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Abstract 

Face detection is the task of determining the locations and sizes of human faces in arbitrary digital 

images, while ignoring any other objects to the greatest possible extent. A fundamental problem in 

computer vision, it has important applications in fields ranging from surveillance-based security to 

autonomous vehicle navigation. Although face detection has been studied for almost a decade, the 

results are not satisfactory for a variety of practical applications, and the topic continues to receive 

attention. 

A commonly used approach for detecting faces is based on the techniques of "boosting" and "cascad

ing", which allow for real-time face detection. However, systems based on boosted cascades have been 

shown to suffer from low detection rates in the later stages of the cascade. Yet, such face detectors 

are preferable to other methods due to their extreme computational efficiency. 

In this thesis we introduce a novel variation of the boosting process that uses features extracted 

by Independent Component Analysis (ICA), which is a statistical technique that reveals the hidden 

factors that underlie sets of random variables or signals. The information describing a face may be 

contained in both linear as well as high-order dependencies among the image pixels. These high

order dependencies can be captured effectively by representation in ICA space. Moreover, it has been 

argued that the metric induced by leA is superior to other methods in the sense that it may provide 

a representation that is more robust to the effect of noise such as variations in lightening. We propose 

that features extracted from such a representation may be boosted better in the later stages of the 

cascade, thus leading to improved detection rates while maintaining comparable speed. We present 

the results of our face detector, as well as comparisons with existing systems. 
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Chapter 1 

Introduction 

Face detection can be regarded as a specific case of object detection. In object detection, the task 

is to find the locations and sizes of all objects in an image that belong to a given class, regardless 

of the orientation, scale, and lighting conditions. Examples of classes to which object detection has 

been successfully employed include faces, eyes, pedestrians and cars. Early face detection algorithms 

focused on the detection of frontal human faces, whereas newer algorithms attempt to solve the more 

general and difficult problem of multi-view face detection. That is, the detection of faces that are 

either rotated along the axis from the face to the observer (in-plane rotation), or rotated along the 

vertical or left-right axis (out-of-plane rotation), or both. Moreover, current object detection systems 

concentrate on real-time detection, which have broader practical applications. 

Many algorithms implement the face-detection task as a binary pattern-classification task. That 

is, the content of a given part of an image is transformed into features, after which a classifier trained 

on example faces decides whether that particular region of the image is a face, or not. Often, a 

window-sliding or "pyramid" technique is employed. That is, the above-mentioned classifier is used to 

classify smaller portions of in image, at all locations and scales, as either faces or non-faces. 

A given natural image typically contains many more background patterns than face patterns. In 

fact, the number of background patterns may be 1,000 to 100,000 times larger than the number of 

face patterns. This means that if one desires a high face detection rate, combined with a low number 

of false detections in an image, one needs a very specific classifier. Publications in the field often use 

the rough guideline that a classifier should yield a 90% detection rate, combined with a false-positive 

rate in the order of 10-6 . 

4 
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Figure 1.1 illustrates the face detection technology. The red bounding squares mark the positions 

that were labeled as faces by the detector. However, we can see that some non-face images have also 

been labeled as faces. Such instances constitute the false positives. We can also identify one frontal 

face near the top-right corner that was not classified correctly; this would be an instance of a false 

negative. 

The problem of face detection is closely related to, but distinct from, the task of face recognition. 

A face recognition system is a computer-driven application for automatically identifying a person from 

a digital image. It does that by comparing selected facial features in the given image and an existing 

face database. Usually face recognition systems first apply a face detector to locate the faces in an 

image, and then apply a separate recognition algorithm to identify the face. 

This objective of this thesis is to improve the accuracy rate of an existing real-time face detection 

system, without significantly affecting the speed of the detector. We shall use a statistical technique 

called Independent Component Analysis to find useful features that define human faces. Our work 

currently concentrates on frontal faces, but can be extended to incorporate rotated views in the future. 

Preliminary results have been highly encouraging, with accuracy rates of over 95% for standard testing 

sets. 



6 CHAPTER 1. INTRODUCTION 

Figure 1.1: Output of a face detector on a given image. The red bounding squares indicated the 
detected faces. 

1.1 Applications of Face Detection 

Face detection is used in biometrics, often as a part of (or along with) a facial recognition system. It 

is also used in video surveillance, human computer interface and image database management. Direct 

applications of face detection are listed in table 1.1, while applications of face recognition are listed 

in table 1.2. 

Table 1.1: Some applications of face detection. 
Area I Specific Applications 

Surveillance Secure ATM terminals 
Entertainment Auto-focus in a camera, Web-cam focus 

Mobile Video phone 
Robotics Autonomous vehicles, Industrial robots 

Scientific applications Atomic particle tracking, Medical imaging 
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Table 1.2: Some applications of face recognition. 
----A--:-"r-e-a----I Specific Applications 

Biometrics Drivers' Licenses, Passports 
Information Security Desktop login, Internet security, Secure terminals 

Surveillance CCTV Control, Post-event analysis, Suspect tracking 
Access Control Vehicular access, Facility access 
Entertainment Film annotation 

Several applications such user interfaces, image databases, teleconferencing, film annotation, and 

video phone would require an extremely fast (possibly real-time) face detection system. Hence, the 

speed is a very important consideration is modern face detectors. Presently, numerous commercial 

face detection and recognitions systems are available. 

1.2 Organization of Thesis 

The remainder of the dissertation is organized as follows. 

Chapter 2 will presents an existing real-time face detection system as well an an extension of the 

original system. These detection systems lead to the design of our own detector. In the beginning of 

the chapter, however, we first review some machine learning concepts that will be used extensively in 

this thesis. 

Chapter 3 examines the statistical technique called Independent Component Analysis (ICA). We 

use this technique to model face images, and eventually to discriminate between face and non-face 

images. The mathematical foundations of ICA are briefly explained before describing a practical algo

rithm for performing ICA. A similar technique called Principal Component Analysis is also outlined. 

Chapter 4 describes the major contribution of our face detection system. In particular, we explain 

how facial features extracted using ICA are used for the task of learning a face classifier. Two different 

approaches to the task are presented. 

Chapter 5 contains the actual system tests, along with comparisons of the accuracy to existing 

algorithms when they have been applied to the same test sets. This section also describes the imple

mentation details. 

Chapter 6 summarizes the contributions of the thesis and points out directions for future work. 



Chapter 2 

Previous Work 

Our work builds upon the detection system proposed in [Viola and Jones, 2001] and later extended 

in [Lienhart and Maydt, 2002]. This section will describe their respective algorithms. First, however, 

we explicate some relevant terminology and concepts. 

2.1 Basic Concepts 

2.1.1 Combining multiple learners 

In any application, we can use one of several learning algorithms. Each learning algorithm dictates a 

certain model that comes with a set of assumptions. The performance of a learner may be fine-tuned 

to get the highest possible accuracy on a validation set, but this fine-tuning is a complex task and still 

there are instances on which even the best learner is not accurate enough. The idea is that there may 

be another learner that is accurate on these. By suitably combining multiple learners then, accuracy 

can be improved. 

Since there is no point in combining learners that always make similar decisions, the aim is to be 

able to find a set of base learners who differ in their decisions so that they will complement each other. 

2.1.2 Boosting 

In boosting, we actively try to generate complementary base learners by training the next learner on 

the mistakes of the previous learners. The original boosting algorithm [Schapire, 1990] combines three 

weak learners to generate a strong learner. A weak learner has error probability less than 1/2, which 

8 
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makes it better than random guessing, and a strong learner has arbitrarily small error probability. 

Though it is quite successful, the disadvantage of boosting is that it requires a very large training 

sample. 

