53 University; approval No. 18258). The board waived the requirement for patient informed 54 consent by posting the opt-out information in the hospitals' homepage.

1 Abstract

2 Background

The risk of osteoporosis in patients with rheumatoid arthritis (RA) is frequently overlooked, and investigating a simple indicator in routine care may be beneficial to motivate osteoporosis examination. The aim of this retrospective, case-controlled study was to identify the correlation between serum albumin concentrations and the prevalence of osteoporosis in postmenopausal patients with RA.

8 Methods

9 This study enrolled 197 patients who underwent dual-energy X-ray absorptiometry of 10 lumbar spine (LS) and proximal femur without osteoporosis treatment [mean age, 67.5 11 years; disease duration, 12.8 years; Disease Activity Score assessing 28 joints with C-12 reactive protein, 2.0; prednisolone dose, 4.9 mg/day (usage, 42.6 %); and LS T-score, -1.9]. Patients were classified into 2 groups: osteoporosis, defined as \geq 1 areal bone 13 14 mineral density T-score ≤ -2.5 or history of fragility fracture of the vertebra or proximal 15 femur (121 patients), and non-osteoporosis (76 patients). Groups were then matched by 16 propensity score using clinical backgrounds affecting bone metabolism.

17 Results

In non-matched model, serum albumin concentration was significantly associated with osteoporosis-related factors such as aging, inflammation, physical disability, and glucocorticoid dose. Multivariate logistic regression revealed that serum albumin concentration was independently and significantly associated with osteoporosis risk (odds ratio=0.22, 95% confidence interval=0.08, 0.61, p=0.0033). After propensity score matching, 57 patients for each group showed that in addition to the LS and femoral neck T-scores (p<0.001), serum albumin concentrations (p=0.01) remained lower in the

25	osteoporosis group compared to non-osteoporosis group. Receiver operating
26	characteristic curve analysis in non-matched model revealed that when cut-off value of
27	serum albumin concentration for indicating osteoporosis was set at 4.2 g/dl, the area under
28	the curve was 0.69, sensitivity 0.74, and specificity 0.58.
29	Conclusions
30	Low serum albumin concentration was significantly and independently associated with
31	the prevalence of osteoporosis, which may be considered as one of the osteoporosis-
32	related factors in postmenopausal patients with RA.
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	

49 Introduction

66

50 Rheumatoid arthritis (RA) is one of the major causes of secondary osteoporosis [1]. Decreased systemic bone mineral density (BMD) is observed from the early onset [2], 51 52 and BMD also decreases with disease duration [3]. As a result, RA patients have relatively 53 higher risk of fracture (approximately 1.5- to 2.6-fold higher) than healthy individuals [4]. 54 The importance of a long-term treatment strategy based on early osteoporosis diagnosis 55 has been demonstrated [5, 6], although the risk of osteoporosis in RA is frequently 56 overlooked. Therefore, investigating a simple indicator of osteoporosis in routine care 57 may be beneficial for clinicians to motivate early osteoporosis examination. Many reports 58 have addressed possible factors contributing to progressive bone loss in RA. Pro-59 inflammatory cytokines, such as tumor necrosis factor-alpha (TNF- α), interleukin (IL)-1, 60 IL-6, and IL-17, cause the expression of receptor activation of nuclear factor κB ligand (RANKL), which leads to osteoclastogenesis and bone loss [7]. Glucocorticoid use leads 61 62 to decreased BMD [8], and recent reports also demonstrated that high anti-citrullinated 63 peptide antibody (ACPA) titer is associated with higher bone resorption marker 64 concentrations and decreased BMD [9]. 65 In addition, poor nutrition in patients with RA has been correlated with lower BMD [10].

67 is associated with the risk of osteoporosis [11]. However, to the best of our knowledge,

3

A report in the general population demonstrated that lower serum albumin concentration

68	no studies have demonstrated the association between serum albumin concentrations and
69	osteoporosis in RA. Our hypothesis of the current study was that low serum albumin
70	concentrations may be independently associated with the risk of osteoporosis, and may
71	be a useful, convenient, surrogate marker to indicate the risk of osteoporosis in RA
72	patients.

74 Materials and Methods

75 Study design and participants

76 This retrospective, case-controlled study was conducted at two centers in Japan: Osaka 77 University Hospital and Nagayama Rheumatology and Orthopaedic Clinic. The diagnosis of RA was based on the 1987 revised American College of Rheumatology (ACR) criteria 78 79 [12] or the 2010 ACR/European League Against Rheumatism (EULAR) classification 80 criteria [13]. The study recruited postmenopausal patients with RA who underwent dual-81 energy X-ray absorptiometry (DXA) (PRODIGY, GE Healthcare, Madison, WI, USA; 82 Discovery, Hologic, Waltham, MA, USA) for measurement of BMD in the lumber spine 83 (LS) (L1–L4), total hip (TH), and femoral neck (FN), and spinal radiographs to examine 84 vertebral fracture before starting osteoporosis treatment from 2010 to 2017 (Figure 1). 85 Patients were excluded if they had a history of any kinds of osteoporosis treatment (such

