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Abstract

In this paper, we present a method to construct orthogonal spline-type scaling
functions by using B-spline functions. B-splines have many useful properties
such as compactly supported and refinable properties. However, except for the
case of order one, B-splines of order greater than one are not orthogonal. To
induce the orthogonality while keeping the above properties of B-splines, we
multiply a class of polynomial function factors to the masks of the B-splines
so that they become the masks of a spline-type orthogonal compactly-supported
and refinable scaling functions in L2. In this paper we establish the existence of
this class of polynomial factors and their construction. Hence, the correspond-
ing spline-type wavelets and the decomposition and reconstruction formulas for
their Multiresolution Analysis (MRA) are obtained accordingly.

AMS Subject Classification: 42C40, 41A30, 39A70, 65T60

Key Words and Phrases: B-spline, wavelet, MRA.
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1 Introduction

Wavelet Analysis is a powerful tool for compressing, processing and analyzing data.
It can be applied to extract useful information from numerous types of data, includ-
ing images and audio signals in Physics, Chemistry and Biology, and high-frequency
time series in Economics and Finance.

The history of Wavelet Analysis can be traced back to several school of thoughts
that were in isolation originally but then converged into a complete field as of now.
Although modern Wavelet Analysis has been around for only 30 years, the earliest
work related to Wavelet Analysis is from Alfred Haar in the beginning of 20th cen-
tury. He found an orthogonal system of functions on [0, 1], which is known nowadays
as the simplest basis of the family of wavelet and named after him.

Since the appearance of Haar’s work, many other important contributions have been
made in the field of Wavelet Analysis. Some of them are the discovery of continuous
wavelet transform (CWT) in 1975 by Zweig followed by a more detailed formula-
tion by Goupillaud, Grossmann and Morlet in 1982; the construction orthogonal
wavelets with compact support by Daubechies in 1988; the introduction of multires-
olution framework by Mallat in 1989; the time-frequency intepretation of CWT by
Delprat in 1991 and many others.

In this research, we focus on the construction of compact-support orthogonal wavelets
and scaling functions of high orders. The rationale behind this construction is that
orthogonality gives the wavelets and scaling functions certain advantages. Among
these the most desirable benefit of orthogonality is that it allows for a fast and ef-
ficient way to decompose the signals into coefficients as well as to reconstruct the
signal from its coefficients. As a result, this property can help speed up and reduce
the cost of data processing.

With this motivation, we set out to construct orthogonal wavelets systems that
are build upon B-spline, a well-known class of functions. In order to set up the theo-
retical background, we start with the definitions of Multiresolution Analysis (MRA)
and scaling functions.

Definition 1.1 A Multiresolutional Analysis (MRA) generated by function φ con-
sists of a sequence of closed subspaces Vj , j ∈ Z, of L2(R) satisfying

(i) (nested) Vj ⊂ Vj+1 for all j ∈ Z;

(ii) (density) ∪j∈ZVj = L2(R);

(iii) (separation) ∩j∈ZVj = {0};

(iv) (scaling) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1 for all j ∈ Z;

(v) (Basis) There exists a function φ ∈ V0 such that {φ(x − k) : k ∈ Z} is an
orthonormal basis or a Riesz basis for V0.
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The function whose existence asserted in (v) is called a scaling function of the MRA.

A scaling function φ must be a function in L2(R) with
∫
φ 6= 0. Also, since φ ∈ V0

is also in V1 and {φ1,k := 2j/2φ(2x− k) : k ∈ Z} is a Riesz basis of V1, there exists a
unique sequence {pk}∞k=−∞ ∈ l2(Z) that describe the two-scale relation of the scaling
function

φ(x) =

∞∑
k=−∞

pkφ(2x− k), (1.1)

i.e., φ is of a two-scale refinable property. By taking a Fourier transformation
on both sides of (1.1) and denoting the Fourier transformation of φ by φ̂(ξ) :=∫∞
−∞ φ(x)e−iξxdx, we have

φ̂(ξ) = P (z)φ̂(
ξ

2
), (1.2)

where

P (z) =
1

2

∞∑
k=−∞

pkz
k and z = e−iξ/2 (1.3)

Here, P (z) is called the mask of the scaling function. Now, regarding the property
that {φ(x−k)} must be an orthonormal basis, we have the following characterization
theorem (see, for example, Chs. 2, 5 and 7 of [4])

Theorem 1.2 Suppose the function φ satisfies the refinement relation φ(x) =∑∞
−∞ pkφ(2x− k). Then we have the following necessary and sufficient conditions

(i) Necessary condition: φ forms an orthonormal basis only if |P (z)|2+ |P (−z)|2 = 1
for z ∈ C with |z| = 1.
(ii) Sufficient condition: Suppose P (z) satisfies

1. P (z) ∈ C1 and is 2π-periodic

2. |P (z)|2 + |P (−z)|2 = 1

3. P (1) = 1

4. P (z) 6= 0 for all ξ ∈ [−π, π]

Then φ forms an orthonormal basis.

