
Illinois Wesleyan University
Digital Commons @ IWU

Honors Projects Mathematics

2012

Testing Irreducibility of Trinomials over GF(2)
Steven Hayman
shayman@iwu.edu

This Article is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty
Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by
the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.

Recommended Citation
Hayman, Steven, "Testing Irreducibility of Trinomials over GF(2)" (2012). Honors Projects. Paper 14.
http://digitalcommons.iwu.edu/math_honproj/14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ Illinois Wesleyan University

https://core.ac.uk/display/59219605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iwu.edu/
http://www.iwu.edu/
http://www.iwu.edu/
http://digitalcommons.iwu.edu
http://digitalcommons.iwu.edu/math_honproj
http://digitalcommons.iwu.edu/math
mailto:digitalcommons@iwu.edu

TESTING IRREDUCIBILITY OF TRINOMIALS OVER

F2

STEVEN HAYMAN

Abstract. The focus of this paper is testing the irreducibility of
polynomials over Fq. In particular there is an emphasis on testing
trinomials over F2.

1. Introduction

The study of testing polynomials over finite fields for irreducibility
was motivated by gathering evidence to support the conjecture that
xn + x3 + 1 and xn + x3 + x2 + x + 1 are simultaneously irreducible
infinitely often over F2 [7]. Testing polynomials over finite fields for
irreducibility has a number of cryptographic applications [6].

2. Main Results

In this paper we present three algorithms for testing polynomials for
irreducibility over finite fields: the Ben-Or, Rabin [9], and Standard al-
gorithms [4]. The author independently discovered the Standard algo-
rithm before reading [4]. The Standard algorithm does seem to perform
slightly better than the Ben-Or algorithm. Additionally, the Standard
algorithm can be proven to have a better worst case complexity, and
this result is supported by the timings given in Section 7.

We also present timings which suggest optimal parameter choices for
the Ben-Or and Standard algorithms. Using the Ben-Or algorithm we
have tabulated all irreducible trinomials up to degree 100,000. This
data may help provide support for the conjectures found in [1].

3. Irreducible Polynomials over Finite Fields

In this section we give an overview of the algebraic concepts central
to this paper. In particular we discuss finite fields, polynomials over
finite fields, and finally irreducible polynomials over finite fields.

We begin by giving the definition of a field. Maybe the most impor-
tant thing to note for readers unfamiliar with fields is that the set of
real numbers with the operations of addition and multiplication is a
familiar example of a field.

1

2 STEVEN HAYMAN

Definition 1 (Field). A field is a set F with binary operations + and
× defined over F , and denoted by (F,+,×) that satisfy:

(1) For all x, y, z ∈ F we have (x+ y) + z = x+ (y + z).
(2) There exists 0 ∈ F such that x+ 0 = 0 + x = x.
(3) For all x ∈ F there exists y ∈ F such that x+ y = y + x = 0.
(4) For all x, y ∈ F we have x+ y = y + x.
(5) For all x, y, z ∈ F \ {0} we have (x× y)× z = x× (y × z).
(6) There exists 1 ∈ F \ {0} such that x× 1 = 1× x = x.
(7) For all x ∈ F \ {0} there exists y ∈ F \ {0} such that x× y =

y × x = 1.
(8) For all x, y ∈ F we have x× y = y × x.
(9) For all x, y, z ∈ F we have x× (y + z) = x× y + x× z

If (F,+,×) is a field and F has a finite number of elements then
(F,+,×) is called a finite field.

We have already stated (R,+,×) is a field. Now we give a few more
examples of fields.

Example 1. One can verify that (Q,+,×) and (C,+,×) are fields. If p
is prime then (Zp,+,×) is a finite field. (Recall that Zp = {0, 1, . . . , p−
1}, + is addition modulo p, and × is multiplication modulo p.)

An important result from algebra is that finite fields can only have pn

elements, where p is prime. Furthermore, the finite field that contains
pn is unique up to an isomorphism. For this reason, these fields are
denoted by the number of elements they have. To be concrete, the
finite field (Z2,+,×) is denoted by F2. For the rest of this paper we
will use this notation.
Now that we have given the definition of field, we can discuss poly-

nomials over finite fields. It is hopefully the case that this a natural
generalization from polynomials over the field (R,+,×). The following
definition can be found in [14].

Definition 2 (Polynomial). Let F be a field. A polynomial over F

is an expression of the form
n

∑

i=0

aix
i where n ∈ N, each ai ∈ F , and

an 6= 0. Each ai is called a coefficient. The degree of f , denoted deg(f),
is n. The set of all polynomials over F is denoted by F [x].

We proceed by providing a few examples of polynomials over a field.