[Freund and Schapire, 19961 proposed a variant, names AdaBoost, short for adaptive boosting, 

that uses the same training set over and over and thus need not be large. AdaBoost can also combine 

an arbitrarily large number of base learners. The following is a discussion of the original algorithm 

AdaBoost.Ml (see Alg. 1). The idea is to modify the probabilities of drawing the instances as a 

function of the error. Let us say p; denotes the probability that the instance pair (xt , yt) is drawn 

to train the jth base learner dj . Initially, all pi = l/N. Then we add new base learners as follows, 

starting from j = 1: Ej denotes the error rate of dj . AdaBoost requires that Ej < 1/2, Vj; if not, we 

stop adding new base learners. We define {3j = Ej/(l- Cj) < 1, and we set P;+l = {3jP; if dj correctly 

tclassifies x , otherwise P;+l = p;. Because P;+l is a probability, there is a normalization where we 

divide P;+l by 2:P;+l' so that they sum up to 1. This has the effect that the probability of a correctly 
t 

classified instance is decreased (with the amplitude of decrease proportional to the confidence of the 

previous learner, pi), and the probability of a misclassified instance increases. Then a new sample of 

the same size is drawn from the original sample according to these modified probabilities, P;+l' and is 

used to train dj+l. This has the effect that dH1focuses more on instances misclassified by dj . That is 

why the base learners are chosen to be simple and not very accurate, since otherwise the next training 

sample would contain only a few outlier and noisy instances repeated many times over. Now, once 

training is done, AdaBoost is a voting method. i.e. Given an instance, all dj decide and a weighted 

vote is taken where weights are proportional to the base learners' accuracies (on the training set): 

2.1.3 Cascading 

The idea in cascaded classifiers is to have a sequence of base classifiers dj sorted in terms of their 

space or time complexity, or the cost of representation that they use, so that dH1 is costlier than 

dj . Cascading is a multistage method and we use dj only if all the preceding learners, dk, k < j are 

not confident. Associated with each learner is a confidence Wj such that we say dj is confident of 

its output and can be used if Wj > ()j where 1/K < ()j < ()Hl < 1 is the confidence threshold. In 

classification, the confidence function is set to the highest posterior, Wj == maxidji. We use learner dj 
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Algorithm 1 AdaBoost Algorithm 
Training: 

For all {xt,rt}~l E X, initialize PI = l/N 
For all base learners dj , j = 1, ... , L 

Randomly draw Xj from X with probabilities P; 
Train dj using Xj 
For each (xt,rt ) E Xj, calculate yj f-dj(xt ) 
Calculate error rate: Ej f- L:p].l(yj =I- r t ) 

t 

If Ej > 1/2, then L f- j - 1; stop 
{3j = (l~fj) 
For each (xt,rt ), decrease probabilities if correct: 

If yj = rt then P]+l f- (3jP] Else P]+l f- P] 
Normalize probabilities: 

Zj f- L:P]+l; P]+l f- P]+l/Zj 
t 

Testing: 

Given x, calculate dj(x), j = 1, , L
 
Calculate class outputs, i = 1, , K:
 

L 
Yi = L: (log J )dji(x)

j=l J 

if all the previous learners are not confident: 

Yi = dji if Wj > OJ and Vk < j, Wk < Ok 

Starting with j = 1, given a training set, we train dj . Then we find all instances from a separate 

validation set on which d j is not confident, and these constitute the training set for dj+l' Note that 

unlike in AdaBoost, we choose not only the misclassified instances but also the ones for which the 

previous base learner is not confident. The idea is that an early simple classifier handles the majority 

of instances, and a more complex classifier is only used for a small percentage, thereby not significantly 

increasing the overall complexity. Cascading thus stands between the two extremes of parametric and 

nonparametric classification. The former, a linear model, finds a single rule that should cover all the 

instances. A nonparametric classifier, on the other hand, stores the whole set of instances without 

generating any simple rule explaining them. Cascading generates a rule (or rules) to explain a large 

part of the instances as cheaply as possible and stores the rest as exceptions. 

2.2 Robust Real-Time Face Detection 

Viola and Jones described a face detection framework that is capable of processing images extremely 

rapidly while achieving high detection rates. There are three key contributions of this detection 
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Figure 2.1: Example rectangle features shown relative to the enclosing detection window. The sum 
of the pixels that lie within the white rectangles is subtracted from the sum of pixels in the grey 
rectangles.Two-rectangle feature are shown in (A) and (B). Figure (C) shows a three-rectangle feature, 
and (D) a four-rectangle feature. 

framework. The first is the introduction of a new image representation called the "Integral Image" 

which allows the features used by the detector to be computed very quickly. The second is a simple 

and efficient classifier which is built using the AdaBoost learning algorithm to select a small number of 

critical visual features from a very large set of potential features. The third contribution is a method 

for combining classifiers in a "cascade" which allows background regions of the image to be quickly 

discarded while spending more computation on promising face-like regions. 

2.2.1 Features 

The detection procedure classifies images based on the value of simple features, as opposed to using 

the image pixels directly. The most common reason for doing so is that features can act to encode 

ad-hoc domain knowledge that is difficult to learn using a finite quantity of training data. For this 

system, there is also a second critical motivation for features: the feature-based system operates much 

faster than a pixel based system. The task is to find suitable features for detecting objects in images. 

The simple features used are reminiscent of those derived from Haar basis functions in 

[Papageorgiou et al., 1998]. More specifically, Viola and Jones use three kinds of features. The value 

of a two-rectangle feature is the difference between the sum of the pixels within the two rectangular 

regions. A three-rectangle feature computes the sum within two outside rectangles subtracted from the 

sum in a center rectangle. Finally, a four-rectangle feature computes the difference between diagonal 

pairs of rectangles. Note that unlike the Haar basis, the set of rectangle features is over-complete 2
.
1

. 

2.1 A complete basis has no linear dependence between basis elements and has the same number of elements as the 
image space, in this case 576. The full set of 160,000 features is many times over-complete. 
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2.2.2 Integral Image 

Rectangle features can be computed very rapidly using an intermediate representation for the image 

that is called the integral image (see Fig. 2.2). The integral image at location x, y contains the sum 

of the pixels above and to the left of x, y inclusive: 

ii(x,y) = L i(x',y'), (2.2.1) 
x''5x,y'~y 

where ii(x, y) is the integral image and i(x, y) is the original image. Using the following pair of 

recurrences: 

s(x, y) = s(x, y - 1) + i(x, y) (2.2.2) 

ii(x, y) = ii(x - 1, y) + s(x, y) (2.2.3) 

(where s(x,y) is the cumulative row sum, s(x,-l) = 0, and ii(-l,y) = 0) the integral image can be 

computed in one pass over the original image. Using the integral image, any rectangular sum can be 

calculated in four array references (see Fig. 2.3). Clearly the difference between two rectangular sums 

can be calculated in eight references. Since the two-rectangle features defined above involve adjacent 

rectangular sums they can be computed in six array references, and eight and nine references in the 

cases of three and four-rectangle features respectively. 

Figure 2.2: The value of the integral image at point (x,y) is the sum of all the pixels above and to the 
left. 
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Figure 2.3: The sum of the pixels within rectangle D can be computed with four array references. The 
value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 
2 is A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be 
computed as 4 + 1 - (2 + 3). 

2.2.3 Feature Discussion 

Rectangle features are somewhat primitive when compared with alternative such as steerable filters. 

Viola and Jones generated a very large and varied set of rectangle features. Typically the represen

tation is about 400 times over-complete. This over-complete set provides features of arbitrary aspect 

ration and finely sampled location. Empirically it appears as though the set of rectangle features 

provide a rich image representation which supports effective learning. The extreme computational 

efficiency of rectangle features provides ample compensation for their limitations. 

In order to appreciate the computational advantage of the integral image technique, consider the 

conventional approach which is to compute a "pyramid" of 12 images, each 1.25 times smaller than the 

previous image. A fixed scale detector is then scanned across each of these images. Computation of the 

pyramid, while straightforward, requires significant time. In contrast, the meaningful set of rectangle 

features have the property that a single feature can be evaluated at any scale and location in a few 

operations. Moreover, effective face detectors can be constructed with as few as two rectangle features. 

Given the computational efficiency of these features, the face detection process can be completed for 

an entire image at every scale at 15 frames per second, about the same time required to evaluate 

the 12 level pyramid alone. Any procedure which requires a pyramid of this type will necessarily run 

slower than the integral image-based detector. 
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2.2.4 Learning Classification Functions 

There are 160,000 rectangle features associated with each image sub-window of 24 x 24 pixels, a 

number far larger than the number of pixels. Even though each feature can be computed efficiently, 

computing the complete set is prohibitively expensive. The hypothesis is that a very small number 

of these features can be combined to form an effective classifier. The main challenge, then, is to find 

these features. In this system, a variant of AdaBoost is used to select the features and to train the 

classifier. The formal guarantees provided by the AdaBoost learning procedure are quite strong. It 

has been proved that the training error of the strong classifier approaches zero exponentially in the 

number of rounds. More importantly, a number of results were later proved about generalization 

performance. 