Finally, from the scaling function φ, we can construct a corresponding wavelet func-
tion ψ by the following theorem (see, for example, [1, 7, 9])

Theorem 1.3 Let {Vj}j∈Z be an MRA with scaling function φ, and φ satisfies
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refinement relation in (1.1). Then we can construct a corresponding wavelet func-
tion as

ψ(x) =
∑
k∈Z

(−1)kp1−kφ(2x− k) (1.4)

and denote Wj = span{ψ(2jx− k) : k ∈ Z}.

Furthermore, Wj ⊂ Vj+1 is the orthogonal complement of Vj in Vj+1, and {ψjk(x) =
2j/2ψ(2jx− k) : k ∈ Z} is an orthonormal basis of Wj.

In the next sections, we will examine the B-spline functions as a scaling functions
and construct an orthogonal spline type scaling functions from them, based on the
necessary condition stated in Theorem 1.2. The proof of the main result shown in
Section 2 and some properties of the constructed spline type scaling functions are
presented in Section 3. The corresponding spline type wavelets and their regularities
as well as the decomposition and reconstruction formulas are also given. Finally, we
illustrate our construction by using some examples in Section 4.

2 Construction of orthogonal scaling functions from
B-splines

In this paper we are interested in a family of B-spline functions, Bn(x), the uniform
B-spline with integer knots 0, 1, ..., n+1 defined as follows (see [2, 3]).

Definition 2.1 The cardinal B-splines with integer knots in N0, denoted by Bn(x),
is defined inductively by

B1(x) :=

{
1 if x ∈ [0, 1]
0 otherwise,

and Bn(x) := (Bn−1 ∗B1)(x) =

∫ ∞
−∞

Bn−1(x− t)B0(t)dt (2.1)

From the definition, it is easy to verify that Bn(x) is compactly supported and in
L2(R), which satisfies

∫
Bn 6= 0. By using Fourier transformation, we also have the

refinement relation of Bn(x)

Bn(x) =

n∑
j=0

1

2n−1

(
n
j

)
Bn(2x− j) (2.2)

Next, we would like to see if Bn(x) forms an orthornormal basis or not. We ex-
amine the mask Pn(z) of Bn(x). We have
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Pn(z) =
1

2

n∑
j=0

1

2n−1

(
n
j

)
zj =

(1 + z)n

2n
=

(
1 + z

2

)n
(2.3)

Thus considering theorem 1.2 we have

|Pn(z)|2 + |Pn(−z)|2 =

∣∣∣∣1 + z

2

∣∣∣∣2n +

∣∣∣∣1− z2

∣∣∣∣2n
=

∣∣∣∣1 + cos(ξ/2)− isin(ξ/2)

2

∣∣∣∣2n +

∣∣∣∣1− cos(ξ/2) + isin(ξ/2)

2

∣∣∣∣2n
= cos2n(ξ/4) + sin2n(ξ/4) ≤ cos2(ξ/4) + sin2(ξ/4) = 1

The equality happens only when n=1. Therefore, except for the case of order one
(i.e., n = 1), Bn(x) are generally not orthogonal (indeed they are Riesz basis). To in-
duce orthogonality, we introduce a class of polynomial function factors S(z). Hence,
instead of Bn(x), we consider a scaling function φn(x) with the mask Pn(z)Sn(z),
i.e

φn(ξ) = Pn(z)Sn(z)φn(ξ/2) (2.4)

where Pn(z) are defined as (2.3). We want to construct Sn(z) such that the shift set
of the new scaling function form an orthogonal basis. In other words, we need that
Sn(z) satisfy the following condition

|Pn(z)Sn(z)|2 + |Pn(−z)Sn(−z)|2 = 1 (2.5)

