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Abstract 

In this project a novel approach was taken for performing a natural language task. 
The task requires a neural network to predict the grammatical category of the next word 
in a stream of sentences. There are two main reasons why this task is interesting. In 
natural language processing, it is sometimes very difficult to determine the grammatical 
category of a word in a sentence when that word could belong to different grammatical 
categories depending on the context. For example, the word "run" can either be a noun or 
a verb in a certain sentence. The ability to correctly determine the category of the word 
can help a computer process natural language. In addition, the approach taken here to 
solve this task can lead to insights about the way the human brain learns and/or 
understands language. 

A Genetic Algorithm, which is conceptually based on simple principles known 
from Genetics, was developed and utilized to evolve neural networks that were used to 
perform the task. Genetic Algorithms have been used with remarkable success to solve 
complex problems in a number of fields but not for this type of problem. In addition, 
networks were trained via a classic learning algorithm, called back-propagation, to 
perform the same task. Since a Genetic Algorithm has not been used for this type of task, 
an implicit goal of this project was to show that it can be used. One of the other main 
questions addressed is whether learning (as in the case of training a neural network via 
back-propagation) and a search for an optimal solution (as in the case of the use of a 
Genetic Algorithm to evolve neural networks) differ and if so, how. Also, the underlying 
properties of the two different types of networks (depending on the approach taken to 
obtain them) were compared. Finally, issues about the computational complexity of the 
Genetic Algorithm were studied and discussed. These issues included the relationship 
between the input size (for ex. 10000 sentences) and the perfonnance of the network 
developed via the Genetic Algorithm approach, as well as the way the network must 
change as the input changes in size and the task changes in complexity (i.e. as the 
grammar and lexicon change) while the optimal parameters (of the Genetic Algorithm) 
are used. 
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Introduction 

Context and other approaches 

In the dawn of the 21 st century, during an age of explosive scientific progress, there 
still remains the mystery of the human brain. We, humans, constantly employ our minds 
to perform myriads of intelligent tasks and yet, we are only starting to get insight into the 
workings of our brains. 

The intelligent tasks performed by the brain seem so trivial to us but are, in fact, 
extremely complex. Understanding how the brain performs tasks like vision, speech or 
natural language processing (NLP) has turned out to be a daunting task. The difficulties 
encountered so far may be related to the assumptions we make of the organization and 
functioning of the brain. There are two ways to look at the brain as an organ - as the 
hardware over which an abstraction of a symbolic processing machine is implemented or 
as a network (of networks) from whose structure the computational properties of the 
brain emerge. (Churchland and Sejnowski, 1992) The former (Classical AI) view rests on 
the assumption that the computational properties of the brain can be addressed 
independently of the underlying neuronal architecture. The latter view (Connectionist) 
regards the implementation and computational properties of the brain to be much more 
interdependent. (Churchland and Sejnowski, 1992) Since the current research is centered 
on investigating a connectionist approach for performing a NLP task it is important to 
discuss the two views. In this fashion, I hope to provide the background information that 
led me to consider the connectionist over the symbolic approach. 

Consider the following argument for the connectionist view. A visual pattern 
recognition task can be performed in about 300 milliseconds (msec), but it takes about 5­
10 msec for a neuron to receive, integrate, and propagate a signal to another neuron. This 
means that there is time for no more than about 20-30 neuronal steps from signal input to 
motor output. Because a serial model of the task would require many thousands of steps, 
the time constraints implied that the parallel architecture of the brain is critical, not 
irrelevant (Churchland and Sejnowski, 1992). Results like this illustrate the importance of 
considering the architecture of the brain when formulating theories about cognitive 
processes. 

Note that accepting the connectionist view would not necessarily mean that we 
have to build brain-like structures in order to solve all of our problems in the fastest 
possible way - there are a lot of problems that our brains are less suited to solving than 
digital computers are (and, of course, there are a lot of problems - natural language 
processing or vision tasks, for example, at which the brain excels). But in order to 
understand how our minds work we must search for models of brain functioning that are 
admissible given what we know about the brain. 

In a number of academic fields (Computer Science, Cognitive Science, etc.) 
neural networks have been utilized as an efficient tool for modeling cognitive processes. 
Since the brain is, essentially, an intricate mesh of interconnected neurons, neural 
networks are credited as a plausible model of brain functioning. The connectionist 
approach relies heavily on the use of neural networks. Patterns of activation across the 
units in a neural net, characterized as a vector, <x, y, z, ...>, where each element in the 
vector specifies the level of activity in a unit is the connectionist equivalent of a symbol 
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used as a representation (in classical AI). Stored representations, on the other hand, are 
believed to depend on the configuration of weights between units. In neural tenns, these 
weights are the strength of synaptic connections between neurons. (Churchland and 
Sejnowski, 1992). 

The current research is done in a connectionist framework guided by the 
assumption that language can be treated as a dynamical system. Thus, the following 
infonnation is relevant to my work. 

Recent accounts in the literature indicate that approaching the brain as a 
dynamical system may be quite advantageous. In principle, dynamical models could be 
supplemented with representational resources in order to achieve more revealing 
explanations. For instance, it is possible to treat certain parameter settings as inputs, and 
the resultant attractor as an output, each carrying some representational content. 
Furthennore, dynamical systems theory easily handles cases where the 'output' is not a 
single static state (the result of a computation), but is rather a trajectory or limit cycle. 
Another approach is to specify dynamical subsystems within the larger cognitive system 
that function as emulators of external domains, such as the task-environment (Churchland 
and Grush, 1999). This approach embraces both the representational characterization of 
the inner emulator (it represents the external domain), as well as a dynamical system's 
characterization of the brain's overall function. (Churchland and Grush, 1999) 

Goals 

The primary goal achieved by my research was to evolve (via a Genetic Algorithm) 
neural networks that parallel (or exceed) in performance trained neural networks on a 
certain NLP task. Furthennore, I studied the computational complexity associated with 
the Genetic Algorithm (GA), and also inquired into the nature of the results (the neural 
networks produced via that approach) achieved via the use of the GA, especially in 
comparison with the results achieved by training a network via backpropagation. Finally, 
the infonnation obtained from the analysis of the results was used compare two 
approaches of solving a task - a search of the optimal solution (which was achieved via 
the use of a GA) and learning (which was achieved via training with backpropagation). 

The task required that a neural network is designed such that, given a stream of 
concatenated sentences as input (one word at a time), it will, without having any explicit 
"knowledge" of the grammatical rules and categories (that were used to create the input 
stream with a given lexicon) predict the grammatical category of the next word in the 
stream (where punctuation marks were also referred to as words). A detailed discussion 
of the task follows. 

A Genetic Algorithm was used as one approach to "finding" such a neural 
network. A detailed description of the nature of a genetic algorithm and its application in 
this study is included later. 

Networks were trained via backpropagation in order to obtain a network with 
characteristics suitable for the objective of grammatical category prediction. The 
approach of training a network via backpropagation is described later. 

Main questions 
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1.	 Does learning (as in the case of training a neural net via backpropagation) lead to 
obtaining a neural network with different underlying properties from those of a 
network that was designed as a result of a search for an optimal solution (as in the 
case of the use of a Genetic Algorithm to evolve neural networks)? 

2.	 What are the underlying properties of the two different types of networks - trained 
and evolved? What can we learn by comparing those properties 

3.	 Can the NLP task addressed here be tackled by neural networks evolved via a genetic 
algorithm? 

4.	 Explore computational complexity issues associated with the Genetic Algorithm as 
well as general properties of the algoritrun. 
a) relationship between the input size (for ex. 10000 sentences) and the perfol111ance 

of the network developed via the GA approach 
b)	 find the optimal mutation rate, population size, number of nodes in the hidden 

layer (where the optimal configuration of the parameters is the one that allows the 
algorithm to evolve the network in as few generation as possible) 

c)	 relationship between the value of the optimal parameters (see b) and the size of 
the lexicon and the grammar (where the number of grammatical categories 
corresponds to the size of the grammar. It is important to note that this is 
somewhat arbitrary as some grammatical categories may be harder to learn than 
others; exploring this issue and making provisions to account for it could be of 
some interest but is not dealt with here) Basically, detel111ine how the network 
must change as the input changes in size and the task changes in complexity while 
the optimal parameters are used. 

Language as a dynamical system 

My ideas about my research have been heavily influenced by the work of Jeffrey 
Elman and especially by some of the concepts laid out in his paper "Language as a 
dynamical system". In this paper Elman is arguing that the rules which define human 
language are not symbolic but are, instead, embedded in the dynamics of a neural system. 
In such a rules are implicitly encoded since the system "permits movement from certain 
regions of state space to others while making other transitions difficult". Also, Elman 
holds for a view of representations simply as distinct regions of state space. 
Elman is proposing essentially an alternative theory of language which seems to be more 
"compatible" with what we know about the brain's computational properties (Churchland 
and Sejnowski, 1992). According to the model of language processing endorsed by 
Elman, the lexicon is viewed as consisting of regions of state space within the neural 
system and the grammar as the attractors and repellers which constrain movement in that 
space. 

This alternative view of language motivated Elman to train a SRN for the NLP 
task described earlier. The task is considered a challenging one that cannot be solved in 
any general way by simple recourse to linear order (Elman, 1995). Also, it is a task that 
has some psychological validity. Human listeners are able to predict grammaticality from 
partial sentence input; furthermore, sequences of words that violate those expectations 
result in distinctive electrical activity in the brain. 
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There is an advantage of using a SRN for this task - it deals very well with the 
problem of time. The issue to be concerned with is the fact that the network must have a 
"sense" of time - that is, of the order of the words that are processed. Consider the 
difficulty of inferring causality without the concept of time; the idea of time is essential 
for understanding context in a sentence. In order to allow for the effects of time on 
processing we could include feedback loops; thus, the goal is achieved automatically. 
Precisely defining how is the state of the network a function of the current inputs plus 
some prior state is not important; what counts is the fact that time is allowed to have an 
effect on processing in a SRN architecture. 

Elman used a classic algorithm for learning in order to train his SRN - back­
propagation. After extensive training (10000 sentences) Elman was able to obtain a 
network that provided support for his view of language as a dynamical system. An 
analysis of the network showed that the state space was partitioned in various regions 
corresponding to grammatical categories. This fact provided evidence that distributional 
facts could be used to infer the words' semantic and categorical features. 

