
Illinois Wesleyan University
Digital Commons @ IWU

Honors Projects Physics

2008

Visualizing a Fourth Dimension: Hypercubic
Resistor Networks
Andrew J. Nelson '08
Illinois Wesleyan University

This Article is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty
Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by
the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.

Recommended Citation
Nelson '08, Andrew J., "Visualizing a Fourth Dimension: Hypercubic Resistor Networks" (2008). Honors Projects. Paper
11.
http://digitalcommons.iwu.edu/physics_honproj/11

http://www.iwu.edu/
http://www.iwu.edu/
http://www.iwu.edu/
http://digitalcommons.iwu.edu
http://digitalcommons.iwu.edu/physics_honproj
http://digitalcommons.iwu.edu/physics
mailto:digitalcommons@iwu.edu


Visualizing a Fourth Dimension: Hypercubic Resistor Networks
 

by
 

Andrew J. Nelson
 

Submitted to the Department of Physics
 
in partial fulfillment ofthe requirements for Research Honors
 

at
 

Illinois Wesleyan University
 

November 2007
 



11 

Abstract 
A booming field in physics research today is the search for extra dimensions. This is 

something that has been thought about and discussed in both the scientific and non-scientific 

world for a long time. Many physicists are currently attempting to answer the question: "is our 

world really four dimensional?" The purpose of this research, however, is not to answer that 

question. 

The purpose of this work is to help reveal four-dimensional artifacts in our perceived 

three-dimensional world in order to help a student, even a non-physicist, to understand and 

visualize how the extra spatial dimensionality, if present, might reveal itself in measurements. 

To that end, models of non-trivial four-dimensional objects have been constructed that have 

consequences large enough to be easily measured and understood in an intuitive fashion. In 

building and analyzing data from two, three, and four-dimensional model systems with non­

trivial interactions, large and conceptually transparent consequences of extra spatial dimensions 

have been discovered. 
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I. Introduction 
Various versions of String Theory have postulated that there may be nine, eleven, or 

twelve different spatial dimensions in the worH. Each of these extra dimensions was originally 

thought to be compact ii
. This notion of compact dimensionality refers to the idea that 

dimensions past the three immediately visible around us are wrapped upon each other. This 

creates an extra dimensional artifact that cannot be seeni
. This idea can be expressed through the 

analogy of an ant walking along a wire. To the ant, it appears that the surface is flat, but to the 

larger human observer it is obvious that the ant is in fact spiraling around the wire. Contrary to 

this conventional belief, it has been recently proposed that extra dimensions may, in fact, be very 

~arge, or possibly even of infinite sizeiii 
. These extra dimensions would have consequences large 

enough to be observed and be radically different than those discussed through string theory. 

In 1884, more than 20 years before Einstein's published papers, Edwin A. Abbott wrote a 

short book entitled, Flatland: A Romance of Many Dimensions. In this book, Abbott addresses 

the idea of a person, A. Square, who lives in a two-dimensional world and ventures into worlds 

of both higher and lower dimensions. After viewing a world of three dimensions, the traveler 

begins to wonder if it would be possible to have a world of four dimensions. The traveler realizes 

that while in a world oftwo dimensions he believed a line was a plane, but it was in fact a three 

dimensional object with height. Because ofthis loss of perception, it is entirely possible that 

while in three dimensions a solid object could have a fourth, unknown dimensioniv
• 

When referring to four dimensions, most people would think of what physicists refer to 

as three plus one dimensions, indicating three spatial dimensions and a fourth dimension of time. 

While this idea is usually attributed to Einstein, it was first introduced to the reading public 

through science fiction about 10 years prior to the 1905 publishing of his paper. In his 1895 

novel Time Machine, H.G. Wells had already put forth the idea that there were three dimensions 

of space while time could be considered a fourth dimensionv. In addition to the proposition that 

time was a fourth dimension, he also posited that there may be a fourth spatial dimension, 

perpendicular, in some sense of the word, to the three that we commonly know [Wells, 7]. 