Drawing an analogy between weak classifiers and features, AdaBoost is an effective procedure for 

searching out a small number of good ''features'' which nevertheless have significant variety. In support 

of this goal, the weak learning algorithm is designed to select the single rectangle feature which best 

separates the positive and negative examples. For each feature, the weak learner describes the optimal 

threshold classification function, such that the minimum number of examples are misclassified. A weak 

classifier h(x,j,p,O) thus consists of a feature (I), a 24 x 24 pixel sub-window of the image (x), a 

threshold (0) and a polarity (P) indicating the direction of the inequality: 

I if pf(x) < pO 
h(x, f,p,O) 

{ o otherwise 

The weak classifiers used (thresholded single features) can thus be viewed as single node decision 

trees, and the final strong classifier takes the form of a perceptron (a weighted combination of weak 

classifiers followed by a threshold). 
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Algorithm 2 The boosting algorithm used by Viola and Jones. T hypotheses are constructed using 
a single feature. The final hypothesis is a weighted linear combination of the T hypotheses where the 
weights are inversely proportional to the training errors. 
Training: 

Given example images (Xl, Yl), ... , (Xn,Yn) where Yi = 0,1 for negative and positive examples 
respectively. 
Initialize weights Wl,i = 2~' ~ for Yi = 0,1 respectively, where m and I are the number of negatives 
and positives respectively. 
For t = 1, ... ,T : 

Normalize the weights, Wt i f- EnWt,i . 
, j=1 Wt,J 

Select the best weak classifier with respect to the weighted error:
 
ft = min/,p,o 2:: Wt,ilh(Xi, f,p, 8) - Yil·
 

i 
Define ht(x) = h(x, ft,Pt, 8t ) where ft, Pt and 8t are the minimizers of ft. Then, ht(x) is the best 

weak classifier. 
Update the weights: 

Wt+l,i = Wt,i13j-e i 

where ei = Oif example Xi is classified correctly, ei = 1 otherwise, and 13t = l~tet 
Testing: 

The final strong classifier is: 

C(x) = if t~ atht(x) ::::: t~ at{I ~ 
o otherwise
 

where at = logi;
 

2.2.5 The Attentional Cascade 

A cascade of classifiers is used, which achieves increased detection performance while radically reducing 

computation time. Simpler classifiers are used to reject the majority of sub-windows before more 

complex classifiers are called upon to achieve low false positive rates. 

Stages in the cascade are constructed by training classifiers using AdaBoost. Starting with a 

two-feature strong classifier, an effective face filter can be obtained by adjusting the strong classifier 

threshold to minimize false negatives. The initial AdaBoost threshold, ~ 2::'['=1 at, is designed to yield 

a low error rate on the training data. A lower threshold yields higher detection rates and higher false 

positive rates. 

The overall form of the detection process is that of a degenerate decision tree, or cascade. A 

positive result from the first classifier triggers the evaluation of a second classifier which has also been 

adjusted to achieve very high detection rates. A positive result from the second classifier triggers a 

third classifier, and so on. A negative outcome at any point leads to immediate rejection of the sub
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window. The structure of the cascade reflects the fact that within any single image, an overwhelming 

majority of sub-windows are negative. As such, the cascade attempts to reject as many negatives as 

possible at the earliest stage possible. Hence, while a positive instance will trigger the evaluation of 

every classifier in the cascade, this is an exceedingly rare event. 

Figure 2.4: Schematic depiction of the attention cascade, A series of classifiers are applied to each 
sub-window. The initial classifier eliminates a large number of negative examples with very little 
processing. Subsequent layers eliminate additional negatives but require additional computation. 
After several stages of processing the number of sub-windows have been reduced radically. Further 
processing can take any form such as additional stages of the cascade, or an alternative detection 
system. 

2.2.6 Training a Cascade of Classifiers 

Given a trained cascade of classifiers, the false positive rate of the cascade is 

K 

F=IIk (2.2.4) 
i=l 

where F is the false positive rate of the cascaded classifier, K is the number of classifiers, and Ii is 

the false positive rate of the ith classifier on the examples that get through to it. The detection rate 

is 

(2.2.5) 

where D is that detection rate of the cascaded classifier, K is the number of classifiers, and di is the 

detection rate of the ith classifier on the examples that get through to it. 



17 CHAPTER 2. PREVIOUS WORK 

Given concrete goals for overall false positive and detection rates, target rates can be determined 

for each stage in the cascade process. For example, a detection rate of 0.9 can be achieved by a 10 

stage classifier if each stage has a detection rate of 0.99 (since 0.9 ~ 0.9910). While this detection 

rate may sound a daunting task, it is made significantly easier by the fact that each stage need only 

achieve a false positive rate of about 30% (since 0.30 10 ~ 6 x 10-6 ). 

The number of features evaluated when scanning real images is necessarily a probabilistic process. 

The key measure of each classifier is its ''positive rate", the proportion of windows which are labelled 

as potentially containing a face. The expected number of features which are evaluated is: 

(2.2.6) 

where N is the expected number of features evaluated, K is the number of classifiers, Pi is the positive 

rate of the ith classifier, and ni are the number of features in the ith classifier. Interestingly, since 

faces are extremely rare, the ''positive rate" is effectively equal to the false positive rate. 

The process by which each element of the cascade is trained requires some care. The AdaBoost 

learning algorithm described in section 3.3 attempts only to minimize errors, and is not specifically 

designed to achieve high detection rates at the expense of large false positive rates. One simple and 

very conventional scheme for trading off these errors is to adjust the threshold of the perceptron 

produced by AdaBoost. Higher thresholds yield classifiers with fewer false positives and a lower 

detection rate. Lower thresholds yield classifiers with more false positives and a higher detection rate. 

In principle, one could define an optimization framework in which 

• the number of classifier stages, 

• the number of features, ni, of each stage, 

• the threshold of each stage 

are traded off in order to minimize the expected number of features N given a target for F and D. 

Unfortunately, finding this optimum is a tremendously difficult problem. In practice, a very simple 

framework is used to produce an effective classifier which is highly efficient. The user selects the 

maximum acceptable rate for Ii and the minimum acceptable rate for di . Each layer of the cascade is 

trained by AdaBoost with the number of features used being increased until the target detection and 

false positive rates are met for this level. The rates are determined by testing the current detector on a 
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validation set. If the overall target false positive rate is not yet met then another layer is added to the 

cascade. The negative set for training subsequent layers is obtained by collecting all false detections 

on a set of images which do not contain any instances of faces. This algorithm is given more precisely 

in the table below. 

Algorithm 3 The training algorithm for building a cascaded detector. 

•	 User selects values for f, the maximum acceptable false positive rate per layer, and d, the 
maximum acceptable detection rate per layer. 

•	 User selects target overall false positive rate, Ftarget. 

•	 P = set of positive examples 

•	 N = set of negative examples 

•	 Fa = 1.0; Do = 1.0 

•	 i = 0 

•	 while F i > Ftarget 

i;.-i+l
 

- ni = 0; Fi = Fi - 1
 

- while Fi > j.Fi - 1
 

ni ;.- ni + 1 

* Use P and N to train a classifier with ni features using AdaBoost 
* Evaluate current cascaded classifier on validation set to determine Fi and D i 

* Decrease threshold for the ith classifier until the current cascaded classifier has a de
tection rate of at least d.Di - 1 (this also affects Fi ) 

N;.- 0 

- If F i > Ftarget then evaluate the current cascaded detector on the set of non-face images 
and put any false detections into the set N. 

2.2.7 Results of Viola and Jones 

This section describes the final face detection system. The discussion includes details on the structure 

and training of the cascaded detector as well as results on a large real-world training set. 

2.2.7.1 Training Dataset 

The face training set consisted of 4916 hand labeled faces scaled and aligned to a base resolution of 

24 by 24 pixels. The training faces are only roughly aligned. This was done by having a person place 

a bounding box around each face just above the eyebrows and and about half-way between the mouth 
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and the chin. This bounding box was then enlarged by 50% and then cropped and scaled to 24 by 24 

pixels. 

2.2.7.2 Structure of the Detector Cascade 

The final detector is a 38 layer cascade of classifiers which included a total of 6060 features. The 

first classifier in the cascade is constructed using two features and rejects about 50% of non-faces 

while correctly detecting close to 100% faces. The next classifier has ten features and rejects 80% of 

non-faces while correctly detecting almost 100% of faces. The next two layers are 25-feature classifiers 

followed by three 50-feature classifiers with a variety of different numbers of features chosen according 

to Algorithm 2. The particular choices of number of features per layer was driven through a trial and 

error process in which the number of features were increased until a significant reduction in the false 

positive rate could be achieved. More levels were added until the false positive rate on the validation 

set was nearly zero while still maintaining a high correct detection rate. 

The non-face sub-windows used to train the first level of the cascade were collected by selecting 

random sub-windows from a set of 9500 images which did not contain faces. The non-face examples 

used to train subsequent layers were obtained by scanning the partial cascade across the large non-face 

images and collecting false positives. A maximum of 6000 such non-face sub-windows were collected 

for each layer. There are approximately 350 million non-face sub-windows contained in the 9500 

non-face images. 

2.2.7.3 Image Processing 

All example sub-windows used for training were variance normalized to minimize the effect of different 

lighting conditions. Normalization is therefore necessary during detection as well. Recall that u2 = 

m2
- 1:t ~ x 2 

, where u is the standard deviation, m is the mean, and x is the pixel value within the 

sub-window. The variance of an image sub-window can thus be computed quickly using a pair of 

integral images, since we already know how to compute the sum of pixels in a rectangle sub-window 

efficiently. 