86	as calcium, vitamin D, vitamin K, selective estrogen receptor modulator, bisphosphonates,
87	denosumab, or teriparatide), diseases affecting bone metabolisms such as diabetes,
88	thyroid or parathyroid diseases, hormone replacement therapy, cancer and radiation
89	therapy involving the skeleton, osteomalacia, severe impaired renal function [estimated
90	glomerular filtration rate (eGFR) $< 30 \text{ (ml/min/1.73 m}^2)$] or hepatic function (more than
91	double of the standard value of hepatic enzyme), or poor oral ingestion (such as tube
92	feeding). The BMD data were standardized by the correction method proposed by the
93	Japan Osteoporosis Society in reference to the International Society for Clinical
94	Densitometry Guidance [14]. Regions of severe sclerosis, vertebral fracture, and operated
95	sites were excluded from BMD measurements, as previously described [15]. Osteoporosis
96	was diagnosed according to the Japanese Guidelines for Prevention and Treatment of
97	Osteoporosis 2011 [16] and the guidelines on the management and treatment of
98	glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral
99	Research 2004 [17]. Participants were classified into 2 groups: the osteoporosis group,
100	defined as LS, TH, or FN T-scores ≤ -2.5 or a history of previous fragility fracture of
101	vertebra or proximal femur. The others were defined as the non-osteoporosis group. These
102	patient clinical background data were examined: age, duration of RA, body mass index
103	(BMI), Health Assessment Questionnaire Disability Index (HAQ-DI), Disease Activity

104	Score in 28 joints with C-reactive protein (DAS28-CRP), and Clinical Disease Activity
105	Index (CDAI), and the use of glucocorticoid (prednisolone equivalent), methotrexate, and
106	biologics. Following laboratory data were also examined: CRP; matrix metalloproteinase-
107	3 (MMP-3); total protein; albumin; total cholesterol; triglycerides; glucose; creatinine;
108	eGFR; creatine kinase; corrected calcium (Ca); 25-hydroxyvitamin D; rheumatoid factor
109	(RF); and ACPA titer and positivity, in addition to N-terminal type I procollagen
110	propeptide (PINP) as a bone formation marker and isoform 5b of tartrate-resistant acid
111	phosphatase (TRACP-5b) as a bone resorption marker [5].

113 Propensity score matching

114 To equalize the clinical backgrounds which may affect bone metabolism, we used 1:1

115 optimal propensity score matching without replacement by age, body mass index, disease

116 duration of RA, DAS28-CRP, glucocorticoid dose, and glucocorticoid usage (which may

117 affect BMD) as previously described [5]. Finally, 57 patients from each group were

118 extracted (Figure 1).

119

```
120 Statistical analysis
```

121 Data were expressed as mean ± standard deviation (SD). Comparisons between the

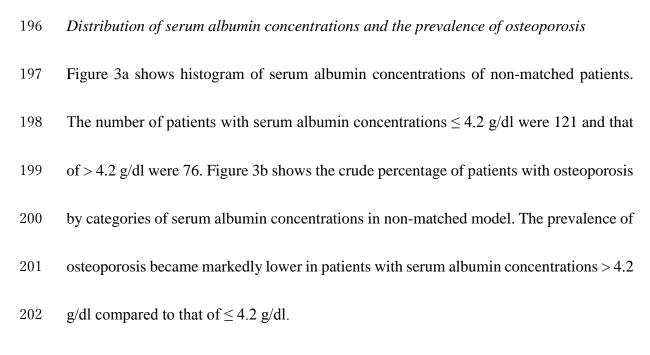
122	osteoporosis and non-osteoporosis groups were performed using the Mann-Whitney U
123	test or chi-squared test. Correlation between the continuous variables were examined by
124	Spearman's rank correlation coefficient. Variables which were previously reported as the
125	risk factors of osteoporosis associated with RA, as well as showing $p < 0.1$ between two
126	groups (albumin, age, disease duration, BMI, and MMP-3) were selected as explanatory
127	variables according to the previous report [18]. Then, multivariate logistic regression
128	analysis was performed to identify the factors significantly associated with the risk of
129	osteoporosis. Odds ratios (OR) with 95% confidence intervals (CI) were calculated to
130	estimate the relative risk. Receiver operating characteristic (ROC) curves were
131	constructed to determine the best cut-off value of serum albumin concentrations
132	discriminating between the osteoporosis and non-osteoporosis group, and the area under
133	the ROC curve was calculated as a measure of the overall discriminative ability of serum
134	albumin concentrations. The cut-off point was identified as that closest to the $(0, 1)$ point.
135	All tests were performed using the statistics software SPSS (version 22, IBM, Armonk,
136	NY, USA) with $p < 0.05$ considered significant.

138 Ethical statement

139 This study was conducted in accordance with the ethical standards of the Declaration of

140	Helsinki and approved by the institutional ethical review board of our institute. The board
141	waived the requirement for patient informed consent by posting the opt-out information
142	in the hospitals' homepage.
143	
144	Results
145	Patient disposition and characteristics
146	Among 197 postmenopausal patients with RA who underwent DXA and spinal
147	radiographs without osteoporosis treatment, 121 patients fulfilled the osteoporosis criteria
148	and 76 patients did not (Table 1). Patient characteristics are summarized here: mean age
149	67.5±10.6 years; RA disease duration 12.8±10.9 years; CRP 0.5±1.2 mg/dL; DAS28-CRP
150	2.0 \pm 1.0; eGFR 72.1 \pm 19.6 mL/min/1.73 m ² ; RF positivity 60.4%; and ACPA positivity
151	70.1%; prednisolone dose 4.9 mg/day for 42.6% of participants; methotrexate dose 8.0
152	mg/day for 62.9%; and biologics for 31.5%. There were significant differences in LS, TH,
153	and FN BMD (g/cm ² and T-score) (p <0.001), age (p =0.001), duration of RA (p =0.049),
154	body mass index ($p=0.009$), serum concentration of total protein ($p=0.006$) and albumin
155	(p < 0.001). In addition, there were significant correlations between serum albumin
156	concentration and serum total protein concentration (r=0.24, p =0.001), BMD (g/cm ²) of
157	LS (r=0.21, p=0.0025), TH (r=0.36, p<0.001), and FN (r=0.36, p<0.001), respectively.

There were no significant differences in serum concentration of albumin (g/dl; mean \pm SD) between non-biologics group (4.0 \pm 0.4), tumor necrosis factor inhibitors group (4.2 \pm 0.4), tocilizumab group (4.2 \pm 0.4), and abatacept group (4.1 \pm 0.3) (*p*=0.15 between groups).


