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1. INTRODUCTION 

Real-time estimation of parameters of sinusoidal signals from noisy and distorted 
data has received considerable attention recently. Many sophisticated methods have been 
proposed including the Prony method, the Pisarenko harmonic decomposition and the @ Yule-Walker method. Many of these algorithms lead to a large computation burden and 
are rather numerically time consuming. 

Fast determination of parameters of the hndamental waveform of voltages and 
currents is essential for the control and protection of electncal power systems. For this 
purpose various numerical algorithms have been developed, e.g. based on the Fourier 
and Kalman filtering [ 1, 2, 3 1. Most of the algorithms are not filly parallel algorithms, 
so that the speed of processing is quite limited. 

Recently, there has been a great interest in parallel algorithms and architectures, 
based on the methods of artificial neural networks [ 4 - 7 1. Tank and Hopfield [ 4 ] show 
how optimization problems can be solved by highly interconnected networks of simple 
analog processors. They state that a consideration of such circuits provides a 
methodology for assigning fbnction to anatomical structure in real neural circuits. They 
also illustrate the use of the neural networks for signal processing problems. Kennedy 
and Chua [ 5 ] extend the model proposed by Tank and Hopfield to the general nonlinear 
problem. 

0 The purpose of this paper is to present new algorithms and along with them new 
architectures of analogue neuron-like adaptive processors for online estimation 
of parameters of sinusoidal signals, which are distorted by higher harmonics and 
corrupted by noise. For steady-state conditions we have developed neural networks 
which enable us to estimate the amplitudes and the frequency of the hndarnental 
component of signals. When estimating the basic waveform of currents during short 
circuits the exponential DC component distorts the results. Assuming the known 
frequency, we have developed adaptive neural networks which enable us to estimate the 
amplitudes of the basic components as well as the amplitudes and the time constant of a 
DC component. The problem of estimation of signal parameters is formulated as an 
unconstrained optimization problem and solved by using the gradient descent 
continuous-time method [ 7 1. Basing on this approach we have developed systems 
of nonlinear differential equations that can be implemented by analog adaptive neural 
networks. The solution of the optimization problem bases on some principles given by 
Tank and Hopfield [ 4 ] as well as by Kennedy and Chua [ 5 1. The developed networks 
contain elementswhich are similar to the adaptive threshold elements of the perceptron 
presented by Widrow in [ 6 1. 



2. STATEMENT OF THE PROBLEM 

Consider the following sinusoidal signal distorted by a DC exponential component: 

in which 

X,, Xb are the amplitudes of the sinusoidal signal 
o = 2nf where f is the frequency ( 50 or 60 Hz ) 

Xc , Xd are the parameters of the DC component. 

Let y( t ) denote the noise-corrupted measurement of x( t ), i.e. 

where e(t) is the error. This error includes random noise and distortion caused, for 
example, by measurement instruments. 

Consider the practical case where the signal of interest y( t ) is measured during a 

finite duration of time and only N samples of this signal ~ ( t ) k = ~ ~  = y(mT) = y,, 

are available. Hence, the error em = e(mT) at the moment t = mT can be expressed as 

em = Ym -xm ( 3 )  
where 

x, = x(mT), and T is the sampling interval. 
We are looking for an on-line algorithm which can provide the desired parameters on the 

basis of data samples y,. To formulate the problem we must to construct an appropriate 
energy hnction E ( X ), where X is the vector of the estimated parameters. The lowest 
energy state will correspond to the desired solution. 

In general, the optimization problem can be formulated as follows: 
-_find a vector X which minimizes the scalar eneray function 

where om [em (x)] represents a suitably chosen loss function. 
In practice, the following cases have special importance [ 7, 8,9, 10 1: 

1. for om[em] = leml the estimation problem is referred as the least absolute value 

( L1 - norm ) signal model fitting; 

2. for o,[e,] = e i  we obtain the standard least-squares ( - norm ) optimization 

problem; 

3. taking a,[e,] = k,e; , with km > 0, we have a well-known weighted 

least-squares problem; 
I 

4. for the loss function am[em] = (1 I y) l n{co~h(~e~)}we  obtain iteratively 
reweighted the least-squares problem, also called the robust least-squares criterion; 



5. for E(X) = max {leml}the optimization problem is minimax ( L, - or 
l s r n s N  

Chebyshev norm ) model fitting. 
The proper choice of the optimization criterion used depends on the distribution of the 
noise error in the sampled data. The standard least-squares criterion is optimal for a 
normal ( Gaussian ) distribution of the noise. Often, the signals of voltages and currents 
encountered in power systems are notoriously contaminated by impulsive noise and large 
isolated errors ( outliers ) caused by malfunctioning of some sensors or transient 
components. To reduce the influence of the outliers we can use the iteratively reweighted 
least-squares criterion. In the presence of large impulsive noise, an alternative approach 
is to use the least absolute value criterion. On the other hand, the minimax criterion is an 
appropriate to be used if the errors are uniformly distributed and the samples are 
relatively free from outliers. 

