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ABSTRACT  A plant macrofossil record from
the glacial Lake Hind basin is used to recon-
struct early postglacial wetland plant succes-
sion and paleohydrology. Between >10.6 and
9.1 ka BP, there are four plant assemblage
zones: (1) an early (>10.6 ka BP) zone dom-
inated by Cyperaceae and aquatics; (2) a
subsequent zone (~10.6-10.1 ka BP) with
emergents (Menyanthes trifoliata, Potentilla
palustris, Scirpus validus) and fewer aquatic
plants; (3) an interval between ~10.1 and
9.8 ka BP dominated by Drepanocladus
aduncus; and (4) a zone between ~9.8 and
9.1 ka BP with Menyanthes trifoliata and
Equisetum. These data indicate a gradual
decline in water depth between 10.6 and
10.1 ka BP due to deepening of one or more
outlets of glacial Lake Hind. From ~10.6 to
9.1 ka BP, the importance of Menyanthes
records pronounced, seasonal, flooding.
Furthermore, lack of evidence for complete
drawdown and terrestrialization in the basin
– despite local and regional evidence for post-
glacial warming – indicates that this wetland
was minimally impacted by climate change
up to at least 9.1 ka BP. Persistence of very
wet conditions locally is consistent with recent
results from south-central Saskatchewan, and
may be due to release of meltwater from
stagnant ice. However, frequent low-energy
flooding of the basin by the Souris River is
more plausible. In general, the apparent
insensitivity of aquatic habitats to abrupt cli-
mate change in some locales on the
Canadian Prairies demonstrates the poten-
tial long-term mitigating effects of local hydro-
logical factors.

RÉSUMÉ  Paléoécologie d’une zone humide
datant du début de l’Holocène dans les
Prairies canadiennes. L’analyse de macrofos-
siles de plantes dans la cuvette du Lac gla-
ciaire Hind a servi à déterminer la paléohy-
drologie et la succession de plantes d’un
milieu humide du début du Postglaciaire. Entre
>10,6 et 9,1 ka BP, quatre zones d’assem-
blages se succèdent : (1) une première zone
(>10,6 ka BP) dominée par les Cyperacées
et les plantes aquatiques ; (2) une zone sub-
séquente (~10,6-10,1 ka BP) caractérisée par
quelques plantes émergentes (Menyanthes
trifoliata, Potentilla palustris, Scirpus validus)
et certaines plantes aquatiques ; (3) une troi-
sième zone (~10,1-9,8 ka BP) dominée par
Drepanocladus aduncus ; et (4) une dernière
zone (~9,8-9,1 ka BP) composée de
Menyanthes trifoliata et d’Equisetum. Selon
les données, la profondeur d’eau de la cuvette
du Lac glaciaire Hind a diminué de façon pro-
gressive entre 10,6 et 10,1 ka BP à la suite
du surcreusement d’un ou de plusieurs de ses
exutoires. De 10,6 à 9,1 ka BP, l’importance
de Menyanthes témoigne d’importants débor-
dements saisonniers des eaux. De plus, l'ab-
sence d’indices d’un assèchement total de la
cuvette (malgré le réchauffement postglaciaire
local et régional) indique que cette zone
humide a résisté au changement climatique,
au moins jusqu’à 9,1 ka BP. La persistance
de conditions localement très humides
concorde avec de récents résultats provenant
du centre-sud de la Saskatchewan et pourrait
être attribuable à la fonte de glace stagnante.
Cependant, l'hypothèse de débordements fré-
quents mais modérés de la rivière Souris
dans la cuvette est plus plausible. En géné-
ral, l'apparente résistance, dans certains sec-
teurs des Prairies, des habitats aquatiques
aux changements climatiques brutaux
démontre bien le potentiel à long terme des
effets atténuants des facteurs hydrologiques
locaux.

