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Abstract: In this paper, in order to achieve the development of a novel biodegradable dual-phase
alloy in a Ca–Mg–Zn system, the establishment of the control strategy of degradation behavior of
alloys composed of two phases was attempted by the control of alloy composition, constituent phases,
and microstructure. By combining two phases with different dissolution behavior, biodegradable
alloys are expected to exhibit multiple functions. For example, combining a suitable slow dissolving
phase with a faster dissolving second phase may allow for dynamical concavities formation during
immersion on the surface of the alloy, assisting the invasion and establishment of bone cells. Without
the careful control of the microstructure, however, there is a risk that such dual-phase alloy rapidly
collapses before the healing of the affected area. In this study, ten two-phase alloys consisting of
various different phases were prepared and their degradation behaviors were examined. Conse-
quently, it was found that by combining the IM3 and IM1 intermetallic phases with the compositions
of Ca2Mg5Zn13 and Ca3Mg4.6Zn10.4, the expected degradation behavior can be obtained.

Keywords: biodegradable metallic material; dual-phase alloy; intermetallic compound; degradation
behavior

1. Introduction

Currently, Ti alloys and Co–Cr alloys with excellent mechanical properties, corrosion
resistance, and biocompatibility are widely used in the field of biomaterials as bone rein-
forcement implant materials [1]. However, in several cases, the surgical removal of these
implants is necessary after the affected area has healed. In such cases, the use of in-vivo
biodegradable materials that are soluble in biological environments has been considered [2].
Magnesium alloys have been the most studied candidates for such materials [3–12]; how-
ever, their high degradation rate needs to be controlled. The usage of Ca–Mg–Zn ternary
alloy is as the focus of an alternative strategy [13–25] as it contains Ca, which is an essential
element for living organisms, and Zn, which exists in trace amounts in the body. Zn is
considered an essential mineral in the human body, and it is important for the proper
functioning of numerous enzymes and for supporting immune functions, protein and DNA
synthesis, and wound healing [7,26]. Among the studies, we particularly focused on the use
of intermetallic compounds. Generally, the intermetallic compounds are used to improve
the mechanical properties of the structural materials, for example [27–32]. However, we
focused on using the intermetallic compounds to control the degradation behavior of the
alloys [14,33].

In this study, we investigated the feasibility of developing a new biodegradable “dual-
phase” alloy, which consists of two phases with different solubilities, in a Ca–Mg–Zn system.
As shown in Figure 1, through the coexistence of electrochemically less noble second phase
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in the form of islands in a relatively noble matrix phase, a biodegradable dual-phase alloy
can be developed. A slow-dissolving phase remains until late dissolution and acts as a
scaffold for the cell by creating surface irregularities. In contrast, the preferential dissolution
of the faster-dissolving second phase continuously releases Ca ions and other substances
that are necessary for bone regeneration. This paper reports the current progress in the
development of such dual-phase alloys and presents their future prospects.
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Figure 1. Model for the development of a biodegradable dual-phase alloy.

2. Materials and Methods

Ten forms of master alloys with varying Ca–Mg–Zn compositions were used as dual-
phase alloys. Many of them focused on in this study are Zn-rich alloys. The alloy com-
positions used in this study are listed in Table 1, and a detailed explanation of the alloy
composition is provided in Section 3.1. The ingots were prepared by melting high-purity
raw Ca, Mg, and Zn pellets in carbon crucibles. The carbon crucible was sealed by quartz-
tube filled with Ar, and the melting of the raw materials was conducted, followed by air
cooling. The size of prepared ingot was φ12 mm× ~50 mm and the central part of the ingot
was used for testing. The prepared ingots were then heat-treated at 335 ◦C for 2 weeks to
obtain thermally stable phases. The constituent phases of the alloys were determined by
compositional analysis using a scanning electron microscope with energy-dispersive X-ray
spectroscopy (SEM-EDS, JEOL, JEM-6500F, Tokyo, Japan). In addition, X-ray diffraction
(XRD) measurement was conducted by using Cu-Kα radiation. To prepare the specimens
for microstructure observation, the specimen surfaces were mechanically polished by emery
paper, and then etched with an ethanol-20 vol% nitric acid solution at ~10 ◦C. Immersion
tests were performed on the prepared alloys according to ASTM-G31-72 [34] in Hanks’
balanced salt solution (HBSS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA), which
was used as a simulated body fluid. The composition of the Hanks’ balanced salt solution
is indicated in the Supplementary Table S1. Specimens with dimensions of approximately
7 × 7 × 2 mm3 were cut using an electrodischarge machine. The specimens were then
immersed in the solution with a volume per surface area of 40 mL/cm2, and the tempera-
ture was maintained at 37 ◦C using a water bath. The immersed specimens were removed
from the solution after several different immersion periods, and changes in the surface
morphologies resulting from immersion were examined using optical microscopy (OM),
and laser microscopy (LM).
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Table 1. Compositions of the dual-phase alloys prepared in this study.