- 162 Then, multivariate logistic regression analysis revealed that serum albumin concentration
- 163 was independently and most strongly associated with osteoporosis risk (OR=0.22, 95%
- 164 CI=0.08, 0.61, *p*=0.0033], followed by age (OR=1.04, 95% CI=1.01, 1.08, *p*=0.012) and
- 165 BMI (OR=0.88, 95% CI=0.80, 0.98, *p*=0.016) (Table 2).
- 166 Then, to further clarify these results, 57 participants of each group were extracted by 167 matching clinical backgrounds which may affect bone metabolism using propensity score 168 (Figure 1). Patient characteristics are shown in Table 3 and summarized here: mean age 169 67.0±9.0 years; RA disease duration 12.1±10.4 years; CRP 0.4±0.9 mg/dL; DAS28-CRP 170 2.0±0.9; eGFR 73.2±19.8 mL/min/1.73 m²; RF positivity 67.5%; and ACPA positivity 171 76.3%; prednisolone dose 4.2 mg/day for 36.0% of participants; methotrexate dose 7.8 172 mg/day for 69.3%; and biologics for 28.1%. Significant differences were noted between the osteoporosis and non-osteoporosis groups in the LS, TH, and FN BMD (g/cm² and T-173 174 score) (p<0.001). Interestingly, after matching by clinical backgrounds, serum total 175 protein concentrations (7.1 vs. 7.3 g/dL, p=0.04) and albumin concentrations (4.0 vs. 4.2

176 g/dL, p=0.01) remained significantly lower in the osteoporosis group than in the non-177 osteoporosis group. Then, multivariate logistic regression analysis revealed that serum 178 albumin concentration was the only factor significantly associated with the risk of osteoporosis (OR=0.24, 95% CI=0.074, 0.77, p=0.017) (Table 4). 179 180 In both non-matched and matched model, serum albumin concentrations showed stronger 181 correlation with the prevalence osteoporosis compared to that of total protein. Among the 182 parameters, significant correlations were found between serum albumin concentrations 183 and age (p<0.05), CRP (p<0.001), DAS28-CRP (p<0.001), HAQ-DI (p=0.0015), and 184 prednisolone dose (p=0.018). These results suggest that risk factors of osteoporosis 185 associated with RA such as aging, high disease activity, low physical functional status, 186 and glucocorticoid dose are strongly correlated with serum albumin concentrations, 187 which may comprehensively represent these osteoporosis-related factors. 188

189 *Cut-off value of serum albumin concentrations for indicating osteoporosis*

Figure 2 shows the ROC curve to determine the optimal cut-off value of serum albumin concentrations for indicating osteoporosis. In non-matched model (Figure 2a), the cut-off value was set at 4.2 g/dl, and the area under the curve was 0.69, sensitivity 0.74, and specificity 0.58. In propensity score-matched model (Figure 2b), the cut-off value was set

at 4.2 g/dl, and the area under the curve was 0.62, sensitivity 0.67, and specificity 0.58.

203

204 Discussion

This retrospective, case-controlled study demonstrated the possibility of serum albumin concentration as a simple indicator to motivate further osteoporosis examinations in patients with postmenopausal RA.

208 Previous reports demonstrated that advanced age, (≥ 60 years), disease duration, disease

activity, low body mass index, oral glucocorticoid use, and high modified HAQ as risk

- 210 factors for osteoporosis in RA patients [1, 19]. Although these studies reported a
- 211 relationship between osteoporosis and disease activity of RA or medications, serum

212	albumin concentration was not considered. On the other hand, previous studies have
213	reported the association between hypoalbuminemia and osteoporosis in the general
214	population. Afshinnia et al. demonstrated that odds ratio of osteoporosis in patients with
215	serum albumin of \leq 3 g/dl was approximately 3.3-fold at the FN (<i>p</i> <0.001) and 2.2-fold
216	at the LS ($p < 0.001$) compared with patients with serum albumin > 4 g/dl after adjustment
217	of clinical backgrounds [11]. Moreover, D'Erasmo et al. reported that low BMD was
218	associated with hypoalbuminemia in patients with disease-related hypoalbuminemia,
219	such as chronic hepatitis or cirrhosis, inflammatory bowel disease, and nephrotic
220	syndrome [20].
221	The mechanisms of the association between low serum albumin concentration and low
222	BMD is not well understood. One plausible mechanism is that hypoalbuminemia may
223	directly promote osteoclastogenesis and may also inhibit osteogenesis via relationship
224	with nuclear factor- κB [21]. Another proposed mechanism is that albumin has an anabolic

225 effect on bone components via its stimulatory effect on bone calcification and deoxyribonucleic acid contents [22]. In addition, hypoalbuminemia may affect the 226 metabolism of parathyroid hormone and vitamin D binding protein [23], and may also 227 decrease matrix Gla protein resulting in reduced osteoblastic and elevated osteoclast 228 activities [24]. 229

230	Serum albumin concentrations are affected by disorders such as liver disease, nephrotic
231	syndrome, chronic inflammation, cancer, and malnutrition [25]; in addition,
232	hypoalbuminemia is frequently observed in RA patients. Levick reported that albumin
233	leaks to inflamed joints because of increased vascular-joint albumin permeability, and
234	inflammation is a factor that causes hypoalbuminemia in RA patients [26], and Wilkinson
235	et al. reported hypoalbuminemia was strongly related to disease activity of RA [27].
236	Concerning inflammation, monocytic products especially interleukin-1 reduced
237	messenger RNA expression and synthesis of albumin in rat hepatocytes [28]. In the
238	present study, there were no significant differences in serum concentration of albumin
239	between non-biologics group and each biologics group, maybe due to well-controlled
240	disease activity on the whole.
241	On the other hand, glucocorticoid preserved mRNA expression level of albumin in vitro,
242	although didn't show significant effect in the albumin synthesis in vivo [29]. Further
243	investigations may be required to investigate the effects of glucocorticoid on serum
244	albumin concentrations in RA.