RESUMEN Paleoecología de una zona
húmeda datando del inicio del Holoceno en la
zona de las Praderas canadienses. El regis-
tro macrofósil vegetal de la cuenca del Lago
glaciar Hind fue usado para reconstruir la
sucesión vegetal y la paleohidrología de la
zona húmeda. En un periodo situado hace
unos 10 600 a 9100 años se distinguen cuatro
zonas vegetales : la primera zona (hace mas
de 10 600 años) dominada por Cyperaceae y
acuáticas ; la segunda datando de aproxima-
damente unos 10 600 a 10 100 años, repre-
sentada por plantas emergentes (Menyanthes
trifoliata, Potentilla palustris, Scirpus validus)
y unas pocas plantas acuáticas ; una tercera
situada en el intervalo cubierto entre unos
10 100 y 9800 años, dominada por
Drepanocladus aduncus; y la última que
abarca el periodo comprendido entre unos
9800 y 9100 años, representada por
Menyanthes trifoliata y Equisetum. Estos datos
indican una disminución gradual de la profun-
didad del lago debido a la excavación de uno
o varios de los afluentes del lago glaciar Hind
y que la sitúa hace aproximadamente 10 600
a 10 100 años. Alrededor del periodo com-
prendido entre unos 10 600 y 9100 años, los
registros obtenidos de Menyanthes reflejan
episodios importantes y estacionales de inun-
daciones. Mas aun, la carencia de evidencia
de un descenso del nivel y de la sedimenta-
ción de la cuenca – a pesar de la evidencia
local y regional de calentamiento postglaciar –
indica que esta zona húmeda fue poco per-
turbada por el cambio climático hasta hace
menos de 9100 años. La persistencia de
condiciones muy húmedas de la localidad
concuerda con los resultados recientes de la
zona centro-sur de Saskatchewan, y puede
deberse a la liberación del agua de fusión pro-
veniente del hielo estancado. Sin embargo, es
mas probable que se trate de las inundaciones
frecuentes de baja energía que ocurrieron en
la cuenca provocadas por el Souris River. En
general, la aparente resistencia de los
ambientes acuáticos frente a cambios abrup-
tos del clima en algunas localidades de la
Praderas canadienses demuestra el potencial
a largo plazo del efecto atenuante de los fac-
tores hídricos locales.
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INTRODUCTION

Multi-decadal to century-scale responses of wetlands to
periods of abrupt climate change (Yu and Wright, 2001) are
not well understood on the Canadian Prairies (Wiken, 1986).
Beyond the range of modern observation, dynamic cause-
and-effect connections between vegetation, hydrology, and
climate change at this temporal scale can only be investigated
through detailed analysis of the paleoecological record. Plant
macrofossils are particularly useful in this respect because,
unlike pollen, they are typically deposited in situ, and can be
often identified to species (Birks, 1973). Thus, the macrobot-
anical record permits reliable and precise local-scale models
of past hydrologic and biotic responses to climate change.

The early postglacial period in North America displays cli-
matic oscillations caused by earth-surface and solar forcing
mechanisms (summarized in Yu and Wright, 2001). Of partic-
ular interest for this paper is the well-documented period of
abrupt warming and drying beginning ~10 ka BP (uncali-
brated), but prior to the brief Pre-Boreal Oscillation (PBO) at
9.65 ka BP. There has been little research into the responses
of wetland ecosystems to this warm episode on the northern
Prairies. In part, this situation stems from a general lack of
perennial lakes with continuous paleoecological records in
this region, resulting in few detailed macrobotanical studies. In
many lakes on the Prairies, episodes of prolonged aridity
before the late Holocene caused these basins to dry up, and
the compacted sediments formed during these events have
rendered recovery of underlying early Holocene materials dif-
ficult (Barnosky et al., 1987; Beaudoin, 1993; Vance et al.,
1993). Recently, however, it has been shown that non-tradi-
tional paleoecological sites such as (now dry) kettle-fill sites on
the Canadian Prairies are sometimes excellent repositories
of early Holocene plant remains (Yansa, 1998; Yansa and
Basinger, 1999). Consequently, these sites offer an excellent
opportunity to examine past ecosystem processes during the
early postglacial period.

