
Illinois Wesleyan University
Digital Commons @ IWU

Honors Projects Mathematics

2015

A Computational Study of Icart's Function
Thomas Simmons
Illinois Wesleyan University, tsimmons@iwu.edu

This Article is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty
Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by
the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.

Recommended Citation
Simmons, Thomas, "A Computational Study of Icart's Function" (2015). Honors Projects. Paper 18.
http://digitalcommons.iwu.edu/math_honproj/18

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ Illinois Wesleyan University

https://core.ac.uk/display/59239338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iwu.edu/
http://www.iwu.edu/
http://www.iwu.edu/
http://digitalcommons.iwu.edu
http://digitalcommons.iwu.edu/math_honproj
http://digitalcommons.iwu.edu/math
mailto:digitalcommons@iwu.edu

A Computational Study of Icart’s Function

Thomas Simmons

April 23, 2015

Abstract

A hash function maps some elements of a larger, initial set to el-
ements of a smaller, resultant set. By nature, this leads to collisions
and, sometimes, not all elements in the smaller set will be mapped to
as a result. The set in consideration here is all points on an elliptic
curve. This is a special class of curve with two variables, which takes
the form here as y2 = x3 +ax+ b. A hash function is useful in offering
a deterministic way to map an input to a pair of x and y values that
satisfy such an equation.

This paper experimentally verifies that an asymptotic result on
the size of the image for Icart’s hash function provided by Fouque
and Tibouchi is true for small primes less than 219 and for all curves
of conductor less than or equal to 100. Combined with Fouque and
Tibouchi’s asymptotic result, this proves that the coverage of Icart’s
hash function is a 5/8 fraction of the points (with some error).

1 Introduction

1.1 Public-key Cryptography

Cryptography is the study of securing data. Cryptography is vital in the
Information Age as it provides a way to communicate across the globe in a
secure and private manner. A major advance in convenient, secure transmis-
sion was the invention of public-key cryptography. In a typical symmetric-
key cipher, some of which date back thousands of years, the two parties
who want to exchange messages shared a secret key that was used to enci-
pher and decipher the message on each end. Importantly, because both the
encryption and decryption process used the same key, each party involved
in the secret message passing required the shared key. This poses an in-
teresting question when considered in the modern context of the Internet:
How can we share secret keys across an insecure medium? We can assume
that anything sent across a network is susceptible to interception by another
party. Thus, one cannot simply send a symmetric cipher key to the person
with whom he or she wishes to communicate.

1

The solution is asymmetric (or public-key) cryptography. Typically, in
these ciphers, two keys are used. A public key is distributed at large and
anybody wishing to send messages to the owner can encrypt with this public
key. However, unlike symmetric systems, only the private key can decrypt
the ciphertext. These public-key systems rely on conjectured hard problems,
such as the discrete logarithm problem and integer factorization. For an ex-
ample, we can look at Diffie-Hellman-Merkle key exchange, an algorithm
that solves an issue related to secret key exhange. The public-key systems
that have been invented so far are slower than traditional, symmetric al-
gorithms. It is therefore somewhat impractical to encrypt entire messages
with a public key and decrypt with the private key. Rather, a public key is
often used to encrypt a symmetric cipher key, where the latter key is then
used with a faster, symmetric cipher for the rest of the communication.

Diffie-Hellman-Merkle key exchange addresses this need where the idea
is to produce a shared secret between two or more parties, which can then
be used to derive a key for symmectric cipher encrpytion/decryption. The
traditional algorithm proceeds roughly as follows, where the two actors in-
volved will be called Bob and Alice: Both parties agree on a fixed element
g of the large finite field Fq, where q is publicly known. Ideally g is a gener-
ator in F∗q and need not be kept secret. Now, Alice randomly selects some
element a ∈ Fq, which she keeps secret, and publishes ga. Likewise, Bob
does the same for some b, producing gb. Both parties then compute gab

using their respective private integers and the other’s published number.
For some eavesdropper, computing gab from ga and gb has been conjectured
to be computationally equivalent to solving the discrete logarithm problem.
Thus, Alice and Bob have a shared secret which can be used to secure further
communications.

1.2 Elliptic curves

Elliptic curves offer one of the most intriguing areas of research in the cryp-
tographic world today. When used for public-key cryptosystems, especially
in the case of digital signatures, elliptic curves promise high security and
smaller keys than comparable public-key systems. The points on an elliptic
curve with the correct properties can be used to define such cryptosystems.
However, establishing points on an acceptable curve is a nontrivial task.

Per Koblitz [5], an elliptic curve is defined over a field, which can be the
real numbers, the rational numbers, the complex numbers, or a finite field.
In general, the long Weierstrass form for the equation of an elliptic curve in
any field is y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6. Here, we let K be a field
of characteristic 6= 2,3 and x3 + ax+ b (where a, b ∈ K) a cubic polynomial
with no multiple roots. In this setting, an elliptic curve over K is the set of
points (x, y) with x, y ∈ K that satisfies the short form Weierstrass equation
y2 = x3+ax+b, along with the identity element denoted O called the “point

2

at infinity”. We perform this transform from the long-form equation with 5
coefficients to the short-form one via the proceedure shown in [6].

Figure 1: Elliptic curve addition [5]

Importantly, elliptic curves have an algebraic stucture that makes it
possible to create analogs to various established cryptosystems. Given the
points P = (x1, y1) and Q = (x2, y2), we define P + Q = (x3, y3) as:

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2;

y3 = −y1 +

(
y2 − y1
x2 − x1

)
(x1 − x3).