Taken together, arthritis may directly induce osteoclastogenesis [30] and inhibit osteogenesis [31] via cytokines such as TNF- α and IL-6, although may also indirectly induce them by hypoalbuminemia. Indeed, serum albumin concentrations significantly

correlated with BMD, which may play a role as a specific surrogate marker of osteoporosis associated with RA. Finally, the ROC curve analysis in both non-matched and propensity score matched model showed that a serum albumin ≤ 4.2 g/dl was the optimal cutoff level for indicating osteoporosis.

252 This study has several limitations. First, because of the retrospective, observational design, 253 it was difficult to certify whether hypoalbuminemia is a cause or a result of osteoporosis. 254A large, prospective study is required to confirm these results. Second, as there are many 255 risk factors associated with osteoporosis in RA, serum albumin concentrations should be 256 considered as one of these indicators. Third, this study included patients with relatively 257 long disease duration, well-controlled disease activity, and a low glucocorticoid dose, whose osteoporosis examination or treatment was overlooked by their previous doctors. 258 259 Therefore, patients with early onset, high disease activity, and a high glucocorticoid dose 260 should be confirmed in another study. 261 However, a strength of this study is that multivariate logistic analysis and propensity score 262 matching may compensate the variation of confounding factors related to postmenopausal

263 osteoporosis in RA.

264

265 Conclusions

266	Low serum albumin concentration is significantly and independently associated with the
267	prevalence of osteoporosis, and may be considered as one of the osteoporosis-related
268	factors in postmenopausal patients with RA. Patients with low serum albumin
269	concentration, especially values \leq 4.2 g/dL, may be further examined for osteoporosis at
270	the early stage of consultation.
271	
272	Acknowledgments:
273	We wish to thank all of the medical staff that were participating for providing the data.
274	
275	References
276	
277	1. Kvien TK, Haugeberg G, Uhlig T, Falch JA, Halse JI, Lems WF, Dijkmans BA, Woolf AD. Data
278	driven attempt to create a clinical algorithm for identification of women with rheumatoid arthritis at high
279	risk of osteoporosis. Ann Rheum Dis2000 Oct;59(10):805-11.
280	2. Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK. Reduced bone mineral density in male
281	rheumatoid arthritis patients: frequencies and associations with demographic and disease variables in
282	ninety-four patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum2000
283	Dec;43(12):2776-84.
284	3. Mori Y, Kuwahara Y, Chiba S, Kogre A, Baba K, Kamimura M, Itoi E. Bone mineral density of
285	postmenopausal women with rheumatoid arthritis depends on disease duration regardless of treatment. J
286	Bone Miner Metab2017 Jan;35(1):52-7.
287	4. Hooyman JR, Melton LJ, 3rd, Nelson AM, O'Fallon WM, Riggs BL. Fractures after rheumatoid

arthritis. A population-based study. Arthritis Rheum1984 Dec;27(12):1353-61.

Ebina K, Hirao M, Hashimoto J, Matsuoka H, Iwahashi T, Chijimatsu R, Etani Y, Okamura G,
Miyama A, Yoshikawa H. Impact of switching oral bisphosphonates to denosumab or daily teriparatide on
the progression of radiographic joint destruction in patients with biologic-naive rheumatoid arthritis.

292 Osteoporos Int2018 Jul;29(7):1627-36.

Ebina K, Noguchi T, Hirao M, Hashimoto J, Kaneshiro S, Yukioka M, Yoshikawa H. Effects of
switching weekly alendronate or risedronate to monthly minodronate in patients with rheumatoid arthritis:
a 12-month prospective study. Osteoporos Int2016 Jan;27(1):351-9.

296 7. Tanaka Y. Clinical immunity in bone and joints. J Bone Miner Metab2019 Jan;37(1):2-8.

8. Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med2011 Jul
7;365(1):62-70.

9. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, Jakobsson PJ, Baum W,
Nimmerjahn F, Szarka E, Sarmay G, Krumbholz G, Neumann E, Toes R, Scherer HU, Catrina AI,
Klareskog L, Jurdic P, Schett G. Induction of osteoclastogenesis and bone loss by human autoantibodies
against citrullinated vimentin. J Clin Invest2012 May;122(5):1791-802.

Tokumoto H, Tominaga H, Arishima Y, Jokoji G, Akimoto M, Ohtsubo H, Taketomi E, Sunahara
N, Nagano S, Ishidou Y, Komiya S, Setoguchi T. Association between Bone Mineral Density of Femoral
Neck and Geriatric Nutritional Risk Index in Rheumatoid Arthritis Patients Treated with Biological
Disease-Modifying Anti-Rheumatic Drugs. Nutrients2018 Feb 18;10(2).

Afshinnia F, Pennathur S. Association of Hypoalbuminemia With Osteoporosis: Analysis of the
 National Health and Nutrition Examination Survey. J Clin Endocrinol Metab2016 Jun;101(6):2468-74.

Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR,
Liang MH, Luthra HS, et al. The American Rheumatism Association 1987 revised criteria for the
classification of rheumatoid arthritis. Arthritis Rheum1988 Mar;31(3):315-24.

Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, Birnbaum NS,
Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G,
Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA,
Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch
KS, Vencovsky J, Wolfe F, Hawker G. 2010 Rheumatoid arthritis classification criteria: an American
College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis
Rheum2010 Sep;62(9):2569-81.

Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM,
Jankowski LG, Lee JK, Leslie WD. Best Practices for Dual-Energy X-ray Absorptiometry Measurement
and Reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom2016 AprJun;19(2):127-40.