A large gap in time is bridged between the ideas of Abbot, Wells, and Einstein and the 

latest theories about dimensionality today. Lisa Randall, a theoretical physicist from Harvard, is 

leading the way with the most cutting edge research about dimensionality. She has developed 

new and groundbreaking ideas about the possibility of four or more dimensionsii
. 
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The type II Randall Sundrum braneworld gravity model is one of her many important 

accomplishments. This model proposes that our universe is simply a membrane suspended 
viwithin a larger universe . A more simple way to think of this is to conceptualize our universe as 

a single strand of seaweed floating through the ocean. In this model, the gateway to the other 

dimension is found through black holes that are dispersed throughout our own universe, even 

within our own galaxy. Within the constraints of general relativity in three plus one dimensions, 
vithese black holes should have long since evaporated . Therefore, the theories that are being 

presented by Randall and her colleagues are very groundbreaking, as they do not follow some of 

the most basic principles of Physics. Experimental methods are now being formulated for testing 

the validity of this theoryvii,viii,ix. 

The goal of the research presented in this paper, however, has not been to answer the 

question "is our world really four dimensional?" The aim ofour project is, instead, more 

pedagogical in nature. We have attempted to find a way to reveal four-dimensional artifacts in 

our perceived three-dimensional world and to help a student, even a non-physicist, understand 

and visualize how the extra spatial dimensionality, if present, might reveal itself in 

measurements. To that end, we have constructed non-trivial four-dimensional model objects that 

have consequences large enough to be easily measured and also to be understood in an intuitive 

fashion. By comparing the measured properties of two, three, and four dimensional model 

systems with non-trivial interactions, and by analyzing that data, we have discerned what seem to 

us to be large and conceptually transparent consequences of extra spatial dimensions. 

One of the most important concepts that must be established before the entirety of this 

work may understood is the representation of one, two, three, and four dimensional systems. A 

simple but powerful way to think of the progression from one to four dimensions is through the 

words of Abbott. He articulates the idea that a point of zero dimensions, when moved to the 

side, leave a trail of points, making a one-dimensional line. When this line is then pulled to the 

side and leaves a "trail" of other lines, thus creating a two-dimensional square. Furthermore, if 

the square is pulled upward, leaving a trail of connected squares, it creates a space-filling cube­

a three-dimensional object. Finally, if the cube could be moved in some fourth direction, thereby 

leaving a "trail" of cubes, one would have created a four-dimensional objectv. Of course, it is 

important to note that for a continuous (i.e. space filling) cube, there is no way to implement this 

in practice. But a slight variation of this idea is quite fruitful. 
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Instead of pulling, dragging or moving a point continuously along a given direction, one 

can think of discrete points (nodes) that are displaced and connected to neighboring discrete 

points (by nearest neighbor bonds) to produce a one dimensional lattice. Mathematicians have 

long conceptualized these structures and referred to them as hypercubic lattices. For example, a 

four dimensional hypercube is defined as a set of nodes identified by four indices (x,y,z,w). 

Each node (x,y,z,w) is then connected by a bond to its neighbor (x+1,y,z,w). 

In our physical realization of this hypercube, each bond consists of a fixed linear lumped 

electrical element of impedance Zo (or conductance So = l/Zo). Therefore, the geometric distance 

between two nn (nearest neighbor) nodes is completely irrelevant. The direct interaction between 

two nn nodes is determined entirely by the value of the fixed electrical element connecting them. 

This allows for the construction of models of discrete nature as opposed to continuous models. 

This characteristic will prove exceedingly important in higher dimensional construction. 
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II. Construction 
The construction oftwo-dimensional square lattices and three-dimensional cubes was 

completed in order to verify the results of the work of earlier groups and also to validate our 

technique for fabrication and experimentation. While two-dimensional square networks have 

been studied both experimentalliiii and theoretically,Xi and three-dimensional cubes have been 

theoretically exploredx,xi, to the best of our knowledge, no work has been carried out concerning 

four-dimensional resistive networks. It is therefore crucial that we verify our technique of 

construction and measurement before beginning. 

It is important that all circuit elements used in the construction of the networks are 

unifonn. A first attempt was made to construct a two dimensional model using one kilo ohm 

resistors with a tolerance of five percent. However, after the construction of the model and brief 

initial measurements, it was realized that five percent tolerance resistors yield results with too 

much variance. Therefore it was decided that all resistors used in testing would be of one 

percent tolerance and rated at one kilo ohm. 

2.1 Two and Three-Dimensional Networks 

In order to construct the two-dimensional square network, resistors are laid out, 220 in 

total, into a grid like fashion. Each resistor is soldered to its neighbor to the left or right. This 

creates what is essentially a mesh of resistors, as can be seen in Figure Ion the following page. 