2.2.7.4 Scanning the Detector 

The final detector is scanned across the image at multiple scales and locations. Scaling is achieved 

by scaling the detector itself, rather than scaling the image. This process makes sense because the 
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Figure 2.5: Detection rates for various numbers of false positives on the MIT + eMU test set con
taining 130 images and 507 faces. 

features can be evaluated at any scale with the same cost. Good detection results were obtained using 

scales which are a factor of 1.25 apart. 

The detector is also scanned across location. Subsequent locations are obtained by shifting the 

window some number of pixels 6. This shifting process is affected by the scale of the detector: if the 

current scale is 8 the window is shifted by [68], where 0is the rounding operation. 

2.2.7.5 Integration of Multiple Detections 

Since the final detector is insensitive to small changes in translation and scale, multiple detections 

will usually occur around each face in a scanned image. In practice, it makes sense to return one final 

detection per face. Toward this end it is useful to post-process the detected sub-windows in order to 

combine overlapping detections into a single detection. 

The detections are combined in a very simple fashion. The set of detections are first partitioned 

into disjoint subsets. Two detections are in the same subset if their bounding regions overlap. Each 

partition yields a single final detection. The corners of the final bounding region are the average of 

the corners of all detections in the set. 

2.2.7.6 Failure Modes 

By observing the performance of the face detector on a number of test images, Viola and Jones 

noticed a few different failure modes. The face detector was trained on frontal, upright faces. Informal 

observations suggest that the face detector can detect faces that are tilted up to about ±15 degrees in 

plane and about ±45 degrees out of plane (toward a profile view). The detector becomes unreliable 

with more rotation than this. They also noticed that harsh backlighting in which the faces are very 
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dark while the background is relatively light sometimes causes failures. Finally, the detector fails on 

significantly occluded faces, particularly if the eyes are occluded. 

2.3	 An Extended Set of Haar-like Features for Rapid Object 

Detection 

This paper by Lienhart and Maydt introduces a novel set of rotated Haar-like features, which signifi

cantly enrich the basic set of simple Haar-like features used in the Viola and Jones detector (hereafter 

referred to as VJD), and which can also be calculated very efficiently. At a given hit rate their face 

detector (LMD) shows an average a 10% lower false alarm rate by means of using these additional 

rotated features. They also present a novel post optimization procedure for a given boosted cascade, 

improving on average the false alarm rate further by 12.5%. 

2.3.1	 Feature Pool 

Similar to this features used by VJD, The features used can be computed at any position and any 

scale in the same constant time. Only 8 table lookups are needed. The features mimic Haar-like 

features and early features of the visual pathway such as center surround and directional responses. 

2.3.2	 Feature Family 

Let us assume that the basic unit for testing for the presence of an object is a window of W xH pixels. 

A rectangle is specified by the tuple r = (x, y, w, h, a) with 0 ~ x, x + W ~ W, 0 ~ y, y + h ~ H, 

x,y:::: 0, w,h > 0, and a E {OO,45°} and its pixel sum is denoted by RecSum(r). The raw feature 

set is then the set of all possible features of the form 

featureI = L wi.RecSum(ri) , (2.3.1) 
iEI={l, ... ,N} 

where the weights Wi E ~, the rectangles ri, and N are arbitrarily chosen. 

This raw feature set is almost infinitely large. For practical reasons, it is reduces as follows: 

1. Only weighted combinations of pixel sums of two rectangles are considered (i.e., N = 2). 
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Figure 2.6: Feature prototypes of simple Haar-like features and center-surround features. Black areas 
have negative and white areas positive weights. 

2.	 The weights have opposite signs, and are used to compensate for the difference in area size 

between those two rectangles. Thus, for non-overlapping rectangles we have -wo.Area(ro) = 

wl.Area(rl). Without restrictions we can set Wo = 1 and get Wl = Area(ro)/Area(rl). 

These restrictions lead us to the 14 feature prototypes shown in Figure 5: 

•	 Four edge features, 

•	 Eight line features, and 

•	 Two center-surround features 

These prototypes are scaled independently in vertical and horizontal direction in order to generate a 

rich, over complete set of features. 

2.3.2.1 Fast Feature Computation 

For upright rectangles the auxiliary image is the Summed Area Table SAT(x, y), similar to the Integral 

Image used in VJD. SAT(x,y) is defined as the sum of the pixels of the upright rectangle ranging 

from the top left corner at (0,0) to the bottom right corner at (x, y): 

SAT(x,y) = L I(x',y').	 (2.3.2) 
x'~x,Y/~y 
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It can be easily calculated with one pass over all pixels from left to right and top to bottom by means 

of 

SAT(x, y) = SAT(x, y - 1) + SAT(x - 1, y) + I(x, y) - SAT(x - 1, Y - 1) (2.3.3) 

with SAT(-1,y) = 0 and SAT(x,-1) = O. From this, the pixel sum of any upright rectangle 

r = (x, y, w, h, 0) can be determined by four table lookups: 

RecSum(r) = SAT(x-1,y-1)+SAT(x+w-1,y+h-1)-SAT(x-1,y+h-1)-SAT(x+w-1,y-1) 

(2.3.4) 

For 45° rotated rectangles the auxiliary image is defined as the Rotated Summed Area Table RSAT(x, y). 

It gives the sum of the pixels of the rectangle rotated by 45° with the right most corner at (x, y) and 

extending till the boundaries of the image: 

RSAT(x, y) = L I(x', y') (2.3.5) 
x':O;x,x':O;x-IY-Y'1 

It can be calculated with two passes over all pixels. The first pass from left to right and top to bottom 

determines 

RSAT(x, y) = RSAT(x - 1, Y - 1) + RSAT(x - 1, y) + I(x, y) - RSAT(x - 2, y - 1) (2.3.6) 

with 

RSAT(-1,y) = RSAT(-2,y) = RSAT(x, -1) = 0, (2.3.7) 

whereas the second pass from the right to left and bottom to top calculates 

RSAT(x, y) = RSAT(x, y) + RSAT(x - 1, Y + 1) - RSAT(x - 2, y) (2.3.8) 

From this the pixel sum of any rotated rectangle r = (x, y, w, h, 45°) can be determined by four table 

lookups: 

RecSum(r) = RSAT(x+w,y+w) +RSAT(x-h,y+h) -RSAT(x,y) -RSAT(x+w- h,w+w+h) 

(2.3.9) 
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Figure 2.7: Calculation scheme for rotated areas. 

2.3.3 Cascade of Classifiers 

Similar to VJD, a cascade of classifiers is a degenerate decision tree where at each stage a classifier 

is trained to detect almost all objects of interest while rejecting a certain fraction of the non-object 

patterns. Lienhart and Maydt trained each stage to eliminate 50% (i.e. the false positive rate) of 

the non-face patterns while falsely eliminating only 0.2% (Le. the detection rate) of the frontal face 

patterns; 13 stages were trained. Hence, in the optimal case, we can expect a false alarm rate of about 

0.5 13 
>::; 1.2e - 04 and a hit rate of about 0.99813 

>::; 0.97. Each stage was trained using the Discrete 

AdaBoost algorithm. 

2.3.4 Experimental Results 

As compared to the original VJD, it was shown that the overall performance could be improved by 

about 23.8%, of which 10% could be attributed to the extended rotated features, and 12.5% to the 

stage post-optimization. 



Chapter 3 

Independent Component Analysis 

A common problem encountered in fields such as statistics, data analysis, and signal processing is 

finding a suitable representation of multivariate data. For reasons of computation and conceptual 

simplicity, the representation is often sought as a linear transformation of the original data. In 

other words, each component of the representation is a linear combination of the original variables. 

Well-known linear transformation methods include principal component analysis, factor analysis, and 

projection pursuit. Independent Component Analysis (ICA) is a recently developed linear transfor

mation, in which the desired representation is one that maximizes the statistical independence of the 

components of the representation. Such a representation appears to capture the essential structure 

of the data in many applications, such as feature extraction and signal separation. neural activity 

research, telecommunications, brain images, stock prices, and face recognition. 

ICA is of interest to a wide variety of scientists and engineers because it seems to reveal the driving 

forces which underlie a set of observed phenomena. In each application, a large set of signals is mea

sured, and it is known that each signal depends on several distinct underlying factors, which provide 

the driving forces behind the changes in the measured signals. In other words, ICA is essentially a 

method for extracting useful information from data. 

As a motivating example, consider the "cocktail party problem." Here, n speakers are speaking 

simultaneously at a party, and any microphone placed in the room records only an overlapping com

bination of the n speakers' voices. Say there are n different microphones placed in the room. Each 

microphone is at a different distance from each of the speakers, hence each microphone records a dif

ferent combination of the speakers' voices. The task, then, is to separate out the original n speakers' 

25 
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speech signals. 

