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plasma metabolome including those
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analysis in the underrepresented

population would contribute to

expanding the diversity of the studied

populations.
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SUMMARY
Interaction between the gut microbiome and host plays a key role in human health. Here, we perform a meta-
genome shotgun-sequencing-based analysis of Japanese participants to reveal associations between the gut
microbiome, host genetics, and plasmametabolome. A genome-wide association study (GWAS) for microbial
species (n = 524) identifies associations between the PDE1C gene locus and Bacteroides intestinalis and be-
tween TGIF2 and TGIF2-RAB5IF gene loci and Bacteroides acidifiaciens. In a microbial gene ortholog GWAS,
agaE and agaS, which are related to the metabolism of carbohydrates forming the blood group A antigen, are
associatedwithbloodgroupA inamannerdependingon thesecretor statusdeterminedby theEastAsian-spe-
cific FUT2 variant. A microbiome-metabolome association analysis (n = 261) identifies associations between
bile acids andmicrobial features such as bile acid metabolism gene orthologs including bai and 7b-hydroxys-
teroid dehydrogenase. Our publicly available data will be a useful resource for understanding gutmicrobiome-
host interactions in an underrepresented population.
INTRODUCTION

The human gut microbiome is the collection of the microbes that

reside within our gut. The gut microbiome is closely related to
Ce
This is an open access article under the CC BY-N
human health, and associations with various diseases such as

inflammatory bowel diseases, autoimmune diseases, and meta-

bolic diseases have been reported.1–5 Although the gut micro-

biome interacts with the host via various mechanisms such as
ll Reports 42, 113324, November 28, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the modulation of the host’s immune system and production of

the metabolites,6 detailed insights into the gut microbiome-

host interaction remain to be revealed.

Host genetics play a role in the interaction between the gut mi-

crobiome and the host. A twin study revealed that the abun-

dances of the gut bacteria were more similar in monozygotic

twins than in dizygotic twins, suggesting that host genetics

affected the gut bacterial abundances.7 To identify the individual

genetic variants that affect gut microbial abundances, several

genome-wide association studies (GWASs) have been per-

formed.7–17 In these studies, the ABO and LCT gene loci have

been repeatedly reported.

Currently, most of the GWASs for the gut microbiome-asso-

ciated traits have been conducted in European (EUR) popula-

tions and have rarely been performed in East Asian (EAS)

populations, especially other than the Chinese population.11

Given that the gut microbiome and human genetic variants

are different between populations, elucidating the association

between the microbial traits and host genetics in EAS popula-

tions is important to increase the diversity of the study popu-

lations and deepen insights into the gut microbiome-host

interaction.

It is also important to analyze the gut microbiome-host ge-

netics association with metagenome shotgun sequencing,

which has several benefits over 16S ribosomal RNA (rRNA)

sequencing. Metagenome shotgun sequencing enables us to

evaluate the gut microbiomewith species-level resolution, which

can be hardly achieved by 16S rRNA sequencing. Given that pre-

vious metagenome-wide association studies for diseases have

identified disease-gut microbiome associations that would be

undetectable without species-level resolution,2,4,18 metage-

nome shotgun sequencing is necessary for the comprehensive

understanding of the gut microbiome-host interaction. Further-

more, metagenome shotgun sequencing enables us to obtain

functional information such as microbial gene orthologs and

pathways, which could not be obtained by 16S rRNA seq-

uencing. Since the microbial gene orthologs and pathways are

often shared across different microbial taxa, gene-ortholog-

and pathway-level analysis may bring us functionally interpret-

able associations that could not have been identified by analysis

solely based on microbial taxa. Despite these benefits of

metagenome shotgun sequencing, most of the previous studies

focusing on the gut microbiome-host genetics association

utilized 16S rRNA sequencing,8–10,16,19 and the transition from

16S rRNA sequencing to metagenome shotgun sequencing is

still in progress.

Metabolites also take an important role in the gut microbiome-

host interaction. The metabolic activities of the gut microbiome

can contribute to human complex traits by affecting metabolites

such as nutrients and bile acids.6 Metabolites also affect the gut

microbiome because they can be nutrients or cytotoxic deter-

gents for the gut microbiome.20 Although previous studies

have investigated the gut microbiome-blood metabolite associ-

ation, mainly in EUR populations,21–24 there are still few studies

focusing on the gut microbiome-metabolome association in

EAS populations.11 In addition, it was often difficult to function-

ally interpret the gut microbiome-metabolome association

based on analysis solely focused on microbial taxa, suggesting
2 Cell Reports 42, 113324, November 28, 2023
the necessity for functional information obtained from metage-

nome shotgun sequencing.

Here, we investigated the gut microbiome, plasma metabo-

lites, and host genetics of Japanese participants by gut metage-

nome shotgun sequencing, non-targeted metabolomic profiling,

and genotyping with single-nucleotide polymorphism (SNP)

array and whole-genome sequencing (WGS; Figure S1). Utilizing

these large-scale and comprehensive data, we evaluated the gut

microbiome-host genetics (n = 524) and -plasma metabolites

(n = 261) associations.

RESULTS

Genome-wide association analysis of the gut microbial
species, gene orthologs, and pathways
We performed genome-wide association analysis for microbial

traits (species, gene orthologs, and pathways) with two datasets

generated in different periods (dataset 1 [gut microbiome,

plasma metabolome, and genotype]: n = 300, dataset 2 [gut mi-

crobiome and genotype]: n = 224; Figure S1; Table S1, STAR

Methods), followed by a fixed-effect meta-analysis. We analyzed

7,213,469 SNP-array-based variants that fulfilled stringent post-

imputation quality control criteria (minor allele frequency

[MAF] > 1% and Rsq by Minimac4 > 0.7; STAR Methods).25 In

the analysis for the 423 microbial species, an association be-

tween chr7:32016991:C>G in thePDE1C gene locus andBacter-

oides intestinalis satisfied the study-wide significance threshold

(Figures 1A and 1B; Tables 1 and S2; effect size = 0.987, SE =

0.152, p = 7.2 3 10�11 < 5.0 3 10�8/423 species = 1.18 3

10�10). The effects of chr7:32016991:C>G on Bacteroides intes-

tinalis abundance were consistent in both datasets 1 and 2

(effect size = 0.857, SE = 0.205, p = 3.8 3 10�5 for dataset 1

and effect size = 1.15, SE = 0.225, p = 7.9 3 10�7 for dataset

2; Figure S2A; Table S2) and did not depend on the data trans-

formation methods (Figure S2B). This variant had not been re-

ported in the previous GWAS for the gut microbial traits, possibly

due to the differences in the allele frequency between popula-

tions (8.4% in EAS and <1% in EUR, gnomAD v.2.1.1), while

other factors such as environmental factors and methodological

differences could also contribute. Three variants located in the

PDE1C gene locus were reported as gut microbiome-associated

variants in the GWAS catalog (chr7:32214192:C>T for genus

Dialister, p = 23 10�7; chr7:31814020:A>G for genus Aestuariis-

pira, p = 93 10�7; chr7:32483218:G>A for genus Collinsella, p =

5 3 10�6),16 supporting the association between the PDE1C

gene locus and the gut microbiome. PDE1C is a gene encoding

a cyclic nucleotide phosphodiesterase related to the function of

various cells such as olfactory sensory neurons.26 In the GWAS

catalog, the PDE1C gene locus was reported to be associated

with several central nervous system (CNS)-related traits such

as smoking,27 bodymass index,28 and educational attainment,29

suggesting that association between the PDE1C gene locus and

Bacteroides intestinalis might be also mediated by the CNS.