Sample Name Alloy Composition (at.%) Constituent Phase
(Noble/Less Noble)

A Zn29Mg60Ca11 IM1 (IM3)/Mg
B Zn60Mg12Ca28 CaZn2/IM1
C Zn57Mg10Ca33 CaZn2/Mg2Ca
D Zn60Mg30Ca10 IM3/Mg
E Zn40Mg40Ca20 IM1/Mg2Ca
F Zn59Mg29Ca12 IM3/IM1
G Zn20Mg80 Mg51Zn20/Mg
H Zn72Ca28 CaZn3/CaZn2
I Zn61Mg26Ca13 IM3/IM1
J Zn63Mg25Ca12 IM3/IM1

In addition, galvanic current density measurements were performed in accordance
with ASTM-G71-81 [35] to understand the factors controlling the dissolution behaviors
of the dual-phase alloys. The measurements were performed on an electro-chemical
workstation (VersaSTAT 4, Toyo Corporation, Tokyo, Japan) at a temperature of 37 ◦C in
the Hanks’ solution. Each anode and cathode were composed of a single phase of the
compound. The circuit was closed after the open-circuit potential was measured for 30 min,
and then the galvanic current was measured for 120 min. During the measurement, the area
of the anode was kept constant at 0.32 cm2, and the variation in the dissolution behavior
was examined by changing the area of the cathode.

3. Results and Discussion
3.1. Microstructure and Degradation Behavior of Zn–Mg–Ca Dual-Phase Alloys

Wide variations in the degradation behavior of intermetallic compounds in the Ca–Mg–Zn
system have been previously reported [14], by the study using the single-phase alloys. In addi-
tion to many binary compounds, four Ca–Mg–Zn ternary compounds, namely IM1, IM2, IM3,
and IM4, exist. The compositions of IM1, IM2, IM3, and IM4 are approximately Ca3MgxZn15−x
(4.6≤ x≤ 12), Ca14.5Mg15.8Zn69.7, Ca2Mg5Zn13, and Ca1.5Mg55.3Zn43.2, respectively [36]. A pre-
vious study demonstrated that the degradation behavior of Ca–Mg–Zn alloy samples composed
of “one intermetallic phase” was approximately classified into four groups in the ternary phase
diagram [14]. The degradation behavior was predominantly affected by the Ca-content and
secondarily by the amount of Zn. As Ca decreases and Zn increases in the phase composition,
the degradation rate also decreases [14]. This can be clearly understood by the variations in the
corrosion potential and corrosion rate estimated from their polarization curves according to the
equation shown in [14], as shown in Figure 2.
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Figure 3 shows the alloy compositions focused on in this study, indicated on the
Ca–Mg–Zn ternary phase diagram at 335 ◦C reported by Zhang et al. [36,37]. In the ternary
phase diagram, the two-phase region focused on in this study is colored blue, and the
constituent phase in the alloy (single-phase region) is colored green. Based on a previous
report on the degradation behavior of single-phase alloys [14], eight different dual-phase
alloys, named samples A–H, were first prepared, as indicated by the open circles in Figure 3.

Metals 2023, 13, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 2. Variations in (a) corrosion potential and (b) corrosion rate with Zn concentration estimated 

from the polarization curves of single-phase alloy samples in Ca–Mg–Zn ternary system. 