Example 2. x2 + x + 1 ∈ F2[x] since 1, 1, and 1 are elements of F2.
3x2 + 4x+ 1 ∈ F5[x] since 3,4 and 1 are elements of F5.

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 3

Next we define irreducible and reducible polynomials. This definition
can be best understood by relating it to prime and composite integers.

Definition 3 (Reducible/Irreducible). Let F be a field. A polynomial
f(x) ∈ F [x] is reducible over F if and only if there is a g(x) ∈ F [x]
such that g(x) divides f(x) and 0 < deg(g) < deg(f). If such a g(x)
exists we call g(x) a factor of f(x). A polynomial is irreducible if and
only if it is not reducible. The set of irreducible polynomials over F of
degree n is denoted by IF,n.

Example 3. Consider the polynomial x2 + 1 ∈ R[x],C[x] and F2[x].
Over R we have that x2 +1 is irreducible since it cannot be factored

as (x − r1)(x − r2) where r1, r2 ∈ R, and so x2 + 1 ∈ IF2,2. However,
over C we have that x2 + 1 is reducible since x2 + 1 = (x − i)(x + i)
and −i, i ∈ C.
We also have that x2 + 1 is reducible over F2 since x2 + 1 = x2 +

2x+ 1 = (x+ 1)2. (Remember that in F2, we have 2 = 0).

It is worth noting that c ∈ F with c dividing f(x) does not necessarily
mean that f(x) is reducible. This is because deg(c) = 0. For example
2 divides 2x+ 4 but 2x+ 4 is irreducible over F5.

One can fairly easily determine the reducibility of both monomial
and binomials over F2.

Example 4. A monomial is a polynomial with a single term. Thus
a monomial over F2 has the form xr where r ∈ N and r ≥ 0. When
r ≥ 2, we have that x divides xr, and thus xr is reducible over F2.

A binomial over F2 has the form xr+xs with r, s ∈ N and r > s ≥ 0.
If s = 0 we have xr + xs = xr + 1. If this is the case, and r ≥ 2 then
x+1 divides xr+1, and so xr+1 is reducible. If s 6= 0 then r ≥ s ≥ 1,
and x divides xr + xs, and so xr + xs is reducible.

We next consider trinomials of F2, that is x
r+xs+xt where r, s, t ∈ N

and r ≥ s ≥ t ≥ 0. If t ≥ 1 then x divides xr+xs+xt and so xr+xs+xt

is reducible. However, if t = 0, we have xr + xs + xt = xr + xs + 1. If
this is the case, there is no general rule for determining reducibility. It
is for this reason we will focus on xr + xs + 1.
Finally we present a simple fact about reducible polynomials.

Proposition 1. Let f(x) ∈ F [x] with deg(f) = n. If f(x) is reducible
then f(x) has a factor of degree less than or equal to bn

2
c.

Proof. Suppose f(x) is reducible and has only factors of degree greater
than bn

2
c. Since f(x) is reducible it follows thatf(x) = g(x)h(x) where

deg(g) > bn
2
c and deg(h) > bn

2
c.

4 STEVEN HAYMAN

First suppose n is even. We have that bn
2
c = n

2
. Then deg(f) =

deg(g)+deg(h) > n
2
+ n

2
= n. But this is a contradiction since deg(f) =

n.
Next suppose that n is odd. We have that bn

2
c = n−1

2
. Then deg(g) >

n−1
2

and deg(h) > n−1
2
, or equivalently deg(g) ≥ n+1

2
and deg(h) ≥ n+1

2
.

Thus we have deg(f) = deg(g)+deg(h) ≥ n+1
2

+ n+1
2

= n+1. But this
is a contradiction since deg(f) = n. �

4. Conditions for Irreducibility

All the tests for irreducibility presented in this paper are based on
the following theorem. The theorem is well-known and will be given
without proof, however the proof can be found in [14].

Theorem 1.

xqn − x =
∏

f(x)∈Φn

f(x)

where Φn := {f(x) ∈ IFq ,d : d divides n}.
More colloquially this is that over Fq, x

qn − x is the product of all
irreducible polynomials of degree d for all d dividing n.

Example 5. By Theorem 1, the product of all irreducible polynomials
over F2 of degree d dividing 4 is

x24−x = x(x+1)(x2+x+1)(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1).

It follows from Theorem 1 that if f(x) has a factor g(x) of degree d
then g(x) divides gcd(f(x), xqn − x). This is the idea that will be used
in the proof of the following Theorem.

Theorem 2. Let f(x) ∈ Fq[x] with deg(f) = n. We have that f(x) is

irreducible if and only if gcd(f(x), xqd − x) = 1 for d ∈ {1, 2, . . . , bn
2
c}.

Proof. Suppose gcd(f(x), xqd − x) 6= 1 for d ∈ {1, 2, . . . , bn
2
c}. Let

g(x) = gcd(f(x), xqd − x).

