Multidecompositions of complete graphs into a graph pair of order 6

Yizhe Gao *

Dan Roberts

Definitions

A n-cycle, denoted C_{n}, is a connected 2-regular graph on n vertices.

6-cycle

Definitions

Given a graph G on n vertices, the complement of G, denoted \bar{G}, is the graph on the same vertex set with edge set $E\left(K_{n}\right) \backslash E(G)$.

Definitions

Let G and H be graphs. A G-decomposition of H is a partition of the edges of H into copies of G.

Let G and H be graphs. A (G, H)-multidecomposition of order n is a partition of the edges of K_{n} into copies of G and H with at least one copy of G and at least one copy of H.

Definitions

Let G and H be graphs. We call (G, H) a graph pair of order n if all of the following hold.
1 Both G and H have n vertices, none of which are isolated,
$2 G \neq H$, and
$3 G \cup H=K_{n}$.
Figure: The graph pairs of order 5.

The graph pair of order 4

Theorem (Abueida and Daven, 2003)
There is a ($C_{4}, 2 K_{2}$)-multidecomposition of order n if and only if $n \equiv 0,1(\bmod 4)$ where $n \geq 4$ and $n \neq 5$.

Graph pairs of order 5

Let (G, H) be a graph pair of order 5 . The necessary and sufficient conditions for (G, H)-multidecompositions of order n are as shown below (Abueida and Daven, 2003). Assume that $n \geq 5$.

The graph pair $\left(C_{6}, \bar{C}_{6}\right)$

C_{6}-decompositions

Theorem (Rosa, 1966)
A C_{6}-decomposition of K_{n} exists if and only if $n \equiv 1,9(\bmod 12)$.
Theorem (Sotteau, 1981)
A C_{6}-decomposition of $K_{m, n}$ exists if and only if
$1 m$ and n are both even,
$2 m, n \geq 3$, and
36 divides mn.

\bar{C}_{6}-decompositions of K_{n}

Theorem (Kang et al., 2008)
A \bar{C}_{6}-decomposition of K_{n} exists if and only if $n \equiv 1(\bmod 9)$.

Necessary conditions for a

(C_{6}, \bar{C}_{6})-multidecomposition of order n
(Order) $n \geq 6$,
(Size) $\frac{n(n-1)}{2}=6 x+9 y$ for some $x, y \geq 1$, and
(Degree) $n-1=2 p+3 q$ for some $p, q \geq 0$.

Therefore $n \equiv 0,1,3,4 \quad(\bmod 6)$

Case: $n=6 x+1$

A (C_{6}, \bar{C}_{6})-multidecomposition of order 7 does not exist.

$$
\begin{gathered}
\binom{7}{2}=21=6 x+9 y \Rightarrow x=2 \text { and } y=1 \\
6=2 p+3 q \Rightarrow(p=0 \text { and } q=2) \text { or }(p=3 \text { and } q=0)
\end{gathered}
$$

Case: $n=6 x+1$

A (C_{6}, \bar{C}_{6})-multidecomposition of order 7 does not exist.

$$
\begin{gathered}
\binom{7}{2}=21=6 x+9 y \Rightarrow x=2 \text { and } y=1 \\
6=2 p+3 q \Rightarrow(p=0 \text { and } q=2) \text { or }(p=3 \text { and } q=0)
\end{gathered}
$$

Case: $n=6 x+1$ where x is even.

Case: $n=6 x+1$ where x is even.

Case: $n=6 x+1$ where x is even.

Case: $n=6 x+1$ where x is even.

...

Case: $n=6 x+1$ where x is even.

A $\left(C_{6}, \bar{C}_{6}\right)$-multidecomposition of order 13

Case: $n=6 x+1$ where x is odd.

$$
6[\bigcap \cap \cdots \cdots(\bigcap)
$$

Case: $n=6 x+1$ where x is odd.

Case: $n=6 x+1$ where x is odd.

A cyclic \bar{C}_{6}-decomposition of K_{19}

Theorem
A $\left(C_{6}, \bar{C}_{6}\right)$-multidecomposition of order n exists if and only if $n \equiv 0,1,3,4(\bmod 6)$, unless $n \in\{7,9,10\}$ and possibly $n=19$.

More lines of inquiry.

- Multidecompositions into other graph pairs of order 6.
- $\left(C_{6}, \bar{C}_{6}\right)$-multidecompositions of order n with prescribed numbers of C_{6} and \bar{C}_{6}.

Thank You

References

A. Abueida and M. Daven, Multidesigns for Graph-Pairs of Order 4 and 5, Graphs and Combinatorics (2003) 19, 433-447.
R. Kang, H. Zhao, and C. Ma, Graph designs for nine graphs with six vertices and nine edges, Ars Combin. 88 (2008), 379-395.

嗇 A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$-gons, Mat.-Fyz. Časopis Sloven. Akad. Vied 16 1966, 349-352.

目 D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into Cycles (Circuits) of Length $2 k$, J. Combin. Theory Ser. B 30 1981, 75-81.

