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Abstract: The paper examines the singular value decomposition 

(SVD) for detection of remote harmonics in signals, in the presence 

of high noise contaminating the measured waveform. When the 

number of harmonics is very large and at the same time certain 

harmonics are distant from the other, the conventional frequency 

detecting methods are not satisfactory. The methods developed for 

locating the frequencies as closely spaced sinusoidal signals are 

appropriate tools for the investigation of power system signals 

containing harmonics differing significantly in their multiplicity. The 

SVD methods are ideal tools for such cases. To investigate the 

methods several experiments have been performed. For comparison, 

similar experiments have been repeated using the FFT with the same 

number of samples and sampling period. The comparison has proved 

an absolute superiority of the SVD for signals burried in noise. 

However, the SVD computation is much more complex than the FFT, 

and requires more extensive mathematical manipulations.  

 

Keywords: Discrete Fourier Transforms, frequency conversion, 

frequency measurement, harmonic analysis, power system, singular 
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I. INTRODUCTION 

 

Modern frequency power converters generate wide spectrum 

of  harmonic components [1], which deteriorate the quality of 

the delivered energy, increase the energy losses as well as 

decrease the reliability of a power system. Estimation of the 

harmonic components is very important for control and 

protection tasks. The design of harmonics filters relies on the 

measurement of harmonic distortion in both current and 

voltage waveforms. There are many different approaches of 

measurements of the harmonics, like FFT, application of 

adaptive filters, artificial neural networks, etc [2,3,4,5]. 

However, most of them can operate adequately only in the 

narrow range of frequencies at moderate noise and very often 

require the prior knowledge of the number of harmonics 

existing in the system. Special technique are required to 

discover remote harmonics. The location of far distant 

harmonics creates the same problems of locating the 

frequencies as very closely spaced sinusoidal signals. The 

singular value decomposition (SVD) approaches are ideal 

tools for such cases [6,7]. The SVD technique is a highly 

reliable, computationally stable, mathematical tool to solve the 

rectangular overdetermined system of equation. To investigate 

the ability of the methods several experiments have been 

performs. We have investigated simulated waveforms as well 

as real current waveforms at the output of a three-phase 

frequency converter supplying an induction motor. For 

comparison, similar experiments have been repeated using the 

FFT with the same number of samples and same sampling 

period. 

 

 

II. PRINCIPLES OF THE SVD APPROACH 

 

Let us assume the waveform of the voltage or current as the 

sum of harmonics of unknown magnitudes and phases  
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in which Xk, ωk and ϕk are the unknown amplitude , angular 

frequency and phase of the k-th harmonic and N is the number 

of these harmonics. The variable e(t) represents the additive 

Gaussian noise with unity variance and ks - the gain factor. 

Further, let us consider the set of n measured samples  

x1, x2, ... xn of the waveform. The number of measurements is 

usually higher than the number of harmonics. Estimation of 

harmonics is then equivalent to solving the overdetermined 

system of algebraic equations [7]. 

 

Ah = b (2) 

 

where the matrix A and vectors h and b are given as follows 
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l is the order of predicted AR model of the data 

(N≤ l≤ n-N/2). The vector h is composed of the coefficients of 

the impulse response of this model 
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The solution for vector h of (2) is possible in least square 

(LS) sense, that is by minimising the summed squared error 

between the left and right hand sides of the equation. The 

objective function to be minimised may be expressed in the 

norm - 2 vector notation form as 
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For solution the most suitable method seems to be  the 

application of singular value decomposition . In this approach 

we represent the rectangular matrix A as the product of three 

matrices 

 

A = U S V
t
 (5) 

 

where U and V are orthogonal matrices of the dimension n×n 
and l×l respectively, while S is the quasidiagonal n×l matrix of 

singular values s1, s2, ... ,sp ordered in a descending way, i.e. 

s1≥s2 ≥...≥sp≥0. The essential information of the system is 

contained in the first nonzero singular values and first p 

singular vectors, forming the orthogonal matrices U and V. 

Cutting the appropriate matrices to this size and denoting them 

by Ur, Sr, and Vr, respectively, we get the solution of the (2) in 

the form  
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On the basis of the determined coefficients h the zeros of 

polynomial (3) can be found. The phases of the roots, closest 

to the unit circle denote the angular frequencies of the 

sinusoids forming the waveform (1). These frequencies can 

also be determined on the basis of the frequency characteristics 

of the model (3). They correspond to the frequencies in the 

range -0,5≤ f≤ 0,5 for which the magnitude response 

H(e
j2πf

) is equal or closest to zero. 

 

 

III. PRACTICAL SUGGESTION 

 

Applying the described algorithm to the location of 

harmonics in the power system we should notice some 

important features of this process. 