3 .  ESTIMATION UNDER STEADY-STATE CONDITIONS 

@ The frequency in electrical power systems can change over a small range due to 
generation-load mismatches. Some power system protection and control applications 
require accurate and fast estimates of the frequency. Most digital techniques for on-line 
measuring frequency have acceptable accuracy if the voltage waveforms are not 
distorted. On the other hand, under steady-state conditions we don't expect any 
exponential DC component. Thus, in this section we will develop adaptive neural 

networks for estimation of the amplitudes X,, Xb and the angular frequency o of 

sinusoidal signals distorted by random noise and harmonics, assuming X, = 0. 

Up to now, the L1- and La-norm optimization criteria have seldom been used for 
parameter estimation, probably because their nondifferentiability causes numerical and 
analytical difficulties. Fortunately, the minimax and the least absolute value optimization 
problems can be easily reformulated a.r equivalent diffcrcntiable optimization probletus 
a11d ir~lplernented by using artificial neural networks. 

l n i m a x  criterion 

The minimax estimation problem can be reformulated as follows: 
-find a vector ofparameters X which minimizes the energy finction 

Using the steepest descent continuous-time optimization algorithm we obtain the set of 
nonlinear equations [ 7, 10 1: 

1 % = - Smsign (em) sin (mcoT) 
dt T m = l  



do  1 
- = - srnm~sign (e , ) [~ ,  cos(moT) - Xb sin ( rnoT)] 
dt = ,=, 

where the coefficient z represents the time constant of integrators, and 

1 if le,l = max{leil} 

0 otherwise. 

The set of differential equations can be implemented by a neuron-like network shown in 
Fig. 1. The network consists of basic computing units: integrators, summers, multipliers, 
signum activation functions and trigonometric fbnctions generators. The switches S are 
controlled by a special subnetwork called Winner-Take-All ( WTA ) circuit. The hnction 
of the WTA is to select the largest in absolute value instantaneous error. The sign of the 
selected error is transmitted for further processing, while the other error signals are 
completely inhibited by opening corresponding switches. 
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Fig. 1. -cia1 neural network for estimation the amplitudes and the frequency 
of noisy sinusoidal signals 

Least absolute value criterion 

The network shown in Fig. 1 can easily by modified to perform the parameters 

estimation according to L1 - and -norm criteria. By closing all the switches S or by 
removing them and the associated WTA circuit, the network will act according to the 
least absolute value criterion, realizing the set of differential equations: 

1 5 = - sign (em) sin ( r n w ~ )  
dt ,=, 



N 
5 = sign (em) c o s ( m o ~ )  

dt = , = I  

Least-squares criterion 

In order to estimate parameters according to the least-squares criterion all signum 
activation functions must be replaced by linear functions, and all switches S must be 
closed or removed. In this case the neural network can be described by a system of 
differential equations: 

N 
-- dXa - em sin (ma  T) 

dt = , = I  

Computer simulation 

Extensive computer simulation experiments have confirmed that the neural network 
shown in Fig. 1 allows us to estimate in real-time desired parameters of noisy sinusoidal 
signals. Owing to limited space, we shall present only some illustrative results. For all 
examples presented in this paper, we have chosen the following parameters: the number @ of samples N = 30, the integration time constant for all three integrators was 

T = 20 . 10-'s for the Ll- and h-norm, and r = 2 - 1 0 ~ ~ s  for the La-norm. Let us 

consider a sinusoidal signal 140 sin (a t )  + 60 cos(ot ) , o = 1 OOn contaminated by 
uniformly distributed noise. Fig. 2 shows the trajectories of estimated parameters for the 
sampling window NT = 30 ms ( sampling frequency f, = 1000 Hz ) and the noise level 

of 2 %. The figure shows that the trajectories of the estimated parameters X, and Xb 
converge to almost the same values, independed of the criterion used. The best results 
have been obtained using the minimax criterion ( Figs. 3 and 4a ). In the presence of 

higher harmonics the L2-norm shows the best accuracy ( Fig. 4b ). 

4. ESTIMATION UNDER SHORT-CIRCUIT CONDITIONS 

During short circuit the waveform of currents can be additionally distorted by an 
exponential DC component. For the application the sinusoidal signal model has to be 
extended with an exponential term. We have assumed that at the beginning of a short 



Fig. 2. Computer simulated state trajectoriesof the Fig. 3. Errors of the frequency estimation using 
estimated parameters of sinusoidal signal using: a) L, - norm, b) L, - norm, c)  L,- norm criterion; 
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Fig. 4. Errors or the amplitude estimation; signal contaminated by a) uniformly distributed noise, 

and b) 5 th and 7 th harmonics; N = 30; NT = 20 rns 

circuit the frequency remains constant. In this section we shall present adaptive neural 

networks which enable us to estimate the amplitudes X, and Xb of the basic waveform 



as well as the amplitude X, and the time constant Tt = l/Xd of the exponential 
component. 