3.1 How ICA Works 

ICA is based on the simple, generic, and physically realistic assumption that if different signals are 

from different physical sources, then those signals are statistically independent. ICA takes advantage 

of the fact that the implications of this assumption can be reversed, leading to a new assumption 

which is logically unwarranted but one that works well in practice, i.e., if statistically independent 

signals can be extracted from signal mixtures, then these extracted signals must be from different 

sources. Accordingly, ICA separates signal mixtures into statistically independent signals. 

To formalize the problem, assume that we observe n linear mixtures Xl, ... , xn of n independent 

components 

(3.1.1) 

for all j. In the ICA model defined above, we assume that each mixture Xj as well as each independent 

component 8k is a random variable. The observed values Xj, e.g., the microphone signals in the cocktail 

party problem, are then a ample of this random variable 

It. is convenient to use vector-matrix notation instead of the sums like in the previous equation. 

Let us denote by x the random vector whose elements are the mixtures Xl, ... ,xn , and likewise by s 

the random vector with elements 81, ... , 8n . Let us denote by A the mixing matrix with elements aij. 

Using this vector-matrix notation, the above mixing model is written as 

x=As. (3.1.2) 

Sometimes we need the columns of matrix A; denoting them by aj, the model can also be written as 

n 

x= La;8i' (3.1.3) 
i=l 

The ICA model is a generative model, which means that it describes how the observed data are 

generated by a process of mixing the components 8i. The independent components are latent variables, 

meaning that they cannot be directly observed. Also, the mixing matrix is assumed to be unknown. 

All we observe is the random vector x, and we must estimate both A and s using it. After estimating 
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A, we can compute its inverse, say W (unmixing matrix), and obtain the independent components as 

s=Wx.	 (3.1.4) 

ICA is very closely related to the method called blind source sepamtion (BSS). A "source" here means 

an original signal, i.e. independent component, like the speaker in a cocktail party problem. "Blind" 

means that we know very little, if anything, about the mixing matrix, and make few assumptions 

about the source signals. ICA is one method for performing blind source separation. 

3.2 Assumptions and Ambiguities 

In the ICA model described above, the following ambiguities hold: 

1.	 We cannot determine the exact source amplitudes of the independent components, but only their 

amplitudes relative to each other. The reason is that both s and A being unknown, any scalar 

multiplier in one of the sources Si could always be cancelled by dividing the corresponding column 

ai of A by the same scalar. This ambiguity is, fortunately, insignificant in most applications. 

2.	 We cannot determine the order of the independent components. The reason is that, again, both 

s and A being unknown, we can freely change the order of the terms in the sum in (3.1.1). 

Formally, a permutation matrix P and its inverse can be substituted in the model to give 

x = AP-lPS. The elements of Ps are the original independent variables Sj, but in another 

order. The matrix AP-1 is just a new unknown mixing matrix. 

The following assumptions also need to hold: 

1.	 There must be at least as many different signal mixtures as there are source signals. If there 

are more source signal mixtures than signal mixtures, then BSS methods do not perform well. 

However, in practice this issue seldom arises. 

2.	 The independent components must be non-Gaussian. To see the difficulty with Gaussian data, 

consider an example in which n = 2 and S '" N(O, I) where I is the 2x2 identity matrix. 

Note that the contours of the density of the standard normal distribution N(O, I) are circles 

centered on the origin, and the density is rotationally symmetric. Now suppose we observe some 

x = As. The distribution of x will also be Gaussian, with zero mean and covariance E[xxT ] = 
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E[AssTAT] = AAT. Now, let R be an arbitrary orthogonal matrix, so that RRT = RTR = I, 

and let A' = AR. Then, if the data had been mixed using A' instead of A, we would have 

observed x' = A/s. The distribution of x' is also Gaussian, with zero mean and covariance 

E[X/(x/)T] = E[A/ssT(A/)TJ = E[ARssT(AR)T] = ARRTAT = AAT. Hence, whether the 

Imixing matrix is A or A', we would observe the data from a N(O, AAT) distribution3. . Thus, 

there is no way to tell if the sources were mixed using A or A'. So, there is an arbitrary 

rotational component in the mixing matrix that cannot be determined from the data, and we 

cannot recover the original sources. 

3.3 Principles of leA Estimation 

Intuitively speaking, the key to estimating the ICA model is nongaussianity. The Central Limit 

Theorem, a classical result in probability theory, says that the distribution of a sum of independent 

random variables tends to be a Gaussian distribution, under certain conditions. Thus, a sum of two 

independent random variables usually has a distribution that is closer to Gaussian than either of the 

two original random variables. 

Now, to estimate one of the independent components, we consider a linear combination of the Xi; 

let us denote this by y = w TX = L:i WiXi, where w is a vector to be determined. If w were one 

of the rows of the inverse of A, this linear combination would actually equal one of the independent 

components (see eq. 3.1.2). The question is: How can we use the Central Limit Theorem to determine 

w so that it would equal one of the rows of the inverse of A? In practice, we cannot determine such 

a w exactly, because we have no knowledge of matrix A, but we can find an estimator that gives a 

good approximation. 

Since a sum of independent random variables is more Gaussian than the original variables, choosing 

as w a vector that maximizes the nongaussianity of w Tx gives us one of the independent components. 

In fact, the optimization landscape for nongaussianity in the n-dimensional space of vectors w has 

2n local maxima, two for each independent component, corresponding to Si and -Si (recall that the 

independent components can be estimated only up to a multiplicative sign). Thus, to find several 

independent components, we need to find all these local maxima. As we shall see, this is not difficult, 

since the different independent components are uncorrelated. 

31 The property that has been used is that if s is Gaussian, then SST = I 
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3.4 Measures of N ongaussianity 

To use nongaussianity in ICA estimation, we must have a quantitative measure of the nongaussianity 

of a random variable, say y. To simplify things, let us assume that y is centered (zero mean) and has 

1variance equal to one. 3. Below, we briefly explicate the most common measures of nonguassianity as 

described in [Hyvarinen and Oja, 2000], before describing the FastICA algorithm. 

3.4.1 Kurtosis 

The classical measure of nongaussianity is kurtosis, which is defined as following 

(3.4.1) 

However, since we assumed that y is of unit variance, the right hand side simplifies to E[y4]- 3. For 

a Guassian random variable, the kurtosis is zero, while for most non-Gaussian random variables, it is 

non-zero. 

Random variables that have a negative kurtosis are called subgaussian, and those with positive 

kurtosis are called supergaussian. Typically, supergaussian random variables have a "spiky" pdf with 

heavy tails (e.g. the Laplace distribution). Subgaussian random variables, on the other hand, have a 

"flat" pdf (e.g. the Uniform distribution). 

The main reason why kurtosis, or rather its absolute value, has been used widely as a measure of 

nongaussianity in ICA is due to its computational and theoretical simplicity. However, kurtosis also 

has some drawbacks in practice, when its value has to be estimated from a measured sample. The 

main problem is that kurtosis can be very sensitive to outliers. In other words, kurtosis is not a robust 

measure of nongaussianity. 

3.4.2 Negentropy 

A second very important measure of nongaussianity is given by negentropy. Negentropy is based on 

the information theoretic quantity of differential entropy. The entropy of a random variable can be 

interpreted as the degree of information that the observation of the variable gives. The more ''random,'' 

i.e. unpredictable and unstructured the variable is, the larger is its entropy. 

3.1 In fact, this is a pre-processing step for ICA, as we will see. 
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Differential entropy is the entropy for continuous-valued random variables, and it is defined for a 

random vector ywith density f(y) as 

H(y) = - Jf(y) log f(y)dy. (3.4.2) 

A fundamental result of information theory is that a gaussian variable has the largest entropy among 

all random variables of equal variance. This means that entropy could be used as a measure of 

nongaussianity. 

Now, to obtain a measure of nongaussianity that is zero for a gaussian variable and is always 

nonnegative, one often uses a slightly modified version of the definition of differential entropy, called 

negentropy. Negentropy J is defined as follows 

J(y) = H(Ygauss) - H(y) (3.4.3) 

where ygauss is a Gaussian random variable of the same covariance matrix as that of y. 

The advantage of using negentropy as a measure of nongaussianity is that it is well justified by 

statistical theory. In fact, negentropy is in some sense the optimal estimator of nongaussianity, as 

far as statistical properties are concerned. The problem in using negentropy is, however, that it is 

computationally very difficult. Estimating negentropy using the definition would require an estimate 

of the pdf. Therefore, simpler approximations of negentropy are very useful, as is discussed below. 