Since g(x) divides xqd − x then by Theorem 1 that g(x) divides
∏

h(x)∈Φd

h(x). It follows that g(x) =
∏

h(x)∈∆

h(x) where ∆ ⊆ Φd.

Let ĥ(x) ∈ ∆. Then ĥ(x) divides g(x) and g(x) divides f(x) so ĥ(x)

divides f(x). Since ĥ(x) ∈ ∆ and ∆ ⊆ Φd then ĥ(x) ∈ Φd and it

follows that 0 < deg(ĥ) ≤ d < bn
2
c. By definition f(x) is reducible.

Now suppose f(x) is reducible. By Proposition 1 we have that f(x)
has a factor g(x) with degree r where r ≤ bn

2
c. It follows from Theorem

1 that g(x) divides xqr − x. Thus gcd(f(x), xqr − x) 6= 1. �

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 5

Another theorem based on Theorem 1 can be used to determine
irreducibility, and can be found in [17].

Theorem 3. Let f(x) ∈ Fq[x] with deg(f) = n. We have that f(x) is

irreducible if and only if xqn = x mod f(x) and gcd(f(x), xqn/p−x) = 1
for all prime p dividing n.

Proof. Suppose xqn 6= x mod f(x). Then f(x) does not divide xqn − x.

By Theorem 1, f(x) does not divide
∏

h(x)∈Φn

h(x) and it follows that

f(x) is reducible.

Suppose that gcd(f(x), xqn/p − x) 6= 1 for some prime p dividing n.
Since p is prime then p ≥ 2 then it follows from Theorem 2 that f(x)
is reducible.

Suppose f(x) is reducible and xqn = x mod f(x). Since f(x) is
reducible, then f(x) has a factor g(x) with 0 < deg(g) < n. Also,

since f(x) divides xqn−x and by Theorem 1, f(x) divides
∏

h(x)∈Φn

h(x).

Since g(x) divides f(x) it follows that g(x) divides
∏

h(x)∈Φn

h(x). Thus

g(x) =
∏

h(x)∈∆

h(x) where ∆ ⊆ Φn.

Let ĥ(x) ∈ ∆. Since ĥ(x) ∈ ∆ and ∆ ⊆ Φn then ĥ(x) ∈ Φn.

Then deg(ĥ) divides n. Since ĥ(x) ∈ ∆ and g(x) =
∏

h(x)∈∆

h(x) it

follows that ĥ(x) divides g(x). Furthermore, this means that deg(ĥ) ≤
deg(g), and so deg(ĥ) < n. It follows that there exists a prime p

dividing n such that deg(ĥ) divides n/p. It follows from Theorem 1

that gcd(f(x), xqn/p − x) 6= 1. �

5. Algorithms for Testing Irreducibility

In this section we introduce three algorithms for testing polynomials
for irreducibility.

The first algorithm is attributed to Ben-Or and is based on Theorem
2. In order to implement Theorem 2, we need to compute gcd(f(x), xqi−
x) for i ∈ {1, 2, . . . , k}. In order to do this efficiently, we do our oper-
ations modulo f(x).

Since xqi − x can be very large, it is not practical to compute di-
rectly. However, by the Euclidean algorithm, we have gcd(f(x), xqi −

6 STEVEN HAYMAN

x) = gcd(f(x), xqi − x mod f(x)). From properties of mod, we have

gcd(f(x), xqi − x mod f(x)) = gcd(f(x),
(

xqi mod f(x)
)

− x).

Notice that we can compute xqi mod f(x) from xqi−1

mod f(x) by

taking the q-th modular power of xqi−1

, i.e. xqi mod f(x) = (xqi−1

mod
f(x))q mod f(x).

The Ben-Or algorithm has a single loop which both builds up xqi mod
f(x) and computes gcd(f(x), xqi mod f(x)− x) for i ∈ {1, 2, . . . , bn

2
c}.

Algorithm 1: Ben-Or Algorithm

1 r(x)← x /* r(x) = xqd mod f(x) */

2 for d← 1 to bn
2
c do

3 r(x)← r(x)q mod f(x)
4 if gcd(f(x), r(x)− x) 6= 1 then

5 return reducible

6 return irreducible

The second algorithm can be attributed to Rabin [17] and is based on
Theorem 3. The Rabin algorithm is similar to the Ben-Or algorithm in
that it uses a single loop to both build up xqn/p

mod f(x) and computes

gcd(f(x), xqn/p
mod f(x)− x) = 1 for all prime p dividing n.