Among the associations that satisfied genome-wide signifi-

cance but did not satisfy study-wide significance (1.18 3

10�10 < p < 5 3 10�8), chr20:35208051:T>C in the TGIF2 and

TGIF2-RAB5IFgene loci associatedwithBacteroides acidifiaciens

(effect size = �0.434, SE = 0.078, p = 2.63 10�8; Figures 1A and
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Figure 1. Genome-wide association analysis of the microbial species

(A) A Manhattan plot representing the result of the microbial species GWAS. The y axis indicates the �log10-transformed p values. The x axis indicates the

genomic position of the variants. Only the trait-variant pairs satisfying p < 13 10�4 are plotted. The study-wide (p < 53 10�8/423 = 1.183 10�10) and genome-

wide (p < 5 3 10�8) significances are indicated as horizontal dashed lines colored purple and orange, respectively. Lead variants satisfying study-wide or

genome-wide significance are indicated as plink rhombuses. p values were calculated with the fixed-effect meta-analysis.

(B and C) Regional associations of the genetic variants at the PDE1C (B) and TGIF2/TGIF2-RAB5IF (C) gene loci are indicated (left). The purple diamonds indicate

the lead variants. Other circles are colored by LD (r2), with the lead variant based on the Japanese participants in the reference panel used for genotype

imputation. p values were calculated with the fixed-effect meta-analysis. Violin and boxplots represent the normalized abundance of the microbial species per

genotype (right). Boxplots indicate themedian values (center lines) and IQRs (box edges), with the whiskers extending to themost extreme points within the range

between (lower quantile � [1.5 3 IQR]) and (upper quantile + [1.5 3 IQR]). The overlayed dots represent individual observations used for the association

analysis. The color of the dots represents the dataset. Alt, alternative allele; GWAS, genome-wide association study; IQR, interquartile ranges; LD, linkage

disequilibrium; Ref, reference allele.

See also Figures S2 and S3 and Tables S2, S3, S4, S5, and S6.
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1C; Table 1) was tagged to chr20:35251962:A>C. The effects of

chr20:35208051:T>C on Bacteroides acidifiaciens abundance

were consistent in both datasets and did not depend on the data

transformationmethods (Figure S2; Table S2). The genetic variant

chr20:35251962:A>C was previously reported to be associated

with Alistipes shahii (p = 3.23 10�8).8

We also performed genome-wide association analyses for the

4,644 gut microbial gene orthologs and 146 gut microbial path-

ways, although no study-wide significant association was found

(Figure S3A; Tables S3 and S4; significance thresholds were p <
5.0 3 10�8/4,644 gene orthologs = 1.08 3 10�11 and p < 5.0 3

10�8/146 pathway = 3.42 3 10�10, respectively). Inflation of

the p values was not observed in the GWAS for the microbial

traits (Figure S3B).

We evaluatedwhether the results of the previous studies could

be replicated by our study. We evaluated the two gut metage-

nome shotgun-sequencing-based studies,11,13 which classified

the bacteria based on the NCBI taxonomy, and we could not

replicate the reported genome-wide associations (p > 0.05;

Table S5). In addition, we evaluated the association between
Cell Reports 42, 113324, November 28, 2023 3



Table 1. Results summary of the microbiome GWAS

Bacterial species Variant ID rsID Ref Alt Alt freq. Effect size SE p Q p for Q Gene

Bacteroides

intestinalis

chr7:32016991 rs74338454 C G 0.049 0.987 0.152 7.2 3 10�11 0.17 0.68 PDE1C

Bacteroides

acidifaciens

chr20:35208051 rs73620203 T C 0.20 �0.434 0.078 2.6 3 10�8 0.90 0.34 TGIF2;TGIF2-

RAB5IF

Alt, alternative allele; freq., frequency; GWAS, genome-wide association study; Ref, reference allele; SE, standard error.
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the previously reported loci (p < 5 3 10�8)8–13,16 and all the mi-

crobial traits (Table S6). We found that only the TGIF2 and

TGIF2-RAB5IF gene loci-Bacteroides acidifiaciens association

discussed above passed the significance threshold after multi-

ple-test correction (p < 2.38 3 10�7; Figure S3C). In addition,

the ABO gene locus-yydK microbial gene ortholog association

passed the significance threshold after per-study multiple-test

correction (Figure S3D).
Association between the ABOblood group andmicrobial
traits
The ABO and LCT gene loci were previously reported as gut mi-

crobial trait-associated loci inmultiple studies.9–13,16,17 Since the

gut microbiome-associated LCT variant (chr2:136608646:G>A),

which causes lactose intolerance, was very rare in EAS popula-

tions (0.064%, gnomAD v.2.1.1), it was difficult to evaluate the

association between the LCT gene locus and the gutmicrobiome

with our dataset. Therefore, we evaluated the association

between the ABO gene locus (chr9:136146597:C>T linked to

blood group A, chr9:136131322:G>T linked to blood group B,

and chr9:136132908:T>TC linked to blood group O30,31) and

the gut microbial traits. Three microbial gene orthologs and

onemicrobial pathwaywere associatedwith theABO gene locus

after the correction with the number of the tested traits

(Figures 2A, S4A, and S4B; p < 1.183 10�4 for themicrobial spe-

cies, p < 1.08 3 10�5 for the microbial gene orthologs, and

p < 3.423 10�4 for the microbial pathways). Among these traits,

agaE, agaS, and ‘‘metabolism of other amino acid’’ pathway

were higher in blood group A than in blood groups B andO, while

yydK was the opposite (Figures 2B, 2C, S4C, and S4D).

Among the bacterial gene orthologs involved in N-

acetylgalactosamine metabolization, agaE and agaS associated

with chr9:136146597:C>T were gene orthologs coding an N-

acetylgalactosamine PTS system EIID component and D-

galactosamine 6-phosphate deaminase, respectively.32 agaE is

a component of the N-acetylgalactosamine transport system that

is necessary for bacteria to import the N-acetylgalactosamine.

agaS is an enzyme necessary for metabolizing the galactosamine

6-phosphate, an N-acetylgalactosamine-derived product. Given

that N-acetylgalactosamine, a terminal carbohydrate forming the

antigen of blood group A, is also synthesized on the mucosal

surfaces of the gut and secreted (Figure 2D), bacteria with agaE

and agaScanutilizeN-acetylgalactosamine asanutrient, and their

fitness can be affected by the ABO blood group of their hosts.