(It is important to note that in the interest of better illustrating the structure, the figure only shows 

a small portion of what was constructed.) The final network constructed was ten rows wide by 11 

rows high, consisting of 10 resistors on each edge. This is heretofore referred to as a ten by ten 

lattice. 

The construction of a cube of five resistors on each side begins with the fabrication of six 

two-dimensional resistor networks, each five resistors by five. An ordered triple, (x,y,z) is used 

to locate each node for simplicity. The z digit refers to which two-dimensional lattice the node 

lies in. In order to create the continuous cube, each node is connected to a corresponding node in 

a different two-dimensional lattice through a process called "connected stacking." Using an 



5 

ordered triple as an example, the node at (l, 1,1) would be connected to the node at (l, 1,2). 

These connections are created by soldering resistors between the neighboring nodes. As can be 

seen in Figure 2 (following page), this builds up a cube of resistors that is symmetrical in every 

direction. 
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Figure 1: Illustration of three by three two-dimensional model. 

Figure 2: Three-dimensional model as viewed from above 
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2.2: "Flattening Out" 
An important technique in the construction of devices of higher dimensionality is the 

ability to "flatten" higher dimensions into lower dimensional spaces. This allows the ability to 

create discrete objects as discussed above. Because we are using linear circuit elements that do 

not depend on relative distance to one another, it is possible to take a continuous structure, such 

as a cube of three dimensions, and make it a discrete structure with the same properties in two­

dimensions. We refer to this process as "flattening out." 

To create a flattened out cube, multiple square devices of five by five resistors are built. 

These are then laid out next to one another and the corresponding nodes are connected using 

resistors. As described above, a node in position (1,1,1) is connected to the neighboring node in 

position (1,1,2). However, because this is a discrete system, it is not necessary to create the 

three-dimensional model using the method of connected stacking. Instead, the square lattices are 

placed next to one another and the nodes are connected using lengths of22 gauge wire with a 

resistor spliced in the middle, as seen in Figure 3. The resistor is soldered to a wire in order to 

extend the distance between the nodes. This is possible because the object is discrete, not 

continuous. (It is important to note that in the interest of simplicity this figure only illustrates the 

connections for all values of x where y=3. A similar set of connections would be made for all 

values of y. Also, the cube has been scaled down to three by three by three in the interest of 

overall size.) 

Figure 3: Illustration of a "flattened out" 3x3x3 cube used in the creation of the hypercube. 

o~~~ 
o 1 2 331 X-axis 2 

Z=O 
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2.3: Four-dimensional network 
The four-dimensional network is constructed using the flattening out method described 

above. Four flattened cubes, each consisting of six square lattices, six resistors by six resistors 

are built. The cubes are then cOlUlected together in a way similar to the connections made to 

construct the cube. For example, the node at (0,0,0,0) was connected, using a resistor and wire, 

to the node at (0,0,0,1) and so forth. The nodes are labeled (x,y,z,w) where x and yare the axes 

of the square lattices, Z refers to the lattice number within each cube, and w refers to the cube 

number within the hypercube. A simplified version of the layout of the flattened hypercube can 

be seen in Figure 4 (page 9). (As with the illustration of the cube, connections have only been 

made for (x,3,z,w). The drawing is simplified to three by three squares, and only three cubes. 

All of this has been done to make interpretation easier.) 

During initial construction of the four-dimensional hypercube, the initial goal was to 

build a 6x6x6x6 model. However, it is obvious that as more dimensions are added, time 

becomes an exponentially increasing factor. Four flattened out cubes, each 6x6x6 were 

constructed and connected together to create a four-dimensional model. Once this stage was 

reached, edge effects (discussed further below) were tested. It was determined that a device of 

this size was sufficiently large to model an infinite lattice, and time was therefore not invested to 

create the remaining two cubes. 
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Figure 4: Illustration of a "flattened out" 3x3x3x3 hypercube. 
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III. Measurement 
A particular hypercube in our study is characterized by three attributes. First, by 

its spatial dimensionality d = I, 2, 3, or 4, secondly, by its size (L, L! x ~, L] x ~ X L3, L[ X L2 X 

L 3 x L4), and finally, by the numerical value of the "bare" conductance, So where: 

So=RJR 

Ro represents the measured resistance of a circuit element outside of the network. In the case of 

this experiment, this is taken to be IKohrn. R is the nominal value of the measure resistance of 

the resistor used to connect any two nearest neighbors. 

