Illinois Wesleyan University Digital Commons@ IWU

Apr 20th, 2:00 PM - 3:00 PM

A Look at Multi-Decompositions of Complete Graphs into Graph Pairs of Order 4

Yizhe Gao
Illinois Wesleyan University
Daniel Roberts, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Part of the Mathematics Commons

Yizhe Gao and Daniel Roberts, Faculty Advisor, "A Look at Multi-Decompositions of Complete Graphs into Graph Pairs of Order 4" (April 20, 2013). John Wesley Powell Student Research Conference. Paper 13.
http://digitalcommons.iwu.edu/jwprc/2013/posters2/13

Multi-decomposition of K2s,t into 2K2

Purpose:

Prove the multi-decomposition of K2s, tinto 2K2.

Definition:

Graph: A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices called its end points.

A complete graph is a graph in which each pair of graph vertices is connected by an edge.

K5
A complete bipartite graph is a graph where the vertices are partitioned into two sets. Every vertex in one part is adjacent to every vertex in the other part.

K3,3

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

A graph pair of order n is a pair of connected graphs on n vertices with no isolated vertex whose union is Kn .

Yizhe Gao

lillinois wesleyan university
Instructor: Daniel Roberts

Abueida and Daven did a research paper on the multi-decomposition for graph pairs of 0rder 4 and 5 . They stated that K2s,t can be decomposed into 2 K 2 but they did not verify the statement.

Procedure:

1. Prove that C_{4} divides $\mathrm{K}_{2 \mathrm{~s}, 2 \mathrm{t}}$ (see handout)
2. Prove that 2 K 2 divides $\mathrm{K} 2 \mathrm{~s}, \mathrm{t}$ for $\mathrm{t}>2$.

Proof: Two constructions that may be used in this proof are listed below.

K2,2

K2,3

It is easy to prove that both constructions can be decomposed in to 2K2.

1) Assume t is odd. The graph K2s,t is listed below.
$\mathrm{K} 2 \mathrm{~s}, \mathrm{t}$ when t is odd
When t is 3 , K2s, t can be decomposed as follows.

When $t>3$, for example, when t is 5 , $K 2 s, t$ can be decomposed into 2 K 2 in following way.
$2 S$

t

For any $\mathrm{t}>5$, the decomposition will repeat.
2) Assume t is even. Then $K 2 s, t$ can be decomposed into 2 K 2 in a similar way. (The proof is shown in handout)

Results:

For any natural numbers s,t, 2K2 divides K2s,t

Future study:

Decomposing complete graphs into graph pairs of order 6.