While Elman's approach has some biological plausibility, the use of a GA (in the 
current research) does not. While Elman has succeeded in training a single neural net to 
do the task, I have essentially perfonned a "search" for such a network. This is exactly 
why the current research is so interesting. Knowing whether the current approach is 
appropriate for the task and, if so, interpreting the properties of the resulting neural 
network in light of Elman's findings is useful since it would help us, among other things, 
evaluate the utility in using GA for setting up a paradigm for language acquisition in 
humans. 

Methods 

The task 

1. Definition 

We can view the task as consisting oftwo parts: 

Part 1: Produce a network that can perfonn Part 2. 
Part 2: (To be perfonned by a neural network) A stream of concatenated sentences is 
presented to the network, one word at a time. (Here, any item in the lexicon is referred to 
as a word, including punctuation marks). Each time a word has been "fed into" the input 
nodes of the network the net should output the grammatical category of the next word in 
the stream. Different vectors of activation of the output nodes correspond to a prediction 
of a grammatical category. 

There are two approaches for Part 1: 
1. Evolve a network via a GA 
In this scenario, a GA is used to perfonn a search for a neural network weight matrix that 
is optimal for Part 2. 
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2. Train a network via backpropagation 
In this scenario, the weight matrix of a single neural network undergoes constant 
adjustment as a function of its predictions (correct vs. incorrect) while the stream of 
words is being fed. In this fashion, a network is obtained that "learns" to do Part 2. 

Obviously, these two approaches are quite disparate. This study tries to identify the 
differences between the two approaches by examining the results yielded by applying 
them to solve the problem (producing a neural network that can perform Part 2 as 
outlined above). 

2. Example 

Here is an illustration of what the behavior of the network should be like: 

Stream so far: the dog chases the cat 

At the point when the second word "the" is the input to the network the prediction task 
will be considered successful if a noun is predicted for the next word (assuming that noun 
is, indeed, the grammatical category of the word "cat"). 

Grammar and Lexicon 

Grammar: 

Categories: 
End Marks the end of a sentence 
Who who 
V-pl(i) verb - plural, intransitive 
V-pl(t) verb - plural, transitive 
V-pl(t/i) verb - plural, optionally transitive 
V-sg(i) verb - singular, intransitive 
V-sg(t) verb - singular, transitive 
V-sg(t1i) verb - singular, optionally transitive 
N-prop proper noun 
N-pl plural noun 
N-sg singular noun 

Lexicon: 

Verbs: 
1. intransitive: think, exist, sleep 
2. transitive(sometimes): break, smash 
3. transitive(always): like, chase, eat 

Nouns: 
1. Animals (animate objects): mouse, cat, dog, lion, dragon 
2. Humans (animate objects): woman, girl, man, boy 
3. Proper nouns: John, Steve, Marry, Katie 
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4. Food (inanimate objects): sandwich, cookie, bread 
5. Other inanimate objects: car, book, rock 

The neural network 

A. Definition 

In this study, a simple recurrent network architecture was used (see figure 1 for a 
schematic presentation of the network architecture). In a recurrent network, output from 
later layers feeds back to provide new input for earlier layers. Such networks can produce 
sequences of output following a single initial input or predict the next input in a 
sequence. They can also form attractor networks in which the output in response to an 
input changes with time (McLeod et.al, 1998). 

A simple recurrent network (SRN) contains connections from the hidden units to a set 
of context units. These units take a "snapshot" of the hidden layer for one time step and 
then feed the information back to the hidden units on the next time step. They essentially 
store a memory of the state of the network on the previous time step. Since this memory 
provides the hidden layer with a record of its past activity, tasks that extend over time can 
be performed. Furthermore, it should be noted that hidden units continue to recycle 
information over multiple time steps. The input to the hidden units at time t + n contains 
information from time t + (n-1), t + (n-2), etc. (Consecutively, identical input signals can 
be treated differently depending on the current status of the context. This feature of the 
SRN should allow it to discover sequential dependencies in the training data. 
Anticipation plays a key role in early learning, so learning to predict is an important 
aspect of cognition.) (McLeod et.al, 1998) 

How will learning occur? The actual pattern of activity at the output nodes will be 
compared to the desired output (given the input pattern that preceded the output). The 
discrepancy is used to drive a back-propagation learning algorithm to adapt the weights 
of the network. The desired output will be the grammatical category of the next word in a 
sequence (the next input) since the network is being trained to predict the next input. 
Connections from the hidden units to the context units will never be changed since their 
role is to simply make copies of the hidden unit activities. 

B. Learning via back-propagation 

An informal account 

Essentially, each time the network is "fed" a new input errors in the output determine 
measures of hidden layer output errors, which are used as a basis for adjustment of 
connection weights between the hidden layer and the output layer as well as between the 
input layer and the hidden layer. Adjusting the two sets of weights and recalculating the 
outputs continues until the errors fall below a tolerance level. (Rao and Rao, 1993) 
Learning rate parameters scale the adjustments to weights (because, for example, major 
adjustments would be undesirable when the network has already been trained very well 
on the task). Essentially, the algorithm involves making corrections in the connections 
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from the last-but-one layer to the last layer first, then using the calculations involved in 
these corrections as the basis for calculating the corrections for the next layer back and so 
on (see Figure 4), until the input layer is reached (McLeod et.al, 1998). After a sufficient 
number of iterations of this process the weight matrix of the network is adjusted so that it 
can produce the correct pattern of output activation given an input vector (some error still 
exists but whenever a certain level of correct performance is reached the training stops). 

In contrast, consider the general mechanism of the genetic algorithm. The genetic 
algorithm evolves both the architecture of the network and its weight matrix. The 
network is described by a data structure, which is here referred to as a gene. Crossover 
between genes and mutations is used by the genetic algorithm. From each generation a 
small percentage of successful networks is chosen to evolve. Successful networks are 
such that predict the grammatical category of the next word (from an input) more often 
than others. 

All words from the input are represented as orthogonal vectors that have one 1 and N­
lOs, where the vocabulary consists ofN words. Each word is randomly assigned a vector 
in order to avoid an implicit encoding of the grammatical categories. This representation 
of the input has been chosen based on observations about its advantages for the current 
task done by Elman (1995). 

After training, the state spaces defined in the network were analyzed to determine 
how the grammar reflected in the structure of the network. 

C. Limitations of the model 

Despite considerable progress, exactly how brains represent and compute remains an 
unsolved problem. This is mainly because many questions about how neurons code and 
decode information are still unresolved. Thus, the current model may not be very 
realistic. Nevertheless, this is not such a big issue. After all, excessive realism may mean 
that the model is too complicated to analyze or understand or run on the available 
computers. (Churchland and Sejnowski, 1992) 

Computational complexity 

The following dimensions of complexity are discussed by Parberry: 

a. Space complexity, that is, network size - polynomial vs. unrestricted 
b. Time complexity - network depth - constant vs. polylogarithmic vs. unrestricted 
c. Connectivity (computable = uniform vs. noncomputable = nonuinform) 
d. Weight 

If I evaluate the computational complexity by adopting Parberry's approach, then what 
counts will not be absolute magnitude but the rate of growth of resources required to 
process ever larger inputs. 

Specifically: 
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For a), does the size of the network (number of noninput nodes) grow In .a 
polynomial/exponential fashion as the number of inputs increases? 

For b), How does the depth of the network change - can it stay constant, does it have to 
increase as a power of the log of the input size (polylogarithmic) or is the depth 
unrestricted (grows exponentially). 

For c), The question is how much infonnation is required to specify the connectivity of 
the family of networks that does the computation? What I would ideally want to find out 
is the number of bits in the shortest program that given input n generates the connections 
in the nth network (the network that is supposed to handle input of size n) in the family. 
That is extremely hard, though. Instead, I'll see whether such an algorithm at all exists 
and if it does, than the network family is unifonn; else it is nonunifonn or incomputable. 
Note on the side - nonunifonn families have much greater power than unifonn ones ­
after all, they are infinitely more complex. (Smolensky et. aI., 1996) 

For d), the weight is defined as the maximum ofthe magnitude ofthe weights. 

Fonnal definition of a recurrent network - The graph G has cycles; this means that there 
exists at least one path «iI, i2>, <i2, i3>, ... ,<in, il». 

There are 3 types of learning that could be used to train networks (Bischof, 1995) : 
1. Supervised - we provide the network with a target output for each input sample of the 
training set. 
2. Reinforcement - We do not tell the network what the right output is. We only provide 
it with a scalar reinforcement signal. In the extreme case, the reinforcement signal is only 
1 bit of infonnation (output is right or wrong) 
3. Unsupervised - no infonnation available to the network about the desired output. 

In the current project, supervised learning will occur with the trained network. 

The evolved networks will vary in topology. Not only will the weights be changed but the 
topology as well. Basically, we'll start out with a generic topology that is changed during 
learning. After all, genetic algorithms are used to find "optimal" network topologies. 
(Haupt and Haupt, 1998). 

I am interested in the learning time. Also, I am interested in scaling (see discussion 
above). In this case, I also have to consider how the "working memory" implementation 
part of the network scales, so that I can see whether this is comparable to real-world 
models of working memory. I also will look into generalization - how good is the 
perfonnance of the neural network on examples on which it has not been trained. All I 
can hope to get is empirical evidence - there have been no fonnal proofs in this realm. 
Nevertheless, it would be nice if I could outline the factors in my network that are 
influencing generalization. 
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The Genetic Algorithm 

A. What is it (generally) and its history 

Genetic algorithms (GAs) were invented by John Holland more than 20 years ago and 
have been a growing area of research ever since. GAs are a part of evolutionary 
computing. They are a natural method to model biological models in order to optimize 
highly complex cost functions. A GA allows a population composed of many individuals 
(neural networks in this case) to evolve under specified selection rules to a state that 
maximizes the fitness (i.e., maximizes the cost function) (Haup and Haupt, 1998). In 
essence, a GA performs a search of the state space (the space of all feasible solutions) 
(Levy, 1993). In this project, each neural network architecture is a point in state space. 
Each feasible solution has a certain fitness given the problem that it must address. The 
GA searches through the state space, looking for a point that has some maximum in the 
state space. 