If P = Q, the formulae change:

x3 =

(
3x21 + a

2y1

)2

− 2x1;

y3 = −y1 +

(
3x21 + a

2y1

)
(x1 − x3).

Scalar multiplication is performed by repeatedly adding a point to itself a
given number of times. There is also a geometric definition for this operation.
See [5] §VI.1 for a description. In this geometric setting, we see that P +
−P = O =∞ where −P = (x,−y).

We can examine the analog of DHM key exchange (explained above for
the integers) to better understand how elliptic curves fit into the public- key

3

cryptography scene. Elliptic curves also have analogous systems for ElGamal
([5] §VI.2) and DSA [1], to name a few. Once again, this example follows
the process of Bob and Alice reaching a shared secret: As in traditional
DHM key exchange, Bob and Alice agree upon a field Fq that is known, but
then define an elliptic curve E over said field (which is also known). Then,
a base point B is chosen. As in the traditional scheme, B should generate a
group of sufficiently large size, though requiring B to be a generator for all
points on the curve necessitates a point counting algorithm and non-trivial
computation. Now, Alice and Bob pick numbers a and b, respectively. Alice
computes aB using point multiplication and publishes it, with Bob doing
the same for bB. They can now compute abB, and thus have reached a
shared secret. As in the case of traditional DHM key exchange, computing
abB from aB and bB is conjectured to be infeasible until the invention of
an efficient solution to the discrete logarithm problem.

In all elliptic curve cryptosystems, we want to find valid points on the
curve, typically derived from user data. The trivial method for finding a
point on an elliptic curve is to simply pick a random element from the field
over which the curve is defined to use as an abscissa and then solve the
elliptic curve equation to determine if the value has a valid corresponding
ordinate (see Koblitz [5] §VI.2). The problem becomes more complicated
when we need to connect user data with points on the curve. A randomized
algorithm complicates the creation of public-key systems for a couple of rea-
sons. First, using a randomized algorithm does not allow us to bound the
run-time of our method. Beyond the obvious detriment of potential perfor-
mance bottlenecks (which in real-world cases tends not to be a prohibitive
issue), this preformance variance can lead to timing attacks on the overall
protocol. Second, we want our generated points to have adequate distribu-
tion on the curve. The use of a randomized algorithm does not guarantee
this property, and as such several points may need to be generated before a
satisfactory one is found. Once again, slow performance can result from the
repeated generation of potential keys in search of a usable one.

Instead, a deterministic function is needed to make elliptic curve cryp-
tosystems viable. These functions are predictable in their output, as well
as in their runtime. With the advent of deterministic point finding, one
could efficiently map user-chosen data to and from elliptic curve points in
easily repeatable ways. Such algorithms fall into the classification of “hash
functions”.

1.3 Hash functions

Hash functions, in general, provide a method of mapping the elements of
a set of arbitrary size to a set of a fixed size. A more technical definition
follows from Menezes, van Oorschot, and Vanstone [7]:

4

Definition 1.1. A hash function is a computationally efficient function
mapping binary strings of arbitrary length to binary strings of some fixed
length, called hash-values.

Here, the term “hash function” is somewhat of an abuse of notation because
in practice this process would utilize two hash functions. The first would
be a cryptographic hash function that takes in the arbitrary user data and
produces a fixed length string within Fq. It is this output string that is then
mapped onto a curve E(Fq) by Icart’s hash function.

One often encounters hash functions as the basis of the hash table data
structure. These hash tables provide expected constant-time lookup speeds
for arbitrary data stored in an array, with the worst case being a linear
runtime. This is done by applying a hash function to the data (which, given
that it is arbitrary, essentially comes from the infinite set) and using the
returned value as an index into an array (which is of a limited size, hence
the definition above). Such functions are particularly useful in the context of
elliptic curves in the mapping of data to points on the curve. As previously
noted, the string of fixed length is the x, y values. It is important to reiterate
that we do want computational efficiency with these hash functions. As
mentioned in Section 1.2, there is a randomized method to find points on
a curve but this consumes time and computer resources. Rather, we want
a method to efficiently map user data to curve coordinates. One such hash
function from integers to elliptic curve points was created by Thomas Icart
[4].

Icart’s function takes elements of a finite field and maps them to a point
on the elliptic curve over that field. We write this function as I : Fq → E(Fq),
where I(u) is some point on the curve. Let I−1(Q) denote the preimage of
point Q under the function I. Multiple u values can map to the same point
so I−1(Q) ⊂ Fq, and referring to a collision denotes such an instance where
I(u1) = I(u2).

Icart defines the function over the field Fqn where q > 3 and qn = 2
(mod 3). On the elliptic curve over this field the coordinates are defined as

x =

(
v2 − b− u6

27

)1/3

+
u2

3

y = ux + v

where

v =
3a− u4

6u
.

Division in a finite field setting means multiplication by a number’s modular
multiplicative inverse. For u = 0 the output is fixed as the point at infinity.
Icart also defines a quartic P (u) in Lemma 3 ([4] §3) as follows:

5

Definition 1.2. Let Q = (x, y) be a point on the curve E. Define PQ(u) as

u4 − 6xu2 + 6yu− 3a = 0.

We simply use P (u) when Q is clear from context. The a value in the above
equation is the a coefficient of the curve E.