In general, we are interested in measuring the effective conductance, S, on different 

length scales and then looking for meaningful patterns of behavior that correlate with the spatial 

dimensionality of the hypercube. In this paper, however, we focus exclusively on measuring the 

effective nearest neighbor conductance Snn only. This is done by injecting a d.c. current, Id.c. at a 

node (iJ,k,l) and extracting this same current from one of the neighboring nodes (i±l, j±l, k±l, 

1±1). The potential difference, ~V, is measured across this pair of nn nodes, and R is computed: 

R = ~V/I 

Using this value of R and the known value of Ro, the value of Snn can be determined. 

A few general statements can readily be made about Snn. First; because there are multiple 

pathways through which the current can branch out and flow, Snn > So, except for the one­

dimensional chain where there is only one pathway, and in that case Snn = So. Measured values 

of the nearest neighbor bond should therefore be I for one dimensional and greater than I for 

systems with more than one dimension. 

Second; because the number of additional pathways between any two nearest neighbor 

nodes increases rapidly with dimensionality, we expect the conductance ratio Snn/So to increase 

monotonically with increasing dimensions. 

Third; for an infinite lattice, and also for a finite lattice with a periodic boundary 

condition (thus simulating an infinite lattice), all nodes must be equivalent, and the conductance 

ratio for these cases should be the same for any nearest neighbor bond regardless of its location 

within the lattice. But, in general, for finite lattices with edges, the ratio is expected to be larger 

for bonds that are deep inside the hypercube and decrease as one approaches the edges. 
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For moderately sized lattices, one can expect the measured value ofthe conductance ratio 

deep within the hypercube to asymptotically approach the value that will be present in an infinite 

lattice. The finite size effects and edge effects that are present in finite models can be very 

interesting in their own right. However, in the present study they serve as a distraction from our 

primary goal of delineating the effects of spatial dimensionality. 

Because the time and energy needed to build these hypercubes increases with Ld
, one 

does not have the luxury of building very large hypercubes. Our approach therefore is to 

construct objects of modest sizes and understand these finite size and edge effects well enough to 

be able to make meaningful claims about what the ratio Snn/So might be for the limiting case of 

finite lattices. So, we have measured and analyzed edge effects for all cases (d=2,3,4) but we 

have explicitly verified the uniformity ofthe measured value of the Snn/So for Periodic Boundary 

Conditions in only one case, d=2. 
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IV. Effects 
Before the results of the measurements are presented, there are two important 

characteristics of the models that must be addressed. These are the faU off of conductance near 

the edge, heretofore referred to as edge effect, and the constraints of size on objects. 

4. 1 Edge Effect 

We expect that as measurements of conductance are taken, values will not stay consistent 

throughout the object. The existing theory predicts that a two-dimensional infinite lattice will 

yield a nearest neighbor bond conductance of2x
,xi. However, it is obviously not possible to build 

a lattice of infinite size. We therefore expect to see a falloff of conductance near the edge of the 

models to be tested. Our goal will be to build models large enough to overcome these effects. 

This falloff can, in principle, be calculated using numerical techniquesviii
. However, this 

has not been done for the purposes of this experiment. We are seeking to build models that are 

sufficiently large enough to negate the edge effect and, in turn, observe values near the center of 

the models that are not affected by the falloff near the edge. Our concern is therefore not to 

eliminate the effect, but simply to make it negligible near the center. 

4.2 Size constraints/periodic boundary conditions 

Because the edge effect is a concern for our models, building models large enough to 

overcome it is important. However, it is impossible to construct a model large enough to 

overcome the effect entirely. Even if models of very large sizes are built, slight variations will 

still be seen at the innermost nearest neighbor bonds. We have therefore built a two-dimensional 

resistor lattice with periodic boundary conditions to simulate an infinite two-dimensional lattice. 

This lattice was used to demonstrate that the edge effect is not present in an infinite network. 

The idea of periodic boundary conditions in computer modeling and mathematical 

problem solving is analogous to how it is used here. If a problem is to be solved for a particle in 

a box or similar situation, and one wants to ignore surface effects, the box is replicated 
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identically throughout space to fonn an infinite lattice of identical boxes. Similarly, the two­

dimensional lattice of resistors will be connected upon itself, essentially replicating itself in 

space in an infinite network oflattices. 