If the number of evenly distributed harmonic signals taken 

into consideration is smaller than or equal 6, their distribution 

on the unit circle is far from each other and as a result their  

detection is simple and can be done by any method applicable 

to frequency estimation at the minimal computation cost. For 

the first 6 harmonics with the normalised fundamental 

frequency ω = 1, placed on the unit circle, the angle distance 

between the (k-1) and k-th harmonics is (if they exist) equal 1 

radian (≈57°). 
If the number of harmonics signals exceeds 6, their 

distribution on the unit circle is becoming dense and the 

distances in the space between some harmonics are close. In 

the case of signal containing the first 12 harmonics, the 

harmonics 1 and 7, 2 and 8, etc, are placed in pairs, close to 

each other and their recognition is more complex. From this 

point of view this problem is like the recognition of closely 

spaced sinusoids. 

The situation worsens, when the number of harmonics 

signals taken into consideration is very large and at the same 

time certain harmonics are distant from the other. If we take 

for example the 50-th harmonic signal (the fundamental 

frequency equal as above (ω = 1), its position on the unit circle 

corresponds to the angle of 346.2° and is very close to the 

position of the 6-th harmonic (angle 343.9°). This is the 

reason, why the conventional frequency detecting methods are 

not satisfactory, when the number of harmonics taken into 

considerations is large. However, the SVD methods, 

developed for closely spaced sinusoidal signals, are ideal tools 

for such cases. 

In practice instead of presenting the result on the unit circle, 

we will project them onto the frequency characteristics of 

H(z). The point of magnitude response equal to or closest to 

point zero will mark the position of frequency that should be 

taken into consideration at the estimation process.  

The other problem that should be answered is the choice of 

the number of samples n and the order l of the predicted model 

of the system. Generally, the higher the number of harmonics, 

the higher should be the number of samples and also the order 

l of the model. However this means the increase of 

computation complexity of the problem. 

One of the way to asses a priori the number of harmonics is 

analyse the singular values of the system. At a moderate noise 

- to - signal ratio there is a visible gap between the first biggest 



singular values corresponding to the harmonic signals and rest 

of them, carrying meaningless information. 

 

 

 IV. NUMERICAL EXPERIMENT 

 

To investigate the ability of the approach we have 

performed several experiments with the signal waveform 

describe by (8) (Fig.1) and different values of ks. 

 

x(t) = 200cosω t + 50cos5ω t + 70cos7ω t + 

50cos19ω t + 30cos25ω t + 30cos45ω t + ks e(t) 

(8) 

 

where ω = 2π × 40, e(t) - a white noise of zero mean and 

variance equal to 1. 

The sample period was 0.2ms and the number of samples n 

as well as the order l of the system was dependent on the noise 

- to - signal ratio. The higher the ratio, the more samples and 

higher order systems have to be applied. For the waveform 

described (8) good results have been obtained at n=85 and 

l=70.  

Taking into consideration only the dominant singular values, 

we can approximately asses the number of harmonic signals 

existing in the measured waveform. Fig.2 presents the obtained 

magnitude frequency characteristics of the system. The zeros 

of the characteristic or the points closest to zero, determine the 

exact values of the harmonics frequencies. For comparison we 

have repeated similar experiments using Fourier algorithms 

with the same number of samples and the same sampling 

period. The superiority of the SVD method over Fourier 

methods is visible. 

The SVD method enables us to detect all the harmonics of 

the signal (8) (Fig.2). Moreover, the method makes it possible 

to estimate the frequency of the basic component - 40 Hz 

(Fig.2c). When using the FFT method we obtain an erroneous 

frequency close to 60 Hz. The 45th harmonics has been 

detected even for the noise coefficient ks = 90 (Fig.2e). 
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Fig.1 Simulated waveform of many harmonics signal burried in noise, as in 

(8), ks = 40, l = 70, n = 85. 
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Fig.2 Magnitude characteristic of H(z) at the SVD - method (a, c, e) and the 

FFT method (b, d, f) of the signal in Fig.1, = 70, n = 85.  

c,d - enlargement for frequency estimation of the fundamental harmonic. 

e,f - enlargement for frequency estimation of the 45th harmonics, ks = 90. 
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Fig.3 Current waveform at the output of frequency converter. 

 

 

V. INVESTIGATION OF A POWER CONVERTER 

CURRENT 

 

The investigated drive represents a typical configuration of 

industrial drives, consisting of three-phases asynchronous 

motor and a power converter composed by a single-phase half-

controlled bridge rectifier and a voltage source inverter. The 

waveforms of the inverter output current under normal 

conditions (Fig.3) have been investigated using the SVD 

method and the FFT. The main frequency of the waveform was 

40 Hz. Using the SVD method with l= 70, n= 80 we can 

detect the following harmonics (Fig.4a) : 7th, 13th, 23th, 25th 

and 35th. The FFT method is unable to detect them (Fig.4b). 