Now we consider Sn(z) of the following type: Sn(z) = a1z+ a2z
2 + ...+ anz

n, n ∈ N
and ai ∈ R, i = 1..n. When z = 1, from equation (2.5) we have

1 = |Pn(1)Sn(1)|2 + |Pn(−1)Sn(−1)|2

= |Pn(1)|2|Sn(1)|2 + |Pn(−1)|2|Sn(−1)|2

=

∣∣∣∣1 + 1

2

∣∣∣∣2n |Sn(1)|2 +

∣∣∣∣1− 1

2

∣∣∣∣2n |Sn(−1)|2

= |Sn(1)|2 + 0 = |Sn(1)|2

Thus Sn(1) =
∑n
i=1 ai = ±1. From Theorem 1.2 (ii), we further impose a restriction

that
∑n
i=1 ai = 1 in order to ensure the orthogonality of the scaling function.

Next, we set out to find the expressions and constructions of Sn. We have the
following Lemma.

Lemma 2.2
Let Sn(z) be defined as above. Then there holds

|Sn(z)|2

=

n∑
i=1

a2i + 2

n−1∑
i=1

aiai+1cos(ξ/2) + 2

n−2∑
i=1

aiai+2cos(2ξ/2) + ...

+ 2a1ancos((n− 1)ξ/2).
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Proof. We have

|Sn(z)|2

= |a1(cos(ξ/2)− isin(ξ/2)) + ...+ an(cos(nξ/2)− isin(nξ/2))|2

= |(a1cos(ξ/2) + ...+ ancos(nξ/2))− i(a1sin(ξ/2) + ...+ ansin(nξ/2))|2

= (a1cos(ξ/2) + ...+ ancos(nξ/2))2 + (a1sin(ξ/2) + ...+ ansin(nξ/2))2

= a1(cos2(ξ/2) + sin2(ξ/2)) + ...+ an(cos2(nξ/2) + sin2(nξ/2))

+
∑
i 6=j

2aiaj(cos(iξ/2)cos(jξ/2) + sin(iξ/2)sin(jξ/2))

=

n∑
i=1

a2i +
∑
i 6=j

2aiajcos((i− j)ξ/2)

=

n∑
i=1

a2i + 2

n−1∑
i=1

aiai+1cos(ξ/2) + 2

n−2∑
i=1

aiai+2cos(2ξ/2) + ...

+ 2a1ancos((n− 1)ξ/2)

A similar procedure can be applied to find |Sn(−z)|2

|Sn(−z)|2

=

n∑
i=1

a2i − 2

n−1∑
i=1

aiai+1cos(ξ/2) + 2

n−2∑
i=1

aiai+2cos(2ξ/2) + ...

+ (−1)n2a1ancos((n− 1)ξ/2).

From Lemma 2.2, if we write each cos(kξ/2) as a polynomial of cos(ξ/2), then
|Sn(z)|2 = Qn(x) where x = cos(ξ/2). Obviously, Qn(x) has the degree of n− 1. It
is also easy to observe that |Sn(−z)|2 = Qn(−x). Now equation (2.5) becomes

1 = |Pn(z)Sn(z)|2 + |Pn(−z)Sn(−z)|2

= cos2n(ξ/4)Qn(x) + sin2n(ξ/4)Qn(−x)

=

(
1 + cos(ξ/2)

2

)n
Qn(x) +

(
1− cos(ξ/2)

2

)n
Qn(−x)

=

(
1 + x

2

)n
Qn(x) +

(
1− x

2

)n
Qn(−x)

So finally we get (
1 + x

2

)n
Qn(x) +

(
1− x

2

)n
Qn(−x) = 1 (2.6)

As a side note, (2.6) is equivalent to 16.1.7 of [7], but is of quite different form so
that we may obtain its solution (2.7) by using Lorentz polynomials, which yields an
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efficient proof of sufficiency.

Next, to show the existence of Q(x) in the above equation, we make use of the
Polynomial extended Euclidean algorithm (see [6]).

Lemma 2.3 Polynomial extended Euclidean algorithm If a and b are two
nonzero polynomials, then the extended Euclidean algorithm produces the unique pair
of polynomials (s, t) such that as+bt=gcd(a,b), where deg(s) < deg(b)−deg(gcd(a, b))
and deg(t) < deg(a)− deg(gcd(a, b)).

We notice that gcd(( 1+x
2 )n, ( 1−x

2 )n) = 1, so by Lemma 2.3, there exists uniquelyQ(x)
and R(x) with degrees less than n such that ( 1+x

2 )nQ(x) + ( 1−x
2 )nR(x) = 1. If we

replace x by −x in the previous equation, we have ( 1−x
2 )nQ(−x)+( 1+x

2 )nR(−x) = 1.
Due to the uniqueness of the algorithm, we conclude that R(x) = Q(−x). So we
have showed the existence of a unique Q(x) = Qn(x) satisfying equation 2.6.