A ten by ten two dimensional network was built. Each row was then connected from one 

end to the other, to create loops out of each of the rows. As can be seen in Figure 5, the mesh is 

constructed using resistors, ten on each side. The ends are connected back to one another in 

order to complete the circuit. A somewhat finer point ofthe construction of this model is the 

notion that two edges of the mesh must be left free of resistors. If all four sides have resistors, 

when the wire is looped over, the nodes will lie on top ofone another in the discrete model. In 

the end, what has been built is topologically equivalent to an edge-less spherical shell of 

resistors. It is expected that when the conductance of this system is measured, it will be 

approximately 2 throughout. 
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v. Results for Two-Dimensional Network 
The two-dimensional square grid of resistors has been studied extensively, both 

theoreticaUI,xi and experimentallliii . In particular, it has been shown that computing the 

effective bond conductance Srm across nearest neighbors of an infinite lattice is 

straightforwardviii . The value of RJR of an infinite square grid is predicted to be exactly 2. 

Measurements have previously been made using very precise methods to determine the nearest 

neighbor bond conductance, Snn, in a finite square lattice. These measurements were performed 

using 0.1 percent tolerance resistors and yielded a value of 1.990 01 viii. 

5. 1 Ten by ten two-dimensional lattice 
The results of measurements on a ten by ten lattice of 1 percent tolerance resistors 

yielded a conductance ratio of 1.988. This result is in excellent agreement with the 

aforementioned mentioned results. Both the new result and the previously reported value of 

1.99001 fall within a one percent tolerance of the theoretical value of2 that is expected with an 

infinite two-dimensional lattice. As can be seen in Figure 6 (following page), the conductance 

ratio asymptotically approached 2 from below as measurements were taken closer to the center 

of the model. This is expected, as values of Srm are below 2 near the edge, and therefore 

approach from below as the center is approached. 

The two dimensional model was created only to verify our method and the results are not 

novel. This work has been carried out simply to verify our methods for the following sections 

involving three and four-dimensional models. The following work is, to the best of our 

knowledge, being reported for the first time in litemture. 
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Figure 6: Bond Conductance, Snn vs. location of the bond along x-axis for two-dimensional 
model 

5.2 Ten by ten lattice with periodic boundary conditions 
In order to prove that there is no edge effect in an infinite lattice, the two-dimensional 

lattice with periodic boundary conditions was tested. This model simulates an infinite lattice, 

and therefore should not exhibit the edge effect that is in the other systems. As expected, every 

point within the network yielded a conductance value just slightly higher than two. This result 

can be seen in the graph in Figure 7 on the following page. 

As before, this is in agreement with the numerical methods used to predict a value of 2 in 

a two-dimensi~nallatticeviii. In the lattice with periodic boundary conditions, the conductance 

ratio asymptotically approaches 2 from above, instead of the rising asymptote that was observed 

earlier in the finite lattice. 
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VI. Results for Three-Dlimensional Lattice 
When discussing higher dimensional models, it is important to be able to clearly 

distinguish which nodes are being referenced. Within the three-dimensional model, the location 

of a particular bond is indicated by referring to the coordinates (X,Y,Z) of the left tenninus of the 

bond. In this method of reference, the values of X and Y refer to the distance along each of these 

axes in the two dimensional layers. The value of Z refers to the layer of the cube. 

Figure 8 (page 18) depicts the relationship between bond location and the value of the 

conductance ratio, Snn/So. Measurements were taken through several different areas of the cube 

in order to fully study the edge effects. Each line on the graph represents a different path 

through the cube with constant values of Y and Z while X is varied. While many more data 

points were taken than are represented in Figure 8, the data in the graph has been selected 

because it is representative of the entire cube and adequately shows the edge effect. 

As expected, when measurements were taken at the edges of the cube (x=O or x=5), 

values of the conductance ratio were low in comparison to values near the center (x=2 or x=3). 

It is apparent from the figure that the edge effect is large but decreases rapidly - with only one 

movement towards the center of the object. 

The nearest neighbor bond at the center of the device (2,3,2) exhibited a conductance 

ratio of 2.95, a difference of 1.7 percent from the anticipated value of 3. At a comer of the cube 

(0,0,0), a nearest neighbor bond yielded a conductance ratio of 1.88. This is a 36 percent 

difference from the maximum measured value near the center, thus showing a significant edge 

effect that decreases rapidly towards the center of the object. 
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VII. Results for Four-Dimensional Lattice 

It is important to note that due to the asymmetry in the four-dimensional model, there are 

various ways to graph measurements of nearest neighbor conductance. Because the model is 

asymmetrical, the falloff of conductance due to edge effects is, unlike in previous models, also 

asymmetrical. However, the values measured at the center of the hypercube, no matter the 

manner in which they were reached, exhibit conductances very close to 4. Therefore, the 

asymmetry simply allows for different ways oflooking at the model. 