B. Why use it 

A GA was used in order to evolve a neural network in this study because of the great 
promise that this approach shows. The fact that GAs are more successful and efficient at 
addressing optimization problems than traditional methods (exhaustive search, the 
Nedler-Mead Downhill Simplex procedure, Line Minimization, etc.)(Haupt and Haupt, 
1998) makes them quite attractive. Furthermore, they can be easily tailored to the task of 
designing an optimal neural network for some problem since a neural network design is 
nothing more but a list of parameters: weights, connectivity, number of nodes and 
number of inputs. Genetic algorithms have already been used to construct neural 
networks and optimize their complexity (Haupt and Haupt, 1998). Reducing the number 
of nodes and layers and finding the optimal connections between nodes are extremely 
difficult optimization problems (Haupt and Haupt, 1998). In addition, once a neural 
network is built, it must be trained. Both of these imposing computational tasks can be 
tackled with the use of GAs to evolve and train networks. GAs have been used to 
construct and train networks that excel in performing tasks as valied as distinguishing 
between sonar returns and predicting the optimum transistor width in a CMOS 
(complementary metal-oxide semiconductor) switch (Haupt and Haupt, 1998). Most 
interestingly, GAs have proved to be supelior to traditional backpropagation (Haupt and 
Haupt, 1998). Since backpropagation is the backbone of practically all research in NLP 
using neural networks the current study is done in an attempt to illustrate a technique that 
could improve the results of such research. 

C. How it works (refer to figure 3 for an illustration of mutation and crossover) 

In this project, a continuous parameter genetic algOlithm has been used to evolve a neural 
network. The flow of the GA goes as follows: 
1. Define the parameters, fitness (cost) function 
2. Represent the parameters 
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3. Create the population 
4. Evaluate fitness 
5. Select survivors and mating couples 
6. Reproduce 
7. Mutate 
8. Test Convergence: If the test is failed, GOTO step 4 
9. Stop 

I. Each neural network is viewed as defined by the following parameters: weights, 
connectivity, number of nodes and number of inputs. The number of input nodes (1) is 
fixed as well as the total number of nodes (N) and thus the architecture (as defined by the 
rest of the parameters) of the network of fixed size N is evolved. 

2. A network with N=5, 1=2 is represented as: 

A[I]A[2]A[3]A[4]A[5] 

where A[i] defines the connections (and their weight) of node i. This is also referred to as 
a chromosome since it contains all the necessary information to build a neural network. A 
representation of A[ 1] such as: 

0.0 0.0 0.3 -0.4 0.0 

means that node I is not connected to itself, node 2 or node 5, has an excitatory 
connection of weight 0.3 to node 3, and an inhibitory connection of weigh 0.4 to node 4. 
Connections are possible between all nodes while weights range from -1.0 to 1.0. This is 
so since the threshold of activation of nodes is 1.0. 

3. The population is created as for i=l to i=N A[i] is randomly assigned values from the 
uniform distribution [-1.0; 1.0]. 

4. Each chromosome is used to generate a neural network. The fitness of each network is 
evaluated as it processes a stream of 1000 words. High fitness is correlated with a higher 
proportion of correct predictions about the next word in the stream. 

5. A certain proportion of the chromosomes (those that have generated networks with the 
lowest fitness) are eliminated from the population. Pairs are selected from the survivors 
to mate (and thus produce offspring to take the place of the eliminated chromosomes) via 
weighted random pairing. The chromosome that generated the fittest network has the 
greatest chance to mate while the chromosome that generated the least fit network has the 
smallest chance of mating. 

6. In the mating phase the selected pairs of chromosomes replicate and then their copies 
(future offspring) undergo crossover at a random locus (the crossover point) on the 
chromosome. For chromosomes representing a network with 10 nodes, the following is 
an example of crossover between chromosome Band C: 
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Before: 

Chromosome B: B[l] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9J B[IO] 
Chromosome C: C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] 

Randomly chosen locus from the range [2;9]: 3 

After: 

Chromosome B: B[l] B[2] B[3] C[4] C[5] C[6] C[7] C[8] C[9] C[IO] 
Chromosome C: C[l] C[2] C[3] B[4] B[5] B[6] B[7] B[8] B[9] B[10] 

Essentially, during crossover the entire code of the two chromosomes after the crossover 
point is swapped. 

7. Crossover and mutation are the two ways a GA explores the state space of feasible 
solutions (Haupt and Haupt, 1998). Mutations are necessary since they introduce traits (in 
this case, weights of connections) not in the original population. If the GA is exploring a 
subset of the state space a mutation can be viewed as a way to stray away from that 
subset. Thus, mutations prevent a GA from getting stuck in a local maximum (Levy, 
1993). The GA used here mutates 1% of the population except the chromosome that 
generated the fittest network. The best chromosome is left intact so that the best solution 
cannot be lost. This approach is called elitism. The mutation rate is not arbitrary and is 
similar to optimal rates reported by researchers (Haupt and Haupt, 1998). 
For the mutation, 1% of the values in the blocks of code representing the connections and 
weights of a node, are randomly selected. Then, their values are replaced by a randomly 
chosen numbers from the uniform distribution [-1.0; 1.0]. 

8. The test of convergence will succeed if an acceptable solution has been found in a 
chromosome or if all chromosomes are the same. Either condition is sufficient to satisfy 
the test and to halt the algorithm. 

D. Why it works 

This is still in progress due to some interesting findings. Yet, I doubt the answer to this 
question will be definitive. 

What was done with the genetic algorithm? 

1. Criteria for selection and implications 

The criteria for selection in my GA is the ability of each network to predict the 
grammatical category of the next word in a stream of concatenated sentences. This is the 
same criteria as Elman used when he trained a network to do the same task via 
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backpropagation (and the same as I am using in replicating his experiment when training 
a neural net). I must note that after a certain number of generations the net won't be able 
to evolve any more (that is, it is impossible to expect to obtain a network that can do 
correct prediction anywhere close to 100% of the time, as that would mean that the 
network is so big that memorization is possible and that definitely is not the case here) as 
the prediction task is nondeterministic - it is a probabilistic task. That is, with each word 
there are probabilities associated with what the category of the next word will be (where 
the context of the word influences that probability as well). Essentially, possibilities 
could be derived empirically and can be used to solve the prediction task most 
successfully (especially in the long run). What happens in a SRN that is trained to do a 
prediction task is that the network, in essence, encodes information relevant to these 
probabilities. Proof for that is the fact that the activation levels of the nodes 
corresponding to predicting different word categories is highly correlated (about 92%) 
with empirically derived probabilities about the grammatical category of the next word 
(in the stream of sentences). Furthermore, analysis of hidden layer vectors for different 
words show that grammatical categories are formed in the network. When referring to 
grammatical categories in a network I mean that there is an implicit hierarchical 
organization of the regions of state space associated with different words. (More about 
this is said in the section about state space analysis. At this point it is only essential to 
point out that conceptual similarity is realized through position in state space.) 

One of the questions that I am trying to answer in my study is whether the networks 
evolved via the GA exhibit the same type of state space topology as a trained SRN does 
or not. Specifically, the two main points are: 1) is the activation of the output vectors of 
the evolved network also highly correlated to empirically derived probabilities; 2) does 
the GA network develop categories of words. This is important since, as Elman has 
argued, a trained SRN infers that structures that correspond to categories exist and it does 
so since this provides the best basis for accounting for the distributional properties of the 
words in the training set. Elman claims that the fact that structure may be inferred so 
easily from the implicit information in the data suggests that a similar paradigm for 
constructing a framework for conceptual representation may be instrumental in the way 
grammatical categories of children are formed. Naturally, then, it is of great interest to 
see whether the networks evolved via the genetic algorithm were able to utilize yet 
another technique for accounting for the distributional properties of the words in the 
training set. The answer to this question could serve to delineate learning (as in training a 
net) from a search for an optimal solution (as in evolving a net) as the two approaches 
might result in the formation of networks with very different underlying properties. 

2. Setting the parameters for the GA 

There are a number of parameters that can influence the way the GA will evolve the 
networks for the prediction task: grammar size, lexicon size, mutation rate, population 
size, hidden layer size, size of training set, convergence criteria. A manipulation across 
all of these parameters, across all feasible combinations, is apt to result in determining a 
number of characteristics of the GA. These include the parameter settings that allow for 
the GA to minimize the number of generations required to meet a certain convergence 
criterion, the optimal and the minimal size of the hidden layer (where we are interested in 
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minimizing the number of the generations required to meet a convergence criterion), etc. 
A full list of the features under investigation is provided in the Results section. 

In order to determine the range of values for the parameters to be tested, I ran a "pilot 
test" with a very simple grammar and lexicon. The GA was ran with a huge set of 
different parameter settings and, based on the results, I decided to explore combinations 
of the following parameter settings: 

Grammars: 4
 

(Grammars and lexicons differ in size, where the number of grammatical categories is
 
here referred to as the "size" of the grammar).
 
Mutation %: 3,5
 
Population size: 16,32
 
Hidden layer size: input/2, input, input*2
 
Convergence criteria: n% over 1000 evolutions for 10,000 generations each
 
Training set: short, medium, long
 

rate that is equal to chance is different depending on the distributional properties of each
 
training set but is never over 20%; furthermore, there are upper limits of about 56% ­


Lexicons for grammar 1: 3
 
Lexicons for grammar 2: 3
 
Lexicons for grammar 3: 3
 
Lexicons for grammar 4: 2
 

i is set (tentatively) at 50% (note that this is actually much better than chance; a success
 

once again, because this is a nondeterministic task).
 