The study site (Flintstone Hill) is located in the glacial Lake
Hind basin, southwestern Manitoba, Canada.Today, the Hind
basin is underlain by a large groundwater system (the Oak
Lake aquifer). Between ~10.6 to 9.1 ka BP, following the
regression of glacial Lake Hind, aquatic and emergent plants
colonized shallow wetlands in the basin (Boyd et al., 2003).
Because water depth, amplitude of water level fluctuations,
water chemistry, and other hydrologic parameters are impor-
tant factors that determine the wetland plant assemblage pres-
ent at a site (Warner, 1990), changes in the macrobotanical
record permit detailed reconstruction of hydrologic regimes
through time. With this approach, I reconstruct the relation-
ship between hydrology, wetland plant succession, and early
postglacial warming beginning ~10 ka BP. I compare these
results with other early postglacial macrobotanical assem-
blages from the Canadian Prairies in order to differentiate
regional-, from subregional- or local-scale, processes.

STUDY SITE

The Flintstone Hill (FSH) site is a cutbank of the Souris
River, located in the south-central glacial Lake Hind basin

(Figs. 1 and 2). Glacial Lake Hind was one of several intercon-
nected proglacial lakes that formed across the northern Prairies
during the period of final (Late Wisconsinan) deglaciation (e.g.,
Klassen, 1972; Clayton and Moran, 1982; Fenton et al., 1983;
Kehew and Clayton, 1983; Klassen, 1983; Kehew and Lord,
1986; Kehew and Teller, 1994; Sun and Teller, 1997). Lake Hind
was part of the northern Plains proglacial lake-spillway system.
It received meltwater from western Manitoba, Saskatchewan,
and North Dakota through at least 10 channels, and discharged
eastwards into glacial Lake Agassiz through the Pembina spill-
way (Sun, 1996; Sun and Teller, 1997). Much of glacial Lake
Hind was drained shortly before ~10.4 ka BP (Boyd et al.,
2003), due to the catastrophic routing of meltwater from gla-
cial Lake Regina, which deepened and widened the Pembina
spillway (Sun, 1996; Sun and Teller, 1997).

The modern landscape of the Hind basin is dominated by
~18 discontinuous dune fields (“Oak Lake dunes” of David,
1977) mostly of late Holocene age (Boyd, 2000; Running et al.,
2002; Wallace, 2002). Near Flintstone Hill, the dominant eolian
landforms are large parabolic dunes with arms (<10 m high,
500-2 000 m long) that are oriented WNW-ENE. Interdunal
swales support shallow wetlands fed by the Oak Lake aquifer.
The combination of a high water table and considerable topo-
graphic variability sustain forest (Populus-Quercus-Fraxinus),
grassland, and wetland plant communities.

Although river cutbanks are unconventional sites for paleo-
ecological analysis, Flintstone Hill exposes a >2 km long
lithostratigraphic sequence spanning the terminal Late
Pleistocene to the present (Boyd, 2000, 2002; Running et al.,
2002; Boyd et al., 2003). The basal unit (A1), the focus of this
paper, contains a laminated organic deposit with diverse and
well-preserved macrofossils constrained by 14C dates to the
interval between >10.6 and 9.1 ka BP.This record has recently
been used to address the nature of early Paleoindian land-
use in the glacial Lake Hind basin (Boyd et al., 2003). For a
detailed discussion of the entire FSH lithostratigraphic
sequence, see Boyd (2000) and Running et al. (2002).

The basal, fine-textured sediments exposed at Flintstone
Hill are at least 2.25 m thick and extend below the present
river level.The lowest unit (A1) grades from a gleyed massive
to planar-bedded, carbonate-rich, clay to silty clay upward into
a 30 cm thick peaty (organic) deposit with alternating silty clay
and organic laminae (Fig. 3).This organic deposit in the upper
30 cm of Unit A1 exhibits progressively finer texture (clay loam
and silty clay loam) and thinner planar beds (~1-5 mm thick)
upwards. Organic matter (largely plant detritus) also increases
upward. Alternating organic and clastic beds are more fre-
quent in the upper 15 cm, and small (<5 mm high), symmet-
rical ripple structures are preserved in places.Two AMS radio-
carbon dates on seeds of the emergent Menyanthes
trifoliata L. were obtained from the bottom and top portions of
the organic deposit: 10 420 ± 70 BP (12 677-11 991 cal BP)
(Beta-116994), and 9250 ± 90 BP (10 596-10 228 cal BP)
(TO-7692), respectively (Boyd, 2000; Boyd et al., 2003).
Occasional carbonate-rich clastic beds with ripples in this
deposit (particularly in the upper 15 cm) indicate periods of
low-energy flooding and above-surface water levels.
Macrofossils of emergent plants are abundant, suggesting
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generally low water levels. This unit is capped by ~10 cm of
marl (carbonate mud) which overlies the laminated organic
deposit and contains few plant remains. The contact between
this marl (bottom of Unit A2) and Unit A1 is sharp and the
marl exhibits rip-up clasts (mm-1 cm long axes) composed of
detritus from the underlying organic deposit. Unit A1 docu-
ments the regression of glacial Lake Hind to at least the
Phase 9 level (Sun, 1996) before 10.4 ka BP (Fig. 2) (Boyd et
al., 2003).