Icart proves that the roots of this polynomial correspond to a particular
I−1(Q). Hence, this gives a basis for the collisions we see. A point can be a
collision for 0 to 4 u values depending on the factorization of P (u).

An important question about any hash function regards coverage. We
often would like to know how many of the potential outputs are actually
returned by the hash function being used. Here, the coverage refers to the
number of points on the elliptic curve hit by Icart’s function for all possible
inputs u. By the very nature of hash functions, certain inputs will map to
the same output, which we call a collision. In the elliptic curve context, it
is useful to know which inputs will collide on the same curve point, as well
as what proportion of the total points will be mapped to by the function.
Fouque and Tibouchi studied the size of the image for Icart’s hash function
as well as another (the Shallue-Woestijne-Ulas algorithm) [3]. For the Icart
hash function they proposed the inequality

∣∣N − 5
8q
∣∣ ≤ 55q1/2, where N is

the size of the image for a curve over the prime field defined by q. They
proved this bound holds for all q ≥ 219 and all curves. The purpose of this
research is to extend the bound to smaller prime orders.

1.4 Organization of this paper

In this paper, we show some general, predictable behavior observed in Icart’s
function. These primarily concern collisions resulting from the hashing of
certain values. It is also shown how to explicitly construct a curve that
will produce collisions for certain inputs. After examining the patterns of
collisions for Icart’s function, attention is turned to the results presented
by Fouque and Tibouchi. Using theoretical and computation tools, their
coverage estimate is extended to include fields over smaller primes than
they showed.

2 Patterns in Icart function output

2.1 Initial proposition

The original goal of this work was to increase the coverage of Icart’s hash
function. An ideal hash function would map every value of a finite field to
a distinct point on a curve over said field. We know by Hasse’s Theorem on
elliptic curves that the number of points is bounded as |N − (q + 1)| ≤ 2

√
q

[5], where N is the number of points and q is the number of elements in

6

the finite field. Thus, we want a bijection between field elements and curve
points, but by the Hasse bound we know this is impossible. The research
here attempts to increase the size of the coverage of Icart’s function. This
was to be done by redirecting the inputs that would normally map to the
same point to distinct outputs instead. For this to work, one must know
both which inputs will produce collisions and which points on the curve will
not be covered by the hash function. This research tackles both pieces.

Note that curves of characteristic 2,3 are not covered here because 3 6≡ 2
(mod 3) while the field of only 2 elements is trivial and uninteresting.

2.2 The general cases

When looking at the output for several generic curves (A,B = -1,0; 1,-1; and
0,5) over small prime fields (q = 11, 17, 29), the first pattern that emerges is
the symmetry of the output (See Appendix A). This leads to the following
proposition.

Proposition If the point (x, y) is on the curve, then so is (x,−y).

Proof. A point (x, y) on a curve satisfies the equation y2 = x3 + ax + b.
By the properties of multiplication, we know y2 = (−y)2. Thus, −y also
satisfies the equation (−y)2 = x3 + ax+ b, and so if (x, y) is on the curve so
is (x,−y).

This proposition can be refined to further help determine which inputs
will map to which outputs. Specifically, we note that for an input u that
maps to the point (x, y), its negative will map to the inverse point.

Theorem 2.1. If I(u) = (x, y), then I(−u) = (x,−y).

Proof. Icart defines y as y = ux + v, where v = (3a − u4)/(6u). By the

properties of multiplication, we see that 3a−(−u)4
6(−u) = −v. Given that all

exponents for values u, v are even,(
(−v)2 − b− (−u)6

27

)1/3

+
(−u)2

3
=

(
v2 − b− u6

27

)1/3

+
u2

3
= x

Thus, y = ux + v and −y = (−u)x− v.

Theorem 2.1 allows us to save some computational effort during tabula-
tion. We know that for negative values of u, the Icart function will return
the inverse of the point (x, y) that is mapped to by positive u. Therefore, if
we were trying to produce every output of the hash function for each input
from a finite field, we can effectively skip half of the inputs because the
outputs are known.

7

When noting patterns in the output of Icart’s function, the most ap-
parent is the symmetry of the point distribution. Theorem 2.1 tells us the
expected behavior of mapping u,−u; but, another symmetry worth noting
is the number of times a point is output by the hash function. In general,
when a point Q is output by the function, we can expect that the inverse,
−Q, will be mapped to an equivalent number of times.

Theorem 2.2. If for some point Q,
∣∣I−1(Q)

∣∣ ≥ 1 then there exists a point
−Q where

∣∣I−1(−Q)
∣∣ =

∣∣I−1(Q)
∣∣ and ∀u ∈ I−1(Q),−u ∈ I−1(−Q). As will

be shown, it can be the case that Q = −Q when y = 0 and x satisfies certain
properties.

Proof. We know by Icart’s work that P (u) can have 1 to 4 roots for a
valid point Q1 = (x, y), and that those roots make up the set I−1(Q1).
Per Theorem 2.1, we know that for each u, −u will map to the point
Q2 = (x,−y). Thus, for every u in I−1(Q1) there exists −u in I−1(Q2)
and

∣∣I−1(Q1)
∣∣ =

∣∣I−1(Q2)
∣∣.

Theorem 2.2 is the main basis for the computational leaps taken in the
test code. By counting the number of u values that map to a given point, we
can avoid computation for an equivalent number of u values throughout the
tabulation process. Specifically, for any given prime q we need only count
the u values up to q/2.