Algorithm 2: Rabin Algorithm

1 r(x)← x /* r(x) = xq
n
pd mod f(x) */

2 compute k distinct prime factors pd of n in decreasing order
3 for d← 1 to k do

4 r(x)← r(x)q
n
pd

−

n
pd−1

mod f(x)
5 if gcd(f(x), r(x)− x) 6= 1 then

6 return reducible

7 r(x)← r(x)q
n−

n
pk mod f(x)

8 if r(x) 6= x then

9 return reducible

10 return irreducible

In order to analyze the Ben-Or and Rabin algorithms we need to
state the cost of our operations. The operations that we need are q-th
modular power, modular multiplication, and GCD. The input to these

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 7

Table 1. Cost of basic operations

Operation Fq

Modular Subtraction O(n)
q-th Modular Power O(M(n)(log q))

Modular Multiplication O(M(n))
GCD O(M(n) log n)

operations are polynomials of degree less than or equal to n. The cost
of these operations are in terms of arithmetic operations over Fq and
summarized in Table 1.

Many of the operations in Table 1 are in terms of M(n), the cost of
multiplying two polynomials of degree less than or equal to n. The clas-
sical algorithm has M(n) = O(n2). Another algorithm due to Karat-
suba has M(n) = O(nlog

2
3). Finally, an algorithm due to Schönage has

M(n) = O(n log n log log n). A good reference for these algorithms can
be found in [10].

Over F2, Table 1 implies that the cost of 2nd modular power (mod-
ular squaring) is O(M(n)). However, when reducing modulo a sparse
polynomial, the cost becomes O(n) [4].

We now present the complexities of the Ben-Or and Rabin algo-
rithms. We first focus on the case of general polynomials over Fq, and
later focus on sparse polynomials over F2.

The worst and average case complexities of the Ben-Or are given
below in Theorem 4. The worst case complexity can be found [9]. The
average case complexity is due to Panario and Richmond [16].

Theorem 4. Over Fq, the Ben-Or algorithm has worst case complexity
O(nM(n)(log nq)) and average case complexity O((log n)M(n)(log nq)).

The worst and average case analyses of the Rabin algorithm are
given in Theorem 5. The worst case complexity can be found in [9].
The average case complexity is due to Panario et al. [15].

Theorem 5. Over Fq the Rabin algorithm has worst case and aver-
age case complexity O(nM(n)(log q)). However, over F2, the Rabin
algorithm on sparse polynomials has worst case complexity O(n2).

If we fix q, then theorems 4 and 5 state that the Ben-Or and Rabin
algorithms have log n factor difference in worst case complexity, but
that the Ben-Or algorithm has a better average case complexity. How-
ever, when focusing on F2, the Rabin algorithm has a better worst case
complexity.

8 STEVEN HAYMAN

The reason that the Ben-Or algorithm has a better average case
complexity is that on average, polynomials have factors of degree less
than log n. Remember that the Ben-Or algorithm loops through each
degree from 1 up to bn

2
c testing for factors. If a polynomial has a factor

of degree less than log n, then the Ben-Or algorithm will detect it in
only log n iterations of its loop.

For the rest of this paper, let us focus on testing trinomials over F2.
The average case complexity of the Ben-Or algorithm given in Theorem
4 is no longer applicable since we are not testing a general polynomial
over Fq. It is however conjectured that the Ben-Or algorithm has a
better average case complexity than the Rabin algorithm when testing
trinomials over F2. This is supported by the results given in Section
7. The Rabin algorithm has been proven to have a better worst case
complexity. It is possible to mix these two algorithms to achieve the
Ben-Or’s average case complexity and the Rabin’s worst case complex-
ity. The idea of mixing these two algorithms has been used by several
authors in testing special trinomials over F2 called primitive trinomials
[4]. We will take the suggestion of [4] and refer to it as the Standard
algorithm.
The basic idea of the Standard algorithm is to do the Ben-Or al-

gorithm up until a bound β, and then switch over to the Rabin algo-
rithm. Precisely, the Standard algorithm computes gcd(f(x), x2i mod
f(x) − x) for i ∈ {1, 2, . . . β}. The algorithm continues by computing

gcd(f(x), x2n/p
mod f(x) − x) for all prime divisors p of n such that

n/p > β and checks to see if x2n = x mod f(x).
We state the relationship between β and the worst case complexity of

the Standard algorithm in Theorem 6. This result is probably known,
but was not seen anywhere in the literature.

Theorem 6. Over F2, the Standard algorithm on sparse polynomials
has worse case complexity O(βM(n) log n).

Proof. The total number of squarings is n and the total number of
GCDs is β. This gives a total cost of

n2 + βM(n) log n = O(βM(n) log n)

arithmetic operations over F2. �

Notice that if β = O(n2

M(n) logn
) then the Standard algorithm has

worst complexity O(n2), which is the same as the Rabin algorithm.
We will present empirical evidence in section 7 which suggests that

β = n
logn

is asymptotically best on average. Notice that by Theorem 6

this choice of β does not yield the optimal worst case complexity.