The classical method of approximating negentropy is using higher-order moments, for example as 

(3.4.4) 

The random variably Y is assumed to be of zero mean and unit variance (i.e., standardized). However, 

this approximation suffers from the non-robustness encountered with kurtosis. To avoid this problem, 

new approximations were developed in [Hyvarinen, 1998], based on the maximum entropy principle 

In general, we obtain the following approximation: 

p 

J(y) ~ Lki[E[Gi(y)] - E[Gi (v)]]2, (3.4.5) 
i=l 

where ki are some positive constants, and v is a standardized Gaussian variable. The variable Y 
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is assumed to be standardized as well, and the functions Gi are some non-quadratic functions as 

described in [Hyvarinen, 1998]. 

In the case where we use only one non-quadratic function G, the approximation becomes 

J(y) ex [E[G(y)] - E[G(v)W (3.4.6) 

for practically any non-quadratic function G. This is just a generalization of the moment-based 

approximation in (3.4.1), if Y is symmetric. Indeed, taking G(y) = y4, one obtains exactly (3.4.1). 

But the point here is that by choosing G wisely, one obtains approximations of negentropy that are 

much better than the one given by (3.4.1). In particular, choosing a G that does not grow too fast, 

one obtains more robust estimators. The following choices of G have proved to be very useful: 

(3.4.7) 

where 1 ::; al ::; 2 is some suitable constant. 

Thus, we obtain approximations of negentropy that give a very good compromise between the 

properties of the two classical nongaussianity measures given by kurtosis and negentropy. They are 

conceptually simple, fast to computer, yet have appealing statistical properties, especially robustness. 

A practical algorithm based on these contrast functions will be presented in Section (number). 

3.4.3 Minimization of Mutual Information 

Another approach for ICA estimation, inspired by information theory, is minimization of mutual 

information. In particular, this approach gives a rigorous justification for the heuristics principles 

used above. 

Using the concept of differential entropy, we define the mutual information I between m random 

variables, Yi = 1, ... , m (for an invertible linear transformation y = Wx) as follows 

m 

I(Yl, Y2, ... ,Ym) = L H(Yi) - H(y). (3.4.8) 
i=l 

Mutual information is a natural measure of the dependence between random variables. It is always 

non-negative, and zero if and only if the variables are statistically independent. If we constrain the Yi 
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to be uncorrelated and of unit variance, then we can obtain 

(3.4.9) 

where C is a constant. This shows the fundamental relation between negentropy and mutual infor

ma~,jon. 

Using this approach, we define the ICA of a random vector x as an invertible transformation as 

in (3.1.2), where the matrix W is determined so that the mutual information of the transformed 

components Si is minimized. It is obvious from (3.4.2) that finding such an invertible transformation 

that minimizes the mutual information is roughly equivalent to finding directions in which negentropv 

is maximized. Rigorously speaking, (3.4.2) shows that ICA estimation by minimization of mutual 

information is equivalent to maximizing the sum of the nongaussianities of the estimates, when the 

estimates are constrained to be uncorrelated. This constraint is, in fact, not necessary, but simplifies 

the computations considerably. 

3.4.4 Maximum Likelihood Estimation (MLE) 

A very popular approach for estimating the ICA model is MLE, which is essentially equivalent to 

minimization of mutual information. MLE is a statistical method used to make inferences about the 

parameters of the underlying probability distribution from a given data set. It is essentially equivalent 

to minimization of mutual information. If we consider W = (Wl, ... ,wnl to be the parameters of 

the random variable x (denoting the signal mixture), then the log-likelihood takes the form: 

T n 

L(W) = L L log(Ji(w;x(t))) +T.logldetWI (3.4.10) 
t=1 i=1 

where the Ji are the density functions of the Si (here assumed to be known). To see the connection 

between likelihood and mutual information, consider the expectation of the log-likelihood: 

1 n 
TE[L] = L E[log(Ji(w;x(t)))] + logldetWI· (3.4.11) 

i=1 

Actually, if the Ji were equal to the actual distributions of wrx, the first term would be equal to 

- Li H(wrx). Thus, the likelihood would be equal, up to an additive constant, to the negative of 

mutual information. 
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3.4.5 The Infomax Principle 

Another related contrast function was derived from a neural network viewpoint. This was based on 

maximizing the output entropy of a neural network with non-linear inputs. Assume that x is the 

linear input to the neural network whose outputs are of the form <Pi(WT x), where the <Pi are some 

non-linear scalar functions, and the Wi are the weight vectors of the neurons. One then wants to 

maximize the entropy of the outputs: 

(3.4.12) 

If the <Pi are well chosen, this framework also enables the estimation of the ICA model. In fact, it 

has been proved that the principle of network entropy maximization, or ''infomax,'' is equivalent to 

maximum likelihood estimation. 

3.5 Temporal and Spatial ICA 

Typically in ICA, each of M temporal signal mixtures is measured over N time steps, and M temporal 

source signals are recovered as y = Wx, where each source signal is independent over time of every 

other source signal. However, when considering temporal sequences of images, each image consists 

of a set of pixels, and each row of the data array x is the temporal sequence of one pixel over time. 

Thus, each column of x is an image recorded at one point in time. When we treat the rows of x as 

mixtures, we use ICA to find a set of independent temporal signals. On the other hand, if we treat 

the columns of x as mixtures, then the set of signals found by ICA are spatially independent images. 

Thus, ICA can be used in one of two complementary ways to extract either temporal source signals 

from the rows of x using temporal ICA (tICA), or spatial source signals from the rows of x T using 

spatial ICA (sICA). 

[Bartlett and Movellan, 2002] defined temporal and spatial ICA as follows, and we shall use the 

same notation. Architecture I treats the images as random variables and the pixels as outcomes, while 

Architecture II treats the pixels as random variables and the images as outcomes. Let x be a data 

matrix with nr rows and nc columns. We can think of each column of x as outcomes (independent 

trials) of a random experiment. We think of the ith row of x as the specific value taken by a random 

variable Xi across ncindependent trials. this defines an empirical probability distribution for Xl, ... , X nr ' 
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in which each column of x is given probability mass line. Independence is then defined with respect 

to such a distribution. For example, we say that rows i and j of x are independent if it is not possible 

to predict the values taken by Xj across columns from the corresponding values taken by Xi. 

Our goal is to find a good set of basis images to represent a database of faces. We organize each 

image in the database as a long vector with as many dimensions as number of pixels in the image. 

There are at least two ways in which ICA can be applied to this problem. 

1.	 We can organize our database into a matrix x where each row vector is a different image (see 

Fig. 3.1, left). In this approach, images are random variables and pixels are trials so that it 

makes sense to talk about independence of images or functions of images. Two images i and j 

are independent if, when moving across pixels, it is not possible to predict the value taken by 

the pixel in image j based on the value taken by the same pixel in image i. 

2.	 We can transpose x and organize our data so that images are in the columns of x (see Fig. 3.1, 

right). In this approach, pixels are random variables and images are trials. Here, it makes sense 

to talk about independence of pixels or functions of pixels. For example, pixel i and j would 

be independent if, when moving across the entire set of images, it is not possible to predict the 

value taken by pixel i based on the corresponding value taken by pixel j on the same image. 

3.6 Comparison to other strategies 

A closely related technique to ICA is Principal Component Analysis (PCA). However, PCA in itself 

has widely been used for similar purposes as ICA, particularly for applications requiring feature 

extraction. PCA is also reducing multidimensional data sets to lower dimensions for analysis, which 

is why it is used as a pre-processing step for ICA, as mentioned earlier. 

Technically speaking, PCA is an orthogonal linear transformation that transforms the data to a 

new coordinate system such that the greatest variance by any projection of the data comes to lie 

on the first coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on. PCA can be used for dimensionality reduction in a data set while 

retaining those characteristics of the data set that contribute most to its variance, by keeping lower

order principal components and ignoring higher-order ones. Such low-order components often contain 
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Figure 3.1: Two architectures for performing ICA on images. (a) Architecture I for finding statistically 
independent basis images. Performing source separation on the face images produces IC images in the 
rows of u. (b) The gray values at pixel location i are plotted for each face image. ICA in architecture 
I finds weight vectors in the directions of statistical dependencies among the pixel locations. (c) 
Architecture II for finding a factorial code. Performing source separation on the pixels produced a 
factorial code in the columns of the output matrix u. (d) Each face image is plotted according to 
the gray values taken on at each pixel location. ICA in architecture II finds weight vectors in the 
directions of statistical dependencies among the face images. 
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the "most important" aspects of the data. But this is not necessarily the case, depending on the 

application. In fact, our hypothesis is that ICA is better at extracting facial features as compared to 

PCA. In Chap. 5, we also present results from a face detector based on PCA. 

Another related method is Factor Analysis (FA), which is a data reduction technique used to 

explain variability among observed random variables in terms of fewer unobserved random variables 

called factors. The observed variables are modeled as linear combinations of the factors, plus "error" 

terms. FA is essentially a form of PCA with the addition of these extra terms for modeling the 

sensor noise associated with each signal mixture. In contrast, both ICA and PCA are based on the 

assumption that such noise is zero. 