These theorems help to save time on the computation of all outputs
for a given curve, but there are edge cases for which one must account.
When performing tabulation, in most cases, we can assume u 7→ (x, y) and
−u 7→ (x,−y). When (x, y) 6= (x,−y), this allows us to avoid performing
the calculation for −u altogether. However, when this is not the case, special
care must be taken to not miscount the point total.

2.3 Special cases

Special consideration must be given to the instances where (x, y) = (x,−y)
(specifically where y = 0), which means that we cannot count u and −u as
mapping to separate points. Note that an elliptic curve will have at most 3
points with y = 0, corresponding to at most 3 roots of x3 + ax + b.

Theorem 2.3. If I(c) = I(-c), c satisfies the equations 6y = 0 and c4 −
6xc2 − 3a = 0.

Proof. The numbers c, -c are u values that map to the same point Q = (x, y)
if and only if u2 − c2 divides the polynomial seen in Definition 1.2 P (u) =
u4 − 6xu2 + 6yu − 3a evenly. After performing the division, we see that
u4−6xu2+6yu−3a can be written (u2−c2)(u2+c2−6x)+6yu−3a+c4−6xc2.
Thus, c and -c map to the same point Q when 6y = 0 and c4− 6xc2− 3a =
0.

8

Corollary 2.4. If 6y 6= 0 or c4−6xc2−3a 6= 0, I(c) 6= I(-c). Thus we note
that I(c), I(-c) will tend to be different points. This is not always the case,
however, as the following examples demonstrate.

We can consider a few special classes of curves when the values u,−u will
collide at the same point. Per Theorem 2.3, y = 0 in each instance noted
below and the equations were found by rearranging the general Weierstrass
equation, y2 = x3 + ax + b.

First, we assume b = 0, which allows us to set x(x2 + a) = 0. If x is
assumed to be 0, the equation c4 − 6xc2 − 3a = 0 loses the x term and can
be rewritten as a = c4

3 , meaning u and −u will collide at the point (0,0)
with the given a, b values.

e.g. Working in F17 on the curve y2 = x3 + 7x, {6, 7, 10, 11} 7→ (0,0).

Next we consider the instance where x2 + a = 0, also written a = −x2.
Now the equation c4 − 6xc2 − 3a = 0 can be rewritten c4 − 6xc2 + 3x2 = 0.
Factoring this reveals c2 = x(3 ±

√
6). After rearranging to find x and

considering this in terms of a, we see that curves with a = −
(

c2

3±
√
6

)2
will

produce a collision between u and −u at the point (
√
−a, 0). This only

works in fields where
√

6 has an integer solution.

e.g. Defining the curve y2 = x3 + 16x over F29, {9, 20} 7→ (10,0).

Finally, we consider the case with b 6= 0. Here, we rewrite c4−6xc2−3a =

0 as a = (c4−6xc2)
3 . Inserting this back into the Weierstrass equation and

expanding gives the cubic x3 − 2c2x2 + c4

3 x + b = 0. If c and b values are
chosen such that the cubic can be factored, the roots can be used to solve
for a. These a and b values can then be used to construct a curve where the
known c value will collide with −c.

e.g. Over the field F17, we let c = 9. This results in the cubic x3 + 8x2 +
11x+ b = 0. Let b = 2. which gives the equation a root of 4. Using 4 in the
equation to determine a, the final curve is set to y2 = x3 + 9x + 2. After
applying Icart’s function, we note that indeed {9, 8} 7→ (4,0).

3 Computational verification

3.1 Structure of code

The code used to verify the Fouque-Tibouchi bound comes in two main
parts. First, the Icart hash function was implemented in C++ using Vic-
tor Shoup’s NTL library [9]. This program takes a prime and two curve
coefficients as input and returns the number of distinct points hit by the
hash function. Lists of prime numbers up to 219 congruent to 2 modulo 3
(as required by Icart’s function) were used to define the finite fields. El-

9

liptic curve coefficients were provided courtesy of John Cremona [2], who
organizes curves by conductor. A full definition is beyond the scope of this
paper, but the size of the conductor gives a rough sense of the size of a
curve. This was a convenient way to order the test curves, where a list of
all conductors less than or equal to 100 provided the rest of the input data.
For a full definition of conductors see [8]. Python was used to create glue
code that pulled numbers from each of these lists, passes them to the Icart
program, and checks the image size against the proposed inequality.

3.2 Pseudocode

The code is embarrassingly parallel, where the prime numbers and curve
data are stored in files that can be split up in any convenient manner. The
conductor data is provided in long Weierstrass form (i.e. with a1, . . . , a4, a6)
and must be processed into our two desired coefficients (see [6] for a de-
tailing of these equations). Note again that fields of characteristic = 2, 3
are ignored, which allows us to perform this transform to the short form
y2 = x3 + ax + b.

Thus, the code loops over a range of primes and for each prime it counts
the image for a range of curves (as defined for each conductor). These ranges
are adjusted as computational capacity dictates. Per curve and for a given
prime, we tabulate the size of the image of Icart’s function. This counting
was done with a hash set data structure to ensure only distinct points were
counted. The point itself was used as the key so that the data structure itself
would be ensuring uniqueness. As noted throughout Section 2, tabulation
was only performed for inputs 1 up to q/2 (inclusive, where q is our given
prime).