To construct Qn(x) explicitly, we use the Lorentz polynomials shown in [8, 15] and
the following technique.

1 =

(
1 + x

2
+

1− x
2

)2n−1

=

2n−1∑
i=0

(
2n− 1
i

)(
1 + x

2
)2n−1−i(

1− x
2

)i

=

(
1 + x

2

)n [n−1∑
i=0

(
2n− 1
i

)(
1 + x

2

)n−1−i(
1− x

2

)i]

+

(
1− x

2

)n [n−1∑
i=0

(
2n− 1
i

)(
1− x

2

)n−1−i(
1 + x

2

)i]
,

where the polynomials presenting in the brackets are the Lorentz polynomials. We
notice that the degrees of the two polynomials in the brackets are n−1, and because
Qn(x) in equation 2.6 is unique, we can conclude that

Qn(x) =

n−1∑
i=0

(
2n− 1
i

)(
1 + x

2

)n−1−i(
1− x

2

)i
(2.7)

With the construction of Qn(x), we take a step further by showing the existence of∑
a2i ,
∑
aiai+1, ... in Lemma 2.2.

It is well-known that the set {1, cos(t), cos(2t), ..., cos((n − 1)t)} is linearly inde-
pendent. As a result, {1, cos(ξ/2), cos(2ξ/2), ..., cos((n−1)ξ/2)} forms a basis of the
space Pn−1(x) = {P (x) : x = cos(ξ/2) and P is a polynomial of degree less than n.
Based on this fact and the existence of Qn(x) in equation (2.6), it is obvious that
the coefficients

∑
a2i ,
∑
aiai+1, ... in Lemma 2.2 must exist uniquely.

We now establish the main result of this paper.
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Theorem 2.1 Let Pn(z) and Sn(z) be defined as above. Then for n = 1, 2, . . ., the
spline type function φn(x) with the mask P (z) = Pn(z)Sn(z) is a scaling function
that generates an orthogonal basis of V0 in its MRA.

Proof. From theorem 1.2 (ii), the sufficient conditions for the orthogonality of the
scaling function are

1. P (z) ∈ C1 and is 2π-periodic

2. |P (z)|2 + |P (−z)|2 = 1

3. P (1) = 1

4. P (z) 6= 0 for all ξ ∈ [−π, π]

From the construction of our P (z) = Pn(z)Sn(z), the first two conditions are au-
tomatically satisfied. The third condition is also obvious: P (1) = Pn(1)Sn(1) =(
1+1
2

)n∑n
i=1 ai = 1 according to the construction of Sn(z). Now we will prove that

the final condition is fulfilled as well.

Indeed, if ξ ∈ [−π, π], then firstly we have

|Pn(z)| = |Pn(e−iξ/2)|

=

∣∣∣∣1 + e−iξ/2

2

∣∣∣∣n =

∣∣∣∣1 + cos(ξ/2)− isin(ξ/2)

2

∣∣∣∣n
= |cos2(ξ/4)− isin(ξ/4)cos(ξ/4)|n =

√
cos4(ξ/4) + cos2(ξ/4)sin2(ξ/4)

n

= |cos(ξ/4)|n ≥ |cos(π/4)|n > 0 for ξ ∈ [−π, π]

Secondly, from equation (2.7) we have

|Sn(z)|2 = Qn(x) =

n−1∑
i=0

(
2n− 1
i

)(
1 + x

2

)n−1−i(
1− x

2

)i

≥
n−1∑
i=0

(
n− 1
i

)(
1 + x

2

)n−1−i(
1− x

2

)i
=

(
1 + x

2
+

1− x
2

)n−1
= 1

Thus |Sn(z)| ≥ 1 and |P (z)| = |Pn(z)||Sn(z)| ≥ |cos(π/4)|n > 0. Moreover, from
the construction of φn(x), we immediately know they are compactly supported and
refinable. We will prove that they are in L2(R) in next section.

3 Properties of the constructed scaling function

3.1 The scaling function φn(x) is in L2(R)
To show that the newly constructed scaling function φn(x) with mask Pn(z)Sn(z) is
in L2(Z), we make use of the following theorem
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Theorem 3.1 [11, 12] Let φ be a scaling function with mask Pn(z)SN (z) where

Pn(z) = ( 1+z
2 )n and Sn(z) = zi

∑k
j=0 ajz

j. Then φ ∈ L2(R) if

(k + 1)

k∑
j=0

a2j < 22n−1 (3.1)

.