Robust least-squares criterion. 

The criterion is preferable if additive impulsive noise are expected. 
Using the loss fbnction shown in the Section 2 and applying the known continuous- 

time steepest descent algorithm we obtain a system of differential equations [9]: 

dXa - 1 - - - em sin (mwT) 
dt ,I ,=, 

where E ,  = tanh(ye,) 

The system of differential equations can be implemented by a neuron-like, adaptive 
analogue processor shown in Fig.5. Each channel consists of a sigmoidal fbnction 
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Fig. 5. Artificial neural network for estimation of parameters of sinusoidal signals with 
exponential DC components, using the robust least-squares criterion 



(hyperbolic tangent) generator and exponential hnction generator. The slope of the 
sigrnoid hnction depends on the parameter Y . If Y is small, say less than 0.1, the 
hyperbolic tangent can be approximated by its argument. The sigmoid fbnction is almost 
linear in a wide range, and the network acts according to the standard least-squares 
criterion. If the parameter y is large, say greater than 1000, then the sigrnoid function 
approximates the hard limiter (signum fbnction ) and the network is able to solve the 
problem according to the least-absolute value criterion. 
We have simulated the network on computer and extensively tested for a variety 
of sinusoidal signals corrupted by noise and distorted by exponential DC components. 
The simulations hlly confirmed correctness of the presented approach. For the results 
presented in Figs. 6 and 7 we have chosen the number of samples N = 30 and the 

Fig. 6. Computer simulated signal: x(t )  = -100 sin a t  + 160 cos wt - 160 exp (-80 t) contaminated 
by white noise ( 2 % ) and additive impulsive noise. Trajectories of estimated parameters for the 
signal without (1) and with wild noise (2), y = 1 

n o i s e  , % 

Fig. 7. Errors of the amplitude (a) and phase (b) estimation by using the network in Fig. 5; 
N = 30, y = 1, sampling window: 1) 15 ms, 2) 30 ms 

integration time constant for all integrators r = 2 x s . Fig. 6a. shows a signal with a 
DC component, outliers, and white noise ( 2% ) and Fig. 6b. shows trajectories of the 
estimated parameters for the signal without and with outliers. The figure illustrates that 
the trajectories converge to almost the same values, independent of impulsive noise. 



Minimax criterion. 

The optimization problem can be transformed into an equivalent differentiable 
minimization problem: 

minimize Xo subject to - Xo  < em < Xo , where Xo 2 0 

The optimal value of Xo is simultaneously the minimum of the energy function. By 
applying the standard penalty fbnction approach [ 7 ] the constrained minimization 
problem can be mapped into an unconstrained problem: 

minimize E, (X) , where 

v > 0; k > 0 are penalty terms ( typically v = 1, k = 10 ). 

By applying the gradient strategy i.e. the steepest descent continuous time algorithm 
[ 7 1, we obtain a gradient system: 

1 aem 3 = - - c gm(em, %) - 
dt ' m = l  ax, 

for i = a, b, c, d; where zo > 0, zi > 0 

Taking into account ( 1 ) and ( 2 ) the gradient system ( 20, 21 ) can be rewritten as a 
system of differential equations: 

dX, - 1 
A+ - z [(em + %)Sml + (em - % ) ~ m z ] c ~ ~ ( m ~ ~ )  



1 
dXd - C[(e ,  + %)S,l + (em - ~o)sm,pc(-mT)ex~(-)cdm~) ( 2 6 )  
dt ' m=1 

where 

1 if em < -& 1 if em > & 
Sm1 = 

0 otherwise Sm2 = 
0 otherwise 

The system of differential equations can be implemented by an analogue neural network 
whose fimctional block diagram is shown in Fig. 8. The network has also been simulated 

1 

Fig. 8. Artificial neural network for estimation of parameters of sinusoidal signals with 
exponential DC components, by using the minimax criterion 

on computer and extensively tested. Good agreement with theoretical considerations has 
been obtained. As an example Fig. 9 shows the trajectories of estimated parameters of a 
sinusoidal signal distorted by an exponential DC component. 

5. CONCLUSIONS 

Adaptive analogue neural networks represent a very promising approach for high- 
speed estimation of parameters of signals. In this paper new algorithms and architectures 
of neuron-like adaptive circuits have been proposed. The algorithms for steady-state 
conditions enable us to estimate the amplitudes and the frequency of the fundamental 
component of voltages and currents. The algorithms for short-circuit conditions allows 



us to estimate the amplitudes of the basic component and the parameters of a DC 
exponential component of currents. The choice of a proper network also depends on the 
expected distribution of noise in the measured signal. Extensive computer simulation 
experiments confirmed the validity and performance of the proposed algorithms. 

Fig. 9. Computer simulated trajectories of the estimated parameters of the signal: 
x(t )  = 100 sin a t  - 50 cos a t  + 120 exp(-80t) corrupted by noise ( 2 % ). 
N = 20, sampling window: 1) 20 ms, 2) 40 ms 
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