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 9

Algorithm 3: Standard Algorithm

1 r(x)← x /* r(x) = xqd mod f(x) */

2 for 1← d to β do

3 r(x)← r(x)q mod f(x)
4 if gcd(f(x), r(x)− x) 6= 1 then

5 return reducible

6 Compute k distinct prime factors pd of n in decreasing order with
n/pd > β

7 for d← 1 to k do

8 r(x)← r(x)q
n
pd

−

n
pd−1

mod f(x)
9 if gcd(f(x), r(x)− x) 6= 1 then

10 return reducible

11 r(x)← r(x)q
n−

n
pk mod f(x)

12 if r(x) 6= x then

13 return reducible

14 return irreducible

6. Improvements

In this section we introduce several improvements which can be ap-
plied to the Ben-Or and Standard algorithms.

The first improvement, which we apply to the standard algorithm,
will be referred to as outer-level blocking [5]. Let {I1, I2, . . . , Ik} par-

tition the set {1, 2, . . . , β}. Instead of computing gcd(f(x), x2d mod

f(x)−x) for d ∈ {1, 2, . . . , β} we can compute gcd(f(x),
∏

d∈Ij
x2d mod

f(x)− x) for j ∈ {I1, I2, . . . , Ik} where each
∏

d∈Ij
x2d − x is known as

an interval polynomial.
In this way we trade β GCDs for k GCDs and β multiplications.

Choosing k = 1 yields the best worst case complexity, however empir-
ically this is not best on average.
The authors of [22] prove that on average having the end points of

intervals be the cubes of integers is optimal. This result is for general
polynomials over Fq. In Section 7, we give evidence to support that
this result is also true for trinomials over F2.
The second improvement known as inner-level blocking which can be

applied to the Ben-Or and Standard algorithms can be found [5]. The

10 STEVEN HAYMAN

basic idea is that each
∏

d∈Ij

x2d mod f(x)− x can be computed in such

a way that we trade multiplications for squarings.
There are several other improvements that can be used along with

any irreducibility test. One such improvement is often attributed to
Swan [19]. Swan’s Theorem states exact conditions on a trinomial over
F2 having an even number of factors.

Theorem 7 (Swan’s Theorem). Let n > k > 0. Assume exactly one
of n, k is odd. Then xn + xk + 1 has an even number of factors (and
hence is reducible) over F2 in the following cases.

(1) n is even, k is odd, n 6= 2k, and nk/2 ≡ 0 or 1 mod 4
(2) n is odd, k is even, k - 2n, and n ≡ ±3 mod 8
(3) n is odd, k is even, k | 2n, and n ≡ ±1 mod 8

In all other cases xn + xk + 1 has an odd number of factors over F2.

A corollary to this theorem is that 5/8 of all trinomials over the form
xn + xk + 1 have an even number of irreducible factors. The proof is
given in Appendix A. This means that adding Swan’s theorem to a
tabulation of irreducible trinomials, we are required to test only 3/8 of
the trinomials on average.
Another improvement that can be applied to any irreducibility test

is called the repeated factor test. The idea is that if a polynomial f(x)
has a repeated factor, then this factor can be found by computing the
GCD of f(x) and it’s formal derivative.

7. Results

In this section we present timings that compare irreducibility tests.
All tests were implemented in C++ using NTL, GF2X and GMP [18,
3, 8], and run on a 3.3 GHz Intel Core i5 2500 processor. They were
complied using GNU Compiler Collection (GCC) version 4.1.2.
Each test in this section (except for the last) states the CPU time

(in seconds) it took to test all trinomials of the form xn + xk + 1 for
irreducibility where n > k > 0 and n < m. For each of the tables a “-”
refers to a computation that timed out.
In Table 2 we compare different choices of β for the Standard algo-

rithm. The choices for β where chosen to provide a variety of different
asymptotic functions, and are by no means exhaustive. The choice of
β = n/(log n) appears to be asymptotically best.

Next we compare different ways of partitioning for the Ben-Or al-
gorithm. We write n2 to mean that the end points determining the
partition were squares of integers. Similarly, n3 means that the end

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 11

Table 2. Average case timings for different β

m log n (log n)2
√
n n/(log n)

1000 20 12 12 14
2000 204 106 113 121
4000 2400 1096 1141 1157
8000 32508 18369 13369 12736

Table 3. Average case timings for different partitions

m n n2 n3 n4

1000 34 11 12 20
2000 402 118 119 198
4000 - 1251 1286 2108
8000 - 18277 14470 -

Table 4. Average case timings for irreducibility algo-
rithms

m Ben-Or Rabin Standard
1000 12 981 14
2000 119 9199 121
4000 1286 - 1157
8000 14470 - 12736

points were cubes of integers. The results are given in Table 3. Having
the endpoints be cubes of integers was optimal in these tests. Note
that is in agreement with [22].