15. Ebina K, Hashimoto J, Shi K, Kashii M, Hirao M, Yoshikawa H. Comparison of the effect of 18month daily teriparatide administration on patients with rheumatoid arthritis and postmenopausal
osteoporosis patients. Osteoporos Int2014 Dec;25(12):2755-65.

326 16. Orimo H, Nakamura T, Hosoi T, Iki M, Uenishi K, Endo N, Ohta H, Shiraki M, Sugimoto T,
327 Suzuki T, Soen S, Nishizawa Y, Hagino H, Fukunaga M, Fujiwara S. Japanese 2011 guidelines for
328 prevention and treatment of osteoporosis--executive summary. Arch Osteoporos2012;7:3-20.

Nawata H, Soen S, Takayanagi R, Tanaka I, Takaoka K, Fukunaga M, Matsumoto T, Suzuki Y,
Tanaka H, Fujiwara S, Miki T, Sagawa A, Nishizawa Y, Seino Y. Guidelines on the management and
treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research
(2004). J Bone Miner Metab2005;23(2):105-9.

Bhanji F, Topjian AA, Nadkarni VM, Praestgaard AH, Hunt EA, Cheng A, Meaney PA, Berg
RA. Survival Rates Following Pediatric In-Hospital Cardiac Arrests During Nights and Weekends. JAMA
Pediatr2017 Jan 1;171(1):39-45.

Haugeberg G, Orstavik RE, Uhlig T, Falch JA, Halse JI, Kvien TK. Clinical decision rules in
rheumatoid arthritis: do they identify patients at high risk for osteoporosis? Testing clinical criteria in a
population based cohort of patients with rheumatoid arthritis recruited from the Oslo Rheumatoid Arthritis
Register. Ann Rheum Dis2002 Dec;61(12):1085-9.

D'Erasmo E, Pisani D, Ragno A, Raejntroph N, Letizia C, Acca M. Relationship between serum
albumin and bone mineral density in postmenopausal women and in patients with hypoalbuminemia. Horm
Metab Res1999 Jun;31(6):385-8.

343 21. Abu-Amer Y. NF-kappaB signaling and bone resorption. Osteoporos Int2013 Sep;24(9):2377344 86.

345 22. Yamaguchi M, Igarashi A, Misawa H, Tsurusaki Y. Enhancement of albumin expression in bone
346 tissues with healing rat fractures. J Cell Biochem2003 May 15;89(2):356-63.

347 23. Kunutsor SK, Voutilainen A, Whitehouse MR, Seidu S, Kauhanen J, Blom AW, Laukkanen JA.
348 Serum Albumin and Future Risk of Hip, Humeral, and Wrist Fractures in Caucasian Men: New Findings
349 from a Prospective Cohort Study. Med Princ Pract2019;28(5):401-9.

Diamond TH, Stiel D, Lunzer M, McDowall D, Eckstein RP, Posen S. Hepatic osteodystrophy.
Static and dynamic bone histomorphometry and serum bone Gla-protein in 80 patients with chronic liver
disease. Gastroenterology1989 Jan;96(1):213-21.

353 25. Ha CE, Bhagavan NV. Novel insights into the pleiotropic effects of human serum albumin in
354 health and disease. Biochim Biophys Acta2013 Dec;1830(12):5486-93.

26. Levick JR. Permeability of rheumatoid and normal human synovium to specific plasma proteins.
Arthritis Rheum1981 Dec;24(12):1550-60.

357 27. Wilkinson P, Jeremy R, Brooks FP, Hollander JL. The Mechanism of Hypoalbuminemia in
358 Rheumatoid Arthritis. Ann Intern Med1965 Jul;63:109-14.

Moshage HJ, Janssen JA, Franssen JH, Hafkenscheid JC, Yap SH. Study of the molecular
 mechanism of decreased liver synthesis of albumin in inflammation. J Clin Invest1987 Jun;79(6):1635-41.

361 29. Moshage HJ, de Haard HJ, Princen HM, Yap SH. The influence of glucocorticoid on albumin
 362 synthesis and its messenger RNA in rat in vivo and in hepatocyte suspension culture. Biochim Biophys

363 Acta1985 Jan 29:824(1):27-33.

364 30. Braun T, Zwerina J. Positive regulators of osteoclastogenesis and bone resorption in rheumatoid
 365 arthritis. Arthritis Res Ther2011 Jul 28;13(4):235.

366 31. Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K, Morimoto T,
367 Yoshikawa H, Hashimoto J. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2
368 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab2014 Jul;32(4):378-92.

369

370 Figure legends

- 371 **Figure 1. Study design and patient flow.**
- 372 RA = rheumatoid arthritis, DXA = dual-energy X-ray absorptiometry, LS = lumbar spine,
- 373 TH = total hip, FN = femoral neck, ROC = Receiver operating characteristic, DAS28-
- 374 CRP = disease activity score assessing 28 joints with CRP.

375

376 Figure 2. Receiver operating characteristic (ROC) curve to determine the best cut-

377 off value of serum albumin concentrations (g/dL) to discriminate between the

- 378 osteoporosis and non-osteoporosis group.
- (a) Non-matched model and (b) propensity score-matched model.
- 380 AUC = area under the curve.
- 381
- **Figure 3. (a) Histogram of serum albumin concentrations of non-matched patients.**
- 383 (b) Comparison of the crude percentage of patients with osteoporosis by categories
- 384 of serum albumin concentrations.