Below is an abbreviated table with the results from the pilot test (done over 5000
 
evolutions of 1000 generations for each parameter combination):
 

Generations PopUlation Mutation Hidden 
271
 4
4 
148 8
 

5
65 16
 

5
5 4

4 
17 32
 4
5 

360 4 3 4
 
224 8 3 4
 
119 16 3
 4 
27 32 3 4
 

628 4
 

372 16
 4
 
141 32
 4
 

1
1
1 
1 
5 

4 
498
 8
 4
 

357
 4
 8
 
204 8 5 8
 
88 16 5 8
 

519
 32
 8
 
426 4 3 8
 
296 8 3 8
 
149 16 3 8
 
25 32 3 8
 

678
 8
4 
567 8
 8
 

1
1 
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489 16 8 
261 32 8 

Below the infonnation about the different grammars and lexicons is. See the Appendix
 
for complete infonnation:
 

Set 1:
 

4 Categories; Categories: End, Who, V-sg(t), N-sg
 
A: Lexicon is 4; B: Lexicon is 8; C: Lexicon is 16 

Set 2:
 

5 Categories; Categories: End, Who, V-sg(i), V-sg(t), N-sg
 
A: Lexicon is 5; B: Lexicon is 10; C: Lexicon is 20 

Set 3:
 

8 Categories; Categories: End, Who, V-pl(i), V-pl(t), V-sg(i), V-sg(t), N-pl, N-sg
 
A: Lexicon is 8; B: Lexicon is 16; C: Lexicon is 32 

Set 4: 

11 Categories; End, Who, V-pl(i), V-pl(t), V-pl(t1i), V-sg(i), V-sg(t), V-sg(t/i), N-prop, 
N-pl, N-sg 
A: Lexicon is 11; B: Lexicon is 22 

3. Computational complexity results for the GA 
4. State space analysis results for the GA 
5. State space analysis results for the trained network 
6. Comparison and discussion 

Results 

As a result from running the GA in order to evolve neural networks for the task in this 
experiment, I have been able to obtain neural networks that excel at the task after less 
than a thousand generations. In other words, the GA can produce a neural network with a 
level of accuracy quite above chance level in a matter of a few seconds. Even though 
running the GA is not a very computationally intensive task, there are some facts that 
must be taken into consideration. The results indicate that as the size of the lexicon 
increases, a linear increase in the size of the network must accompany these changes or 
the perfonnance of the GA will deteriorate significantly. Furthennore, changes in 
grammatical complexity lead to minimal changes in the time it takes for the GA to evolve 
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neural networks to meet a certain criteria (see previous section). Due to time constraints, 
the perfonnance of the GA was not tested with lexicons greater than 22 words and it is 
uncertain whether the same patterns will hold as the size of the lexicon continues to 
increase. If we assume that the optimal perfonnance parameters will remain the same 
when lexicon is very large (for ex. 10000 words) than we should expect a network with a 
lexicon of about 10000 words to have a bit more than 30000 nodes. Also, due to time 
constraints, data and findings from Elman's research (Elman, 1995) have been used for 
the "trained network scenario". 

A program was written that takes the stream of words as well as infonnation about 
the grammatical category of each word and calculates, for each word, the probabilities 
describing the grammatical category of the next word. For example, if the word "boy" 
was present 3 times in the stream and once it was followed by a verb and twice by "who", 
then the program would detennine that the probability that the word "boy" is followed by 
a verb is 67%, by "who" - 33%, and by words of other grammatical categories - 0%. 
This infOlmation was taken as input by another program that ran the best neural network 
evolved by the GA on the same stream of words. As the neural network made predictions 
about the grammatical category of the next word in the stream the output activation 
vector was compared to the probabilities obtained previously. This was possible due to 
the fonnat of the output layer. The output layer consisted of the same number of nodes as 
there are grammatical categories. For example, if there were only nouns and verbs, the 
output vector would have just 2 nodes. One node corresponds to each grammatical 
category. See figure 2 for an illustration of how the output layer's activity level was 
interpreted by the program. 

The results showed that the activation levels of the nodes in the output layer were 
correlated to the probability data. The activation levels of all the nodes were ranked (by 
their value, fonn greatest to smallest), and so were the probabilities for each grammatical 
category (for ex., if we had 60% for a noun and 40% for a verb, that would be 1 for noun 
and 2 for verb). The rank levels of the output nodes corresponded to the relative ordering 
of the probabilities about 99% of the time. 

These findings suggest a striking similarity between the results obtained with the GA 
and the trained network. Both a search for an optimal solution and a learning paradigm 
have produced networks that seem to capture the implicit probabilities of the stream of 
words and make prediction on, essentially, a probabilistic basis. 

Discussion 

The cUlTent study has demonstrated an alternative approach for solving the NLP task of 
predicting the grammatical category of the next word in a stream of sentences. 
Furthennore, there are great similarities between the neural networks obtained via the GA 
and the neural network trained by Elman. Most importantly, the activation vectors of the 
output layer in the networks developed in the current study were highly correlated to the 
empirically derived probability distribution for the stream of words. A search for the 
optimal neural network and a learning algorithm have yielded remarkably similar results. 
This means there may be a variety of ways in which to tackle the task at hand. If the brain 
"learns" a language (via training a set of neural networks, etc.) there may also be a way to 
achieve analogous results via GAs. Of course, I do not claim that the task described here 
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is something the brain necessarily performs. The important conclusion is that GA may 
provide a fast and powerful tool for modeling NLP in the brain (without the need to train 
neural networks). Of course, a GA surely does not work the way the human brain works. 
On the other hand, back-propagation is not a plausible model either. 

This discussion is intentionally left unfinished. I would be happy if you could share your 
thoughts on possible application of GAs for NLP related tasks, etc. 
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Figure 2. 
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Figure 3. 
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Figure 4.
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Testplan 

I. Summary of the problem, tools and design. 

Three different programs were tested during this study. The programs included a program 
that evolves a network that performs the task best for a given grammar and lexicon, a 
program that allows the evolved network to be tested (while comparing output layer 
activation vector with empirically derived probabilities) and a program that calculates the 
empirical probabilities and makes them available to use for the other two programs. 

For the program that evolves neural networks to perform the task the number of 
generations to achieve the desired fitness level was output in one file, while the matrix 
representation of the best network was stored in another file. 

The program that allows the user to test the evolved network used the file with the matrix 
representation and output its own results in another file. 

Finally, the program that calculates empirically derived probabilities integrated its results 
in the trial files used by the other two programs. 

II. Test Data 

The test data was a stream of words that included information about the grammatical 
category of each word. The test data was first written in English then translated by a 
helper program to a form that could be read by the programs. The presentation of 
information in the "translated" test data files was presented as vectors so that it could be ' 
directly fed into the network. 

III. Anticipated output 

It was hard to make predictions about the output of the programs that evolve and test the 
networks. All programs were extensively tested, though, to verify that they are 
functioning correctly. It was hoped that the program that tests networks would provide 
valuable information about any possible correlation between the output vector and 
empirically derived probabilities. 

See actual code attached with sample runs. 



Program used to evolve neural networks 



#include <stdlib.h> 
II#include <windows.h> 
II#include <GL/gl.h> 
II#include <GL/glu.h> 
II#include <GL/glut.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <time.h> 
#include <math.h> 
II#include "glfont.h" 

II The following constants are used for gathering statistical information about 
II the program 

const int RUNS = 1; 
int GENERATIONS = 0; 
float INITIAL = 0.0; 

II OPENGL component» 
//-****************************************************­

II functions start here 
void display(void) ; 
void update(void); 
void animate (void) ; 
void camera (void) ; 
void framework (void) ; 
void mouse(int button, int state, int X, int Y); 
void indicator(); 
int milliseconds(); 
II some global stuff goes here 
int n=O; II this is for the number of current slide shown 
const float x 380; 
const float y = 280; 
float px,py; 
int counter = 0; 
const float PI = 3.14159; 
int pair[2]; 
II « OPENGL component 
//-****************************************************­

II The Genetic Algorithm functions start here: 

1* 
1. Define the parameters, fitness (cost) function 
2. Represent the parameters 
3. Create the population 
4. Evaluate fitness 
5. Select survivors and mating couples 
6. Reproduce 
7. Mutate 
8. Test Convergence If the test is failed, GOTO step 4 
9. Stop 
*1 

II FUNCTIONS 



void create(int); II creates the initial population 
AAA03FB2002 AAA 

void evaluate(int) ;11 evaluates the fitness of all nets 
AAA03FB2002 AAA 

void selection(int); II selects pairs to mate; selects who'll live 
AAA05FB2002 AAA 

void reproduction(int) ;11 reproduction is handled here + crossover 
void mutation(int); II some mutations are introduced 
int convergence(); II test for convergence 
void create_log(); II output the top performing network neuralizer 

II format 

II VARIABLES 
const int Nipop = 16; II Size of the initial population 
const int Npop = Nipop/2; II Size of the population in a generation 
const int input = 6; II Number of input nodes 
const int hidden = 1; II Number of hidden layers 
const int hidden_size 2*input; II Size of each hidden layer 
const int mode = 0; II Networking mode: 0 - free association; 

II 1 - feed­
forward 
const int output = 4; II Number of output nodes 
const int S = input + 2*hidden*hidden size + output; II Size of net 

struct DNAt{ 
II The network size is used to place data delimiters 
float locus[S*S]; II The number of this is S*S, where S is net size 

} DNA [Nipop] ; 
DNAt newDNA[Nipop] ; 

float fit_log [Nipop] ; II Keeps record of the fitness of each DNA 
int rank_log [Nipop] [2] ; II Keeps record of the rank of each DNA in terms of 
fitness 
int live_log [Nipop] ; II Keeps record of all DNAs to live to the next gen 
int pair_log [Nipop] [2] ; II Keeps record of the pairs that will live to mate in 

II the the next gen. 
float fitness; II Fitness of the population 
int total_trials 18; II Number of trials in the experiment 
int calcs[Nipop]; II A blank array used as memory by functions 
int mut = 5; II The probability of mutation is 1% 

II HELPER FUNCTIONS
 
float random();
 
void test_create();
 
void test_evaluate(int);
 

void load_I (float activation[], int);
 
void I_H(float activation[], int);
 
void H_C(float activation[], int);
 
void H_O(float activation[], int);
 
float goal [output] ; Ilused by above
 
float probs [output] ; Ilused also by above
 
void C_H(float activation[], int);
 
void zap_I (float activation[]);
 
void zap_C(float activation[]);
 



void zap_H(float activation[]); 
void zap_O(float activation[]); 