Proof. In this case, with the Sn(z) we use to construct φn(x), the condition (3.1)
becomes

n

n∑
j=1

a2j < 22n−1 (3.2)

Recall from Lemma 2.2 that

Qn(x) = Qn(cos(ξ/2))

=

n∑
i=1

a2i + 2

n−1∑
i=1

aiai+1cos(ξ/2) + ...+ 2a1ancos((n− 1)ξ/2)

Taking the integration from 0 to 2π of both sides, we have

∫ 2π

0

Qn(x)dξ

=

∫ 2π

0

(
n∑
i=1

a2i + 2

n−1∑
i=1

aiai+1cos(ξ/2) + ...+ 2a1ancos((n− 1)ξ/2)

)
dξ

= 2π

n∑
i=1

a2i

On the other hands, from the expression of Qn(x) in (2.7) we have

∫ 2π

0

Qn(x)dξ =

∫ 2π

0

n−1∑
i=0

(
2n− 1
i

)(
1 + x

2

)n−1−i(
1− x

2

)i
dξ

=

∫ 2π

0

n−1∑
i=0

(
2n− 1
i

)(
1 + cos(ξ/2)

2

)n−1−i(
1− cos(ξ/2)

2

)i
dξ

Combining the two equations above we have

n∑
i=1

a2i =
1

2π

∫ 2π

0

n−1∑
i=0

(
2n− 1
i

)(
1 + cos(ξ/2)

2

)n−1−i(
1− cos(ξ/2)

2

)i
dξ (3.3)
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Now we need to show that the expression on the right hand side of (3.3) is smaller

than 22n−1

n .

First of all, it is easy to see that for 0 ≤ i ≤ n− 1(
2n− 1
i

)
<

(
2n− 1
n− 1

)
=

1

2

(
2n
n

)
Applying this inequality into (3.3) yields

1

2π

n−1∑
i=0

(
2n− 1
i

)∫ 2π

0

(
1 + cos(ξ/2)

2

)n−1−i(
1− cos(ξ/2)

2

)i
dξ

<
1

4π

(
2n
n

) n−1∑
i=0

∫ 2π

0

(
cos

ξ

4

)2(n−1−i)(
sin

ξ

4

)2i

dξ

=
1

π

(
2n
n

) n−1∑
i=0

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx (3.4)

for x = ξ/4.

Now let

A =

n−1∑
i=0

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx

We can express A as the sumation of two terms A = A1 +A2, where

A1 =

[n−1
2 ]∑
i=0

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx

A2 =

n−1∑
i=[n−1

2 ]+1

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx

For 0 ≤ i ≤ [n−12 ], 2(n− 1− i) > 2i, the term A1 becomes

A1 =

[n−1
2 ]∑
i=0

∫ π/2

0

(cosx)2(n−1−2i)(sinxcosx)2idx

=

[n−1
2 ]∑
i=0

1

4i

∫ π/2

0

(cosx)2(n−1−2i)(sin2x)2idx

≤
[n−1

2 ]∑
i=0

1

4i

∫ π/2

0

(cosx)2(n−1−2i)dx



T. Nguyen and T.-X. He 12

For [n−12 ] + 1 ≤ i ≤ n− 1, 2(n− 1− i) < 2i, the term A2 becomes

A2 =

n−1∑
i=[n−1

2 ]+1

∫ π/2

0

(sinxcosx)2(n−1−i)(sinx)2(2i−n+1)dx

=

n−1∑
i=[n−1

2 ]+1

1

4n−1−i

∫ π/2

0

(sinx)2(2i−n+1)(sin2x)2(n−1−i)dx

≤
n−1∑

i=[n−1
2 ]+1

1

4n−1−i

∫ π/2

0

(sinx)2(2i−n+1)dx

≤
[n−1

2 ]∑
i=0

1

4i

∫ π/2

0

(sinx)2(n−1−2i)dx

Next, we make use of the following well-known result∫ π/2

0

(sinx)2ndx =

∫ π/2

0

(cosx)2ndx =
(2n− 1)!!

(2n)!!

π

2

=
(2n)!

[(2n)!!]2
π

2
=
π

2

(2n)!