It is also possible to estimate the frequency of the fundamental 

component (~ 40 Hz), while the FFT method shows more than 

50 Hz (Fig.5 a, b). In this case we have 
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Fig.4 Magnitude characteristic of H(z) at the SVD - method and the FFT 

method of the signal in Fig.3, l = 70, n = 80. 
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Fig.5 Magnitude characteristic of H(z) at the SVD - method (a, c) and the 

FFT method (b, d) of the signal in Fig.3, l = 70, n=100. 

a,b - enlargement for frequency estimation of the fundamental harmonic. 

c,d- enlargement for frequency estimation of higher harmonics. 

 

 

applied estimation of the main component frequency enable us 

to choose an appropriate sampling window for the FFT. For 

exact estimation of the frequency of distant harmonics we have 

also applied a higher number of samples, n = 100  

(Fig.5 c, d). 

 

 

VI. CONCLUSIONS 

 

The SVD method for harmonics detection in a power system 

has been investigated in the paper. It has been shown, that the 

location of far distant harmonics creates the same problems as 

very closely spaced sinusoidal signals. The proposed SVD 

method has been investigated at different condition and found 

to be very variable and efficient tool for detection and location 

all higher harmonics existing in the system. The comparison to 

the standard FFT technique has proved absolute superiority of 

SVD approach for signals burried in noise. 



VII. ACKNOWLEDGMENTS  

 

The authors would like to thank the Communittee for 

Scientific Research KBN (Poland) for its financial support 

(grant 8T10A07210). 

 

 

VIII. REFERECES 

 
[1] G. Gentile at al., „Fault operation of inverter - fed induction motor.”, 

Proceedings of the 31st Universities Power Engineering Conference, 

Greece 1996, vol.2, pp. 353 - 360. 

[2] A. Girgis, W.B. Chang and E.B. Makram, „ A digital recursive 

measurement scheme for on-line tracking of power system harmonics”, 

IEEE Trans. Power Delivery, vol. 6, no. 3, July 1998, pp. 1153 - 1160. 

[3] H. Mori, K. Itou, H. Uematsu and S. Tsazuki, „An artificial neural-net 

based method for predicting power system voltage harmonics”, IEEE 

Trans. Power Delivery, vol. 7, no. 1, January 1992, pp. 402 - 409. 

[4] S. Osowski, „Neural network for estimation of harmonics components in 

a power system”, IEEE Proc.-Gener. Transm. Distrib., vol. 139, no. 2, 

March 1992, pp. 129 - 135. 

[5] A. Cichocki and T. £obos, „Artificial neural networks for real-time 

estimation of basic waveforms of voltages and currents”, IEEE Trans. 

Power Systems, vol. 9, no. 2, May 1994, pp. 612 - 618. 

[6] S. Bakamidis, M. Dendrinos and G. Carayannis, „SVD analysis by 

synthesis of harmonic signals”, IEEE Trans. Signal Processing, vol. 39, 

no. 2, February 1991, pp. 472 - 477. 

[7] S. Osowski, „SVD technique for estimation of harmonic components : in 

a power system; a statistical approach”, IEEE Proc.-Gener. Transm. 

Distrib., vol. 141, no. 5, September 1994, pp. 473 - 479. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IX. BIOGRAPHIES 

 
Tadeusz Lobos received the M.Sc., Ph.D., and Habilitate Doctorate (Dr.Sc.) 

degrees, all in electrical engineering, from the Wroclaw University of 

Technology, Poland , Poland, in 1960, 1967 and 1975, respectively. He has 

been with the Department of Electrical Engineering, Wroclaw University of 

Technology, since 1960, where he became a Full Professor in 1989. From 

1982 to 1986, he worked at the University of Erlangen-Nuremberg, Germany. 

His current research interests are in the areas of transients in power systems, 

control and protection, and especially application of neural networks and 

signal processing methods in power systems.  

Dr Lobos was awarded a Research Fellowship by the Alexander von 

Humbodlt Foundation, Germany in 1976 and spent this fellowship at the 

Technical University of Darmstadt. 

In 1998 he received the Humbodlt Research Award (Germany). 

 

Stanislaw Osowski he received the MSc., Ph.D., and Habilitate Doctorate 

(Dr.Sc.) degrees from Warsaw University of Technology, Poland 1972, 1975 

and 1981, respectively, all in electrical engineering. At present he is a 

professor at the Institute of the Theory of Electrical Engineering and Electrical 

Measurements, Warsaw University of Technology. His research and teaching 

interest are in the areas of neural networks, signal processing, optimalization 

techniques and computer aided circuit analysis and design. 

 

Tomasz Kozina received the M.Sc. in electronic engineering, from the 

Wroclaw University of Technology, Poland, in 1995.  

He has been with the Department o Electrical Engineering, Wroclaw 

University of Technology, since 1995. His current research interests include 

digital signal processing and measurement technique.  

 