///////////////////////////////////////// 

void keyboard(unsigned char key, int x, int y) 
( 

swi tch (key) ( 
case 27: // ascii value 27 ESC key 

exi t (0) ; 
break; 

} 

ofstream out("network.txt"); 
ifstream in("trials.txt"); 
int main(int argc, char** argv) 
( 

float infit;
 
//open the output file
 
if (!out) (cout«"Nope"«endl; return I;)
 
srand(milliseconds()%10000);
 

for(int keep_count = 0; keep_count<RUNS; keep_count++)
 
( 

create (Nipop) ;
 
//test_create() ;
 
evaluate (Nipop) ;
 
/ / out«" dkfldkj fldj fkfdl" «endl;
 
test_evaluate (Nipop) ;
 
selection(Nipop); // change to Npop
 
infit = fitness;
 
reproduction (Nipop) ;
 
for(int ii=O; ii<1000; ii++)
 
( 

evaluate (Nipop) ;
 
//test_evaluate(Nipop);
 
//selection(Nipop) ;
 
//out«"-----------------------------"«endl;
 
selection (Nipop) ;
 
if(convergence())
 
{
 

cout«"Stopped at generation "«ii«endl;
 
GENERATIONS+=ii;
 
INITIAL += fitness;
 
break;
 

} 

reproduction(Nipop); 
} 

cout«"Initial fitness: "«infit«endl; 
cout«"Final fitness: "«fitness«endl; 

} 

GENERATIONS/=RUNS; 



INITIAL = INITIAL I float(RUNS);
 
cout«"Average generations: "«GENERATIONS«" from "«INITIAL«endl;
 
test_create() ;
 
test_evaluate (Nipop) ;
 

IlglutInit(&argc, argv);
 
IlglutInitDisplayMode (GLUT_DOUBLE GLUT RGB I GLUT_DEPTH);
 
IlglutInitWindowSize (2*x, 2*y);
 
IlglutInitWindowPosition (0,0);
 
IlglutCreateWindow ("Spheres");
 
I I ini t ();
 
IlglClearColor(O.O, 0.0, 0.0, 1.0);
 
IlglutDisplayFunc(display);
 
IlglutMouseFunc(mouse) ;
 
IlglutKeyboardFunc(keyboard) ;
 
IlglutIdleFunc(animate);
 
IlglutMainLoop() ;
 
out.close() ;
 
in.close() ;
 
return 0;
 

void update (void) 
{ 

II update variables here and output to file 

void animate (void) { 
update() ; 

void indicator() 

CQut«Il. "; 

II FUNCTION FOR MILLISECONDS 

int milliseconds() 

return time (NULL) ; 
} 

liTo use timeSetEvent you must include MMSYSTEM.H and link in WINMM.LIB. 
IIThis is done in project; settings 

II END OF FUNCTION FOR MILLISECONDS 



II 

11---------------------------------------------------- ------ ­

EVOLUTION ENGINE 

11---------------------------------------------------- ------ ­

void create(int N) 
{ 

cout«"create"«endl; 
II All this function should need to know is the number of nodes 
II and the mode: free association (0) or feedforward(l) 

int i=O;
 
Ilif (mode); II if feed forward is used:
 

II For each DNA
 
for(i=O; i<N; i++)
 
{
 

II First determine the connectivity of the input layer:
 
for(int j=O; j<input;j++)
 
{
 

Ilcout«"Doing inner"«endl;
 
for(int k=O; k<input; k++) II NONE to INPUT
 
{DNA[i] .1ocus[j*S + k] = O;}
 

for(k=O; k«hidden*hidden_size) ;k++) II SOME to HIDDEN 
{DNA[i] .1ocus[j*S + input + k] = random();} 

for(k=O; k«hidden*hidden_size) ;k++) II NONE to CONTEXT 
{DNA[i].locus[j*S + input + hidden*hidden_size + k] = O;} 

for(k=O; k<output; k++) II NONE to OUTPUT 
{DNA[i] .1ocus[j*S + S - output] = O;} 

} 

II Now, do the stuff for the hidden layer:
 
for(int n=O; n<hidden_size; n++)
 
{
 

Ilcout«"Doing hidden"«endl;
 
int sofar = input*S + n*S;
 
II NONE to INPUT
 
for(int k = 0; k<input; k++)
 
{DNA[i] .locus[sofar + k] = a;}
 
II NONE TO HIDDEN
 
for(k = 0; k<hidden_size; k++)
 
{DNA[i] .locus[sofar + input + k] = O;}
 
II 1 to respective context, 0 to rest
 
for(k = 0; k<hidden_size; k++)
 
{
 

DNA[i] .locus[sofar + input + hidden_size + kj = 0;
 
if (k==n)
 
{DNA[i] .locus[sofar + input + hidden_size + kj = l;}
 

}
 

II A random to all the output guys:
 
for(k = 0; k<output; k++)
 
{DNA[ij .locus[sofar + input + 2*hidden_size + kj random() ;}
 



} 

II Now, do the stuff for the context layer: 
for(n=O; n<hidden_size; n++) 
{ 

Ilcout«"Doing context"«endl; 
int sofar = input*S + hidden_size*S + n*S; 
II NONE to INPUT 
for(int k = 0; k<input; k++) 
{DNA[i] .locus[sofar + k] = O;} 
II RANDOM TO HIDDEN 
for(k = 0; k<hidden_size; k++) 
{DNA[i] .locus[sofar + input + k] random();} 
II NONE TO CONTEXT 
for(k = 0; k<hidden_size; k++) 
{DNA[i] . locus [sofar + input + hidden_size + k] O;} 
II NONE to OUTPUT 
for(k = 0; k<output; k++) 
{DNA[i] . locus [sofar + input + 2*hidden size + k] O;} 

} 

II Now, do the stuff for the output layer: 
for(n=O; n<output; n++) 
{ 

Ilcout«"Doing output"«endl; 
int sofar = input*S + 2~hidden_size*S + n*S; 
II NONE to INPUT 
for(int k = 0; k<input; k++) 
{DNA[i] .locus[sofar + k] = a;} 

II NONE TO HIDDEN 
for(k = 0; k<hidden_size; k++) 
{DNA[i] .locus[sofar + input + k] O;} 
II NONE TO CONTEXT 
for(k = 0; k<hidden_size; k++) 
{DNA[i] .locus[sofar + input + hidden size + k] O;} 
II NONE to OUTPUT 
for(k = 0; k<output; k++) 
{DNA[i] .locus[sofar + input + 2*hidden size + k] O;} 

}
 

void evaluate(int N)
 
{ 

II There will be X nets in the population. 
II For all nets build them and record their fitness in 
II their internal representations. Each net is just DNA. 
II Send them to fitness to do the work 
II Record the results in fit_log[N] 

float activation[S]; 
for(int y = input; y<S; y++) 
{activation[y] = O;} 

Ilcout«"TOTAL TRIALS: "«total_trials«endl;
 
Ilout«"evaluate"«endl;
 



for (int i=O; i<N; i++) 

II Build the network: All that means is that we need to keep 
II track of the activation levels of all units, stored in 

activation[S] 

II Waves: 

1/1. ->1, 1->H 

112. ->1, H->C, H->O, 1->H 

113. ->1, C->H, H->O, H->C, 1->H
 

Ilrepeat 3 intill last input
 

liN. C->H, H->O
 

II You have to remember to zap the previous activation levels 

in»total_trials; 

int trials 0; 

load_1 (activation, i); 
1_H(activation, i)i 
zap_1 (activation) i trials++; 

load_1 (activation, i); 
H_C(activation, i); 
H_O(activation, i)i 
zap_O(activation) ; 
zap_H(activation) ; 
1_H(activation, i); 
zap_1(activation)i trials++; 

while(trials<total_trials) II while there are trials left 
{ 

load_1 (activation, i); 
C_H(activation, i); 
zap_C(activation); 
H_O(activation, i); 
zap_O(activation); 
H_C(activation, i); 
zap_H(activation); 
1_H(activation, i); 



II 

zap_I (activation) ;
 
trials++;
 

C_H(activation, i); H_O(activation, i); zap_O(activation); 

for(y = input; y<S; y++)
 
{activation[y] = O;}
 
i.n. close ( ) ;
 
in.open("trials.txt") ;
 

}
 

for(i = 0; i< N; i++)
 
{llout«"Fitness of "«i«" "« fit_log [i] « " . "«endl;
 
} 

II Now return the stream so that it can be used again: 

}
 

void selection(int N)
 

II Select half the DNAs from Npop based on their fitness which can be seen 
II in the fit_log. So let us make the rank_log first: 

out«"selection"«endl;
 
int i, j, tempO, tempI;
 

for(i=O; i<N; i++)
 
{
 

rank_Iog[i] [0] i;
 
rank_Iog[i] [1] 

}
 

forti = 0; i< N; i++)
 
{//cout«"Ranklog of init "«i«" "«rank_log [i] [1]«" . "«endl;
 
}
 

for (i = 0; i< N-l; i++) 

int max = i;
 
for (j=i+l; j<N; j++)
 
if (rank_Iog[j] [l]>=rank_Iog[max] [1])
 
{max = j;}
 
tempO = rank_Iog[i] [0];
 
tempI = rank_log [i] [1] ;
 
rank_Iog[i] [0] = rank_log [max] [0];
 
rank_Iog[i] [1] = rank_log [max] [1];
 
rank_log [max] [0] tempO;
 
rank_log [max] [1] = tempI;
 

Ilcout«"Ranking: "«endl; 
1* 
for (i=O; i<N/2; i++) 
{ 

out«i«". "«rank_log [i] [0] «endl; 



} 

*1 

II Now it is time to fill up the live_log 

for(i=O; i<N/2; i++)
 
{live_log[i] = rank_log[i] [O];}
 

II Also record the fitness of the population:
 
fitness = 0;
 
for(i=O; i<N/2;i++)
 
{fitness+=float (rank_log [i] [1] I (float (N) 12.0) ) ;}
 
fitness/=float(total_trials) ;
 

I I out«" Fi tness: "«f i tness«endl; 