4n(n!)2
=
π

2

1

4n

(
2n
n

)

Next, we try to find the upper bound for

(
2n
n

)
. Based on Stirling estimation in

[16], we have the following inequalities(
2n
n

)
≤ 4n√

3n+ 1
(3.5)

and (
2n
n

)
≤ 4n√

πn

(
1 +

1

12n− 1

)
(3.6)

Using (3.6) on A1 and A2 yields

A = A1 +A2 ≤ 2

[n−1
2 ]∑
i=0

1

4i
1√

3(n− 1− 2i) + 1

π

2

= π

[n−1
2 ]∑
i=0

1

3i
1

( 4
3 )i
√

3(n− 1− 2i) + 1

We consider the denominator of the fraction, and let

f(x) = (
4

3
)2x[3(n− 1− 2x) + 1], x ∈ [0,

n− 1

2
]

Surveying the function, we have f(x) attains minimum at 0, or

f(x) = (
4

3
)2x[3(n− 1− 2x) + 1] > f(0) = 3(n− 1) + 1
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Thus, we have

A ≤ π
[n−1

2 ]∑
i=0

1

3i
1√

3(n− 1) + 1
≤ π√

3n− 2

∞∑
i=0

1

3i
=

3π

2
√

3n− 2
(3.7)

Finally, combining (3.3), (3.4), (3.6) and (3.7) we have

n∑
i=1

a2i ≤
1

π

(
2n
n

)
A ≤ 1

π

4n√
πn

(
1 +

1

12n− 1

)
3π

2
√

3n− 2

For n ≥ 17, we can easily verify that the right hand side is less than 22n−1

n . Using
Mathematica for direct calculation of the case n ≤ 16, we find that the inequality
in theorem 3.1 holds. Thus, it holds every interger n, and we have completed the
proof, showing that φ ∈ L2(R).

As examples, we consider the cases of n = 1 and 2. It is easy to find that S1(z) = z
and φn(x) is the Haar function. For n = 2,

S2(z) =
1 +
√

3

2
z +

1−
√

3

2
z2

and the corresponding φ2(x) is the Daubechies scaling function.

3.2 Refinement relation and corresponding wavelets

Let Mn(z) := Pn(z)Sn(z) = 1
2

∑2n
k=0 ckz

k. Then Mn(z) is the mask of φn(x) and
thus we have the refinement equation

φn(x) =
∑
∀k

ckφn(2x− k) (3.8)

We also have the corresponding wavelets

ψn(x) =
∑
∀k

(−1)kc1−kφn(2x− k) (3.9)

One natural question at this point is from the refinement equation to determine
explicitly the scaling function φn(x) and thus the wavelet functions ψn(x). We
propose a method by the iterative procedure described in Theorem 5.23 of [1].

We start with φ
(0)
n (x) = B1(x). From φ

(0)
n (x) we can construct φ

(1)
n (x) by using

the refinement equation (3.5)

φ(1)n (x) =
∑
∀k

ckφ
(0)
n (2x− k)

Now from φ
(1)
n (x) we can continue to construct φ

(2)
n (x) again by the refinement

equation. Continuing the process for a certain number of times, we can obtain an
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approximation of φn(x).

Simple as it seems, this iteration method is not a very good way to construct φ
as we do not know how many times should we repeat the process to find a good
enough approximation for φ. For this reason, more direct method is developed and
will be addressed in future paper.

From Theorem 2 of [11], we have the following result on the regularities of spline
type wavelets ψn(x).

Theorem 3.1 Let φn(x) be constructed as the previous section with the mask shown
in Theorem 2.1. Then the corresponding wavelets ψn(x) established in (3.6) are in
Cβn , where βn are greater than

n− 1

2
log2

n n∑
j=1

a2j

 .

3.3 Decomposition and reconstruction formula

Finally, upon obtaining the new scaling function and corresponding wavelet function,
we may establish the corresponding decomposition and reconstruction formulas by
using a routine argument. Roughly speaking consider a function f ∈ L2(R) with fi
being an approximation in Vj , a space generated by the jth order scaling function.
Then

fj =
∑
k∈Z

< f, φjk > φjk (3.10)

Because we have the orthogonal direct sum decomposition Vj = Vj−1 + Wj−1, we
can express fj using bases of Vj−1 and bases of Wj−1 as follows

fj = fj−1 + gj−1 =
∑
k∈Z

< f, φj−1,k > φj−1,k +
∑
k∈Z

< f,ψj−1,k > ψj−1,k (3.11)

And now we have the following theorem regarding the relationship of these coeffi-
cients.