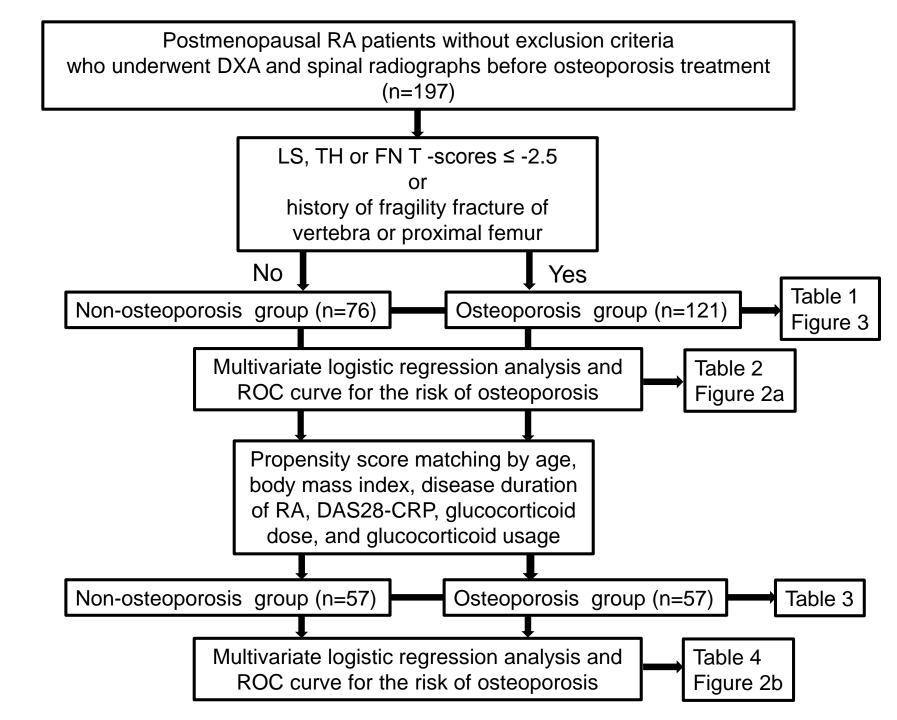


Figure 2

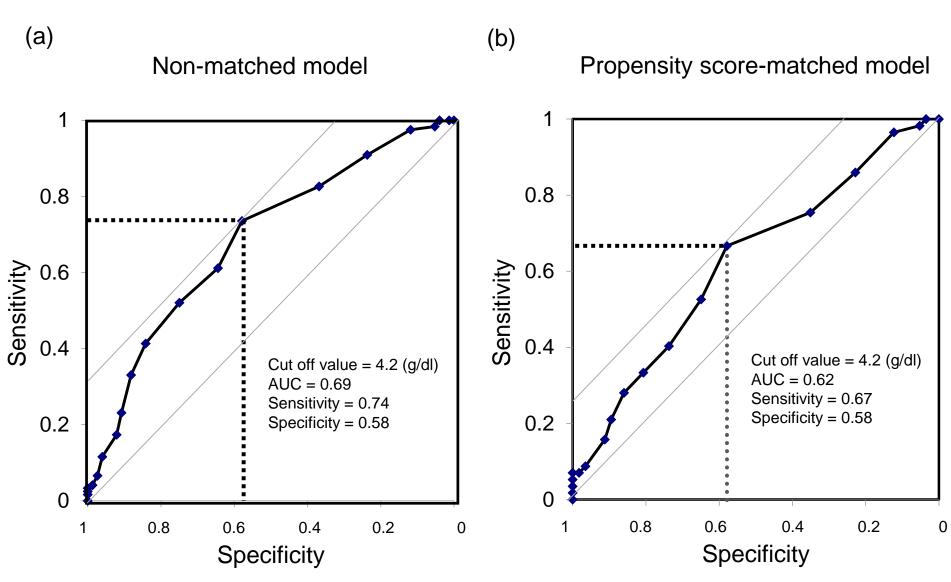
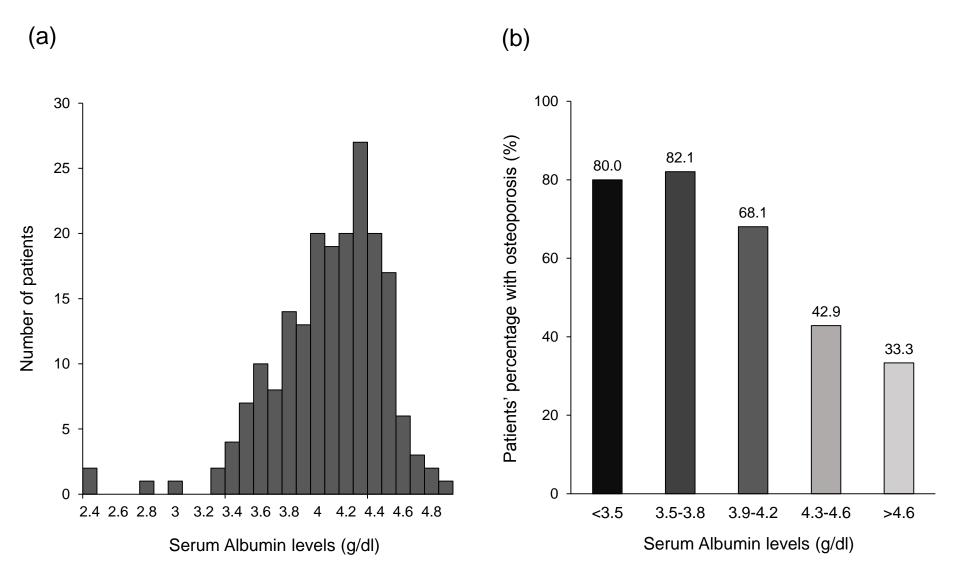