In previous studies for EUR populations, a loss-of-function

variant of the FUT2 gene, chr19:49206674:G>A, had significant

effects on the association between the ABO blood group and

gut microbial taxa because FUT2 is necessary to synthesize
4 Cell Reports 42, 113324, November 28, 2023
H-antigen on mucosal surfaces of the gut10,12,13 (Figure 2D).

Although chr19:49206674:G>A is very rare in EAS populations,

chr19:49206631:A>T is an EAS-specific variant linked to the

non-functional form of FUT2.33,34 Therefore, we evaluated the ef-

fect of the secretor status determined by FUT2 (secretor,

A/A or A/T for chr19:49206631:A>T; non-secretor, T/T for

chr19:49206631:A>T) on the association between the ABO

blood group and agaE and agaS abundances. We found that

the abundances of agaE and agaS were significantly higher in

the secretor than in the non-secretor in blood group A (p =

1.6 3 10�3 and 6.0 3 10�3, respectively, for agaE and agaS;

Table S7), and the relatively high abundance of these microbial

traits in blood group A was not observed for the non-secretors

(Figures 2E and 2F). Therefore, it was suggested that the associ-

ation between blood group A and agaE and agaSwas dependent

onN-acetylgalactosamine in the gut. As for the association of the

ABO blood group and yydK and the ‘‘metabolism of other amino

acid’’ pathway, a significant contribution of the secretor status

was not detected (Figures S4E and S4F; Table S7).

To evaluate which microbial taxa had agaE and agaS in the

Japanese gut, we checked the Japanese Metagenome Assem-

bled Genomes (JMAG), a database of the prokaryotic metage-

nome-assembled genomes (MAGs) recovered from 787 Japa-

nese gut metagenome shotgun sequencing data,35 including

those used in this study. The most major origin of agaE and

agaS was Collinsella at the genus level (23.5%), suggesting

that the relatively high abundance of Collinsella in blood group

A reported in previous studies12,13 was possibly driven by agaE

and agaS (Figures S5A–S5C). We also evaluated whichmicrobial

taxa had yydK, a GntR family transcriptional regulator gene or-

tholog. We found that the most major origin of yydK was Bifido-

bacterium bifidum at the species level (24.7%) which was

reported to be decreased in blood group A,13 indicating consis-

tency with the previous study (Figures S5A–S5C).

In summary, we identified associations between microbial

gene orthologs and pathways and the ABO blood group,

including those that were functionally interpretable and could

contribute to the mechanistic insight into the previously reported

ABO blood group-microbial taxa associations.
Association between the gutmicrobial traits and plasma
metabolites
Next, we focused on plasma metabolites as another interface of

the gut microbiome-host interaction. We utilized a plasma

metabolite dataset based on a comprehensive non-targeted

metabolomics approach combining capillary electrophoresis

time-of-flight mass spectrometry (CE-TOFMS) and liquid chro-

matography TOFMS (LC-TOFMS).36 Then, we evaluated the
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Figure 2. Association between the ABO blood group and microbial gene orthologs related to N-acetylgalactosamine metabolism

(A) Q-Q plots represent the associations between chr9:136146597:C>T (linked to blood group A allele) and microbial species (left), microbial gene orthologs

(middle), andmicrobial pathways (right). The x axis indicates expected log-transformed p values, and the y axis indicates log-transformed observed p values. The

diagonal dashed line represents y = x, which corresponds to the null hypothesis. The significance thresholds (p < 0.05/number of the tested traits) are indicated as

horizontal dashed lines colored red. p values were calculated with the fixed-effect meta-analysis.

(B and C) Violin and boxplots represent the normalized abundance of agaE (B) and agaS (C) per blood group (left). Boxplots indicate the median values (center

lines) and IQRs (box edges), with the whiskers extending to the most extreme points within the range between (lower quantile � [1.5 3 IQR]) and (upper

quantile + [1.5 3 IQR]). The overlayed dots represent individual observations used for the association analysis. The color of the dots represents the dataset. The

associations between themicrobial gene orthologs and the ABOblood group are also shown as boxes (right). The size and color of the boxes indicate the p values

(legend continued on next page)

Cell Reports 42, 113324, November 28, 2023 5
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association between 363 plasma metabolites and gut microbial

traits (450 microbial species, 4760 microbial gene orthologs,

and 148 microbial pathways; dataset 1: n = 261; Table S1).

We found 246, 224, and 133 significant associations, respec-

tively, for each class of microbial traits (Bonferroni-corrected

p < 0.05; Figure 3A; Tables S8, S9, and S10). To get the whole

picture of the gut microbiome-plasma metabolome association,

we constructed a network plot from the significant associations.

We found that a limited set of metabolites such as bile acids,

indole-3-acetic acid, hippuric acid, 3-indoxylsulfurix acid, and

N2-phenylacetylglutamine were associated with a large number

of microbial traits (Figure 3B). To evaluate whether the genetic

variants could contribute to the microbiome-metabolome asso-

ciation, we performed a plasma metabolite GWAS. Although we

found EAS-specific metabolite-related variants that had pleio-

tropic associations with multiple complex traits (Figure S6;

Tables S1 and S11; Data S1), no genetic variants had pleiotropic

associations with both themicrobial features and plasmametab-

olites pairs connected in the network (p > 1 3 10�5 for either of

the microbial traits and plasma metabolites). The genetic vari-

ants that determine ABO blood groups did not have significant

associations with the plasma metabolites (Figure S7).

bai gene orthologs take part in the conversion of primary bile

acids (e.g., cholic acid and chenodeoxycholic acid) to secondary

bile acids (e.g., deoxycholic acid and lithocholic acid).20 In our

analysis, five bai gene orthologs that were included in the

network had significant positive associations with the deoxy-

cholic acid and nominal negative associations with the cheno-

deoxycholic acid (Figure 3C). In addition, 7b-hydroxysteroid de-

hydrogenase, a hydroxysteroid dehydrogenase (HSDH) taking

part in the conversion of chenodeoxycholic acid to ursodeoxy-

cholic acid,20 had a nominal positive association with ursodeox-

ycholic acid. It was reported that bile acid could affect the spore

germination of bacteria (e.g., deoxycholic acid and chenodeox-

ycholic acid could promote and inhibit, respectively, the spore

germination ofClostridium difficile).37,38 We found that the abun-

dances of the spore germination-related gene orthologs had a

significant positive association with the deoxycholic acids and

a nominal negative association with the chenodeoxycholic

acid. Therefore, the function of the individual microbial gene or-

thologs was reflected in the gut microbiome-plasma metabo-

lome interaction in humans.

To evaluate the association between bile acids and the overall

gut microbial community, we performed a linear regression anal-

ysis between the a-diversity of the gut bacteria and plasma bile

acids. We found multiple significant associations such as a pos-

itive association with deoxycholic acid and a negative associa-

tion with chenodeoxycholic acid (Figure 3D).
and effect sizes in the linear regression, respectively. In the linear regression ana

values were calculated with the fixed-effect meta-analysis. *p < 0.05; **p < 0.05/

(D) A schematic illustration of the relationship between ABO blood group, secret

(E and F) Violin and boxplots represent the normalized abundance of agaE (E) and

the median values (center lines) and IQRs (box edges), with the whiskers extending

IQR]) and (upper quantile + [1.5 3 IQR]). The overlayed dots represent individual

the dataset. The median values in those who are blood group A and secretor are in

Asian; EUR, European; IQR, interquartile ranges; sec, secretor.