Figure 9 (page 20), below, shows one set of paths traced through the model. In this 

graph, each line represents a different value of Z. The coordinates X and Y within each square 

lattice (Z) were kept constant, and the value of W (representing the cube number) was changed. 

As can be seen in the graph, when W is at 0 or 3, the edge effect is very strong, but it quickly 

disappears near the center of the cube. 

Figure 10 (page 20) illustrates a different way that conductance was measured through 

the hypercube. In this example, X and Y were again kept constant within the square lattices. 

Each line represents a different cube number (W). Measurements were taken across a constant 

value of W while Z was varied. Because of the asymmetry in the model, it is clear that the edge 

effect is different from opposite sides ofthe model. However, at the center of the device the 

edge effect is again neutralized and a leveling off is once again seen. 

From these tests, the maximum value of conductance measured was 3.95. This was 

measured at both (3,3,1,1) and (3,3,2,1). This yields a percent difference of 1.25% from the 

expected conductance of 4. This is the closest to the expected value that was obtained during 

experimentation. It is difficult to compare the centermost value of 3.95 to a value that is 

subjected to the most edge effect due to the asymmetry of the model. Due to the variations in 

conductance around the edge, simply choosing a value would not yield an accurate comparison. 

It is, however, safe to say that there is a significant and strong edge effect within the four­

dimensional model that is comparable to those seen in the two and three-dimensional devices. 
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Figure 9: Conductance vs. Cube Number (W) (constant X, Y, Z) 
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VIII. Dimensionaility and Conductance Ratios 
Perhaps the most important, yet simple concept to be taken from this research is the 

relationship between the dimensionality of an object and its measured conductance ratio. As can 

be seen below in Figure 11, these two quantities yield a linear relationship. Up to the four­

dimensional devices that were tested using our methods, it was found that there was a direct 

linear relationship between the number of dimensions and the nearest neighbor conductance 

within the object. By examining our work, it is believed that this linear relationship will progress 

into higher dimensions. 

Conductance vs. Dimensionality 
5 

4 

3 

2 

1 
1 2 3 4 5 

/
/ 

Dimensionality (d) 

Figure 11: Graphical representation of conductance vs. dimensionality 
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IX. Further Work 
Some data has been taken using a different method ofmeasurement. However, 

not enough data has been taken to present conclusive evidence regarding this method. In this 

method of data collection, current is injected into the comer of a three-dimensional model, and 

extracted at a point moving progressively farther away. An initial measurement is taken at with 

only one resistor between the injection and extraction point. The second measurement has two 

resistors, and so forth. This pattern ofmovement can be described using a (n,n,n) coordinate 

system. The first lead was attached at the numbered point (0,0,0). The first measurement was 

then taken at (1,1,1), followed by (2,2,2) etc. At the time of writing, sufficient data and analysis 

has not been done to analyze the data collected, but it provides an opportunity for more to be 

learned about these systems. 
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x. Conclusions 

As long as 125 years ago people were thinking about a fourth spatial dimension in our 

world. These theories have developed through Einstein's Special Relativity and the ideas of 

string theory introducing possibly eleven or twelve dimensions. In the past few years research 

has been fueled by a desire to discover a fourth spatial dimension and detennine its effects on 

gravity and our universe. 

While we recognize this research as important and innovative, we do not seek to discover 

a fourth dimension. Instead, our goal is the construction of simple models with non-trivial 

consequences of higher-dimensional spaces. 

Using lumped circuit elements with linear IV characteristics we built and measured 

conductance oftwo, three, and four-dimensional models. These models are intended for 

pedagogical purposes, although they are not limited to that purpose. It is possible that, using 

these techniques of fabrication, models with non-linear IV characteristics can be constructed. 

The consequences of these may have a much more significant impact. 

There is much more theory to be uncovered in order to explain all of the characteristics of 

these models. Different measurement techniques also provide promise for new results and ideas. 

While we have done a significant amount of work, it seems that with every tum there is 

something new to be uncovered. 
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