Figure 3

1 Table 1. Clinical characteristics of the osteoporosis and non-osteoporosis groups in non-matched

2 model

3

Variable	Osteoporosis group	Non-osteoporosis	D 1	
Variable	(n=121)	group (n=76)	P value	
Age, (mean ± SD years)	69.8±8.9	63.9±12.1	0.001	
Duration of RA (years)	14.1±11.3	10.9±10.0	0.049	
Body Mass Index (kg/m ²)	21.2±3.2	22.5±3.3	0.009	
Lumbar spine BMD (g/cm ²)	0.803±0.147	0.923±0.114	< 0.001	
Lumbar spine BMD (T-score)	-2.2±1.2	-1.3±0.9	< 0.001	
Total hip BMD (g/cm ²)	0.634±0.090	0.797 ± 0.084	< 0.001	
Total hip BMD (T-score)	-2.3±0.8	-1.1±0.7	< 0.001	
Femoral neck BMD (g/cm ²)	0.555 ± 0.082	0.715 ± 0.080	< 0.001	
Femoral neck BMD (T-score)	-2.7±0.7	-1.6±0.7	< 0.001	
Patients with T-score \leq -2.5, n/N(%)	95/121 (78.5%)	0/76 (0%)	< 0.001	
Prior vertebral fracture(s), n/N(%)	44/121 (36.4%)	0/76 (0%)	< 0.001	
Prior proximal femur fracture(s), n/N(%)	9/121 (7.4%)	0/76 (0%)	< 0.001	
Total protein (g/dl)	7.0±0.5	7.3±0.5	0.006	
Albumin (g/dl)	4.0 ± 0.4	4.2±0.3	< 0.001	
Total cholesterol (mg/dl)	195.8±29.8	206.3±37.0	0.11	
Triglyceride (mg/dl)	117.2±77.2	136.4±142.2	0.39	
Glucose (mg/dl)	104.4±22.5	102.2±28.3	0.67	
Creatinine (mg/dl)	0.66±0.18	0.66±0.17	0.98	
eGFR (ml/min/1.73 m ²)	71.6±20.7	72.8±17.8	0.69	
Creatine kinase (IU/l)	87.5±82.2	87.9±42.4	0.97	
Corrected Ca (mg/dl)	9.2±0.4	9.3±0.4	0.22	
PINP (µg/l)	50.8±27.0	44.0±37.6	0.39	
TRACP-5b (mU/dl)	401.9±154.5	344.6±162.8	0.20	
25-hydroxyvitamin D (ng/mL)	14.0±5.0	14.5±4.5	0.64	
CRP (mg/dl)	0.5 ± 1.2	$0.4{\pm}1.1$	0.55	
MMP-3 (ng/ml)	127.7±147.1	93.0±119.1	0.10	
DAS28-CRP	2.1±0.9	1.9±1.1	0.23	
CDAI	5.4±5.0	5.3±8.3	0.99	
HAQ-DI	0.90 ± 0.98	0.66 ± 0.67	0.12	
RF positivity, n/N (%)	78/121 (64.4%)	41/76 (53.9%)	0.14	
RF titer (U/ml)	88.2±223.2	105.6±349.0	0.68	
ACPA positivity, n/N (%)	86/121 (71.1%)	52/76 (68.4%)	0.69	

ACPA titer (U/ml)	178.1±564.4	123.8±245.1	0.48
Prednisolone dose (mg/day)	5.3±3.0	4.3±2.7	0.15
Prednisolone usage, n/N (%)	54/121 (44.6%)	30/76 (39.5%)	0.48
Methotrexate dose (mg/week)	$7.9{\pm}2.8$	8.2±2.9	0.63
Methotrexate usage, n/N (%)	73/121 (61.3%)	51/76 (67.1%)	0.42
Biologics usage, n/N (%)	38/121 (31.4%)	24/76 (31.6%)	0.98
	TCZ(11) ABT(7)	TCZ(6) ABT(4)	
Biologics (n)	ETN(9) ADA(3)	ETN(2) ADA(2)	
biologies (ii)	IFX(3) GLM(4)	IFX(2) GLM(7)	
	CZP(1)	CZP(1)	

4 Mean \pm standard deviation.

5 n/N (%) = number of patients with measurements / total number of patients (%).

6 BMD= bone mineral density, eGFR = estimated glomerular filtration rate, Ca = calcium, PINP = Type I

7 collagen N-terminal propeptide, TRAP-5b = Isoform 5b of tartrate-resistant acid phosphatase, CRP =

8 c-reactive protein, MMP-3 = matrix metalloproteinase-3, DAS28-CRP = disease activity score assessing

9 28 joints with CRP, CDAI= clinical disease activity index, HAQ-DI = health assessment questionnaire

10 disability index, RF = rheumatoid factor, ACPA = Anti-cyclic citrullinated peptide antibody, TCZ =

11 tocilizumab; ABT = abatacept; ETN = etanercept; ADA = adalimumab; IFX = infliximab; GLM =

12 golimumab, CZP = certolizumab pegol.

13 Differences between the groups were determined by Mann-Whitney U test or chi-square test.

- **Table 2.** Univariate and multivariate logistic regression analysis for the risk factors of
- 2 osteoporosis in non-matched osteoporosis and non-osteoporosis groups
- 3

Variables	Univariate analysis		Multivariate analysis	
Vallables	OR (95 % CI)	P value	OR (95 % CI)	P value
Albumin (g/dl)	0.14 (0.051, 0.36)	< 0.001	0.22 (0.08, 0.61)	0.0033
Age (years)	1.06 (1.03, 1.09)	< 0.001	1.04 (1.01, 1.08)	0.012
Body Mass Index (kg/m ²)	0.89 (0.81, 0.97)	0.01	0.88 (0.80, 0.98)	0.016
Duration of RA (years)	1.03 (1.00, 1.06)	0.052	1.03 (0.99, 1.06)	0.16
MMP-3 (ng/ml)	1.00 (1.00, 1.01)	0.11	1.00 (1.00, 1.00)	0.64