Figure 3 shows the alloy compositions focused on in this study, indicated on the Ca–

Mg–Zn ternary phase diagram at 335 °C reported by Zhang et al. [36,37]. In the ternary 

phase diagram, the two-phase region focused on in this study is colored blue, and the 

constituent phase in the alloy (single-phase region) is colored green. Based on a previous 

report on the degradation behavior of single-phase alloys [14], eight different dual-phase 

alloys, named samples A–H, were first prepared, as indicated by the open circles in Figure 

3. 

 

Figure 3. Compositions of the dual-phase alloys A–J investigated in this study. The compositions 

are plotted on the Ca–Mg–Zn ternary phase diagram previously presented by Zhang et al. [36,37]. 

Figure 4 shows the XRD profiles obtained from the prepared samples. The phases 

expected from the phase diagram reported by Zhang et al. [36,37] were confirmed to be 

Figure 3. Compositions of the dual-phase alloys A–J investigated in this study. The compositions are
plotted on the Ca–Mg–Zn ternary phase diagram previously presented by Zhang et al. [36,37].

Figure 4 shows the XRD profiles obtained from the prepared samples. The phases
expected from the phase diagram reported by Zhang et al. [36,37] were confirmed to be
formed in all dual-phase alloys. The identification of the constituent phases was further
conducted by the SEM-EDS analysis. Figure 5 shows the SEM images of the microstructures
of the alloy samples. The measured results of SEM-EDS are presented in Table 2. The same
conclusion obtained by the XRD measurement was drawn. The formation of the third
phase was observed in some alloys because of the slight deviation in alloy composition
during the alloy preparation process; however, its amount was extremely small except for
that in sample A, in which some amount of IM3 formation (Point c) was observed in the
IM1/Mg dual microstructure. Depending on the alloy composition, the microstructures
of the dual-phase alloys exhibited different morphologies, and they were classified into
three groups. The alloys composed of IM1/Mg (Sample A), CaZn2/IM1 (Sample B), and
CaZn2/Mg2Ca (Sample C) are classified into Group I. In the alloys belonging to Group I, the
noble phase crystallized in the electrochemically less noble matrix phase. This contradicts
the ideal microstructure shown in Figure 1.
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Figure 5. Microstructures in the prepared alloys: (a) Sample A, (b) Sample B, (c) Sample C, (d) Sample
D, (e) Sample E, (f) Sample F, (g) Sample G, and (h) Sample H. At the points a–q indicated by white
circles, SEM-EDS composition analyses were conducted.
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Table 2. Compositions in at.% examined by SEM-EDS at the points indicated in Figure 4 and the
expected constituent phases in the alloys.

Sample A Sample B Sample C Sample D

a b c d e f g h i

Ca 14.6 0.2 9.3 34.0 18.1 27.9 32.6 10.0 0.2
Mg 42.7 97.1 28.9 0.3 24.9 0.2 49.8 28.0 93.9
Zn 42.7 2.7 61.9 65.7 57.1 71.9 17.6 62.0 5.9

phase IM1 α-Mg IM3 CaZn2 IM1 CaZn2 Mg2Ca IM3 α-Mg

Sample E Sample F Sample G Sample H

j k l m n o p q

Ca 13.1 30.8 11.1 15.5 - - 21.2 27.4
Mg 49.1 57.9 26.0 37.4 64.5 94.8 - -
Zn 37.8 11.3 62.9 47.1 34.5 5.2 78.8 72.6

phase IM1 Mg2Ca IM3 IM1 Mg51Zn20 α-Mg CaZn3 CaZn2

The alloys composed of IM3/Mg (Sample D) and IM1/Mg2Ca (Sample E) belong to
Group II. They exhibited two-phase microstructures with an ideal matrix consisting of noble
phases. However, the less noble second phase has a network microstructure with mesh-like
connections between the grains. In such a microstructure, a risk of the slow-dissolving
phase with a noble corrosion potential becoming desorbed and diverging into the body
during the dissolution of the alloy exists, which is undesirable for the biodegradable alloy
developed in this study.