In Table 4 we compare the Ben-Or, Rabin, and Standard algorithms.
The Ben-Or and Standard algorithms both used the improvements de-
scribed in Section 6. The Rabin algorithm is by far the worst on aver-
age. The Standard algorithm performs slightly better than the Ben-Or
algorithm.

We finally compare the Ben-Or and Standard algorithms in the worst
case, i.e. on irreducible polynomials. The results are given in Table 5.
Again, both algorithms used the improvements described in Section 6.
In this test, the timings are the CPU seconds required to test a single
irreducible trinomial for irreducibility. We denote the degree of this
polynomial by m.

12 STEVEN HAYMAN

Table 5. Worst case timings for irreducibility algo-
rithms

m Ben-Or Rabin Standard
20001 3 1 0
40001 26 0 2
80001 126 3 4

8. Conclusion

We have presented three algorithms for testing trinomials for irre-
ducibility over F2 and their analyses. We have done experiments sug-
gesting optimal parameters to these algorithms, and experiments com-
paring these three algorithms. We also have given a new theoretical
result which is a corollary to Swan’s theorem (see Appendix A).

9. Acknowledgements

I would like to thank Andrew Shallue for the immense amount of
time he spent advising me on this project. I would like to thank Mark
Liffiton for his helpful suggestions. Finally, I would also like to thank
Andrew Shallue and Mark Liffiton for allowing me to use their comput-
ing resources, which were funded by Illinois Wesleyan start up funds.

References

[1] Ian F. Blake, Shuhong Gao, and Robert J. Lambert. Construction and distri-
bution problems for irreducible trinomials over finite fields. In Applications of
finite fields (Egham, 1994), volume 59 of Inst. Math. Appl. Conf. Ser. New
Ser., pages 19–32. Oxford Univ. Press, New York, 1996.

[2] Antonia W. Bluher. A Swan-like theorem. Finite Fields Appl., 12(1):128–138,
2006.

[3] R. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. gf2x, 2008.
[4] Richard P. Brent, Samuli Larvala, and Paul Zimmermann. A fast algorithm

for testing reducibility of trinomials mod 2 and some new primitive trinomials
of degree 3021377. Mathematics of Computation, 72(243):1443–1452, 2003.

[5] Richard P. Brent and Paul Zimmermann. A multi-level blocking distinct-degree
factorization algorithm. In Finite fields and applications, volume 461 of Con-
temp. Math., pages 47–58. Amer. Math. Soc., Providence, RI, 2008.

[6] Richard P. Brent and Paul Zimmermann. The great trinomial hunt. Notices
Amer. Math. Soc., 58(2):233–239, 2011.

[7] Gove Effinger. Toward a complete twin primes theorem for polynomials over
finite fields. In Finite fields and applications, volume 461 of Contemp. Math.,
pages 103–110. Amer. Math. Soc., Providence, RI, 2008.

[8] Torbjrn Granlund et al. GNU multiple precision arithmetic library 4.1.2, De-
cember 2002. http://swox.com/gmp/.

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 13

[9] Shuhong Gao and Daniel Panario. Tests and constructions of irreducible poly-
nomials over finite fields. In Foundations of Computational Mathematics, pages
346–361. Springer, Berlin, 1997.

[10] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 2 edition, 2003.

[11] B. Hanson, D. Panario, and D. Thomson. Swan-like results for binomials
and trinomials over finite fields of odd characteristic. Des. Codes Cryptogr.,
61(3):273–283, 2011.

[12] D. R. Heath-Brown. The distribution and moments of the error term in the
Dirichlet divisor problem. Acta Arith., 60(4):389–415, 1992.

[13] Ryul Kim and Wolfram Koepf. Parity of the number of irreducible factors for
composite polynomials. Finite Fields Appl., 16(3):137–143, 2010.

[14] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their
applications. Cambridge University Press, Cambridge, 1994.

[15] Daniel Panario, Boris Pittel, Bruce Richmond, and Alfredo Viola. Analysis of
rabin’s irreducibility test for polynomials over finite fields. Random Structures
and Algorithms, 19:525–551, October 2001.

[16] Daniel Panario and Bruce Richmond. Analysis of ben-or’s polynomial irre-
ducibility test. In proceedings of the eighth international conference on Ran-
dom structures and algorithms, pages 439–456, New York, NY, USA, 1998.
John Wiley & Sons, Inc.

[17] M.O. Rabin. Probabilistic algorithms in finite fields. In SIAM J. Comput, 1979.
[18] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.

net/ntl, 2003.
[19] Richard G. Swan. Factorization of polynomials over finite fields. Pacific J.