Unit A2 is composed of interbedded fine sand, silt, clay
and marl, with an overall higher carbonate content than
Unit A1, and abundant gastropod and bivalve shells (Running
et al., 2002); pollen and plant macrofossils are rare. This unit
coarsens upward to a thinner, discontinuous, organic deposit
up to 15 cm thick in a fine sand matrix. A conventional radio-
carbon age on wood from this organic deposit places it at
6700 ± 70 BP (Beta-111142; 7667-7462 cal BP) (Boyd, 2000).
Unit A2 represents the early Souris River prior to incision that
established its present channel through the glacial Lake Hind
basin (see Running et al., 2002). The observed distribution of
marl, grain sizes and bedding that generally coarsen upward,
and greater carbonate content compared to Unit A1, are con-
sistent with low-energy accretion in a position away from the

thalweg of the channel (Running et al., 2002). This interpre-
tation is supported by the gastropod and bivalve shell assem-
blage recovered from Unit A2 deposits at Flintstone Hill
(Running et al., 2002).Vertical accretion facies of Unit A2 with
cumulic A-horizons are locally observed in other cutbank expo-
sures along the Souris River (Running et al., 2002).

MATERIALS AND METHODS

In 2000, one litre samples were collected for macrobotan-
ical processing. The laminated organic portion of Unit A1 and
the underlying massive sediment were sampled completely
and continuously, with each sample representing a depth of
2 cm. Samples were excavated directly from the cutbank face,
and the depth of sampling was limited by the height of the
water table and river. Subsamples of 50 ml were washed
through 250 μm and 125 μm sieves, and the detritus was air-
dried before examination under a dissecting microscope. A
minimum of 150 ml of sediment was processed in this manner
per sample, and macrofossil counts were calculated to a fixed
volume (150 ml). Plant macrofossil identifications used com-
parative collections of the University of Manitoba Herbarium,
in addition to keys in Berggren (1969), Montgomery (1977),
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FIGURE 1. Map of southern
Manitoba with the location of glacial
Lake Hind, the Flintstone Hill (FSH)
study site, southwestern Manitoba,
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Canadian Prairies Ecozone (Wiken,
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Carte du sud du Manitoba et loca-
lisation du Lac glaciaire Hind, du
site d’étude Flintstone Hill (FSH),
dans le sud-ouest du Manitoba, et
des principaux éléments physio-
graphiques. L’écozone des Prairies
(Wiken, 1986) est en gris.
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Lévesque et al. (1988), and Martin and Barkley (2000).
Macrofossil data were zoned by stratigraphically constrained
incremental sum of squares cluster analysis (Euclidean dis-
tance dissimilarity coefficient) (Grimm, 1987).

Complete pollen analysis of Unit A1 at the FSH site is pre-
sented in Boyd (2000) and Boyd et al. (2003). In this study,
only the pollen spectrum for Picea glauca (white spruce) is
presented due to its importance as an early postglacial paleo-
climatic indicator.The pollen of this species was distinguished
from Picea mariana using the qualitative criteria developed
by Hansen and Engstrom (1985).

Unless otherwise stated, all radiocarbon dates are uncali-
brated, and standard deviations are 2σ. Calibrated dates were
obtained using CALIB (Stuiver and Reimer, 1993). Within
Unit A1, dates were also interpolated assuming a steady rate
of sedimentation; this assumption is probably warranted within
the organic deposit only, because it is lithologically uniform
and does not exhibit unconformities.