The alloys composed of IM3/IM1 (Sample F), Mg51Zn20/Mg (Sample G), and CaZn3/
CaZn2 (Sample H) belong to Group III. In contrast to the alloys belonging to Group I
and II, they exhibited relatively ideal microstructures, in which a porous structure was
expected to develop on the surface over time while maintaining the bulk morphology
during the progress of the dissolution reaction. Therefore, alloys belonging to Group III
are the most promising for development as new dual-phase biodegradable alloys. Among
them, the degradation behavior of Sample F, which was composed of IM3/IM1 phases in
the Ca–Mg–Zn ternary system, was further examined in this study.

Figure 6a shows an OM image of the surface morphology of Sample F immersed
in Hanks’ solution for 250 h. As expected, Sample F retained its bulk morphology even
after 250 h of immersion. By maintaining the bulk shape, the formation of concavities
was observed on the sample surface due to the progression of corrosion of the second IM1
phase. Figure 6b and Table 3 show the SEM image and composition analysis results for the
surface of the immersed sample. The formation of calcium phosphate, which is expected to
assist bone formation, was observed near the concavities, associated with the preferential
corrosion of the IM1 phase. The problem, however, is that cracks frequently formed around
the concavities in the microstructure, as indicated by the arrows in Figure 6a. Therefore,
further dissolution can lead to significant deterioration in the mechanical properties.

Table 3. SEM-EDS composition analysis result measured at positions a and b indicated in Figure 6b,
in at.%.

a b

Ca 35.7 14.0

Mg 8.7 22.8

Zn 1.9 63.2

P 16.4 -

O 37.4 -
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Figure 6. (a) Surface morphology of the Sample F after immersed in Hanks’ solution for 250 h.
The arrows indicate the formation of cracks around the dissolved IM1 phases. (b) Corresponding
SEM image. At the points a and b indicated by white circles, SEM-EDS composition analyses
were conducted.

The formation of such cracks is attributed to the rapid generation of hydrogen gas
associated with dissolution. A schematic of the assumed crack formation mechanism is
shown in Figure 7. Crack formation is considered to occur through the following processes:

(i) Galvanic corrosion selectively causes anodic dissolution in the second phase, which is
accompanied by active hydrogen evolution as a cathodic reaction in the nearby matrix
phase, primarily by the following reactions.
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Anodic reaction
Mg(s) = Mg2+(aq) + 2e− (1)
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Ca(s) = Ca2+(aq) + 2e− (2)

Zn(s) = Zn2+(aq) + 2e− (3)

Cathodic reaction

2H2O(aq) + 2e− = H2 (g) + 2OH− (aq) (4)

Mg2+(aq) + OH− (aq) = Mg(OH)2 (s) (5)

Mg(OH)2 (s) + 2Cl− (aq) = MgCl2 (aq) + 2OH− (aq) (6)

Zn2+(aq) + 2OH− (aq) = Zn(OH)2 (s) (7)

Zn(OH)2 (s) = ZnO (s) + H2O (aq) (8)

(ii) Some hydrogen atoms penetrate the matrix phase and rejoin on a molecular level
below the surface. This generates hydrogen gas within the matrix phase and produces
a swelling called a blister [38].

(iii) At some point, the blisters rupture, causing cracks.
(iv) The cracks may induce fracture of the alloy.

Therefore, it is considered that crack formation around the concavity was caused by
the rapid dissolution of the second phase. Further control of the dissolution behavior is
thus necessary to prevent the cracks’ formation caused by the formation of hydrogen gas
blisters to achieve sound dynamic porosity on the surface of the dual-phase alloy.

3.2. Variation in Galvanic Corrosion Behavior between IM3 and IM1 Phases Depending on IM1
Phase Composition and Area Fraction

To obtain a control guideline for the IM3/IM1 dual-phase alloy, the galvanic currents
between IM3/IM1 were performed. It has been reported that the galvanic current produced
by dissimilar metal contacts between a less noble metal A and a noble metal C can be
estimated by the following theoretical equation [39], under the condition that the galvanic
potential of the electrically coupled metals A and C is in the region where the only signif-
icant reaction involving metal A is the anodic (metal dissolution) process, and the only
significant reaction involving metal C is cathodic reduction:

Ig = IA
a
(
Eg

)
=

∣∣∣IC
c
(
Eg

)∣∣∣ (9)

log Ig =
EC

corr − EA
corr

ba + |b c|
+

|bc|
ba + |b c|

log iCcorr AC +
ba

ba + |b c|
log iAcorr AA (10)

where the superscripts A and C refer to metals A and C, respectively; Ig is the galvanic
current, Eg is the galvanic potential, IA

a is the anodic current, and IC
c is the cathodic current.