See also Figures S4 and S5 and Table S7.
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DISCUSSION

In this study, we evaluated the association between the gut mi-

crobiome and host factors, namely plasma metabolome and

host genetics, with multi-omics data for the Japanese popula-

tion. We identified gut microbiome-associated variants that

had study-wide significance or were replicated by previous

study.We also identified the association between the ABOblood

group and gut microbial traits such as agaE and agaS. In the mi-

crobiome-metabolome association analysis, we revealed that a

specific set of metabolites, such as bile acid, had a significant

association with a large number of gut microbial traits, including

functionally interpretable gene orthologs.

A genetic variant, chr7:32016991:C>G, in the PDE1C gene

locus associated with Bacteroides intestinalis was an EAS-

specific variant, emphasizing the importance of performing

gut microbiome GWASs in underrepresented populations,

including EAS populations. Although we also identified

genome-wide associations between the microbial traits and

genetic variants, we should carefully interpret such associa-

tions because the reproducibility of GWAS hits that did not

satisfy the study-wide significance have often been reported

to be low.39

The association between the ABO gene locus and agaE and

agaS again emphasizes the strength of metagenome shotgun

sequencing, given that gene-ortholog- and pathway-level infor-

mation could not be obtained from 16S rRNA sequencing.

The abundances of agaE and agaS tended to be high in

secretors with blood group A, suggesting that the abundance

of N-acetylgalactosamine in the gut could positively affect

the abundance of bacteria with the capacity to utilize N-

acetylgalactosamine. This candidate molecular mechanism

was also suggested in a multi-omics study in pigs.32 The ABO

blood group has associations with various diseases such as in-

fectious diseases, cancers, and metabolic diseases,40 while

the biological mechanisms of such associations are still not un-

derstood. Given that the gutmicrobiota can interact with the host

through mechanisms such as metabolite production and stimu-

lation of the immune system, ABO-blood-type-associated differ-

ences of specific gut microbes may influence disease risks. For

example, a relatively high prevalence of myocardial infarction in

blood-type-A individuals41 and an increased abundance of the

bacteria with ageE and agaS, such as Collinsella and Escheri-

chia, in the gut of individuals with atherosclerotic cardiovascular

diseases42,43 may suggest a potential link between blood type,

gut microbiome, and diseases. Given that there is a global het-

erogeneity of the gut microbiome, the frequency of ABO blood

groups, and ABO blood group-disease associations41 among
lysis, target and reference blood groups are treated as 1 and 0, respectively. p

6.

or status, and oligosaccharides in the gut.

agaS (F) stratified by ABO blood groups and secretor status. Boxplots indicate

to the most extreme points within the range between (lower quantile � [1.5 3

observations used for the association analysis. The color of the dots represents

dicated as horizontal dashed lines colored red. AF, allele frequency; EAS, East
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Figure 3. Gut microbiome-plasma metabolome association analysis

(A) Q-Q plots of the p values from the microbial traits-metabolites association analysis (left, bacterial species; middle, microbial gene orthologs; right, microbial

pathway). The x axis indicates expected log-transformed p values, and the y axis indicates log-transformed observed p values. The diagonal dashed line

represents y = x, which corresponds to the null hypothesis. The horizontal red dashed line indicates the Bonferroni-corrected threshold (a = 0.05), and the brown

dashed line indicates the FDR threshold (FDR = 0.05) calculated with the Benjamini-Hochberg method. The microbial traits-metabolites pairs with FDR <0.05 are

plotted as brown dots, and the other microbial traits-metabolites pairs are plotted as black dots. p values were calculated with the linear regression analysis

(Wald’s test).

(B) A network plot for the significant microbial traits-metabolites associations under the Bonferroni-corrected threshold (a = 0.05). The shape and color of the

nodes represent the category of the traits. As for themetabolites, the sizes of the nodes represent the number of significantly associatedmicrobial traits. The color

of the edges represents the signs of the associations. The names of the bile acids are indicated in orange, while other metabolite names are indicated in black.

(C) Heatmaps represent the association between microbial gene orthologs and plasma bile acids. The colors of the tiles indicate the Z scores in the association

tests. *p < 0.05; **p satisfied the Bonferroni-corrected threshold in (A). p values were calculated with the linear regression analysis (Wald’s test).

(D) A forest plot indicates the association between a-diversity of the gut microbiome and plasma bile acids. The boxes and error bars indicate the effect sizes and

95% confidence interval in the linear regression analysis, respectively. The colors of the boxes indicate the sign of the effects and whether the test satisfied the

nominal or multiple-test-corrected significance thresholds. p values were calculated with the linear regression analysis (Wald’s test). FDR, false discovery ratio;

HSDH, hydroxysteroid dehydrogenase; KO, KEGG Orthology.

See also Tables S8, S9, and S10.
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the populations, analysis with underrepresented populations

should be continued.

In the microbiome-metabolome associations, we identified as-

sociations between the microbial gene orthologs related to bile

acid metabolism and plasma bile acid abundances possibly

becausemicrobial gene orthologs related to bile acid could affect

both bile acid abundances and the fitness of the bacteria.We also

identified the association of a-diversity with bile acids, such as a

positive association with deoxycholic acid. Deoxycholic acid is a

major secondary bile acid in the human gut and a cytotoxic deter-

gent for some kinds of bacteria.20 A possible explanation for this

associationwas thatmoderate selectionpressureby thecytotoxic

activity of the deoxycholic acid was necessary to keep the diver-

sity of the gut microbiome or that the diversity of the gut micro-

biome was linked to the production of the secondary bile acid by

the bacteria. Decreases in a-diversity have been reported for

various disease conditions like inflammatory bowel diseases

(IBDs).1,44 Given that coupled changes of the a-diversity and de-

oxycholic acidwere reported in IBD,44,45 the link betweena-diver-

sity and deoxycholic acidmight contribute to the etiology of IBDs.

In summary, our metagenome shotgun-sequencing-based

multi-omics study with the Japanese dataset identified EAS-

specific or functionally interpretable gut microbiome-host factor

associations that underscored the importance of analyzing

currently underrepresented populations with a metagenome

shotgun-sequencing-based approach.

Limitations of the study
Oursamplesizewasnot that largecomparedwithpreviousstudies

for well-studied populations such as EUR and Chinese, which

could be a limitation of this study. Althoughwe confirmed the con-

sistency of the association between genetic variants and gut mi-

crobiome in two datasets, further validation with another cohort

would be warranted. Given that there is substantial heterogeneity

of the gut microbiome and host factors, even within EAS popula-

tions,35,46 it will be necessary to continue to build large datasets

for underrepresented populations and perform comparative and

meta-analyses to evaluate the reproducibility and heterogeneity

of gut microbiome-host factor associations across diverse popu-

lations. We consider that our results, which are publicly available,

would contribute to expanding the diversity of current study pop-

ulations and be a useful resource for future studies. Although not

investigated in this study, considering that bacteriophages are

also involved in microbiome-host interactions,47 it would be

necessary to include them in analyses in the future, despite our

research being primarily focused on bacteria.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yukinori

Okada (yokada@sg.med.osaka-u.ac.jp).