Special care must be taken, however, when calculating the final point
count. The basic idea is to simply double the size of the hash set that holds
Icart output, but the code accounts for two edge cases. The first is (fittingly)
noted in Section 2.3. In cases where u and −u map to the same point, we
only want to count it once whereas outright doubling the size of the hash
set assumes u,−u map to distinct points. These special cases are counted
in a separate data structure (also a hash set). The second case is instances
where both Q and −Q are mapped to by u values less than q/2 (e.g. see
Appendix A.2, points (1, 1) and (1, 16)). To account for this, we use only x
values for keys in the hash set from each output point. This then reflects
the symmetry that if Q is on the curve −Q will be as well (Theorems 2.1
and 2.2).

The main idea is to use point data as our key so that the hash sets only
account for distinct entries. As noted earlier, the problem parallelizes easily.
This also means that the two outer loops could be reversed to achieve the
same effect.

10

Algorithm 1 Tabulate the size of the image

for all q in prime range do
for all curves in conductor range do

find short form coefficients
for all u from 1..q/2 do

point = Icart(u)
if point.y is 0 and u4 − 6(point.x)c2 − 3a is 0 then

specialCases.insert(point,1)
else

set.insert(point.x,1)
end if

end for
count = set.size× 2 + specialCases.size
if
∣∣count− 5

8q
∣∣ ≤ 55q1/2 then

print The inequality holds
end if

end for
end for

3.3 Theoretical analysis

In this algorithm analysis, we treat the cost of the Icart function as a con-
stant time O(1). The hash function consists of a number of multiplications
and exponentiations, but the numbers we work with (< 219) all fit within
a single word and thus their runtime is not the significant factor in the
algorithm’s overall complexity.

It is mentioned above that the outer two loops could be reversed without
a change in results. For this analysis, we consider the Icart function per-
formed for each curve and then for all primes less than some bound. This is
taken as the trivial bound for the count of primes less than a given integer.
Icart’s function restricts these to primes congruent to 2 modulo 3.

The count of curves per conductor N is denoted c(N). Finally, we can
consider the algorithm as a loop over each of these pieces. Thus, we have∑

curves for N

∑
primes≤x

∑
u∈Fp/2

cost of I(u).

This gives rise to the complexity bound

O

(
c(N) · x2

log x

)
.

3.4 Data

For all conductors through 100 for all primes less than 219, the inequality
proposed by Fouque and Tibouchi has been shown to hold. Below is an

11

example of the data found by the code. This is for the conductor 44 with
curve coefficients 0, 1, 0, 3, −1. The primes are all congruent to 2 modulo
3 and range from 5 to 4013.

Figure 2: Image size falls within the bounds

The inequality
∣∣N − 5

8q
∣∣ ≤ 55q1/2 was tested and shown to hold for all

curves given by conductor less than or equal to 100 defined over the primes
less than 219.

3.5 Result Analysis

With these results, we have experimentally proven the following theorem:

Theorem 3.1. For all curves of conductor less than or equal to 100 for all
prime order finite fields Fq where q < 219, the size of the image of Icart’s
hash function N satisfies the inequality

∣∣N − 5
8q
∣∣ ≤ 55q1/2.

4 Conclusion

A perfect hash function onto an elliptic curve would cover ever single point
available. In practice, however, this has yet to be attained. It is useful to

12

know the size of the image when deciding which hash function to use for
a particular use case. To that end, this research builds upon the previous
work towards estimating the size of the output for Icart’s function.

Further research could include verifying the bound for a greater number
of conductors and for prime powers. It is also possible that the margin
of error, 55q1/2, present in the Fouque-Tibouchi bound could be tightened
somewhat in order to give an even better estimate of the size of the Icart
function image. The data collected here shows that the error constant could
be lowered as far as 3 in select cases (i.e. N = 5

8q + O(3q1/2)).

Acknowledgements

I would like to thank Dr. Andrew Shallue for opening the door to elliptic
curves and helping a computer scientist navigate the complex world of ab-
stract mathematics. In addition, this research would not have been possible
without the help of Dr. Mark Liffiton and his constant willingness to make
our computers work for us.

References

1. Bassham III, L. E. The Elliptic Curve Digital Signature Algorithm
Validation System (ECDSAVS). NIST Information Technology Labo-
ratory, Computer Science Division, 2004.

2. Cremona, J. E. http://homepages.warwick.ac.uk/~masgaj/ftp/data/

3. Fouque, P.-A. and Tibouchi, M. Estimating the Size of the Image of
Deterministic Hash Functions to Elliptic Curves.

4. Icart, T. How to Hash into Elliptic Curves. Proceedings of Crypto
2009, LNCS, vol. 5677. Springer, 2009. p. 303-316.

5. Koblitz, N. A Course in Number Theory and Cryptography. Springer,
1998.

6. Lemmermeyer, F. Lecture 7, Wednesday 25.02.04.
http://www.fen.bilkent.edu.tr/~franz/ta/ta07.pdf

7. Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. Handbook of
Applied Cryptography. CRC Press, 1997.

8. Silverman, J. H. The Arithmetic of Elliptic Curves. Springer, 1986.

9. Shoup, V. http://shoup.net/ntl/

13

A Example hash function images

In this appendix, sample Icart function output is given for an entire curve.
This data was generated by brute force, first finding the x, y values that
satisfy the given curve equation and then calculating the points given by the
hash function for each u value in the given field. These two sets were then
compared to find both which points were missed and how many collisions
we witness.

A.1 q = 11, a = −1, b = 0

Final point count: 12

(0,0) was missed by the hash function.