II So right now we have the DNAs that will live. Pair them at random 
II Keep track of what is paired by placing marks in the array calcs[N] 

for(i=O; i<N/2; i++) 
{calcs[i] = O;} 

int made = 0; 
int temp; 

while (made<N/4) 
{ 

II Choose the first one that is not yet paired: 
for(i=O; i<N/2; i++) 
{if(!calcs[i]) {calcs[i] = 1; break;}} II i is the first in the pair 
Ilcout«"CALC: "«calcs[i] «i«endl; 
temp = rand()%(N/2); 
Ilcout«"TEl1P: "«temp+1«endl; 
j = -1; 
for(int k=O; k<temp+1; k++) 

II Check if the one at position j is 1. If so, OK. Else skip: 
j++; 
j = j%(N/2); 
if(calcs[j]) {k--;}
 

I I cout«"J: "«j«" K: "«k«endl;
 
}
 

Ilcout«"--------------------"«endl;
 
if (i==j) {cout«"ERROR"«endl;}
 

calcs [j] = 1;
 
II The pair is [i, j]. Insert the info in pair_log:
 
pair_log [made] [0] = i;
 
pair_log [made] [1] = j;
 
Ilcout«"CALC: "«calcs[i] «i«endl;
 

Ilout«"The pair is: "«i«" . "«j«"."«endl; 

made++; 



for(i=O; i<N/4; i++) 
( 

pair_log[i] [0] live_log [ pair_log[i] [0] ]; 
pair_log[i] [1] live_log [ pair_log[i] [1] ]; 
lIout«"The pair is: "«pair_log[i] [0]«" " ,.
lIout«pair_log[i] [1]«". "«endl; 

) 

void reproduction(int N) 

II N here is the size of the population to be created 
II We have the ordered pairs from pair_log. So we have to process each 

pair 

II Crossover part Static Part
 
II DNA1: 11 12 H1 H2 C1 C2 I 01
 
II DNA2: i1 i2 h1 h2 c1 c2 I 02
 
II
 
II Locus range for above: 1-5 (0 is excluded from this set)
 
II 5 means no crossover occurs
 
1* 
Example: locus = 1
 
DNA3: 11 i2 h1 h2 c1 c2 I 02
 
DNA4: i1 12 H1 H2 C1 C2 I 01
 
*1 
Ilcout«"reproduction"«endl;
 
IIcout«"1nitial: "«pair_log[O] [0]«" "«pair_log[O] [l]«endl;
 
int k = N/2-1;
 
int p1, p2, locus;
 
int offset;
 
float trans;
 

II Copy all survivors to newDNA:
 
int i=O, ib = 0;
 
while(i<N/4)
 
( 

for(int y=O; y<S*S; y++)
 
{newDNA [ib] . locus [y] = DNA [ pair_log [i] [0] ] . locus [y] ; }
 
ib++;
 
for(y=O; y<S*S; y++)
 
{newDNA [ib] . locus [y] = DNA [ pair_log [i] [1] ] . locus [y] ; }
 
IIcout«ib«"takes: "«pair_log[i] [0]«" "«pair_log[i] [l]«endl;
 
i++; ib++;
 

for(i=O; i<N/4; i++) 
( 

II This means: do for each pair of DNAs
 
II First copy DNA1 and DNA2 in DNA[k+1] and DNA[k+1] respectively
 
++k; p1 = k;
 
for(int j=O; j<S*S; j++)
 



{newDNA[k] .locus[j] = newDNA[ pair_log[i] [0] ] .locus[j];}
 
++k; p2 = k;
 
for(j=O; j<S*S; j++)
 
{newDNA[k] .locus[j] = newDNA[ pair_log[i] [1] ] .locus[j];}
 
II Choose a random locus:
 
locus = rand()%(S - output - 1) + 1;
 
I Icout« "Locus: "«locus«" of "«S«endl;
 
IIProceed only if the locus is not terminal
 
if(locus!=S - output - 1)
 
{
 

Ilcout«"GO"«endl; 
for(int m=locus; m<=S-output-1; m++) 
{ 

Iloffset = locus*S;
 
II Each block of info is of size m*S
 
for(int f=O; f<S; f++)
 
{
 

trans = newDNA[p1] .1ocus[m*S + f]; 
newDNA[p1] .1ocus[m*S + f] = 

newDNA[p2] .1ocus[m*S + f]; 
newDNA[p2] .1ocus[m*S + f] = trans; 

IIHere we are now going to call mutation. The only parameter of mutation 
Ilis the DNA index 

for(i=O; i<N; i++) 
{
 

for(int x=O; x<S*S; x++)
 
{DNA[i] .locus[x] = newDNA[i] . locus [x] ;}
 

}
 

Ilcout«"end reproduction"«endl;
 

II Here we introduce mutations: 

for(k=(N/2); k<N; k++) 

mutation(k) ; 

}
 

void mutation(int which)
 

II Here we mutate each nonzero connection with a probability of "mut" 
II This function is to be executed only on the newly formed generation 

for(int x=O; x<S*S; x++) 
{ 

if (DNA[which] .locus[x] != 0.0) II Only if this is an 
allowed route 

if(mut>(rand()%100)) 
{ 

DNA [which] .locus[x] random ( ); 



} 

int convergence() 

II Right now, the convergence test is that the fitness has exceeded 90% 
if(fitness>0.90) 

return I; 
else 

return 0; 
} 

void create_log() 

II This function will be used to create a statistical log 

}
 

float random ( )
 
( 

float temp;
 
temp = rand()%IOOOO;
 
if (rand ( ) %2)
 

return temp/IOOOO.O;
 
else
 

return (-I.O)*temp/IOOOO.O;
 
) 

void test_create() 
( 

II Simply output one of the nets and have it rendered by neuralizer 

II File format: 

1* 
9 
I 3 
4 5 
6 7 
8 9 
0.0 0.0 0.0 0.5 0.3 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.5 0.3 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.5 0.3 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.2 0.2 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.2 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

# give size of network 
# input nodes 
# inner nodes 
# context nodes 
# output nodes 
# matrix follows: 

*1 

II Output the net size, given by S: 



out«S«endl;
 
II Output start and end for input:
 
out«l«" "«input«endl;;
 
II Output start and end for hidden:
 
out«input+l«" "«input+hidden_size«endl;
 
II Output start and end for context:
 
out«input+hidden_size+l«· ·«input+2*hidden_size«endl;
 
II Output start and end for output:
 
out«input+2*hidden_size+l«· ·«S«endl;
 

II Now output all DNA sequences:
 
for(int k=O; k<S; k++)
 
( 

for(int i=O; i<S; i++) 
( 

out«DNA[O].locus[i + k*S]«· ";
 
}
 

out«endl;
 

void load_I (float activation[], int i) ( 
II Map the values read to the first activation levels: 
Ilcout«"-----------------"«endl; 
Ilout«"LOADING ... ·«endl; 

for(int k = 0; k<input; k++)
 
(in»activation[k]; }
 
Ilout«endl;
 
II Now read the goal behavior:
 
for(k = 0; k<output; k++)
 
(in»goal[k] ;}
 
for(k = 0; k<output; k++)
 
(in»probs [k] ; }
 

1* 
cout«"Activation map after load: "«endl;
 
for(int m = 0; m<S; m++)
 
(cout«activation[m]«" .;}
 
cout«endl;
 
*1 

} 

void I_H(float activation[], int i){ 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 
int setoff = 0; 
for(int k=O; k<input; k++) 
( 

II Now looking at input gene k
 
for(int j=O; j<hidden_size; j++)
 
( 

II Now looking at link to a certain hidden node from input 
node k 

activation[j + input]+= (DNA[i] .1ocus[k*S + input + setoff + 
j] )*activation[k]; 



} 

1* 
cout«"Activation map after I H: "«endl;
 
for(int m = 0; m<S; m++)
 
(cout«activation[m]«" ";}
 
cout«endl;
 
*1 

} 

void H_C(float activation[], int i) ( 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 
int setoff = input*S; 
for(int k=O; k<hidden_size; k++) 
( 

II Now looking at hidden gene k
 
for(int j=O; j<hidden_size; j++)
 
( 

II Now looking at link to a certain context node from hidden 
node k 

activation[j + input + hidden_size] = 
(DNA[i] . locus [k*S + input + hidden_slze + setoff + 

j])*activation[k+input]; 

}1*
 
cout«"Activation map after H_C: "«endl;
 
for(int m = 0; m<S; m++)
 
(cout«activation[m]«" ";}
 
cout«endl;
 
*1 

} 

void H_O(float activation[], int i) ( 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 
int setoff = input*S; 

Ilout«"Activation before of "«i«" is "«activation[S-l]«endl; 
for(int k=O; k<hidden_size; k++) 
( 

II Now looking at hidden gene k
 
for(int j=O; j<output; j++)
 
( 

II Now looking at link to a certain context node from hidden 
node k 

activation[j + input + 2*hidden_size]+= 
(DNA[i] .locus[k*S + input + 2*hidden size + setoff + 

j])*activation[k + input]; 

Ilout«"Activation map after H_O: "«endl;
 
Ilfor(int m = 0; m<S; m++)
 
II(out«activation[m]«" ";}
 
Ilout«endl; 



II Now see if the output satisfies the goal. If so, add 1 in the fit_log 
for 

II that DNA. Else, do nothing. 

int results [output] ;
 
int fitness_coef;
 
fitness coef = 1;
 

for(int m = 0; m<output; m++) 
{ 

Ilcout«"OUT "«m«"in DNA "«i«" : "«activation [S-output+m]«endl; 
if (activation[S-output+m]<1.0) 
{results[m] = O;} 
else {results[m] = 1;} 

}
 

II See if results are like expected
 
Ilout«"GOAL: "«goal[O]«endl;
 
Ilout«"Fitness of "«i«" before is "«fit_log[i]«endl;
 

for(m =0; m<output; m++) 
{
 

Ilcout«"Doing DNA "«i«endl;
 
I I cout«" RAW: "«resul ts [m]«" - "«goal [m] «endl;
 

if (resul ts [m] ! =goal [m]) {f i tness_coef = 0; break;} 

fit_log[i] += fitness_coef;
 
Ilout«"Activation of "«i«" is "«activation[S-l]«endl;
 
Ilout«"Results of "«i«" is "«results[O]«endl;
 