Materials availability
The materials that support the findings of this study are available from the corresponding authors upon reasonable request. Please

contact the Lead Contact for additional information.

Data and code availability
d The metagenome shotgun sequencing data used in this study are under controlled access in the Japanese Genotype-

Phenotype Archive (JGA) with accession numbers JGAS000205, JGAS000260, JGAS000316, JGAS000531, and

JGAS000415 to protect the participants’ privacy.25 Researchers who comply with NBDC’s data terms of use can apply for ac-

cess to the data. The results of the association analysis are publicly available in NBDC Human Database (http://humandbs.

biosciencedbc.jp/) with the accession number of hum0197.

d This paper does not report original code. We used publicly available software in this study. Please see the METHOD DETAILS

section for further details.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject participation
625 Japanese participants recruited in the previous studies were included in this study.2–4,25,35,36,48–50 Among these participants,

524, 362, 524, and 362 participants had included in the analysis with metagenome shotgun sequencing, plasma metabolome anal-

ysis, SNP array-based genotyping, andWGS data, respectively. All participants provided written informed consent before participa-

tion. The study protocol was approved by the ethics committees of Osaka University and related medical institutions.

METHOD DETAILS

Metagenome shotgun sequencing
Phenol-chloroform DNA extraction and subsequent metagenome shotgun sequencing were performed in the previous studies.2–4,35,48

Briefly, for the sequencing batches 2–4, fecal samples were collected in tubes containing RNAlater (Ambion). After the weights of the

samples were measured, RNAlater was added to make 10-fold dilutions of homogenates. Fecal samples were stored at�80�C within

24 h after collection. After washing with 1 mL of PBS (�), 200 mL of the homogenates were used for further DNA extraction.

For the sequencing batches 1 and 5, fecal samples had been stored at�80�Cwithin 6 h after production or immediately frozen after

production in an insulated container for storage at �20�C and subsequently stored at �80�C within 24 h after production. For these

samples stored without RNAlater, RNAlater (Ambion) was added to make 10-fold dilutions of homogenates before the DNA extrac-

tion. After washing with 1 mL of PBS (�), 200 mL of the homogenates were used for further DNA extraction.

DNA was extracted according to a previously described method.51 Briefly, 300 mL of sodium dodecyl sulfate–Tris solution, 0.3 g

glass beads (diameter 0.1 mm) (BioSpec), and 500 mL EDTA-Tris-saturated phenol were added to the suspension, and the mixture
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was vortexed vigorously using a FastPrep-24 (MPBiomedicals) at 5.0 power level for 30 s. After centrifugation at 20,000 g for 5min at

4�C, 400 mL of supernatant was collected. Subsequently, phenol-chloroform extraction was performed, and 250 mL of supernatant

was subjected to isopropanol precipitation. Finally, DNAs were suspended in 100 mL EDTA-Tris buffer and stored at �20�C.
The amount of dsDNA was quantified with Qubit Fluorometer (Thermo Fisher Scientific). After the sonication with the ME220

(Covaris), a shotgun sequencing library was constructed using the KAPA Hyper Prep Kit (KAPA Biosystems) following the manufac-

turer’s instructions. The library quality was evaluated with LabChip GX Touch (PerkinElmer). The amount of the library was quantified

with the Qubit Fluorometer and KAPA Library Quantification Kits (KAPA Biosystems). 150-bp paired-end reads were generated on

HiSeq 3000 or NovaSeq 6000. Samples in each dataset were barcoded, pooled, and sequenced simultaneously in a single run

without library replication. All the sequencing was performed in the Department of Infection Metagenomics/Next-Generation

Sequencing Core Facility, Research Institute for Microbial Diseases, Osaka University (Suita, Japan). The sequence reads were con-

verted to the FASTQ format using bcl2fastq (version 2.19). Further run information is described in Table S12.

The five sequencing runs were grouped into two datasets based on the sequencing period, sequencer, and other modality of data

(Figure S1). Dataset 1 was a gut microbiome dataset with plasma metabolome and genotype information and it was sequenced with

Hiseq3000 in 2019. On the other hand, Dataset 2 was a gut microbiome dataset with only genotype information, which was

sequenced with Novaseq6000 between 2020 and 2021.

Quality control of metagenome shotgun sequencing reads
We performed a series of QC steps to maximize the quality of the datasets as previously described.2–4,52 The main steps in the QC

process were: (i) trimming of low-quality bases, (ii) removal of duplicated reads, and (iii) identification and masking of human reads.

We marked duplicate reads using PRINSEQ-lite53 (version 0.20.4; parameters: -derep 1). We trimmed the raw reads to clip Illumina

adapters and cut off low-quality bases at both ends using the Trimmomatic54 (version 0.39; parameters: ILLUMINACLIP:TruSeq3-

PE-2.fa:2:30:10:8:true LEADING:20 TRAILING:20 SLIDINGWINDOW:3:15MINLEN:60). We discarded reads less than 60 bp in length

after trimming. Next, we performed duplicate removal by retaining only the longest read among the duplicates with the same

sequences. As a final QC step, we aligned the quality-filtered reads to the human reference genome (hg38) using bowtie255 (version

2.3.5) with default parameters and BMTagger (version 3.101). We kept only reads of which both paired ends failed to align in

either tool.

Taxonomic annotation of metagenome and abundance quantification
We performed taxonomic annotation of metagenome and abundance quantification as previously described. We used curated refer-

ence microbial genomes as previously described.2 The reference microbial genomes of the Japanese population constructed by

Nishijima et al.46 were combined with the genomes identified from the cultivated or uncultivated human gut bacteria projects.56–58

After filtration to the genomes annotated to the species with more than 50 reference genomes, the taxonomic reference genome

dataset consisted of 7,881 genomes. The filtered paired-end reads were aligned to the reference genome dataset using bowtie2

with the "-R 3" option. As for multiple-mapped reads, only the best possible alignment was selected by the alignment scores.

The number of reads that mapped to each genomewas divided by the length of the genome. The value of each genomewas summed

up by each sample, and the relative abundance of species-level clades was calculated. Then, we detected and removed 10 and 7

outlier samples by principal component analysis (PCA; PC 1–6) based on the species-level abundance separately for datasets

1 and 2.