Let {Vj : j ∈ Z} be an MRA with scaling function φ satisfying the scaling rela-
tion φ(x) =

∑
k∈Z pkφ(2x − k), and let Wj be the orthogonal complement of Vj in

Vj+1 with wavelet function ψ. Then the coefficients relative to the different bases in
(3.7) and (3.8) satisfy the following decomposition formula

< f, φj−1,l > = 2−1/2
∑
k∈Z

pk−2l < f, φjk >

< f,ψj−1,l > = 2−1/2
∑
k∈Z

(−1)kp1−k+2l < f, φjk >
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and the reconstruction formula

< f, φjl >= 2−1/2
∑
k∈Z

pl−2k < f, φj−1,k > +2−1/2
∑
k∈Z

(−1)kp1−l+2k < f, φj−1,k >

4 Example for n = 3

Besides the examples of the cases n = 1 and 2 shown at the end of Section 3.1, in this
section we give an example on the case n = 3. According to the previous sections,
we will construct an orthogonal scaling function φ3(x) from the third order B-spline
function B3(x).

In order to construct the function φ3(x), we start with its mask P3(z)S3(z), where
P3(z) = (1+z

2 )3 is the mask of the third order B-spline. Let S3(z) = a1z+a2z
2+a3z

3,
then by Lemma 2.2, we have

Q3(x) = |S3(z)|2 = (a21 + a22 + a23) + 2(a1a2 + a2a3)cos(ξ/2) + 2a1a3cos(ξ)

= (a21 + a22 + a23) + 2(a1a2 + a2a3)cos(ξ/2) + 2a1a3(2cos2(ξ/2)− 1)

= (a21 + a22 + a23 − 2a1a3) + 2(a1a2 + a2a3)cos(ξ/2) + 4a1a3cos
2(ξ/2)

= (a21 + a22 + a23 − 2a1a3) + 2(a1a2 + a2a3)x+ 4a1a3x
2

where x = cos(ξ/2) and z = e−iξ/2.

On the other hand, by equation (2.7) we have

Q3(x) =

2∑
i=0

(
5
i

)(
1 + x

2

)2−i(
1− x

2

)i
=

(
1 + x

2

)2

+ 5

(
1 + x

2

)(
1− x

2

)
+ 10

(
1− x

2

)2

=
3

2
x2 − 9

2
x+ 4

Thus, from the above equations, we have the following system of equations
a21 + a22 + a23 − 2a1a3 = 4

2(a1a2 + a2a3) = − 9
2

4a1a3 = 3
2

(4.1)

Simplify (4.1) we get 
a21 + a22 + a23 = 19

4

a1a2 + a2a3 = − 9
4

a1a3 = 3
8

(4.2)

From this system, we have (a1 +a2 +a3)2 = a21 +a22 +a23 +2(a1a2 +a2a3 +a1a3) = 1.
Without loss of generality, consider the case a1 + a2 + a3 = 1. Combining this with
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a1a2 + a2a3 = − 9
4 and a1a3 = 3

8 we have the following solution
a1 = 1

4

(
1 +
√

10−
√

5 + 2
√

10
)

a2 = 1
2

(
1−
√

10
)

a3 = 1
4

(
1 +
√

10 +
√

5 + 2
√

10
) (4.3)

We verify the condition for φ3 to be in L2(R)

a21 + a22 + a23 =
19

4
<

32

3
=

22·3−1

3

Thus φ3 is indeed in L2(R). Now we will attempt to construct φ3 explicitly. It has
the mask

P3(z)S3(z) =

(
1 + z

2

)3

(a1z + a2z
2 + a3z

3)

= 0.0249x− 0.0604x2 − 0.095x3 + 0.325x4 + 0.571x5 + 0.2352x6

By (1.1), (1.2) and (1.3) we have the refinement equation

φ3(x) = 0.0498φ3(2x− 1)− 0.121φ3(2x− 2)− 0.191φ3(2x− 3)

+ 0.650φ3(2x− 4) + 1.141φ3(2x− 5) + 0.4705φ3(2x− 6)
(4.4)

The corresponding spline type wavelet ψ3(x) can be expressed as

ψ3(x) = 0.0498φ3(2x) + 0.121φ3(2x+ 1)− 0.191φ3(2x+ 2)

− 0.650φ3(2x+ 3) + 1.141φ3(2x+ 4)− 0.4705φ3(2x+ 5),

which is in Cβ3 and

[[β3 > 3− 1

2
log2(57/4).]]