EA
corr and EC

corr are the corrosion potentials of the uncoupled metals, iAcorr and iCcorr are the
corrosion current densities of the uncoupled metals. bc is the Tafel slope for the cathodic
reaction involving metal C, ba is the Tafel slope for the anodic reaction involving metal A,
and AA and AC are the surface areas.

Based on this theoretical relationship, we attempted to experimentally examine the
effects of the corrosion potential difference between the IM3/IM1 and their volume (area)
fractions on the degradation behavior. Single-phase alloys composed of the IM1 and
IM3 phases were prepared as the anode and cathode, respectively, for galvanic current
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measurement. As shown in Figure 3, the IM1 phase has a wide composition range in which
the Mg/Zn ratio can be changed while maintaining the Ca composition. A previous study
demonstrated that the corrosion potential of IM1 varied widely depending on the Mg/Zn
ratio [10]. As the Mg/Zn ratio increases, the corrosion potential decreases continuously.
Based on the results, two IM1 single-phase alloys with compositions of Ca3Mg7Zn8 (Mg/Zn
ratio: 0.88) and Ca3Mg4.6Zn10.4 (Mg/Zn ratio: 0.44) were prepared.

The typical examples of the measured results are shown in the Supplementary Figure S1.
After the initial transient region, the current density showed a stable value at around 6000–8000 s.
Figure 8a,b shows the average galvanic current densities at the stable region measured in the
several times of tests for the two IM1 anodes with different compositions with respect to the
IM3 cathode. The results demonstrate that the galvanic current density increases as the Mg/Zn
ratio in IM1 increases, i.e., as the corrosion potential difference with respect to IM3 increases,
as expected. The measured current densities are in relatively good agreement with the values
estimated by Equation (10) using the values evaluated from the polarization curves of the used
anodic IM3 and cathodic IM1 samples shown in Supplementary Figure S2. Furthermore, the
galvanic current density increased with an increase in the cathode/anode area fraction ratio, also
showing relatively good agreement with the theoretical values, even in the present alloy systems
that exhibited relatively severe dissolution behavior. The results indicate that the degradation
rate in the IM3/IM1 dual-phase alloy can be controlled by varying the area (volume) fraction
of the IM3/IM1 phases and the corrosion potential difference, which can be controlled by the
composition of the equilibrium IM1 phase.
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electrode with respect to anodic IM3 phase. (a) IM1 with composition of Ca3Mg7Zn8 (Mg/Zn ratio:
0.88) and (b) IM1 with composition of Ca3Mg4.6Zn10.4 (Mg/Zn ratio: 0.44).

3.3. Actual Control of Degradation Behavior of IM3/IM1 Dual-Phase Alloys

Based on the results shown in Figure 8, we attempted to develop a strategy for
controlling the dissolution behavior of the IM3/IM1 dual-phase alloys by focusing on two
other alloys with different compositions (samples I and J). Sample I had a composition of
Ca13Mg26Zn61. This was prepared to reduce the corrosion potential difference by changing
the composition of the faster-dissolving second phase of IM1 from Ca3Mg7Zn8 (Mg/Zn
ratio: 0.88) in Sample F to the more electrochemically noble Ca3Mg4.6Zn10.4 (Mg/Zn ratio:
0.44). The other sample J had a composition of Ca12Mg25Zn63. This was prepared to reduce
the corrosion potential difference between the two phases using the same strategy as in
sample I, while simultaneously reducing the volume fraction of the second phase.

Figure 9 shows the microstructures of the prepared IM3/IM1 alloys. Composition
analysis results by SEM-EDS are shown in Supplementary Figure S3. The measured results
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confirmed the change in the composition of the IM1 phases with the change in the Mg/Zn
ratio of 0.79 in Sample F to 0.40 in Sample I and 0.30 in Sample J, as expected. In addition,
the volume fraction of the IM1 phase changed from 15.9% in Sample F to 5.4% in Sample J,
whereas it remained almost constant at 16.4% in Sample I.
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Figure 9. Microstructures of three IM3/IM1 dual-phase alloys. (a) Sample F (Zn59Mg29Ca12),
(b) Sample I (Zn61Mg26Ca13), and (c) Sample J (Zn63Mg25Ca12).