Functional annotation and abundance calculation
We performed functional annotation of metagenome and abundance quantification as previously described.2–4,52De novo assembly

of the filtered paired-end reads into contigs was conducted using MEGAHIT59 (version 1.2.9; parameters: –min-contig-len 135). We

predicted open reading frames (ORFs) on the contigs with the ab initio gene finderMetageneMark60 (version 3.38; parameters: -a -k -f

G). Next, we annotated theORF catalogwith the Kyoto Encyclopedia of Genes andGenomes (KEGG) protein database (https://www.

kegg.jp).61 We utilized a database of prokaryote KEGG genes andMGENES, a database of KEGG genes frommetagenome samples

annotated based on orthology, with a bit score >60. We aligned putative amino acid sequences translated from the ORF catalog

against the KEGG protein database with DIAMOND62 using BLASTP (version v0.9.32.133; parameters: -f 6 -b 15.0 -k 1 -e 1e-6 –sub-

ject-cover 50). For quantification of the ORF abundance, we mapped the filtered paired-end reads to the assembled contigs using

bowtie2 with default parameters. To avoid the bias of the gene size, the ORF abundance was defined as the depth of each ORF’s

region of the ORF catalog according to the mapping result.

QC and normalization of the bacterial and gene ortholog abundance data
After sample QC, we performed the QC and normalization of the bacterial abundance data. We removed clades detected (i) in less

than 50% of the samples, (ii) in no sample in any of the sequencing batches, or (iii) with an average relative abundance of less than

0.001% of the total abundance. The thresholds for the detection ratio and average relative abundance were set based on the recent

gut microbiome GWAS.11,13 After selection, 450 and 453 species-level clades were retained for datasets 1 and 2, respectively. Then,

bacterial abundances were log-transformed and outliers (outside the range of mean±5s.d.) were removed per clade. We added the

pseudo-counts (half of the minimum non-zero value) to the zeros before the log transformation. Then, log-transformed bacterial
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abundances were corrected for the covariates using PEER63 (version 1.3) accounting for 30 unobserved confounders as well as the

known confounders, such as age, age,2 sex, sequencing batches, facility, diseases, and three genotype-based principal compo-

nents. By utilizing PEER, we removed unwanted variations of the data. The residuals were standardized with the inverse normal

transformation.

We also performed the normalization of themicrobial gene ortholog abundance data.We summed up the gene abundance data for

each KEGG Orthology (KO) and removed gene orthologs detected (i) in less than 50% of the samples or (ii) in no sample in any of the

sequencing batches. After selection, 4,760 and 4,829 microbial gene orthologs were retained for datasets 1 and 2, respectively.

Then, log transformation, covariate adjustment, and inverse normal transformation were performed as done for the species-level

clades.

Quantification of microbial pathways based on gene set variance analysis
For obtaining the pathway scores of each sample, we performed gene set variance analysis (GSVA; version 3.8–0).64 As an input for

the GSVA, we utilized the gene abundance data before the aggregation into orthologs. We removed genes detected (i) in less than

20% of the samples or (ii) in no sample in any of the sequencing batches and performing log-transformation. We added the pseudo-

counts (half of the minimum non-zero value) to the zeros before the log transformation. The KEGG gene sets were defined according

to the KEGG pathway. Gene sets that contained over 30,000 genes or under 10 genes were excluded from the calculation of the

pathway scores, resulting in 148 and 152 microbial pathways respectively for datasets 1 and 2. After the removal of outliers (outside

the range of mean±5s.d.), pathway scores were corrected for the covariates using PEER accounting for 15 unobserved confounders

as well as the known confounders, such as age, age,2 sex, sequencing batches, facility, diseases, and three genotype-based prin-

cipal components. By utilizing PEER, we removed unwanted variations of the data. We included age2 as one of the covariates to cor-

rect for non-linear age-related changes in the gut microbiome.65 The residuals were standardized with the inverse normal

transformation.

Calculation of a-diversity of the metagenome
Quality-controlled reads were down-sampled to 9,000,000 paired-ends reads to adjust the differences in the library sizes between

the samples. Then, the down-sampled reads were used for the quantification of the species-level clades as described above. The

resulting abundance data, before clade-level QC, was subjected to the diversity function in the R package vegan (version 2.5_6)

to calculate the Shannon index.

Plasma metabolome profiling based on the CE-TOFMS and LC-TOFMS
Plasma metabolite profiling was performed in previous studies.36,49 Briefly, plasma samples from the participants were collected at

collaborating facilities. Metabolite extraction andmetabolome analysis were conducted at HumanMetabolome Technologies (HMT),

Japan. For CE-TOFMS analysis, 50 mL of serum was added to 450 mL of methanol containing internal standards (H3304-1002, HMT)

at 0�C to inactivate enzymes. The internal standards were L-methionine sulfone and D-camphor-10-sulfonic acid for cationic mode

and anionic mode, respectively. The extract solution was thoroughly mixed with 500 mL of chloroform and 200 mL of Milli-Q water and

centrifuged at 23003 g and 4�C for 5 min. The 350 mL of the upper aqueous layer was centrifugally filtered through a Millipore 5-kDa

cutoff filter to remove proteins. The filtrate was centrifugally concentrated and resuspended in 50 mL of Milli-Q water for CE-MS

analysis.

For LC-TOFMSanalysis, 500 mL of serumwas added to 1500 mL of 1% formic acid/acetonitrile containing internal standard solution

(Solution ID: H3304-1002, HMT) at 0�C to inactivate enzymes. D-camphor-10-sulfonic acid was used for the internal standard in both

the positive and negative modes. The solution was thoroughly mixed and centrifuged at 23003 g and 4�C for 5 min. The supernatant

was filtrated by using a Hybrid SPE phospholipid (55261-U, Supelco, Bellefonte, PA, USA) to remove phospholipids. The filtrate was

desiccated and dissolved with 100 mL of iso-propanol/Milli-Q for LC-MS analysis.

Metabolome analysis was conducted with CE-TOFMS and LC-TOFMS for ionic and nonionic metabolites, respectively. CE-

TOFMS analysis was carried out using an Agilent CE system equipped with an Agilent 6210 TOFMS, Agilent 1100 isocratic HPLC

pump, Agilent G1603A CE-MS adapter kit, and Agilent G1607A CE-ESI-MS sprayer kit (Agilent Technologies, Santa Clara, CA,

USA). The systems were controlled by Agilent G2201AA ChemStation software version B.03.01 for CE (Agilent Technologies) and

connected by a fused silica capillary (50 mm i.d. 3 80 cm total length) with electrophoresis buffer (H3301-1001 and I3302-1023

for cation and anion analyses, respectively, HMT) as the electrolyte. The spectrometer was scanned from m/z 50 to 1000. LC-

TOFMS analysis was carried out using an Agilent LC System (Agilent 1200 series RRLC system SL) equipped with an Agilent

6230 TOFMS (Agilent Technologies). The systems were controlled by Agilent G2201AA ChemStation software version B.03.01

(Agilent Technologies) equipped with anODS column (23 50mm, 2 mm). The equilibration timewas 7.5min. In this service, the sensi-

tivity of the analysis was checked by the signals from the internal standards rather than using pooled QC samples. In addition, for the

LC-TOFMS analysis, the sensitivity of the analysis was confirmed by measuring the D-camphor-10-sulfonic acid solution for every

ten samples. Note that all the samples were measured in a single experiment for each batch to mitigate the measurement noises.