(1,0) was missed by the hash function.

(4,4) appears 1 time(s).

U val(s): 10

(4,7) appears 1 time(s).

U val(s): 1

(6,1) appears 2 time(s).

U val(s): 5, 7

(6,10) appears 2 time(s).

U val(s): 4, 6

(8,3) appears 1 time(s).

U val(s): 9

(8,8) appears 1 time(s).

U val(s): 2

(9,4) appears 1 time(s).

U val(s): 3

(9,7) appears 1 time(s).

U val(s): 8

(10,0) was missed by the hash function.

A.2 q = 17, a = 1, b = −1

Final point count: 18

(0,4) was missed by the hash function.

14

(0,13) was missed by the hash function.

(1,1) appears 2 time(s).

U val(s): 8, 12

(1,16) appears 2 time(s).

U val(s): 5, 9

(2,3) appears 1 time(s).

U val(s): 6

(2,14) appears 1 time(s).

U val(s): 11

(4,4) appears 1 time(s).

U val(s): 10

(4,13) appears 1 time(s).

U val(s): 7

(6,0) appears 2 time(s).

U val(s): 4, 13

(7,3) appears 1 time(s).

U val(s): 2

(7,14) appears 1 time(s).

U val(s): 15

(8,3) appears 2 time(s).

U val(s): 14, 16

(8,14) appears 2 time(s).

U val(s): 1, 3

(11,7) was missed by the hash function.

(11,10) was missed by the hash function.

(13,4) was missed by the hash function.

(13,13) was missed by the hash function.

15

B Code

This appendix includes the code used to computationally verify the Fouque-
Tibouchi bound. The code implementing Icart’s function was written in
C++ using the Shoup NTL package. This includes an elliptic curve point
class to encapsulate both the x, y data and the functions for adding points
together. The Icart class implements the hash function itself. The main file
implements the algorithm found in Section 3.2.

The data was stored in two sets of files. All primes congruent to 2
(mod 3) less than 219 were split across six files such that each file contained
the primes within a range of 100,000 (e.g. IcartPrimes3.txt contains the
primes p such that 300000 < p < 399999). The conductors were split up in
a similar manner as organized in Cremona’s tables.

For the full code with accompanying documentation, in addition to a
similar Java implementation, see the following:
https://github.com/tomsimmons/ecurves

B.1 main.cpp

The main file for the Icart hash function image counting.

1 // A v e r i f i c a t i o n o f the s i z e o f I c a r t ' s image
2 // Coded by Thomas Simmons
3

4 #include "epoint.h"

5 #include "icart.h"

6 #include <s t d i o . h>
7 #include <unordered map>
8

9 using namespace std ;
10

11 int main (int argc , char* args [])
12 {
13 unordered_map<uint64_t , int> points ;
14 ZZ prime ;
15 ZZ_p ayy , bee ;
16 unordered_map<uint64_t , int> specialCases ;
17

18 if (argc != 4)
19 {
20 cout << "This program takes three arguments ←↩

exactly" << endl ;
21 cout << "A prime, an A coefficient , and a B ←↩

coefficient" << endl ;
22 return 1 ;
23 }
24 else

16

25 {
26 prime = conv<ZZ>(args [1]) ;
27 ZZ_p : : init (prime) ;
28 ayy = conv<ZZ_p>(conv<ZZ>(args [2])) ;
29 bee = conv<ZZ_p>(conv<ZZ>(args [3])) ;
30 }
31

32 // Create new I c a r t hash ob j e c t with appropr ia te ←↩
parameters

33 Icart ic = Icart(&prime ,&ayy ,&bee) ;
34 // Bound the loop by p/2 (convert from ZZ to long)
35 unsigned long bound = conv<unsigned long>(conv<ZZ>(←↩

args [1])) ;
36 bound = (bound / 2) + 1 ;
37 for (uint64_t u=1; u<bound ; u++)
38 {
39 // cout << ”u : ” << u << endl ;
40 // Cal l hash func t i on
41 EPoint R = ic . hash (ZZ_p (u)) ;
42 //R. p r i n t () ; cout << endl ;
43

44 // Acount f o r s p e c i a l c a s e s
45 if (IsZero (R . y) &&
46 IsZero (conv<ZZ_p>(power (conv<ZZ>(u) , 4)) − (conv<←↩

ZZ_p>(6)
47 * R . x * sqr (conv<ZZ_p>(u))) − (conv<ZZ_p>(3) * ayy←↩

)))
48 {
49 specialCases . emplace (R . toLongLong () , 1) ;
50 }
51 else

52 {
53 // Blank the y coord inate because we want to count←↩

only one i n v e r s e per ha l f− f i e l d
54 // See README to know what t h i s even means
55 uint64_t halfPoint = R . toLongLong () & 0←↩

xFFFFFFFF00000000 ;
56 // Add point to hash map
57 points . emplace (halfPoint , 1) ;
58 }
59 }
60 // cout << ” S p e c i a l Cases : ” << s p e c i a l C a s e s . s i z e () << ←↩

endl ;
61 cout << "Points hit: " <<
62 ((points . size () * 2) + specialCases . size ()) ←↩

<< endl ;
63 return 0 ;
64 }

17

B.2 epoint.cpp

A basic class to represent points on a given curve where the particular curve
coefficients are static variables for the class. A simple Boolean flag indicates
whether a given point is the Point at Infinity. The primary functionality for
this class is the point addition formulas.