We can summarize the difference between ICA and PCA/FA by saying that PCA/FA decompose 

a set of signal mixtures into a set of uncorrelated signals, while ICA decomposes a set of signal 

mixtures into a set of independent signals. This difference is critical because the signals extracted by 

PCA/FA are under-constrained relative to those extracted by ICA, since by definition of statistical 

independence, ICA captures high-order relationships between the source signals while PCA/FA only 

capture the linear relationships. 



Chapter 4 

Boosting in leA Feature Space 

In Sec. 2.2.4, we described the boosting process in Haar-like feature space. The classification power 

of the described system is limited when the weak classifiers derived from simple local features become 

too weak to be boosted, especially in the later stages of the cascade training. Empirically, it has been 

observed in (Zhang, Li and Gatica-Perez, 2004] that when the discriminating power of a strong 

classifier reaches a certain point, e.g. a detection rate of 90% and a false alarm rate of 10-6 , non-face 

examples become very similar to the face examples in terms of the Haar-like features. The histograms 

of the face and non-face examples for any feature can barely be differentiated, and the empirical 

probability of misclassification of the weak classifiers approaches 50%. At this stage, boosting becomes 

ineffective because the weak learners are too weak to be boosted. This issue has been discussed in 

the past in [Valiant, 1984). One way to address this problem is to use better weaker classifiers in a 

different feature space, which is more powerful. We propose to boost in ICA coefficient space. As we 

show, weak classifiers in this global feature space have sufficient classification power for boosting to 

be effective in the later stages of the cascade. 

First, we shall explicate the two architectures for performing ICA, as mentioned in Sec. 3.5. 

4.1 Architecture 1: Statistically Independent Basis Images 

The goal here is to find a set of statistically independent basis images. We organize the face mixtures 

in matrix x so that the images are in rows and the pixels are in columns. In this approach, leA 

finds a matrix W such that the rows of u = Wx are as statistically independent as possible. The 
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Figure 4.1: Image synthesis model for Architecture 1. To find a set of IC images, the images in x 
are considered to be a linear combination of statistically independent basis images, s, where A is an 
unknown mixing matrix. The basis images are estimates as the learned ICA output u. 

..b+ .., +1'\ 

Figure 4.2: The independent basis image representation consists of the coefficients, b, for the linear 
combination of independent basis images, u, that comprised each face image x. 

source images estimated by the rows of U are then used as basis images to represent faces. Face image 

representation consists of the coordinates of these images with respect to the image basis defined by 

the rows of u, as shown in Fig. 4.2. These coordinates are contained in the mixing matrix A =W-1. 

The number of IC's. found by the FastICA algorithm corresponds to the dimensionality of the 

input. In order to have control over the number of ICs extracted, instead of performing ICA directly 

on the nr original images, we perform ICA on a set of m linear combinations of those images, where 

m < nr . Recall that the ICA model assumes that the images in x are a linear combination of a set 

of unknown statistically independent sources. Thus, the ICA model is unaffected by replacing the 

original images with a linear combination of those images. 

We choose for these linear combinations the first m PC eigenvectors of the images set. PCA (see 
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Figure 4.3: Image synthesis model for Architecture II. Each image in the dataset was considered to 
be a linear combination of underlying basis images in the matrix A. The basis images were each 
associated with a set of independent causes, given by a vector of coefficients in s. The basis images 
were estimated by A = W- 1 

, where W is the learned ICA weight matrix. 

Sec. 3.6) on the images set in which the pixels locations are treated as observations and each face 

images a measure, provides the linear combination of the parameters (images) that accounts for the 

maximum variability in the observations (pixels). Moreover, the PCA vectors in the input did not 

discard the higher-order relationships. These relationships still exist in the data, but are simply not 

separated. 

4.2 Architecture II: A Factorial Face Code 

The goal in Architecture 1 was to find a set of spatially independent basis images. Now, although 

the basis images obtained in that architecture are approximately independent, the coefficients that 

code each feature are not necessarily independent. Architecture II uses ICA to find a representation 

in which the coefficients used to code images are statistically independent, Le., a factorial face code. 

[Barlow, 19921 and [Atick, 19921 have discussed the advantages of factorial codes for encoding complex 

objects that are characterized by high-order combinations of features. 

We organize the data matrix x such that rows represent different pixels and columns represent 

different images. This corresponds to treating the columns of A =W-l as a set of basis images (see 

Fig. 4.3). The ICA representations are then in the columns of u = Wx. Each column of u contains 

the coefficients of the basis images in A for reconstructing each image in x (see Fig. 4.4). ICA 
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Figure 4.4: The factorial code representation consisted of the independent coefficients, U, for the linear 
combination of basis images in A that comprised each face image x. 

attempts to make the outputs, U, as independent as possible. 

4.3 Boosting leA Features 

In AdaBoost learning, each weak classifier is constructed based on the histogram of a single feature 

derived from ICA coefficients (b1, b2 , ... , bm ). At each round of boosting, one ICA coefficient, the one 

which is most effective for discriminating between face and non-face classes, is selected by AdaBoost. 

As stated earlier, the distributions of the two classes in the Haar-like feature space almost com

pletely overlap in the later stages of the cascade training. In that case, we propose to switch feature 

spaces and construct weak features in the ICA space. We do need to address the question of which 

stage in the cascade we should switch from the Haar-like features to the ICA features. It is. quite 

evident that ICA features are much more computationally expensive than Haar-like features. Now, 

if we used ICA features in early stages of boosting, we would have to extract ICA features from a 

very large number of sub-windows, and the speed of the face detection system would be too slow for 

real-time performance. On the other hand, if we used ICA features in very late stages of boosting, 

the performance improvement gained from their superiority would be limited. Therefore, we shall 

determine the switching stage based on the trade off between speed and performance improvement. 



Chapter 5 

Experimental Results 

This section describes the final face detection system. First, we provide the implementation details 

for our system. The discussion includes details on the structure and training of the detector, as well 

as results on large real-world testing sets. We also consider the importance the size and quality of the 

training data set towards creating an accurate classifier, and present results for two training sets of 

different sizes. 

5.1 Implementation 

The objective of this thesis was to describe a novel face detection system which is based on an existing 

state-of-the-art face detector. Many experiments were accomplished in this work. Due to limitations in 

processing power, only the most important parts of the detector were able to be tested. In particular, 

we were unable to train a cascade of classifiers. However, an AdaBoost classifier based on ICA features 

was implemented, and the results are presented in the following sections. 

We chose to use C/C++ for implementing our system due to performance considerations as well 

as the availability of external libraries in these languages. All coding, training, and testing was done 

using Gentoo Linux with the 2.6 version of the kernel. 

Initially, we explored the possibility of modifying the Intel OpenGV library by adding ICA features, 

since it is a standard library in computer vision, and the code was written in the C language to be 

highly efficient. Unfortunately, lack of proper documentation in the source code did not allow us to 

achieve the required modifications in the available time frame. Nonetheless, OpenCV proved to be 
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extremely useful for understanding the original Viola Jones detection system as well as the Lienhart 

and Maydt extension, since these detectors are implemented fully in the library. The source code for 

OpenCV is available free of charge at http://sourceforge.net/projects/opencvlibrary/. 

The MultiBoost C++ library was hence used for training the AdaBoost classifier. We chose this 

library due to its extremely flexible design, which enabled us to easily extend it to ICA features. 

Moreover, Haar features are an integral part of the library. The source code for MultiBoost can be 

obtained for free at http://sourceforge .net/projects/multiboost. 

For performing FastICA as well as other mathematical functions, we used IT++, which is an C++ 

library composed of classes and functions for linear algebra, signal processing and telecommunication 

systems. Templated vector and matrix classes are the core of the IT++ library, making its functional

ity similar to that of MATLAB and GNU Octave. IT++ also makes an extensive use of existing open 

source libraries (but not only) for increased functionality, speed and accuracy. In particular BLAS, 

CBLAS, LAPACK, ATLAS and FFTW libraries can be used. In our case, the Intel MKL library was 

used to provide these additional libraries to IT++. 

The IT++ source code can be obtained freely at http: / / i tpp. sourceforge. net/ , while the Intel 

MKL library can be obtained (for non-commercial use on the Linux platform) from the official Intel 

website at http://www.intel.com. 

All experiments were performed on a computer with a Pentium P4-2.8 Ghz processor and 1.5 GB 

of RAM. 

5.2 Training Datasets 

Typically, researchers compile their own training images from random crawls of the WWW, but such 

a task was unfeasible given our time and resources. The training data set we used is the the MIT-CBCL 

face database, which is publicly available at http://cbcl.mit.edu/software-datasets/FaceData2 .html. 

