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Model Order Selection Criteria: Comparative Study and 
Applications 

 
 

Streszczenie. (Kryteria i porównanie metod redukcji modelu procesu). Artykuł przedstawia kryteria i porównanie metod redukcji modelu 
procesu. Przedstawiono i porównano róŜne kryteria bazujące na dekompozycji macierzy korelacji według wartości własnych: AIC, MDL i MIBS. 
Porównania dokonano na sygnałach harmonicznych odpowiadających układowi niestacjonarnemu. 

 
Abstract. A practical application of information theoretic criteria is presented in this paper. Eigenvalue decomposition of the signal correlation matrix-
based AIC, MDL and MIBS criteria are investigated and used for online estimation of time varying parameters of harmonic signals in power systems. 

 
Słowa kluczowe: redukcja rzędu modelu, kryteria redukcji, przetwarzanie sygnałów. 
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Introduction 

 Determination of the model order arises in many areas 
of signal processing. In this paper we will focus on 
approaches based on eigenvalue decomposition of the 
signal correlation matrix (time-delayed in vector signal 
case). Wax and Kailath (1985) presented a new approach 
for estimating the number of signals in multichannel time-
series, based on statistical classification criteria AIC (Akaike 
Information Criterion) and MDL (Minimal Description Length 
Criterion) [3]. Use of such statistical criteria resolves the 
problem of estimation of the signal and subspace 
dimension, which is necessary to obtain the correct 
estimates od the signal parameters, using the methods 
considered in this work [4]. New criterion [5] based on 
Bayesian statistics will be also investigated. 
 

Estimation of the order of the model 

Information theoretic criteria 
 Wax and Kailath [10] presented a new approach for 
estimating the number of signals in multichannel time-
series, based on statistical classification criteria AIC and 
MDL. This approach does not require any subjective 
threshold setting. 

 
Approach based on ,,observation” 

 The most common approach is to calculate the 
eigenvalues of the correlation matrix R of the signal, 

denoted by: 
 

(1)   pλλλ ≥≥≥ ...21  

 
 The set of the smallest eigenvalues with values equal to 

the noise variance o
2
 has the dimension p-q [10]. If the 

correlation matrix is exactly known, the number of signals q 
can be determined as the number of the smallest 
eigenvalues. However, the correlation matrix, estimated 
from a finite sample size has all different eigenvalues. In 
real-life problems, this method is difficult and unreliable. 
 

AIC and MDL 

 The information theoretic criteria for model order 
selection address the following problem: 

 Given a set of N observations X={x1,...,xN} and a 

parameterized family of probability densities f(XΘ) (a 

family of models), select one model that fits best the set of 
observations [10]. 

Akaike [2] proposed the following criterion, defined by: 
 

(2)  ( ) kXfAIC 2|log2 +Θ−=
⌢

 

 

where Θ
⌢

 is the maximum likelihood estimate of the 

parameter vector Θ and k is the number of freely adjustable 

parameters in Θ. The first term represents the log-likelihood 
of the maximum likelihood estimator of the parameters of 
the model and the second term assures that AIC becomes 
an unbiased estimate of the mean Kullback-Leibler distance 

between the modeled and estimated densities of f(XΘ). 
 Further works of Schwartz (Bayesian information 
criterion, BIC) and, independently, of Rissanen (Minimum 
Description Length, MDL) [6]) yielded the following criterion:  
 

(3)  ( ) NkXfMDL log
2

1
|log +Θ−=
⌢

 

 

In [10] both AIC and MDL criteria were adapted for 
detection of the number of signals. This procedure is 
recalled here in simplified form. 
 The log-likelihood term in (2) or (3) becomes the ratio of 
the geometric mean to arithmetic mean of a number of the 
smallest eigenvalues. 

 The number of free parameters in Θ
⌢

 is obtained as the 

number of the degrees of freedom of each of the 
parameters. Finally, both criteria are given by (for complex 
signals): 
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The number of signals is determined as the value of 

k∈{0,1,...,p-1}  which minimizes the value of (4) or (5). 

 Although widely studied from the theoretical point of 
view, statistical criteria haven’t been found to be useful in 
practice [9]. 
 

Bayesian model selection - MInka's Bayesian model order 
Selection Criterion (MIBS) 
This method also bases on eigenvalues of the data 
covariance matrix [5], but uses the Bayesian framework and 
Laplace method for approximation of integrals [1]. 
 The PCA model assumes Gaussian distribution of the 
sources (this model works reasonably well also for non-

Gaussian sources [5]) and the observation vector X was 

generated from a smaller sources' vector s by linear 

transformation with additive noise e 
 

(6)   emHsX ++=  

 The probability of the model evidence q can be 

calculated from the eigenspectrum of the data covariance 
matrix. 
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where p(U) denotes a uniform prior over all eigenvector 

matrices, N  number of observations, MLο
⌢

 - estimate of the 

noise in the maximum-likelihood sense, m=pq-q(q+1), and 
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where λl denotes an eigenvalue, ll λλ =
⌢

 for l≤q and 

2
MLl ολ
⌢

⌢

= , otherwise. 

 To find the signal subspace ``latent dimension" such 

value of q is chosen which maximizes the approximation of 

the model evidence p(Xq). 
 

