Illinois Wesleyan University Digital Commons@ IWU

Decomposing Complete Graphs into a Graph Pair of Order 6

Yizhe Gao
Illinois Wesleyan University
Daniel Roberts, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Part of the Applied Mathematics Commons

Yizhe Gao and Daniel Roberts, Faculty Advisor, "Decomposing Complete Graphs into a Graph Pair of Order 6" (April 12, 2014). John Wesley Powell Student Research Conference. Paper 9.
http://digitalcommons.iwu.edu/jwprc/2014/posters/9

Decomposing complete graphs into a graph pair of order 6

Purpose:

Decomposing K_{n} into a partiular graph pair of order 6 .

Definition:

Graph: A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices called its end points.

A complete graph is a graph in which each pair of graph vertices is connected by an edge.

K_{6}
The complement of a graph G is the graph with the same vertex set by whose edge set consists of the edges not present in G.

C6

C 6

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

A graph pair of order n is a pair of connected graphs on n vertices with no isolated vertex whose union is Kn . In this case, we will use C 6 and its complement to decompose Kn

Yizhe Gao

Illinois Wesleyan University
Instructor: Daniel Roberts

A Proof

By simple algebra, necessary conditions for a multidecomposition of Kn into C 6 and C 6 are $\mathrm{n}=0,1,3,4 \mathrm{mod} 6$. Then, we want to show that these conditions are sufficient by constructing a multidecomposition in each case.
1)Show that K_{n} can be decomposed into $C 6$ and its complement if $\mathrm{n}=0 \bmod 6$.

In this case, Kn can be seen as the union of many K 6 s connected with $\mathrm{K}_{6,6} \mathrm{~s}$. K 6 s can be decomposed into C 6 s and their complements (one copy in each). We need to show that $\mathrm{K} 6,6 \mathrm{~s}$ can also be decomposed into C 6 s or its complement. By Sotteau's theorem, K6,6 can be decomposed into C 6 s. Hence, since Kn can be decomposed into C 6 and its complement when $\mathrm{n}=0 \bmod 6$, the decomposition exists when $n=0 \bmod 6$.

2) Show that $K n$ can be decomposed into C_{6} and its complement when $n=3 \bmod 6$.

First, we can take a look at some small examples of Kn when $\mathrm{n}=3$ mod 6 . For example, are we able to show that K9 can be decomposed into graph pair of order 6?

By edge condition, since K9 must have at least one complement, there are 36-9=27 edges left. After doing some simple algebra, I find that the decomposition can only exist if there are 3 more C6 s and one Ĉ 6 in K9.

Then, we need to see whether the decomposition above exists given the degree condition. Each vertex of K 9 must have degree of 8 . Since we have already removed one C 6 complement, 6 vertices have degree of 5 left. However, since a C 6 removes 2 degrees from each vertex and $5 / 2$ is not an integer, it is not true that K9 can be decomposed into graph pair of order 6 since some vertices only have degree of 5 left.

CURRENT RESULT

Kn can be decomposed in to graph pair consisting of C 6 s and their complements if n is 0 mod 6. Also, K9 can not be decomposed in that way.

FUTURE STUDY:

I will try to test the sufficient conditions for the decomposition of K_{n} if $n=1,3$ and $4 \bmod 6$.