Figure 10 shows the variations in the surface morphology of each sample after four
weeks of immersion in the Hanks’ solution. In Sample F, a significant uplift of the surface
was observed due to blister formation, which caused the crack initiation, as shown in
Figure 9a. However, such an uplift of the surface was significantly suppressed in samples I
and J, where the second phase of IM1 changed to a more noble Ca3Mg4.6Zn10.4.
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sion in Hanks’ solution for 4 weeks: (a) Sample F, (c) Sample I, and (e) Sample J. (b,d,f) Corresponding
height contour map.

Figure 11 shows the cross-section SEM images of the immersed specimens. The ob-
servation was conducted by cutting the specimens after immersion. It was found that in
addition to Sample F in which significant blister formation was observed, Sample J also
partially showed traces of crack formation around the corroded areas. In specimens F and J,
oxygen penetration was confirmed in the interior more than 200 µm depth from the surface
(Figure 11c,i), but such behavior was seldom observed in Specimen I (Figure 11f). This
suggests the oxidation occurred along the cracks in specimens F and J. That is, the reduction
in the volume fraction of the second phase resulted in an increase in the dissolution rate,
whereas when the volume fraction of the second phase is significantly decreased, it can
cause blistering similar to that observed in sample F. On the contrary, while concavities in
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Sample I were formed by the selective dissolution of the second IM1 phase, excessive corro-
sion was suppressed by the formation of a zinc oxide film on the surface of the concavities.
No cracks were observed in the matrix IM3 phase, indicating that the degradation behavior
relatively close to the ideal situation shown in Figure 1 could be realized in the IM3/IM1
dual-phase alloy. In future work, we will further examine the effect of each factor on disso-
lution behavior during long-term immersion, assuming its use in vivo. Furthermore, it is
necessary to specifically evaluate changes in mechanical properties due to microstructural
control. As another topic, further control of the microstructure, especially focusing on the
size, distribution, and morphology of constituent phases via the control of solidification
conditions must be also considered.
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Figure 11. SEM-EDS elemental mapping images of the cross-section of IM3/IM1 samples immersed
in Hanks’ solution for 4 weeks: (a–c) Sample F, (d–f) Sample I, and (g–i) Sample J. (a,d,g) SEM image,
(b,e,h) Zn concentration map, and (c,f,i) O concentration map.

4. Conclusions

As a new potential in-vivo biodegradable material that dynamically forms cell-inducing
surface undulations as the dissolution progresses, a relatively ideal microstructure was
obtained for the IM3/IM1 dual-phase alloy. These results suggest that the selective cor-
rosion of the second phase may lead to the formation of a porous microstructure on the
surface. A tendency for localized corrosion to be accelerated by an increase in the corrosion
potential difference between the constituent phases or a decrease in the volume fraction of
the second phase was observed. This indicates the possibility of controlling the dissolution
behavior of dual-phase alloys through a more precise control of these factors in the future.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/met13061095/s1, Figure S1: Typical variations in current densities
measured between the anodic IM3-Ca2Mg5Zn13 phase and cathodic IM1 phase with composition of
Ca3Mg7Zn8 and (b) Ca3Mg4.6Zn10.4, depending on the area fraction of cathodic IM1 phase electrode
with respect to anodic IM3 phase; Figure S2: The polarization curves of the IM3-Ca2Mg5Zn13, IM1-
Ca3Mg7Zn8 and IM1-Ca3Mg4.6Zn10.4 phases, used for the evaluation of the galvanic current density
shown in Supplementary Figure S1; Figure S3: (a,b) SEM images showing the microstructures in the
prepared alloys: (a) Sample I and (b) Sample J. (c) Compositions in at.% examined by SEM-EDS at the
points indicated in (a,b) and the expected constituent phases in the alloys; Table S1: Composition of
the Hanks’ balanced salt solution used in this study (Gibco, US, No.14025).
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