Ilout«"Fitness of "«i«"after is "«fit_log[i]«endl;
 

} 

void C_H(float activation[], int i) ( 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 
int setoff = input*S + hidden_size*S; 
for(int k=O; k<hidden_size; k++) 
( 

II Now looking at hidden gene k
 
for(int j=O; j<hidden_size; j++)
 
{
 

II Now looking at link to a certain context node from hidden 
node k 

activation[j + input]+= 
(DNA[i] .10cus[k*S + input + setoff + j]) 
*activation[k+input+hidden_size] ; 

} 

1* 
cout«"Activation map after C_H: "«end!;
 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*1 



void test_evaluate(int N) 

for(int i = 0; i< N; i++)
 
(cout«"Fitness of "«i«" "«fit_log[i]«"."«endl;}
 
//for(i = 0; i< N; i++)
 
lI{out«"Ranklog of "«i«" "«rank_log[i] [1]«". "«endl;}
 

void zap_I(float activation[]) 

for(int i=O; i<input; i++)
 
activation[i] = 0;
 

/*
 

for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*/
 

}
 

void zap_H(float activation[])
 

for(int i = 0; i<hidden_size; i++) 
activation[i+input] = 0;
 

/*
 

for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*/
 

}
 

void zap_C(float activation[])
 

for(int i = 0; i<hidden_size; i++) 
activation [i+input+hidden_size] = 0; 

/*
 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*/
 

}
 

void zap_O(float activation[])
 

for(int i = 0; i<output; i++) 
activation [i+input+2*hidden_size] O·,
 

/*
 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*/
 

/* 

Below the file with the matrix representation of a sample evolved 



neural network can be seen: 

34 
1 6 
7 18 
19 30 
31 34 
o 0 0 0 0 0 0.6997 -0.18 -0.0645 -0.0528 0.327 -0.3544 -0.7738 -0.1482 0.2023 
0.7217 0.2021 0.5319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0.7699 -0.0983 0.6454 0.6235 -0.3841 -0.0343 0.7135 0.3438 0.4961 ­
0.3277 0.8422 0.4946 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0.1528 -0.2082 -0.8357 0.0819 -0.0812 -0.0692 0.5411 0.8652 -0.9863 
-0.6261 0.7215 -0.4846 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0.9955 0.2695 0.5255 -0.9997 -0.1829 -0.2628 0.8949 0.3422 -0.3796 
0.1741 0.8937 0.3975 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 -0.6695 0.3314 -0.0616 0.8596 0.1198 0.2758 0.2346 -0.8702 0.2112 ­
0.7602 -0.0815 -0.8836 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0.8871 0.8359 0.1267 0.5501 0.0533 0.0385 -0.3019 -0.0054 0.3967 
0.908 -0.439 0.8925 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.6759 0 0 0 0 0 0 0 0 0 0 0 -0.487 0.9985 
0.2124 -0.6258 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7308 0 0 0 0 0 0 0 0 0 0 0.1189 0.8334 ­
0.2676 -0.7434 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9625 0 0 0 0 0 0 0 0 0 0.0166 -0.2875 
0.6361 -0.3431 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5482 0 0 0 0 0 0 0 0 -0.8923 0.4212 
0.1634 0.2186 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2838 0 0 0 0 0 0 0 0.3365 0.089 
0.3483 0.9976 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2509 0 0 0 0 0 0 -0.7999 0.2917 
-0.6395 0.2758 
o 0 0·0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6601 0 0 0 0 0 -0.0629 -0.9543 
0.9514 -0.7155 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4837 0 0 0 0 0.194 0.5417 ­
0.6342 0.7131 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1924 0 0 0 -0.0123 -0.2667 
0.7776 -0.6146 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1271 0 0 -0.4899 0.l247 
-0.5884 -0.3473 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2365 0 0.1138 -0.1847 
0.8379 0.2675 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.7085 0.2223 0.8311 
-0.9691 -0.3033 
o 0 0 0 0 0 -0.7068 0.7566 0.5176 -0.2291 0.7037 0.6307 -0.1202 -0.0354 0.717 ­
0.5202 0.9015 -0.2373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 -0.967 0.4259 0.0795 -0.7341 0.8091 0.3531 0.4264 0.3991 -0.1585 ­
0.0254 0.0827 -0.5114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0.1098 0.652 -0.1375 0.5837 -0.362 -0.2 0.8551 -0.6162 0.1443 0.6127 
-0.4654 0.2992 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 -0.8104 -0.0107 0.2331 -0.3189 -0.8495 0.8875 0.5103 0.1436 -0.l058 
-0.9908 0.1612 -0.0133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 -0.8274 0.6713 -0.1431 0.7789 -0.7878 0.5305 0.6169 -0.7006 -0.0029 
0.2141 0.0115 -0.9344 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0.1089 -0.3076 -0.291 -0.2386 -0.2014 0.4057 0.5368 0.806 -0.9505 
0.3226 -0.1882 0.4345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0.4674 -0.0791 -0.5396 -0.2649 -0.7254 0.9696 -0.182 0.7792 0.0337 
0.0431 0.7705 -0.9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



a a a a a a -0.8038 -0.6081 -0.3232 -0.8403 -0.21 -0.4932 0.7226 0.962 0.1947 ­
0.6826 -0.2376 0.5463 a a a a a a a a a a a a a a a a 
a a a a a a 0.7333 0.3332 0.5772 0.8335 -0.0047 0.9017 0.6734 -0.3567 -0.8916 
0.8985 0.3382 -0.2313 a a a a a a a a a a a a a a a a 
a a a a a a 0.5398 -0.1682 -0.1041 -0.1026 -0.1232 0.6302 -0.9674 -0.5467 ­
0.9974 0.8675 -0.198 -0.2146 a a a a a a a a a a a a a a a a 
a a a a a a -0.8698 -0.4725 0.4223 -0.0322 0.4909 0.8073 -0.7756 0.9782 0.9496 ­
0.1444 -0.9481 0.3393 a a a a a a a a a a a a a a a a 
a a a a a a -0.7084 -0.7825 0.2438 -0.6244 0.4607 0.252 -0.8879 -0.645 0.127 ­
0.1211 -0.6344 -0.8498 a a a a a a a a a a a a a a a a 
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 

*/ 



Program used to test neural networks 



#include <stdlib.h> 
II#include <windows.h> 
II#include <GL/gl.h> 
II#include <GL/glu.h> 
II#include <GL/glut.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <time.h> 
#include <math.h> 
II#include "glfont.h" 

const int RUNS = 1; 
int GENERATIONS = 0; 
float INITIAL = 0.0; 

II OPENGL component» 
//-****************************************************­

II functions start here 
void display(void) ; 
void update (void) ; 
void animate (void) ; 
void camera (void) ; 
void framework (void) ; 
void mouse(int button, int state, int x, int Y); 
void indicator(); 
int milliseconds(); 
II some global stuff goes here 
int n=O; II this is for the number of current slide shown 
const float x 380; 
const float y = 280; 
float px/ py; 
int counter = 0; 
const float PI = 3.14159; 
int pair[2]; 
II « OPENGL component 
//-****************************************************­

II The Genetic Algorithm functions start here: 

1* 
1. Define the parameters, fitness (cost) function 
2. Represent the parameters 
3. Create the population 
4. Evaluate fitness 
5. Select survivors and mating couples 
6. Reproduce 
7. Mutate 
8. Test Convergence If the test is failed, GOTO step 4 
9. Stop 
*1 

II FUNCTIONS 



void create(int); II creates the initial population 
~~~03FB2002~~~ 

void evaluate(int) ;11 evaluates the fitness of all nets 
~~~03FB2002~~~ 