RESULTS

ZONE I-a (34-29 cm) – CYPERACEAE 
AND AQUATICS (>10.6 ka BP)

Zone I-a lies in the gleyed silts and clays that underlie the
organic deposit in Unit A1 (Figs. 3 and 4). This zone contains
the highest diversity of macroremains from emergent and
aquatic plant taxa; Cyperaceae is dominant (Fig. 5). In partic-
ular, the zone has high but declining values of Carex
(55-10 seeds/150 ml), with a secondary component consist-
ing of Menyanthes (0-30 seeds/150 ml), Myriophyllum
(10-30 seeds/150 ml), Picea needles (10-25 seeds/150 ml),
Hippuris vulgaris (0-15 seeds/150 ml), Scirpus (5-15 seeds/
150 ml); low values of Eleocharis (0-10 seeds/150 ml),

Potamogeton (0-10 seeds/150 ml), Zannichellia (0-2 seeds/
150 ml), Potentilla palustris (0-2 seeds/150 ml), Equisetum
(0-10 stem fragments/150 ml), Chara (10-0 oogonia/150 ml),
mosses, and one Populus bud scale. Preservation in this zone
was excellent because several Carex perigynia were intact
and contained achenes. Assuming a steady rate of sedimen-
tation, this zone ends ~10.6 ka BP.

ZONE I-b (29-20 cm) – EMERGENTS (~10.6-10.1 ka BP) 

This zone is characterized by a decline in macroremains
from Cyperaceae and aquatics, an increase in emergents
such as Menyanthes trifoliata (50-200 seeds/150 ml),
Potentilla palustris (0-20 seeds/150 ml), Scirpus cf. S. validus
(10-20 seeds/150 ml) and Equisetum, and abundant remains
of Catoscopium. Small quantities of the following were also
observed: Picea, Eleocharis, Hippuris, Myriophyllum,
Potamogeton, and others.

ZONE I-c (20-14 cm) – DREPANOCLADUS
(10.1-9.8 ka BP)

This zone is dominated by the moss Drepanocladus
(400-600 fragments/150 ml). Remains of aquatic plants, with
the exception of Hippuris vulgaris (7 seeds/150 ml), are
absent. Macroremains from emergent taxa such as
Menyanthes, Equisetum, and Carex are present, although in
relatively low numbers.

ZONE II (14-0 cm) – MENYANTHES-EQUISETUM
(~9.8-9.1 ka BP)

Zone II is dominated by macroremains from Menyanthes
trifoliata (50-420/150 ml) and Equisetum (50-450/10 ml). In the
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middle of this zone, M. trifoliata peaks while all other taxa
decline (Fig. 4). In contrast to zones I-b and I-c, there were no
mosses and only a few seeds of Hippuris and Myriophyllum.
Zone II also displays an overall decline in Picea and, at the top
of this zone, a decline in all taxa.

INTERPRETATION

ZONE I-a

Zone I-a (>10.6 ka BP) documents an herbaceous com-
munity dominated by Cyperaceae. Most taxa in Zone I-a indi-
cate somewhat deeper water levels in contrast to subsequent
zones (Jeglum, 1971). Deeper water levels in this zone are

suggested by the abundance of aquatic taxa such as
Myriophyllum, Hippuris, and Potamogeton. As well, Chara indi-
cates that the water was carbonate-rich, warm, shallow and
therefore not directly fed by meltwater (cf.Teller, 1989;Teller et
al., 2000).

Carbonized Picea needles in Zone I- a indicate that spruce
was part of the regional vegetation by at least this time.
Furthermore, it was likely confined to the drier uplands sur-
rounding the Hind basin, because virtually all spruce needles
in the macrobotanical assemblage are carbonized, and were
therefore carried into the basin by fire updrafts or water trans-
port.Thus, although the local landscape is interpreted as tree-
less throughout the Pleistocene-Holocene transition, spruce
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was undoubtedly present on well-drained uplands within the
study area (Boyd et al., 2003).