Using the iteration technique proposed in 3.2, we have the following graph of the
scaling function after 5 iterations.
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5 Example for n = 4

In this section, we give another example on the case n = 4. Again, we construct an
orthogonal scaling function φ4(x) from the forth order B-spine B4(x) with the mask
P4(z) = (1+z

2 )4.

Now we examine the mask P4(z)S4(z) of φ4(x) where we define S4(z) = a1z +
a2z

2 + a3z
3 + a4z

4. By Lemma 2.2, we have

Q4(x) = |S4(z)|2 = (a21 + a22 + a23 + a24) + 2(a1a2 + a2a3 + a3a4)cos(ξ/2)

+ 2(a1a3 + a2a4)cos(ξ) + 2a1a4cos(3ξ/2)

= (a21 + a22 + a23 + a24) + 2(a1a2 + a2a3 + a3a4)cos(ξ/2)

+ 2(a1a3 + a2a4)(2cos2(ξ/2)− 1) + 2a1a4(4cos3(ξ/2)− 3cos(ξ/2))

= (a21 + a22 + a23 + a24 − 2a1a3 − 2a2a4)

+ (2a1a2 + 2a2a3 + 2a3a4 − 6a1a4)cos(ξ/2)

+ (4a1a3 + 4a2a4)cos2(ξ/2) + 8a1a4cos
3(ξ/2)

= (a21 + a22 + a23 + a24 − 2a1a3 − 2a2a4)

+ (2a1a2 + 2a2a3 + 2a3a4 − 6a1a4)x

+ (4a1a3 + 4a2a4)x2 + 8a1a4x
3

where x = cos(ξ/2) and z = e−iξ/2.

Using equation (2.7) we get another expression for Q4(x)

Q4(x) =

3∑
i=0

(
7
i

)(
1 + x

2

)3−i(
1− x

2

)i
=

(
1 + x

2

)3

+ 7

(
1 + x

2

)2(
1− x

2

)
+ 21

(
1 + x

2

)(
1− x

2

)2

+ 35

(
1− x

2

)3

= 8− 29

2
x+ 10x2 − 5

2
x3
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Thus, from the above equations, we have the following system of equations
a21 + a22 + a23 + a24 − 2a1a3 − 2a2a4 = 8

2a1a2 + 2a2a3 + 2a3a4 − 6a1a4 = − 29
2

4a1a3 + 4a2a4 = 10

8a1a4 = − 5
2

(5.1)

Simplify (5.1) we have the following system
a21 + a22 + a23 + a24 = 13

a1a2 + a2a3 + a3a4 = − 131
16

a1a3 + a2a4 = 5
2

a1a4 = − 5
16

(5.2)

Solving for this system of equations yields 8 solutions. One of the numerical solutions
is 

a1 = 2.6064

a2 = −2.3381

a3 = 0.8516

a4 = −0.1199

(5.3)

We verify the condition for φ4 to be in L2(R)

a21 + a22 + a23 + a24 = 13 < 32 =
22·4−1

4

Thus φ4 is indeed in L2(R). Now we will attempt to construct φ4 explicitly. It has
the mask

P4(z)S4(z) =

(
1 + z

2

)4

(a1z + a2z
2 + a3z

3 + a4z
4)

= 0.1629z + 0.5055z2 + 0.4461z3 − 0.0198z4 − 0.1323z5 + 0.0218z6

+ 0.0233z7 − 0.0075z8

By (1.1), (1.2) and (1.3) we have the refinement equation

φ4(x) = 0.3258φ4(2x− 1) + 1.011φ4(2x− 2) + 0.8922φ4(2x− 3)− 0.0396φ4(2x− 4)

− 0.2646φ4(2x− 5) + 0.0436φ4(2x− 6) + 0.0466φ4(2x− 7)− 0.015φ4(2x− 8)

(5.4)

The corresponding spline type wavelet ψ3(x) can be expressed as

ψ4(x) = 0.3258φ4(2x)− 1.011φ4(2x+ 1)− 0.8922φ4(2x+ 2) + 0.0396φ4(2x+ 3)

+ 0.2646φ4(2x+ 4)− 0.0436φ4(2x+ 5)− 0.0466φ4(2x+ 6) + 0.015φ4(2x+ 7)

which is in Cβ4 and
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β4 > 4− 1

2
log2(52).

Using the iteration technique proposed in 3.2, we have the following graph of the
scaling function after 5 iterations.
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