Peaks were extracted using MasterHands, automatic integration software (Keio University, Tsuruoka, Yamagata, Japan) to obtain

peak information including m/z, peak area, and migration time for CE-TOFMS measurement (MT) or retention time for LC-TOFMS

measurement (RT) as previously described.66 Briefly, the raw data was subjected to the noise-filtering, baseline correction, peak
Cell Reports 42, 113324, November 28, 2023 15



Resource
ll

OPEN ACCESS
detection and integration of the peak area from sliced electropherograms (the width of each electropherogram was 0.02 m/z). The

accurate m/z value for each peak detected within the time domain was calculated with Gaussian curve-fitting to the mass spectrum

on the m/z domain peak. The alignment of peaks in multiple measurements was done by dynamic programming (DP)-based

techniques67 with slight modifications. The method picked up a few representative peaks using the Douglas-Peucker algorithm68

from unit m/z electropherograms, found corresponding peaks across multiple samples by DP, and optimized the numerical param-

eters of the normalization function for CE-migration.69 Instead of representative peaks, the service used the detected peaks with

accurate m/z values and regarded the peaks whose m/z difference was less than 20 ppm as ones that were derived from the

same electropherograms. Signal peaks corresponding to isotopomers, adduct ions, and other product ions of known metabolites

were excluded.

The remaining peaks were annotated according to the HMT metabolite database based on their m/z values with the MTs and RTs

determined by TOFMS. The tolerance range for the peak annotation was configured at ±0.5 min for MT and ±10 ppm for m/z at CE-

TOFMS, ±0.3 min for RT and ±25 ppm for m/z at LC-TOFMS, respectively. Areas of the annotated peaks were normalized based on

the levels of the internal standard for each modality (CE-TOFMS, L-methionine sulfone and D-camphor-10-sulfonic acid for cationic

mode and anionic mode, respectively; LC-TOFMS, D-camphor-10-sulfonic acid) and sample amounts to obtain relative levels of

each metabolite. Then, we detected outlier samples by PCA (PC 1–6) and two samples in dataset 1 were removed because they

were outliers in the PCA analyses.

After sample QC, we performed the normalization of the plasmametabolite abundances.We removedmetabolites detected in less

than 30% of the samples. After metabolite QC, 363 and 368 metabolites were retained for datasets 1 and 3, respectively. Then,

metabolite abundances were log-transformed and outliers (outside the range of mean±5s.d.) were removed per clades. We added

the pseudo-counts (half of theminimum non-zero value) to the zeros before the log transformation. Then, log-transformedmetabolite

abundances were corrected for the covariates using PEER accounting for 30 unobserved confounders as well as the known con-

founders, such as age, age,2 sex, facility, diseases, and three genotype-based principal components. By utilizing PEER, we removed

unwanted variations of the data. The residuals were standardized with the inverse normal transformation.

Genotyping of the samples based on the SNP array
In this study, we utilized both the previously published25 and newly generated SNP array-based genotype data. We performed SNP

array-based genotyping using Infinium Asian Screening Array (Illumina, San Diego, CA, USA). This genotyping array was built using

an EAS reference panel including whole genome sequences, which enabled effective genotyping in EAS populations.

We applied stringent quality control filters to the genotyping dataset using PLINK (version 1.90b4.4)70 as described elsewhere.71

We excluded individuals with a genotyping call rate of <0.98. All the individuals were estimated to be of EAS ancestry, based on the

PCA with the samples of the 1KG dataset using EIGENSTRAT72 (version 6.1.4). We further excluded SNPs with (i) call rate <0.99, (ii)

minor allele count <5, and (iii) P-values for Hardy-Weinberg equilibrium <1.0 3 10�5. For pairs of closely related individuals (PI_HAT

calculated by PLINK >0.185), we removed either of the related individuals.

We performed genome-wide genotype imputation to estimate untyped variants computationally. We used the combined reference

panel of 1KG Project Phase 3 version 5 genotype (n = 2,504) and Japanese WGS data (n = 1,037)73,74 as a haplotype reference for

genotype imputation. First, we excluded SNPs with >7.5% allele frequency difference with the representative reference datasets of

Japanese ancestry, namely the combined reference panel aforementioned73,74 and the allele frequency panel of Tohoku Medical

Megabank Project.75 Second, we conducted haplotype estimation to improve imputation performance using SHAPEIT (version

4.2.1)76 with haplotype reference. After the prephasing, we used Minimac4 (version 1.0.1)77 for genotype imputation. The variants

imputed with Rsq >0.7 were used for the downstream analysis.

Genotyping of the samples based on the whole genome sequencing
In this study, we utilized both the previously published50 and newly generated whole genome sequencing data. DNA samples

extracted from whole blood were sequenced at Macrogen Japan Corporation. DNA quantity was measured by Picogreen, and

degradation of DNA was assessed by gel electrophoresis. All libraries were constructed using the TruSeq DNA PCR-Free Library

Preparation Kit according to the manufacturer’s protocols. Libraries were sequenced on HiSeqX (Illumina, San Diego, CA, USA)

with amean coverage of 16.43. The reads produced by HiSeqXwere processed as previously described.50 Briefly, sequenced reads

were aligned against the reference human genome with the decoy sequence (GRCh37, human_g1k_v37_decoy) using BWA-MEM

(version 0.7.13). Duplicated reads were removed using Picard MarkDuplicates (version 2.10.10). After Base-quality score recalibra-

tion implemented in GATK (versions 3.8–0), we generated individual variant call results using HaplotypeCaller and performed multi-

sample joint-calling of the variants via GenotypeGVCFs. We set genotypes satisfying any of the following criteria as missing: (i)

DP < 5, (ii) GQ < 20, or (iii) DP > 60 and GQ < 95, then removed variants with low genotyping call rates (<0.90). We performed Variant

Quality Score Recalibration for SNVs and short indels according to the GATK Best Practice recommendations and adopted the var-

iants, which passed the QC criteria. We further removed the variants (i) located in the low complexity regions, (ii) with ExcessHet >60,

or (iii) with Hardy–Weinberg P-value <1.0 3 10�10. We kept only those presenting a non-significant difference in allele frequency

(p > 1.03 10�10 provided by chi-square test) in the following representative reference datasets of Japanese ancestry: the combined

reference panel of 1KGPhase 3 version 5 genotype (NJapanese = 104) and JapaneseWGSdata (N = 1037) used for the aforementioned

genotype imputation,74 and the allele frequency panel of Tohoku Medical Megabank Project75 (ToMMo 8.3KJPN Allele Frequency
16 Cell Reports 42, 113324, November 28, 2023
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Panel, N = 8,380). Genotype refinement was performed using Beagle (version 5.1).78 For pairs of closely related individuals (PI_HAT

calculated by PLINK >0.185), we removed either of the related individuals.