ZONE I-b

The decline in aquatics and increase in emergent plants
in this zone indicate shallower water levels beginning between
10.6 and 10.1 ka BP. However, the absence of mesophytes,
soil development, and deterioration of macrofossils suggest
that water levels were always above surface in this zone.
Although the lateral extension of a floating mat could also pro-
duce a greater representation of emergent plants, the absolute
decline in aquatic plant remains supports the idea that an
overall decline in water level occurred within the local basin.
These lower water levels, furthermore, persisted until at least
9.1 ka BP (Zone II). Paleoecologic evidence of drainage is
supported by the stratigraphic transition from massive silty
clay to fine organic laminae in Unit A1 (Boyd et al., 2003)
(Figs. 3 and 4).

Because the apparent decline in water depth in Zone I-b
has no relationship to the onset of early postglacial warming
(see Fig. 5), climate was probably not responsible for hydrologic
change. Instead, this process may reflect a gradual decline in
the base level of glacial Lake Hind. As argued in an earlier
study (Boyd et al., 2003), much of the central glacial Lake Hind
basin was drained shortly before ~10.4 ka BP due, at least in
part, to the routing of meltwater from glacial Lake Regina (Sun,

1996; Sun and Teller, 1997).This event deepened and widened
the Pembina spillway (Sun, 1996; Sun and Teller, 1997) and
would have drained Lake Hind to a lower elevation.

ZONE I-c

Zone I-c (~10.1-9.8 ka BP) largely consists of
Drepanocladus aduncus (= D. polycarpus) remains. This
sickle-branch moss thrives when submerged and is a good
indicator of open, wet, alkaline and calcareous habitats (Crum,
1976; Crum and Anderson, 1981). Today, D. aduncus is wide-
spread across the boreal forest in nutrient-rich, oxygen-poor
water (Johnson et al., 1995: 328).

At the Andrews site in south-central Saskatchewan (Yansa,
1998; Yansa and Basinger, 1999), layers composed almost
entirely of this moss species dated to ~10.2 ka BP, and dis-
appeared from the local fossil record before 8.8 ka BP. The
disappearance of D. aduncus from the paleoecological record
on the Canadian Prairies may record the shift to warmer con-
ditions in the early Holocene. At the FSH site, Drepanocladus
remains were not found in sediment younger than ~9.8 ka BP
(i.e., Zone II).

ZONE II

Menyanthes trifoliata is a clonal aquatic macrophyte found in
shallow bogs and river margins throughout the boreal
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ecosystem (Thompson et al., 1998). Because there are no ob-
vious vegetative (e.g., leaf, stem, root) remains of this plant in
the samples, the seeds probably floated in to the site; complete
deterioration of these remains is unlikely because vegetative
debris from other plants (e.g., Equisetum, Drepanocladus) is
abundant. Absence of abrasion on the seed coats suggests that
water transport was over a small distance and that it occurred
under low-energy conditions. The dominance of Menyanthes
suggests persistence, throughout Zone II (~9.8-9.1 ka BP), of
large local stands.

The importance of Menyanthes trifoliata may reflect regu-
lar flooding in the basin. Haraguchi (1991) observes that pure
stands of M. trifoliata are found on floating mats where annual
water level fluctuations are greater than 8 cm. This species,
furthermore, is more likely to dominate a wetland as the ampli-
tude of the flooding-drawdown cycle increases (Haraguchi,
1991: 255-257). Under decreased fluctuations, the
Menyanthes-dominated mat is invaded by other species
(Haraguchi, 1991: 262). This relationship exists because M.
trifoliata is very tolerant of flooding (Coult and Vallance, 1958;
Haraguchi, 1991: 261) due, at least in part, to its ability to with-
stand intense reducing conditions (Armstrong and Boatman,
1967). It is presumably for this reason that Menyanthes is com-
monly found on river margins in the boreal forest (Thompson
et al., 1998). Scirpus validus, and Eleocharis palustris popu-
lations, on the other hand, rapidly die out under repeated
flooding (Harris and Marshall, 1963: 338). It is possible, there-
fore, that the dominance of Menyanthes – particularly in
Zone II – records regular flooding of the local basin. This
agrees with the stratigraphic evidence of low-energy flooding
in Unit A1 (see above).