1 // E l l i p t i c Curve Point Implementation
2 // Coded by Thomas Simmons
3

4 #include "epoint.h"

5

6 using namespace NTL ;
7

8 ZZ_p EPoint : : a ; ZZ_p EPoint : : b ;
9

10 // Point con s t ruc to r . I t i s l e f t to the user to handle x , y←↩
v a l s in the PaI case

11 EPoint : : EPoint (ZZ_p iX , ZZ_p iY , bool ptAinf)
12 {
13 x = iX ; y = iY ; PaI = ptAinf ;
14 }
15

16 // Copy cons t ruc to r
17 EPoint : : EPoint (const EPoint &pt)
18 {
19 x = pt . x ; y = pt . y ; PaI = pt . PaI ;
20 }
21

22 // Sets the prime d e f i n i n g the f i e l d f o r the curve
23 void EPoint : : setPrime (ZZ p)
24 {
25 ZZ_p : : init (p) ;
26 }
27

28 // Sets the coo rd ina t e s o f the po int or change to PaI
29 void EPoint : : setCoord (ZZ_p iX , ZZ_p iY , bool ptAinf)
30 {
31 x = iX ; y = iY ; PaI = ptAinf ;
32 }
33

34 // Sets the c o e f f i c i e n t s o f the curve over which these ←↩
po in t s e x i s t

35 // Returns t rue on succes s , f a l s e i f d i s c r im inant i s ze ro
36 bool EPoint : : setCoeff (ZZ_p coA , ZZ_p coB)
37 {
38 if (! IsZero (ZZ_p (−16) * ((ZZ_p (4) * power (coA , 3)) +
39 (ZZ_p (27) * sqr (coB)))))

18

40 {
41 a = coA ; b = coB ;
42 return true ;
43 }
44 return false ;
45 }
46

47 // Checks i f the po int i s v a l i d over the g iven curve
48 // Returns t rue i f yˆ2 = xˆ3 + ax + b
49 bool EPoint : : isPoint ()
50 {
51 ZZ_p ySide = sqr (y) ;
52 ZZ_p xSide = power (x , 3) + (a * x) + b ;
53

54 return ySide == xSide ;
55 }
56

57 // Adds two po in t s toge the r as P += Q
58 void EPoint : : add (EPoint Q)
59 {
60 ZZ_p yNeg ;
61 negate (yNeg , Q . y) ; // We w i l l need t h i s l a t e r
62

63 // P + Point at I n f i n i t y = P
64 if (PaI | | Q . PaI)
65 {
66 // I f Q i s the PaI , l e ave P unchanged . I f P i s PaI←↩

,
67 // P now equa l s Q
68 if (PaI) setCoord (Q . x , Q . y , Q . PaI) ;
69 }
70 // P + (−P) = Point at I n f i n i t y
71 else if (x == Q . x && y == yNeg)
72 {
73 PaI = true ;
74 }
75 // P + P
76 else if (x == Q . x && y == Q . y)
77 {
78 ZZ_p xNew = sqr ((3* sqr (x) + a) * inv (2 * y)) − (2 ←↩

* x) ;
79 y = yNeg + (((3* sqr (x) + a) * inv (2 * y)) * (x − ←↩

xNew)) ;
80 x = xNew ;
81 }
82 // P + Q
83 else

84 {
85 negate (yNeg , y) ;

19

86 ZZ_p xNew = sqr ((Q . y − y) * inv (Q . x − x)) − x − Q .←↩
x ;

87 y = yNeg + (((Q . y − y) * inv (Q . x − x)) * (x − xNew←↩
)) ;

88 x = xNew ;
89 }
90 }
91

92 // Adds two po in t s toge the r as R = P + Q
93 // Returns the value R
94 EPoint EPoint : : operator+(EPoint Q)
95 {
96 EPoint R (a , b , PaI) ; // Create a copy o f t h i s point , P
97 R . add (Q) ;
98

99 return R ;
100 }
101

102 // Pr in t s the po int to standard output
103 void EPoint : : print ()
104 {
105 std : : cout << "(" << x << "," << y << ")" ;
106 }
107

108 // Returns a 64 b i t i n t where the h igher order 32 b i t s are←↩
x and the o the r s are y

109 uint64_t EPoint : : toLongLong ()
110 {
111 // Copy in x coord and s h i f t l e f t by 32
112 uint64_t output = 0 ;
113 output ˆ= conv<long>(x) ;
114 output<<=32;
115 // Copy in y coord
116 output ˆ= conv<long>(y) ;
117

118 return output ;
119 }

B.3 icart.cpp

This class wraps up the Icart function to allow for simple usage. A given
Icart object will store the constants 27−1 and 3−1 for a given prime in order
to avoid needless recomputation.