Math., 12:1099–1106, 1962.
[20] Uzi Vishne. Factorization of trinomials over Galois fields of characteristic 2.

Finite Fields Appl., 3(4):370–377, 1997.
[21] Joachim von zur Gathen. Irreducible trinomials over finite fields. In Proceedings

of the 2001 international symposium on Symbolic and algebraic computation,
ISSAC ’01, pages 332–336, New York, NY, USA, 2001. ACM.

[22] Joachim vonzur Gathen, Daniel Panario, and Bruce Richmond. Interval parti-
tions and polynomial factorization. Algorithmica, pages 1–35, 2011.

Appendix A. Corollary to Swan’s Theorem

In 1962, Richard G. Swan proved the following theorem, which states
exact conditions of n, k for Tn,k = xn + xk + 1 to have an even number
of irreducible factors [19]. A polynomial with an even number of ir-
reducible factors is reducible, and so Swan’s Theorem has application
in testing trinomials for irreducibility over GF (2) [6]. A consequence
of this theorem is that the probability of Tn,k having an even number
of irreducible factors is asymptotically 5/8 as n → ∞. Thus, adding
Swan’s theorem to an irreducibility test results in a speed up of 8/3.

Theorem 1 (Swan’s Theorem). Let n > k > 0. Assume exactly one
of n, k is odd. Then xn + xk + 1 has an even number of factors (and
hence is reducible) over GF (2) in the following cases.

14 STEVEN HAYMAN

(1) n is even, k is odd, n 6= 2k, and nk/2 ≡ 0 or 1 mod 4
(2) n is odd, k is even, k - 2n, and n ≡ ±3 mod 8
(3) n is odd, k is even, k | 2n, and n ≡ ±1 mod 8

In all other cases xn+xk+1 has an odd number of factors over GF (2).

In order to prove the probability of Tn,k having an even number
of irreducible factors, we will consider all the trinomials of the form
xn + xk +1 where n < m, and count the number with an even number
of irreducible factors. In order to make the counting process easier,
we prove the following proposition which maps case (1) to cases (1.a),
(1.b), and (1.c).

Proposition 1. We have that n, k satisfy case (1) of Swan’s Theorem
if and only if n, k satisfy one of the following cases:

(1.a) n ≡ 0 mod 8 and k is odd
(1.b) n ≡ 2 mod 8, k ≡ 1 mod 4, and n 6= 2k
(1.c) n ≡ 6 mod 8, k ≡ 3 mod 4, and n 6= 2k

Proof. Suppose n, k satisfies (1) and does not satisfy (1.b) or (1.c).
Since n is even then n ≡ 0, 2, 4 or 6 mod 8. We prove that n 6≡
2, 4, 6 mod 8 and so n ≡ 0 mod 8.

Suppose that n ≡ 2 mod 8. Since k is odd, and k 6≡ 1 mod 4 then
k ≡ 3 mod 4. Then n = 8m+ 2 and k = 4l + 3 where m, l ∈ Z.

nk/2 = (8m+ 2)(4l + 3)/2 = 4(4ml + l + 3m) + 3 ≡ 3 mod 4.

This contradicts (1) so n 6≡ 2 mod 8.
Suppose that n ≡ 4 mod 8. Then n = 8m+ 4 and k = 2l + 1 where

m, l ∈ Z. Then we have

nk/2 = (8m+ 4)(2l + 1)/2 = 4(2ml + l +m) + 2 ≡ 2 mod 4.

This contradicts (1) so n 6≡ 4 mod 8.
Suppose that n ≡ 6 mod 8. Since k is odd, and k 6≡ 3 mod 4 then

k ≡ 1 mod 4. Then n = 8m + 6 and k = 4l + 1 where m, l ∈ Z. Then
we have

nk/2 = (8m+ 6)(4l + 1)/2 = 4(4ml + 3l +m) + 3 ≡ 3 mod 4.

This contradicts (1) so n 6≡ 6 mod 8.
Now suppose n, k satisfies one of (1.a), (1.b), and (1.c). If n, k satisfy

(1.a) then n = 8 and k = 2l + 1 where m, l ∈ Z. Then we have

nk/2 = 8m(2l + 1)/2 = 4m(2k + 1) ≡ 0 mod 4.

If n, k satisfy (1.b) then n = 8m+ 2 and k = 2l + 1 where m, l ∈ Z.
Then we have

nk/2 = (8m+ 2)(4l + 1)/2 = 4(ml +m+ l) + 1 ≡ 1 mod 4.

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 15

If n, k satisfy (1.c) then n = 8m+ 6 and k = 4l + 3 where m, l ∈ Z.
Then we have

nk/2 = (8m+ 6)(4l + 3)/2 = 4(ml + 3m+ 3l + 2) + 1 ≡ 1 mod 4.