GWAS for the microbial traits
We performed genome-wide linear regression analysis with an additive effect model using the SNP array-based imputed genotype

data and normalized microbial traits using plink2 (version 2.00a3 9 Apr 2020)79 separately for datasets 1 and 2. Then, a fixed-effect

meta-analysis was performed for the variants with MAF >0.01 using the METASOFT (version 2.0.0)80. The genome-wide significance

threshold was set at p < 5 3 10�8 and study-wide significances were set at p < 5 3 10�8/number of the tested traits. We used

LocusZoom (version 1.4)81 to make the plots for the microbiome-associated loci. Annotation of the genetic variants was performed

with ANNOVAR (Mon, 8 Jun 2020).82

As for the pair of the microbial taxa and genetic variants with genome-wide association (p < 5 3 10�8) in either of the two

studies11,13 which were based on the shotgun sequencing analysis with the NCBI taxonomy, we evaluated the reproducibility in

our study, namely checking the significance and consistency of the effect directions. The list of the evaluated variants is described

in Table S5. We also evaluated the association with all the microbial traits for the variants that were previously nominated for the as-

sociation with microbial traits. We listed up such variants from the 16S rRNA-based8–10,16 and shotgun sequencing-based11–13

studies, including both single cohort analyses and meta-analyses, with a significance threshold of p < 5 3 10�8. Note that for one

study,16 a significance threshold of p < 2.5 3 10�8 was adopted, therefore we used that value for the study. Since some studies re-

ported variants in LD relationships, we evaluated the number of independent variants to set appropriate significance thresholds. The

496 tested variants could be clumped into 341 variants at r2 = 0.1. The summary for the included studies and list of the evaluated

variants are described in Table S6.

Association between the ABO blood group and microbial traits
First, we evaluated the results of the GWAS for the genetic variants which were linked to each ABO blood group

(chr9:136146597:C>T linked to the blood group A, chr9:136131322:G>T linked to the blood group B, and chr9:136132908:T>TC

linked to the blood group O30,31) and all the microbial traits. Then, to directly evaluate the association between the ABO blood group

and microbial traits, we determined the ABO blood group of the participants based on the best guess imputed genotypes of the

chr9:136131322:G>T and chr9:136132908:T>TC in the ABO gene. Differences in the normalized microbial traits between each

pair of the blood group were evaluated by the linear regression analysis (normalized microbial traits � blood group) for each dataset

followed by meta-analysis with metafor (version 3.0–2) package for R.

We determined the secretor status of the participants based on the genotype of chr19:49206631:A>T in the FUT2 gene based on

the previous finding.33,34 We labeled 70 participants whose imputed dosage of the T allele was%0.15 as non-secretor and 417 par-

ticipants whose imputed dosage of the T allele wasR0.85 as secretors. The remaining 37 participants were removed from the anal-

ysis of the secretor status. Per blood group differences in the normalized microbial traits between secretor and non-secretor were

evaluated by the linear regression analysis (normalized microbial traits� secretor status) for each dataset followed by meta-analysis

with metafor (version 3.0–2) package for R.

We utilized JMAG,35 a database of the prokaryotes genomes reconstructed from the Japanese metagenome data, including those

used in this study, to evaluate which bacterial taxa had the agaE, agaS, and yydK gene orthologs. In the previous study, protein-cod-

ing genes on the 19,084 MAGs were predicted by Prokka83 (version 1.14.6) with the specification of the kingdom annotated by

CheckM (version 1.0.12).84 Then all the predicted protein sequences were dereplicated at 100% AAI by MMseqs285 (version

13.45111) with the following parameters; –cov-mode 1 -c 0.8 –kmer-per-seq 80 –min-seq-id 1. Blast searches to the agaE, agaS,

and yydK sequences in the KEGG protein databases were performed for the non-redundant predicted protein sequences. First,

to reduce the computation costs, only the sequences annotated as agaE (K02747), agaS (K02082), and yydK (K03489) were extracted

from the KEGG protein database, and a small reference database was constructed from the extracted sequences. Then, the protein

sequences on the MAGs were subjected to the BLASTP search against the small reference database with DIAMOND (parameters: -f

6 -b 15.0 -k 1 -e 1e-6 –subject-cover 50) with the same option as the aforementioned functional analysis. The protein sequences with

a hit were further subjected to the BLASTP86 search against the whole KEGG protein databases as done in the aforementioned gene-

level quantification with DIAMOND, and the agaE, agaS, and yydK gene orthologs on the MAG were identified. The taxonomic infor-

mation of the MAGs with agaE, agaS, and yydK was then extracted and summarized.

GWAS for the plasma metabolites, PheWAS, and colocalization analysis
Weperformed genome-wide linear regression analysis with an additive effect model using theWGS-based genotype data and normal-

ized plasmametabolite data using plink2 separately for datasets 1 and 3. SinceWGSdatawere available for the participants fromwhich

plasma metabolites were profiled, we utilized WGS-based genotype data rather than SNP array-based genotype data for the plasma

metabolite GWAS. Then, a fixed-effect meta-analysis was performed for the variants with MAF >0.01 using the METASOFT. The

genome-wide significance threshold was set at p < 5 3 10�8 and study-wide significances were set at p < 5 3 10�8/306 (number of

the metabolites commonly detected in datasets 1 and 3). Annotation of the genetic variants was performed with ANNOVAR.

For PheWAS, we looked up the association of the study-wide metabolite-associated variants (p < 53 10�8/306) and their tagged

variants (r2 > 0.6 in Japanese) to the 155 diseases, three anthropometric traits, and 35 biomarkers from the previously releasedGWAS
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summary statistics.41 Then, if the metabolite-associated variants or their tagged variants had an association with the traits with

p < 1 3 10�4, we performed colocalization analyses with coloc (version 5.1.1)87 using the variants located within ±250kbp of the

metabolite-associated variants. We used LocusZoom to make the plots for the metabolite-associated loci.

Microbiome–metabolome association analysis
We performed linear regression analysis for dataset 1 using the lm() function implemented in R with the following formula; microbial

traits� plasmametabolites + age + age2 + sex + sequencing batches + facility + diseases. We included age2 as one of the covariates

to correct for non-linear age-related changes in the gut microbiome.65 Sample QC, trait QC, log-transformation, and per-trait outlier

removal were performed for the microbial traits and metabolite data as described above, while PEER was not applied. FDR was

calculated by the Benjamini-Hochberg procedure.

For the construction of the microbiome–metabolome network, we extracted all the microbial traits–metabolite associations that

satisfied the Bonferroni-corrected significance. Then, we constructed a network plot with the ggraph package (version 2.0.4). We

specified ’kk’ as a layout option to place nodes based on the spring-based algorithm by Kamada and Kawai.

Association between the a-diversity and bile acids was evaluated by the linear regression with the following formula; Shannon-in-

dex � bile acid + age + age2 + sex + sequencing batches + facility + diseases.

QUANTIFICATION AND STATISTICAL ANALYSIS

For GWAS of the gut microbial traits and plasma metabolites, we used fixed-effect meta-analysis for calculating test statistics. Sta-

tistical tests for each dataset were performed with the linear regression implemented in the PLINK2 software.79 All the ABO blood

type association tests were fixed-effect meta-analyses from the results of the linear regression analysis implemented in the R. For

other statistical tests, we used linear regression with the lm() function and Wald’s test as implemented in the R. Please also refer

to figure legends andMETHODDETAILS for details of statistical analysis. Number of the samples used in the analyses are described

in Table S1.
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