Because our object and pattern detection approach is learning-based, how well the system eventually 

performs depends heavily on the quality of training examples it receives.The MIT-CBCL data set 

is not ideal for the purpose of training a classifier due a low resolution of 19 x 19 pixels. In fact, 

[Viola and Jones, 2001] report that an increased resolution of 24 x 24 pixels results in higher accuracy 

of the face detector. However, the data set will serve our purpose of comparing our detection system 

with other state-of-the-art systems, which we shall train using the same training set. 
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Figure 5.1: Example face images from the training set. 

The original MIT-CBCL training set contains 2,429 face images and 4,548 non-face images in 19 x 

19 grayscale PGM format images. The training faces are only roughly aligned, i.e., they were cropped 

manually around each face just above the eyebrows and about half-way between the mouth and the 

chin. The non-face images are random background images of the same size and format. 

We also performed training with an extended version of the MIT-CBCL data set. The original 

images were randomly mirrored, rotated, translated and scaled by small amounts to obtain a set of 

17,495 faces and 113,939 non-face images. Although the additional images are just variants of the 

original ones, the performance of the classifier is affected significantly, as shown subsequently. This 

leads us to believe that an even larger training set would be more beneficial. 

5.3 Image Processing 

All face and non-face images in the training set were histogram equalized to increase the local contrasts 

of the images. Often, usable data of the image is represented by close contrast values. Through 

histogram equalization,' the intensities can be better distributed on the histogram. This allows for 

areas of lower local contrast to gain a higher contrast without affecting the global contrast. Histogram 

equalization accomplishes this by effectively spreading out the most frequent intensity values. 

Consider a discrete grayscale image, and let ni be the number of occurrences of gray level i. The 

probability p of an occurrence of a pixel of level i in the image is 

P(Xi) = n i
, i E 0,1, ... , L - 1 (5.3.1) 

n 
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Figure 5.2: Face images from Fig. 5.1 after histogram equalization. 

where L is the total number of gray levels in the image, 256 for the images. n is the total number of 

pixels in the image, which is 361 for a 19 x 19 pixel image. 

Let us also define c as the cumulative distribution function corresponding to p, defined as 

i 

c(i) = I:>(Xj), (5.3.2) 
j=O 

also known as the image's accumulated normalized histogram. 

We would like to create a transformation of the form y = T(x) that will produce a level y for 

each level x in the original image, such that the cumulative probability function of y will be linearized 

across the value range. The transformation is defined as 

Yi = T(Xi) = c(i). (5.3.3) 

Notice that the transformation T maps the levels into the domain of 0... 1. In order to map the values 

back into their original domain, the following simple transformation needs to be applied on the result: 

(5.3.4) 

where maXi and mini are the maximum and minimum intensity values respectively in image i. Thus, 

an image which is transformed using its cumulative histogram yields an output histogram that is flat. 
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5.4 leA and Haar Features 

Two face detection systems were trained: One using Haar features (we call this H-Boost) and the 

other using Architecture I ICA features (we call this I-Boost). We trained both types of classifiers 

with several different numbers of features ranging from 50 features to 350 features. In the following 

sections, we shall present the results for H-Boost and I-Boost classifiers trained using 200 Haar-like 

and ICA features respectively, since the classifiers based on 200 features performed better than the 

classifiers based on smaller or larger number of features. Nonetheless, with the availability of greater 

processing power in the future, we would like to experiment more to find the optimal number of 

features. 

For training the I-Boost system, we first extracted the ICA features from the 2,429 face images in 

the MIT-CBCL training set. Next, all the 2,429 face images and the 4,548 non-face images from the 

training set were projected onto the set of ICA features to obtain the ICA coefficients of these images. 

AdaBoost was performed on the coefficients of these 6,977 training images to produce the strong 

classifier. The extended training set of 17,495 faces and 113,939 non-faces was similarly projected 

onto the ICA basis extracted from the 2,249 face images to produce another strong classifier. 

While experimenting with different numbers of faces from which we extract the ICA features, we 

found that larger numbers of faces result in better performance of the detector. However, extracting 

the independent components is a very memory-intensive task, and our memory limitations did not 

allow us to use more than 5,000 images. We chose to use the 2,429 images from the training set due 

to reasons of uniformity. In the future, we would like to use the 17,495 face images from the extended 

training set to extract the ICA features. 

During testing, a given image is similarly projected on the above-mentioned ICA features to obtain 

the ICA coefficients for that image. The AdaBoost classifier then uses these coefficients to predict the 

class of the test image. 

For training the H-Boost system, we first created the integral image representation for the training 

set, and then performed AdaBoost on the Haar-like features that are obtained using this integral 

image. 

One point to note is that the AdaBoost learning procedure attempts only to minimize errors, and 

is not specifically designed to achieve high detection rates at the expense of large false positive rates. 

A simple, and very conventional, scheme for trading off these errors is to adjust the threshold of the 

perceptron produced by AdaBoost. Higher thresholds yield classifiers with fewer false positives and a 
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II
 
II
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Figure 5.3: Example face images from the testing set . 

•
Figure 5.4: Example non-face images from the testing set. 

lower detection rate. Lower thresholds yield classifiers with more false positives and a higher detection 

rate. We vary the threshold over a wide range in order to evaluate the detector, as presented in the 

following section. 

5.5 Experiments on Real-World Test Sets 

A number of experiments were performed to evaluate the system. We tested our system on the MIT

CBCL face test set, which consists of 472 faces and 23,573 non-faces. The testing images are of the 

same size as the training images, and are also cropped similarly. Considerable pose and lightning 

variations are represented by the test set, as can be seen in Fig. 5.4. The test face images are clearly 

more challenging to identify as compared to the training ones seen in Fig. 5.1, even for a human. 

Fig. 5.5 shows the performance of our detection system (I-Boost) as well as that of a detector 

based on Haar-like features (H-Boost). Note that the H-Boost detector used is not the same as the 

Viola-Jones detector, since it is not cascaded. Clearly, the I-Boost detector performs better than 

H-Boost for all false positive rates. Moreover, using the extended training set significantly improves 

the accuracy. 
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False Positive Rate (%) 

Detector 1.00 2.00 3.00 5.00 10.00 

I-Boost (original1raining set) 3.0% 16.7% 28.6% 38.6% 50.4 % 

I-Boost (extended training set) 12.7 % 26.5 % 38.6 % 62.7 % 75.0 % 

H-Boost (original training set) 2.0% 5.7% 9.1 % 14.8% 29.2% 

Figure 5.5: Detection rates for various numbers offalse positives on the MIT-CBCL test set containing 
472 faces and 23,573 non-faces. 



Chapter 6 

Conclusions 

In this thesis we introduced a novel algorithm for detecting faces, based on features derived from 

Independent Component Analysis. Motivated by the fact that the weak learners based on the simple 

Haar-like features are too weak in the later stages of the cascade, we propose to boost ICA features 

in the later stages. The global ICA feature space complements the local Haar-like feature space. The 

algorithm selects the most effective features from ICA features using AdaBoost. 

Various experiments were performed to show the advantage of using ICA features for face detection. 

The results can be stated as follows: 

• ICA features	 are better at discriminating between face and non-face images as compared to 

Haar-like features . 

• Increasing the size of the training set as	 well as the size of images for ICA feature extraction 

significantly improves the detection rate for a given false positive rate. 

Although we have not yet implemented the cascaded detector, the results from the AdaBoost classifier 

show that our system achieves high accuracy on the MIT-CBCL test set. Most importantly, though, 

we have showed that ICA features are, in fact, better than Haar-like features at discriminating between 

faces and non-faces. Hence, we are very optimistic that a cascaded detections system which combines 

Haar-like and ICA features would demonstrate higher accuracy than a detector based only on Haar

like features. The computational efficiency of FastICA, coupled with the fact that the majority of 

images are rejected in the early stages of the cascade, should ensure that performance is not affected 

ostensibly. 
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Using machine learning to solve problems related to face detection is a relatively recent field of 

research. In our work we have investigated a very small aspect of it, and even the problems that we 

addressed warrant further research. 

6.1 Future Work 

A larger training set would be essential for the detector to be of practical use. In particular, the 

number of non-face images would have to be drastically increased in order to decrease false positives. 

Moreover, as mentioned earlier, using a larger number of face images to extract lOA features would 

also improve the accuracy. 

Implementing the cascade is required in order to achieve the ultimate aim of our work, Le., to 

improve the accuracy of the Viola-Jones detector while maintaining real-time detection speed. Training 

the cascade in feasible time, of course, would require significant processing power. 

We would also like to compare our system with other state-of-the-art detection systems such as 

those based on Neural Networks and Support Vector Machines. 

It was mentioned in Sec. 5.4 that we have used the Architecture I lOA features in the I-Boost 

classifier. Another task in the future would be to implement Architecture II features as described in 

Sec. 4.2 and to compare the results. 
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