Because the mean water level did not increase before
9.1 ka BP, flooding was likely seasonal and was balanced by
drawdown or other means of drainage. For this reason, flood-
ing due to differential isostatic tilt (Johnston, 1946; Teller and
Thorleifson, 1983; Yu and McAndrews, 1994; Yu et al., 1996)
is ruled out during this time. Although the source of water is not
directly apparent, the proximity of the site to the Souris River
channel (Fig. 2) suggests that the local basin may have regu-
larly received floodwater once this river system was estab-
lished. Sun (1996: 175) proposes that the Souris River began
incising in the south-central Hind basin following regression
of the lake to the Phase 9 level. Stratigraphic evidence from
FSH indicates that the regression of Lake Hind to this level
occurred shortly before ~10.4 ka BP (Boyd et al., 2003), and
that alluvium from the Souris River was deposited locally
between at least 9.1 and 6.7 ka BP (i.e., Unit A2) (Boyd, 2000;
Running et al., 2002). On this basis, it is likely that the paleo-
ecologic and stratigraphic evidence of low-energy flooding by
at least 9.8 ka BP may simply record seasonal fluctuations
of the ancestral Souris River and periodic overflow and/or
seepage into the local basin.

Response to early postglacial warming?

There is good evidence for increased atmospheric tem-
peratures in Zone II (9.8-9.1 ka BP). In this zone, the few Picea
macrofossils matches the regional decline in Picea pollen

(e.g., Ritchie and Lichti-Federovich, 1968; Ritchie, 1969, 1976;
Yansa, 1998;Yansa and Basinger, 1999; Grimm, 2001). Local
deterioration of white spruce beginning ~10.1 ka BP is also
recorded in the pollen profile from Unit A1 (Boyd et al., 2003)
(Fig. 5). The decline in spruce across the southern Canadian
Prairies before 10 ka BP represents a shift in the southern
limit of white spruce due to atmospheric warming to at least
the 17 or 18 °C July isotherm (Zoltai, 1975; Ritchie and
Harrison, 1993). Under a warming climate, onset of aridity no
longer made white spruce viable and eliminated it from the
late-glacial landscape (Ritchie, 1976). During Zone II, the
Laurentide Ice Sheet was in full retreat following a brief read-
vance in southern Manitoba ~10 ka BP (Teller et al., 1983;
Smith and Fisher, 1993; Thorleifson, 1996).

On the northwestern Plains and Mackenzie Delta, pollen
evidence for dry lake basins and drought-tolerant taxa is com-
mon between 10 to 8 ka BP (Ritchie et al., 1983; Barnosky,
1989; Schweger and Hickman, 1989). In contrast,
Chenopodium salinum maxima in a macrofossil record from
the Missouri Coteau of Saskatchewan (Yansa, 1998;Yansa and
Basinger, 1999) suggest delayed onset of the Hypsithermal
until sometime between 8.8 and 7.7 ka BP. However, miner-
alogical data from the same site (Aitken et al., 1999) do not
support this conclusion, and instead indicate severe aridity
beginning ~10 ka BP. Similarly, in southwestern Saskatchewan,
mineral assemblages from both Clearwater (Last et al., 1998;
Leavitt et al., 1999) and North Ingebrigt (Shang and Last, 1999)
Lakes indicate saline to hypersaline conditions and low rela-
tive humidity between ~10 and 9 ka BP. As suggested by Aitken
et al. (1999: 180), variation in the timing of maximum aridity
from different proxies may reflect differing response times of
hydrological, ecological, and geomorphic systems. Additionally,
differences in the sensitivity of the proxies themselves may also
account for these results. For example, Chenopodium salinum
peaks in the fossil record on the Canadian Prairies are proba-
bly a better marker of maximum aridity (Aitken et al., 1999: 180)
rather than the onset of aridity.