 $4 \qquad OR = odds \ ratio \quad CI = confidence \ interval.$

5

X7 · 11	Osteoporosis group	Non-osteoporosis	P value
Variable	(n=57)	group (n=57)	r value
Age (years)	66.2±8.0	67.8±9.8	0.35
Duration of rheumatoid arthritis (years)	12.0±9.7	12.2±10.9	0.91
Body Mass Index (kg/m ²)	22.2±3.1	22.1±2.9	0.80
Lumbar spine BMD (g/cm ²)	0.798±0.117	0.908±0.106	< 0.001
Lumbar spine BMD (T-score)	-2.3±0.9	-1.5±0.8	< 0.001
Total hip BMD (g/cm ²)	0.667 ± 0.076	0.785±0.081	< 0.001
Total hip BMD (T-score)	-2.1±0.6	-1.2±0.6	< 0.001
Femoral neck BMD (g/cm ²)	0.575±0.074	0.710±0.081	< 0.001
Femoral neck BMD (T-score)	-2.6±0.7	-1.7±0.6	< 0.001
Patients with T-score \leq -2.5, n/N(%)	43/57 (75.4%)	0/57 (0.0%)	< 0.001
Prior vertebral fracture(s), n/N(%)	23/57 (40.4%)	0/57 (0.0%)	< 0.001
Prior proximal femur fracture(s), n/N(%)	5/57 (8.8%)	0/57 (0.0%)	0.02
Total protein (g/dl)	7.1±0.5	7.3±0.5	0.04
Albumin (g/dl)	4.0±0.4	4.2±0.3	0.01
Total cholesterol (mg/dl)	204.2±26.1	203.9±30.6	0.96
Triglyceride (mg/dl)	127.3±90.1	119.7±49.1	0.66
Glucose (mg/dl)	102.0±17.7	101.1±26.3	0.88
Creatinine (mg/dl)	0.64±0.16	0.68±0.19	0.25
eGFR (ml/min/1.73 m ²)	75.5±20.8	71.0±18.3	0.23
Creatine kinase (IU/l)	96.7±93.9	85.2±34.8	0.42

Table 3. Clinical characteristics of the osteoporosis and non-osteoporosis groups in propensity

 score-matched model

Corrected Ca (mg/dl)	9.3±0.3	9.3±0.4	0.49
PINP (µg/l)	53.2±26.5	43.0±36.2	0.31
TRACP-5b (mU/dl)	392.6±150.3	341.2±161.3	0.33
25-hydroxyvitamin D (ng/mL)	13.7±4.7	14.2±3.8	0.65
CRP (mg/dl)	0.27±0.39	0.47±1.16	0.24
MMP-3 (ng/ml)	92.9±90.2	95.1±130.4	0.92
DAS28-CRP	2.0±0.7	2.0±1.1	0.97
CDAI	5.1±4.7	5.5±8.7	0.81
HAQ-DI	0.70±0.91	0.70±0.68	0.99
RF positivity, n/N (%)	40/57 (70.2%)	37/57 (64.9%)	0.33
RF titer (U/ml)	66.8±136.1	132.4±400.6	0.25
ACPA positivity, n/N (%)	45/57 (78.9%)	42/57 (73.7%)	0.51
ACPA titer (U/ml)	250.8±768.6	143.7±277.3	0.36
Prednisolone dose (mg/day)	4.3±2.3	4.0±2.6	0.69
Prednisolone usage, n/N (%)	22/57 (38.6%)	19/57 (33.3%)	0.56
Methotrexate dose (mg/week)	7.7±2.5	7.9±3.0	0.84
Methotrexate usage, n/N (%)	38/57 (66.7%)	41/57 (71.9%)	0.55
Biologics usage, n/N (%)	15/57 (26.3%)	17/57 (29.8%)	0.68
	TCZ(3) ABT(2)	TCZ(3) ABT(3)	
Biologics (n)	ETN(4) ADA(3)	ETN(2) ADA(2)	
biologics (II)	IFX(1) GLM(1)	IFX(1) GLM(5)	
	CZP(1)	CZP(1)	

Mean \pm standard deviation.

n/N (%) = number of patients with measurements / total number of patients (%).

BMD= bone mineral density, eGFR = estimated glomerular filtration rate, Ca = calcium, PINP = Type I collagen N-terminal propeptide, TRAP-5b = Isoform 5b of tartrate-resistant acid phosphatase, CRP =

c-reactive protein, MMP-3 = matrix metalloproteinase-3, DAS28-CRP = disease activity score assessing 28 joints with CRP, CDAI= clinical disease activity index, HAQ-DI = health assessment questionnaire disability index, RF = rheumatoid factor, ACPA = Anti-cyclic citrullinated peptide antibody, TCZ = tocilizumab; ABT = abatacept; ETN = etanercept; ADA = adalimumab; IFX = infliximab; GLM = golimumab, CZP = certolizumab pegol.

Differences between the groups were determined by Mann-Whitney U test or chi-square test.

- **Table 4.** Univariate and multivariate logistic regression analysis for the risk factors of
- 2 osteoporosis in propensity score-matched model
- 3

	Univariate analysis		Multivariate analysis	
Variables	OR (95 % CI)	P value	OR (95 % CI)	P value
Albumin (g/dl)	0.27 (0.09, 0.79)	0.017	0.24 (0.074, 0.77)	0.017
Age (years)	0.98 (0.94, 1.02)	0.35	0.97 (0.93, 1.02)	0.23
Body Mass Index (kg/m ²)	1.02 (0.90, 1.15)	0.80	1.05 (0.92, 1.20)	0.47
Duration of RA (years)	1.00 (0.96, 1.03)	0.91	0.99 (0.96, 1.03)	0.68
MMP-3 (ng/ml)	1.00 (1.00-1.00)	0.92	1.00 (1.00, 1.00)	0.41

4 OR = odds ratio CI = confidence interval.

5