1 // I c a r t ' s func t i on implementation
2 // Coded by Thomas Simmons
3

4 #include "icart.h"

20

5 #include <iostream>
6

7 // us ing namespace NTL;
8

9

10 Icart : : Icart (ZZ* p , ZZ_p* coA , ZZ_p* coB)
11 {
12 setPrime (p) ;
13 a = *coA ; b = *coB ;
14 }
15

16 // Sets the prime d e f i n i n g the f i e l d f o r the curve and ←↩
s t o r e s c e r t a i n va lue s

17 void Icart : : setPrime (ZZ* p)
18 {
19 //ZZ p : : i n i t (*p) ;
20 // I c a r t hash func t i on uses 1/3 root , equ iva l en t to (2←↩

p−1)/3
21 exp = MulMod (SubMod (MulMod (ZZ (2) , *p , *p) , ZZ (1) , *p←↩

) ,
22 InvMod (ZZ (3) ,*p) , *p) ;
23 // Store i n v e r s e va lue s to be used l a t e r
24 ts = inv (ZZ_p (27)) ;
25 th = inv (ZZ_p (3)) ;
26 }
27

28 // I c a r t ' s hash func t i on
29 EPoint Icart : : hash (ZZ_p u)
30 {
31 // 0 maps to the po int at i n f i n i t y
32 if (IsZero (u))
33 {
34 return EPoint (ZZ_p (0) , ZZ_p (0) , true) ;
35 }
36

37 // v = (3 a − uˆ4) / 6u
38 ZZ_p v = ((ZZ_p (3) * a) − power (u , 4)) * inv (ZZ_p (6) *←↩

u) ;
39 // x = (vˆ2 − b − uˆ6/27) ˆ(1/3) + uˆ2/3
40 ZZ_p x = power (sqr (v) − b − (power (u , ZZ (6)) * ts) , ←↩

exp) +
41 (sqr (u) * th) ;
42 // y = ux + v
43 ZZ_p y = (u * x) + v ;
44

45 return EPoint (x , y , false) ;
46 }

21

B.4 test.py

This glue code performs the file I/O that tests a particular prime with a
given number of conductors. The calculations to simplify the long-form
Weierstrass coefficients to the familiar a, b values were also performed in the
Python file.

1 # Python s c r i p t to automate I c a r t func t i on coverage
2 # The magic i n e q u a l i t y we seek i s |N − (5/8) q | <= 55q←↩

ˆ(1/2)
3

4 from math import sqrt

5 from subprocess import Popen , PIPE
6 from sys import argv

7 import linecache

8

9

10 # Open primes f i l e
11 primes = open ("data/IcartPrimes" + argv [1] + ".txt" ,"r")
12 # Open Cremona data f i l e
13 conductors = open ("data/conductors/cremona.00000-09999" ,"r←↩

")
14 # Counter f o r number o f t imes i n e q u a l i t y ho lds
15 losses = 0
16

17 # For a l l o f I c a r t ' s primes , t e s t the i n e q u a l i t y
18 for num in primes :
19 # Make prime in to s t r i n g and usab le number
20 primeS = num . rstrip ('\r\n')
21 try :
22 primeN = int (primeS)
23 except ValueError :
24 print ("Incorrect processing for prime: " + primeS)
25 continue

26

27 # Pul l in repeated conductors
28 for c in xrange (0 ,100) :
29

30 line = linecache . getline (conductors . name , c+1)
31

32 # Process Cremona data , which s t a r t s in form ”n [←↩
a1 , a2 , a3 , a4 , a6] ”

33 cond = line . split (" ")
34 cond [1] = cond [1] . lstrip ('[') . rstrip (']\n')
35 a = cond [1] . split (",")
36 for i in range (5) :
37 a [i] = int (a [i])
38

22

39 # Find A,B from long form c o e f f i c i e n t s
40 b2 = pow (a [0] , 2 , primeN) + 4*a [1] % primeN

41 b4 = a [0] * a [2] + 2*a [3] % primeN

42 b6 = pow (a [2] , 2 , primeN) + 4*a [4] % primeN

43

44 c4 = pow (b2 , 2 , primeN) − 24*b4 % primeN

45 c6 = (−1)*pow (b2 , 3 , primeN) + 36*b2*b4 − 216*b6 % ←↩
primeN

46

47 inv48 = pow (48 , primeN−2,primeN)
48 inv864 = pow (864 , primeN−2,primeN)
49

50 A = (−1) * c4 * inv48

51 B = (−1) * c6 * inv864

52

53 # Prepare c a l l to e x t e r n a l program [' prog name ' , '←↩
prime ' , ' coA ' , ' coB ']

54 cmd = ["./icart" , primeS , str (A) , str (B)]
55

56 # Store output o f program in array ' output '

57 output = []
58

59 # Cal l I c a r t func t i on
60 p = Popen (cmd , stdout=PIPE)
61 # Grab stdout , decode to s t r i ng , then s l i c e to ←↩

grab po int count
62 out = p . communicate () [0] . lstrip ('Pointsh: ') .←↩

rstrip ('\r\n')
63 try :
64 output . append (int (out))
65 except ValueError :
66 print ("Invalid Icart output for prime " , prime)
67 continue

68

69 print (output [0] , primeS , A , B)
70

71 lhs = abs (output [0] − (5 . 0 / 8 . 0 * float (primeN)))
72 rhs = 55 * sqrt (float (primeN))
73

74 #pr in t (”LHS: ” , lhs , ”RHS: ” , rhs)
75

76 if (lhs <= rhs) :
77 print ("Point count for prime " + primeS + " is←↩

" + output [0])
78 else :
79 losses += 1
80 print ("Inequality does not hold for prime:" + ←↩

primeS + " and conductor:" + cond [0] + "(←↩
line " + c + ")")

23

81

82 primes . close ()
83 conductors . close ()
84 print ("The inequality did not hold " , losses , " times")

24

	Illinois Wesleyan University
	Digital Commons @ IWU
	2015

	A Computational Study of Icart's Function
	Thomas Simmons
	Recommended Citation

	tmp.1430418580.pdf.HQlaO