Given the local and regional evidence of abrupt postglacial
warming and increased aridity ~10 ka BP, does the macrob-
otanical record from FSH provide any clear vegetative
responses to this significant change in climate? In a previous
study (Boyd et al., 2003), I hypothesized that higher-amplitude
flooding-drawdown cycles reconstructed for Zone II (9.8-
9.1 ka BP) were induced by climate change. However, if evap-
otranspiration rates increased in the Hind basin after
~10 ka BP, the absence of evidence for terrestrialization (e.g.,
soil development, presence of mesophytes, poor organic
preservation) indicates that complete drawdown did not occur
in this shallow wetland before 9.1 ka BP. This suggests that
climate-induced drawdown was buffered for at least 1000 years
after the first signs of local and regional climate change (Fig. 5).
These results are consistent with plant macrofossil data from
the Missouri Coteau of Saskatchewan (Yansa, 1998; Yansa
and Basinger, 1999). In her explanation, Yansa (1998) argues
that buried ice masses may have boosted moisture levels in
the early Holocene through prolonged release of meltwater
into aquifers. Certainly, the Turtle Mountain upland located on
the southeastern side of the Hind basin held unusually thick
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accumulations of stagnant dirty ice following deglaciation
(Deal, 1972; Sun, 1996: 157). The Riding and Duck Mountain
uplands immediately to the north of glacial Lake Hind were
also covered with large stagnant ice bodies (Klassen, 1979).
This suggests that a regular meltwater supply may have
existed in southwestern Manitoba long after deglaciation; this
supply, furthermore, may have increased after 10 ka BP due
to summer melting of buried ice. Based on the available evi-
dence, however, it is not possible to directly evaluate the
impact of regional changes in meltwater supply on the hydro-
logy of the local basin.

Instead, a more direct explanation is that regular flooding of
the Souris River may have been sufficient to mitigate the eco-
logical effects of climate change in this shallow wetland before
~9.1 ka BP. In other words, regular input of floodwater may
have helped maintain a permanently saturated environment at
a time when many other basins on the northern Prairies were
dry (Barnosky, 1989; Schweger and Hickman, 1989).

CONCLUSIONS

Based on changes in plant macrofossils through time in a
late glacial–early Holocene (>10.6-9.1 ka BP) wetland deposit,
I propose the following:

1. Aquatic macrophyte succession at the study site indicates
a gradual decline in water depth between ~10.6 and
10.1 ka BP.This process may record a lowering of the base
level of glacial Lake Hind due to drainage through its north-
eastern outlet(s), and was not directly due to climate
change.

2. The importance of Menyanthes trifoliata in this sequence
after ~10.6 ka BP, but particularly between ~9.8 and
9.1 ka BP, may reflect seasonal, low energy, flooding of the
local basin.This interpretation is supported by stratigraphic
evidence (e.g., clastic intebeds with ripples in the upper
15 cm of Unit A1; deposition of alluvium in Unit A2).
Because a mean increase in water depth is not indicated,
flooding due to differential isostatic tilt did not occur dur-
ing this time frame. Instead, proximity of the FSH site to
the Souris River channel suggests that the basin may have
periodically received floodwater from this system.

3. Local decline of Picea glauca on uplands surrounding the
Hind basin is recorded by both pollen and macrofossils,
and indicates atmospheric warming up to at least the 17 or
18 °C July isotherm beginning ~10.1 ka BP. The timing of
Picea decline at this site is consistent with other records on
the Canadian Prairies.

4. Despite local and regional evidence for abrupt postglacial
warming ~10 ka BP, there is no stratigraphic or paleoeco-
logic evidence of complete drawdown in this shallow wet-
land before 9.1 ka BP. This suggests that drawdown was
locally buffered by some means. A similar delay in the
response of wetland vegetation to early Holocene climate
change was also observed on the Missouri Coteau of
Saskatchewan (Yansa, 1998; Yansa and Basinger, 1999).
In this region, regular feeding of basins by stagnant ice
may have produced this apparent delay (Yansa, 1998).

Although uplands surrounding the Hind basin held thick
accumulations of stagnant ice, a more direct explanation is
that regular floodwater input from the ancestral Souris River
was a sufficient buffer against climate-induced drawdown
up to at least 9.1 ka BP. In general, this discussion high-
lights the potential importance of local hydrologic processes
in producing complex, asynchronous, responses of wet-
land vegetation to abrupt climate change.
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