Time-frequency parametric spectral estimation 

As an example of application the time-frequency 
representation, as proposed in [4], is shown. The problem 
of harmonic retrieval is often based on the following signal 
model:  
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After decomposition into signal and noise parts:  
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MUSIC [7] assumes that the correlation matrix may be of 

any dimension M>K and bases on M-K noise eigenfilters. 
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 Every eigenfilter has M-1 roots, K roots are common for 

all eigenfilters. Using the property that all signal zeros are 
the roots of (12), the equation (13) can be transformed to: 

(14) ( ) )/1()(/1)()( **
22

**
11 zHzHzHzHzD =  

where c is a constant and H1(z) contains the signal zeros 

whereas H2(z) contains the extraneous zeros which lie 

inside the unit circle on the complex plane. The root-MUSIC 
procedure uses the most straightforward way to find the 

roots of D(z) and identify the frequencies of the signal 

components by using the knowledge that all those roots lie 
on the unit circle. 
In order to investigate the time-varying signals with the time 
varying signal is broken up into small time segments (with 
the help of the temporal window function) and each 
segment is analyzed. 
Investigations 

The performance with regard to accuracy of the 
estimation of the number of components is tested using 
simulated signals with Gaussian noise. The sampling 
frequency was set to 1000 Hz and each calculation was 
repeated 1000 times for independent realizations of the 
signal. First, the estimation accuracy

1
 depending on the 

signal length was checked (two sinusoids 50 and 150 Hz 
with unit amplitude and SNR 20 dB

2
). Figure 1 shows that 

accuracy of MIBS strongly depends on the number of 
samples and achieves only 68% accuracy for the window of 
500 samples chosen for further investigations. Excellent 
performance of AIC should be noted as it achieves over 
90% for 20 samples only.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Accuracy of the dimension estimation by AIC, MDL and 
MIBS depending on the signal length. 

                                                
1 Accuracy is determined as a percentage of runs when a signal 

parameter was estimated correctly. 
2
 














=

2
0

2

10log10][
ο

ο sdBSNR
 

 



PRZEGLĄD ELEKTROTECHNICZNY R. 81 NR 2/2005 3

 Figure 2 deals with the masking problem of the weaker 
component by the stronger one. One component with the 
basic frequency has the fixed amplitude and the second has 
it gradually decreasing. Generally MDL offers best accuracy 
close to 100% down to 0.08 with exception of the smallest 
relative amplitudes where MIBS achieves over 50% 
accuracy for values as low as 0.04. 
 In figure 3 the results are presented which show what is 
the lowest difference in frequency that still allows detecting 
of two separate components of the same amplitude. AIC 
performs poorly and fails by the values of 50 and 74 Hz (24 
Hz of difference), whereas MDL needs only 12 Hz 
difference to correctly estimate. As before, MIBS offers 
advantage for the lowest values of difference. 
 Increasing number of sinusoids with the same amplitude 
was also estimated. AIC failed by four components other 
methods by five (the frequencies were 50, 100, 150, 200, 
250 Hz). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Accuracy of the dimension estimation by AIC, MDL and 
MIBS depending on the relative amplitude of two sinusoidal 
components 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Accuracy of the dimension estimation by AIC, MDL and 
MIBS depending on the difference of frequencies of two sinusoids 
with equal amplitude 
 

 The Gaussian noise has little influence on accuracy as 
shown in figure 4. The highest immunity shows MIBS with 
accuracy of almost 70% for SNR as low as5 dB, followed by 
MDL (100% for 2 dB) and AIC (100% for 4 dB). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4. Accuracy of the dimension estimation by AIC, MDL and 
MIBS depending on the SignatoNoise Ratio 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Scheme of the simulated transmission line system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6. Waveform of the A--phase current during switching of the 
condenser banks in the transmission line 
 The switching of the condenser bank in the transmission 
line was simulated using the EMTP software with the 
simulation parameters as shown in the Figure 5. The 
sampling frequency was 10 kHz and the length of the 
analysis window was set to 100 samples (0.01 s). The A-
phase current is shown in the Figure 6. The first condenser 
bank was switched on at the time t=0.03 s and the second 
condenser bank at the time t=0.09 s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Time--varying frequency of the two components of the 
current 
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Fig.8. Time--varying amplitude of the two components of the 
current 
 

 The number of components was determined online 
using the AIC criterion (with limitation to maximum of four 
components) for each analyzed time interval of 100 
samples. To keep the picture legible, in the Figure 7 the first 
two components only are shown. Components were sorted 
according to their frequency. In the Figure 8 the 
corresponding amplitudes (derived from components' 
powers computed by the root-MUSIC procedure) are 
shown. The first component corresponds to the 
fundamental harmonic of 50 Hz. With exception to short 
intervals (around the switching points) where the stationarity 
assumption is not satisfied, the results of estimation of 
frequency are reliable and correspond precisely to the time 
waveform. The second component has a transient, 
exponentially decaying character with frequency of 476 Hz 
after the switching of the first condenser bank which 
changes to 270 Hz after the second switching operation. 
 
Conclusions 

 The application of statistical model order selection (in 
this case - estimation of the number of sinusoidal 
components) allow to track on-line the parameters of the 
signal. It can be also used as one of the input values of the 
system of automatic detection and classification. 
 In the paper the influence of the estimation accuracy of 
the sample correlation matrix (depending on the length of 
the signal), the influence of the number of components and 
of their relative amplitudes on the accuracy of statistical 
estimation of the number of components was presented. 
The use of information—theoretic criterion like AIC, together 
with high-resolution parametric estimation method, like 
MUSIC, allows precise on-line estimation of the signal 
parameters by using the sliding window approach in the 
case when the parameters of the components are time-
varying. 
 

This work was partially supported by the State Committee 
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