�

We also need to know the number of factors of Tn,k where n, k are
both even or both odd. When n, k are both even, we have that

Tn,k = xn + xk + 1 = (xn/2 + xk/2 + 1)2

and thus has an even number of irreducible factors. When n, k are both
odd we use the fact that a polynomial and its reciprocal polynomial
have the same number of irreducible factors. Notice that when n, k
are both odd, then n is odd and n− k is even. Furthermore, Tn,n−k is
the reciprocal polynomial of Tn,k. Thus we can apply Swan’s theorem
to Tn,n−k. In order to count the number of Tn,k that satisfy Swan’s
Theorem we double the number of Tn,k that satisfy (2) or (3).

We are now ready to prove that the probability of Tn,k having an
even number of irreducible factors is asymptotically 5/8.

Corollary 1. Let n > k > 0. Let P (m) be the probability that xn +
xk + 1 where n < m has an even number of irreducible factors over
GF (2). Then as m→∞ we have that P (m)→ 5/8.

Proof. The total number of trinomials Tn,k where n < m is

m−1
∑

n=2

n−1
∑

k=1

1 =
m−1
∑

n=2

(n− 1)

=
(m− 1)m

2
− (m− 1) =

m2

2
+ Θ(m).

The total number of trinomials Tn,k where n, k are both even is

∑

2≤n<m
n≡0 mod 2

n−2
∑

k=2
k≡0 mod 2

1 =
∑

2≤n<m
n≡0 mod 2

(n

2
− 1

)

=

m/2
∑

l=1

l +O(m)

=
m
2
(m
2
+ 1)

2
+O(m) =

m2

8
+O(m).

The total number of trinomials Tn,k where n, k satisfy (1.a) is

∑

2≤n<m
n≡0 mod 8

n−1
∑

k=1
k≡1 mod 2

1 =
∑

2≤n<m
n≡0 mod 8

n

2
=

m/8
∑

l=1

4l +O(m)

16 STEVEN HAYMAN

= 4
m
8
(m
8
+ 1)

2
+O(m) =

m2

32
+O(m).

The total number of trinomials Tn,k where n, k satisfy (1.b) is

∑

2≤n<m
n≡2 mod 8

∑

1≤k<n
k≡1 mod 4

n 6=2k

1 =
∑

2≤n<m
n≡2 mod 8

(n

4
+O(1)

)

=

m/8
∑

l=1

2l +O(m)

=
m

8

(m

8
+ 1

)

+O(m) =
m2

64
+O(m).

The total number of trinomials Tn,k where n, k satisfy (1.c) is

∑

2≤n<m
n≡6 mod 8

∑

1≤k<n
k≡3 mod 4

n 6=2k

1 =
∑

2≤n<m
n≡6 mod 8

(n

4
+O(1)

)

=
m2

64
+O(m).

The total number of trinomials Tn,k where n, k satisfy (2) is

∑

2≤n<m
n≡±3 mod 8

n−1
∑

k=2
k≡0 mod 2

k-2n

1 =
∑

2≤n<m
n≡±3 mod 8











n−1
∑

k=2
k≡0 mod 2

1−
n−1
∑

k=2
k≡0 mod 2

k|2n

1











=
∑

2≤n<m
n≡±3 mod 8

(

n− 1

2
− (d(n)− 1)

)

Using the fact that
m
∑

n=1

d(n) = m logm+O(m) [12],

= 2

m/8
∑

l=1

4l +O(m logm) = 4
(m

8

(m

8
+ 1

))

+O(m logm)

=
m2

16
+O(m logm)

The total number of trinomials Tn,k where n, k satisfy (3) is

∑

2≤n<8
n≡±1 mod 8

n−1
∑

k=2
k≡0 mod 2

k|2n

1 =
∑

2≤n<8
n≡±1 mod 8

(d(n)− 1) = O(m logm)

Then we have that

P (m) =
(1
8
+ 1

32
+ 1

64
+ 1

64
+ 2

16
)m2 +O(m logm)

m2

2
+Θ(m)

TESTING IRREDUCIBILITY OF TRINOMIALS OVER F2 17

= 5/8 +O

(

logm

m

)

.

Furthermore, as m→∞ we have that P (m)→ 5/8. �

There are many Swans inspired theorem for special classes of poly-
nomials over finite fields [20, 2, 13, 21, 11]. A good summary can
be found in [11]. It is likely that similar techniques could be used to
find the probability of those special classes having an even number of
irreducible factors.

	Illinois Wesleyan University
	Digital Commons @ IWU
	2012

	Testing Irreducibility of Trinomials over GF(2)
	Steven Hayman
	Recommended Citation

	Testing Irreducibility of Trinomials over GF(2).pdf