void selection(int); II selects pairs to mate; selects who'll live 
~~~05FB2002~~~ 

void reproduction(int) ;11 reproduction is handled here + crossover 
void mutation(int); II some mutations are introduced 
int convergence(); II test for convergence 
void create_Iog(); II output the top performing network neuralizer 

II format 
void reader(); 
void getprobs(); 

II VARIABLES 
const int Nipop = 16; II Size of the initial population 
const int Npop = Nipop/2; II Size of the population in a generation 
const int input = 6; II Number of input nodes 
const int hidden = 1; II Number of hidden layers 
const int hidden_size 2*input; II Size of each hidden layer 
const int mode = 0; II Networking mode: 0 - free association; 

II 1 - feed­
forward 
const int output = 4; II Number of output nodes 
const int S = input + 2*hidden*hidden_size + output; II Size of net 

struct DNAt{ 
II The network size is used to place data delimiters 
float locus[S*S]; II The number of this is S*S, where S is net size 

} DNA [Nipop] ; 
DNAt newDNA[Nipop]; 

float fit_log [Nipop] ; II Keeps record of the fitness of each DNA 
int rank_log [Nipop] [2]; II Keeps record of the rank of each DNA in terms of 
fitness 
int live_log [Nipop] ; II Keeps record of all DNAs to live to the next gen 
int pair_log [Nipop] [2]; II Keeps record of the pairs that will live to mate in 

II the the next gen. 
float fitness; II Fitness of the population 
int total_trials 2·, II Number of trials in the experiment 
int calcs[Nipop]; II A blank array used as memory by functions 
int mut = 5; II The probability of mutation is 1% 

II HELPER FUNCTIONS
 
float random ( ) ;
 
void test_create();
 
void test_evaluate(int);
 

void load_I(float activation[], int);
 
void I_H(float activation[], int);
 
void H_C(float activation[], int);
 
void H_O(float activation[], int);
 
float goal [output] , probs [output] ; Ilused by above
 
void C_H(float activation[], int);
 
void zap_I (float activation[]);
 
void zap_C(float activation[]);
 



void zap_H(float activation[]); 
void zap_O(float activation[]); 

///////////////////////////////////////// 

void keyboard(unsigned char key, int x, int y) 
( 

switch (key) ( 
case 27: // ascii value 27 ESC key 

exit (0) ; 
break; 

}
 

ofstream out("run_report.txt");
 
ifstream in ( "trials. txt" ) ;
 
ifstream net ( "network. txt" ) ;
 
ifstream prob("probs.txt");
 
int main(int argc, char** argv)
 
( 

float infit;
 
//open the output file
 
if(lout) (cout«"Nope"«endl; return l;}
 
srand(milliseconds()%lOOOO) ;
 

create(l) ;
 
//test_create() ;
 
reader () ;
 
evaluate(l) ;
 
//out«"dkfldkjfldjfkfdl"«endl;
 
test_evaluate(l);
 

out.close() ; 
in.close() ; 
net.close() ; 
prob.close() ; 
return 0; 

void update (void) 
( 

// update variables here and output to file 

void animate (void) ( 
update() ; 

void indicator() 



/I 

CQut« ;11.11 

II FUNCTION FOR MILLISECONDS 

int milliseconds() 

return time (NULL) ; 
} 

liTo use timeSetEvent you must include MMSYSTEM.H and link in WINMM.LIB. 
IIThis is done in project; settings 

II END OF FUNCTION FOR MILLISECONDS 

11---------------------------------------------------- ------ ­

EVOLUTION ENGINE 

11---------------------------------------------------- ------ ­

void create(int N) 

cout«"create"«endl;
 
II All this function should need to know is the number of nodes
 
II and the mode: free association (0) or feedforward(l)
 

int i=O;
 
Ilif (mode); II if feed forward is used:
 

II For each DNA
 
for(i=O; i<N; i++)
 
{
 

II First determine the connectivity of the input layer:
 
for(int j=O; j<input;j++)
 
{
 

Ilcout«"Doing inner"«endl;
 
for(int k=O; k<input; k++) II NONE to INPUT
 
{DNA[i] .locus[j*S + k] = O;}
 

for(k=O; k«hidden*hidden_size) ;k++) II SOME to HIDDEN
 
{DNA[i] .locus[j*S + input + k] = random();}
 

for(k=O; k«hidden*hidden_size) ;k++) II NONE to CONTEXT
 
{DNA[i] .locus[j*S + input + hidden*hidden size + k] = O;}
 

for(k=O; k<output; k++) II NONE to OUTPUT 
{DNA[i] .locus[j*S + S - output] = O;} 

} 

II Now, do the stuff for the hidden layer: 
for(int n=O; n<hidden_size; n++) 
{ 

Ilcout«"Doing hidden"«endl; 
int sofar = input*S + n*S; 
II NONE to INPUT 



for(int k = 0; k<input; k++)
 
{DNA[i] .locus[sofar + k] = O;}
 
II NONE TO HIDDEN
 
for(k = 0; k<hidden_size; k++)
 
{DNA[i] .locus[sofar + input + k] = O;}
 
II 1 to respective context, 0 to rest
 
for(k = 0; k<hidden_size; k++)
 
( 

DNA[i] .locus[sofar + input + hidden_size + k] = 0; 
if(k==n) 
{DNA[i] .locus[sofar + input + hidden_size + k] = 1;} 

} 

II A random to all the output guys: 
for(k = 0; k<output; k++) 
(DNA[i] .locus[sofar + input + 2*hidden_size + k] random() ;} 

}
 

II Now, do the stuff for the context layer:
 
for(n=O; n<hidden_size; n++)
 
( 

Ilcout«"Doing context"«endl;
 
int sofar = input*S + hidden_size*S + n*S;
 
II NONE to INPUT
 
for(int k = 0; k<input; k++)
 
{DNA[i] .locus[sofar + k] = O;}
 
II RANDOM TO HIDDEN
 
for(k = 0; k<hidden_size; k++)
 
(DNA[i] .locus[sofar + input + k] random();}
 
II NONE TO CONTEXT
 
for(k = 0; k<hidden_size; k++)
 
{DNA[i] .locus[sofar + input + hidden_size + k] O;}
 
II NONE to OUTPUT
 
for(k = 0; k<output; k++)
 
{DNA[i] .locus[sofar + input + 2*hidden_size + k] O;}
 

}
 

II Now, do the stuff for the output layer:
 
for(n=O; n<output; n++)
 
( 

Ilcout«"Doing output"«endl; 
int sofar = input*S + 2*hidden_size*S + n*S; 
II NONE to INPUT 
for(int k = 0; k<input; k++) 
{DNA[i] .locus[sofar + k] = O;} 
II NONE TO HIDDEN 
for(k = 0; k<hidden_size; k++) 
{DNA[i] .locus[sofar + input + k] O;} 
II NONE TO CONTEXT 
for(k = 0; k<hidden_size; k++) 
{DNA[i] .locus[sofar + input + hidden_size + k] O;} 
II NONE to OUTPUT 
for(k = 0; k<output; k++) 
{DNA[i] .locus[sofar + input + 2*hidden_size + k] O;} 



} 

void evaluate(int N) 
{ 

II There will be X nets in the population. 
II For all nets build them and record their fitness in 
II their internal representations. Each net is just DNA. 
II Send them to fitness to do the work 
II Record the results in fit_log[N] 

float activation[S];
 
for(int y = input; y<S; y++)
 
{activation[y] = O;}
 

Ilcout«"TOTAL TRIALS: "«total_trials«endl;
 
Ilout«"evaluate"«endl;
 

for (int i=O; i<N; i++) 
{ 

II Build the network: All that means is that we need to keep 
II track of the activation levels of all units, stored in 

activation[S] 

II Waves: 

1/1. ->1, I->H 

112. ->1, H->C, H->O, I->H 

113. ->1, C->H, H->O, H->C, I->H 

Ilrepeat 3 intill last input 

/IN. C->H, H->O 

II You have to remember to zap the previous activation levels 

fit_log[i] = 0; 

in»total_trials; 

int trials 0; 

load_I (activation, i);
 
I_H(activation, i);
 
zap_I (activation) ; trials++;
 

load_I (activation, i);
 
H_C(activation, i);
 
H_O(activation, i);
 



II 

zap_O(activation) ;
 
zap_H(activation) ;
 
I_H(activation, i);
 
zap_I (activation) ; trials++;
 

while(trials<total_trials) II while there are trials left 
( 

10ad_I (activation, i);
 
C_H(activation, i);
 
zap_C(activation) ;
 
H_O(activation, i);
 
zap_O(activation) ;
 
H_C(activation, i);
 
zap_H(activation) ;
 
I_H(activation, i);
 
zap_I (activation) ;
 
trials++;
 

C_H(activation, i); H_O(activation, i); zap_O(activation); 

forty = input; y<S; y++)
 
{activation[y] = O;}
 
in.close();
 
in.open("trials.txt") ;
 

} 

for(i = 0; i< N; i++)
 
{llout«"Fitness of "«i«" "«fit_log[i]«"."«endl;
 
} 

II Now return the stream so that it can be used again: 

} 

void selection(int N) 

II Select half the DNAs from Npop based on their fitness which can be seen 
II in the fit_log. So let us make the rank_log first: 

out«"selection"«endl;
 
int i, j, tempO, temp1;
 

for(i=O; i<N; i++) 
{
 

rank_log[i] [OJ i;
 
rank_log [i) [1] fiClog[iJ;
 

}
 

forti = 0; i< N; i++)
 
{llcout«"Ranklog of init "«i«" "«rank_log [i J [1 J«" . "«endl;
 
} 

for (i = 0; i< N-1; i++) 

int max = i;
 
for (j=i+1; j<N; j++)
 
if (rank_log [j J [1] >=rank_log [maxJ [1 J )
 



(max = j;}
 
tempO = rank_log [i] [0];
 
temp1 = rank_log [i] [1] ;
 
rank_log[i] [0] = rank_log [max] [0];
 
rank_log[i] [1] = rank_log (max] [1];
 
rank_log [max] (0] tempO;
 
rank_log [max] [1] = temp1;
 

Ilcout«"Ranking: "«endl; 
1* 
for (i=O; i<N/2; i++) 

out«i«". "«rank_log[i] [O]«endl; 
} 

*1 

II Now it is time to fill up the live_log 

for(i=O; i<N/2; i++)
 
(live_log[i] = rank_log[i] [O];}
 

II Also record the fitness of the population:
 
fitness = 0;
 
for(i=O; i<N/2;i++)
 
(fitness+=float (rank_log [i] [1] I (float (N) /2.0) ) ;}
 
fitness/=float(total_trials);
 

II out«" Fi tness: "« f i tness«endl; 

II So right now we have the DNAs that will live. Pair them at random 
II Keep track of what is paired by placing marks in the array calcs[N] 

for(i=O; i<N/2; i++) 
(calcs[i] = O;} 

int made = 0; 
int temp; 

while (made<N/4) 
( 

II Choose the first one that is not yet paired:
 
for(i=O; i<N/2; i++)
 
(if(!calcs[i]) (calcs[i] = 1; break;}} II i is the first in the pair
 
Ilcout«"CALC: "«calcs[i] «i«endl;
 
temp = rand()%(N/2);
 
Ilcout«"TEMP: "«temp+1«endl;
 
j = -1; 
for(int k=O; k<temp+1; k++) 
( 

II Check if the one at position j is 1. If so, OK. Else skip:
 
j ++;
 
j = j%(N/2);
 
if(calcs[j]) (k--;}
 

II cout«"J: "«j«" K: "«k«endl; 



}
 

Ilcout«"--------------------"«endl;
 
if (i==j) {cout«" ERROR" «endl; }
 

calcs [j] = 1;
 
II The pair is [i, j]. Insert the info in pair_log:
 
pair_log [made] [0] = i;
 
pair_log [made] [1] = j;
 
Ilcout«"CALC: "«calcs[i] «i«endl;
 

Ilout«"The pair is: "«i«" . "«j«"."«endl; 

made++; 

for(i=O; i<N/4; i++) 
{
 

pair_Iog[i] [0] live_log [ pair_Iog[i] [0] ];
 
pair_Iog[i] [1] live_log [ pair_Iog[i] [1] ];
 
I I out«" The pair is: "«pair_log [i] [0]«" " ,.

II out«pair_log [i] [1] «" . "«endl;
 

} 

void reproduction(int N) 
{ 

II N here is the size of the population to be created 
II We have the ordered pairs from pair_log. So we have to process each 

pair 

II Crossover part Static Part 
II DNA1: 11 12 Hl H2 Cl C2 I 01 
II DNA2: il i2 hl h2 cl c2 I 02 
II 
II Locus range for above: 1-5 (0 is excluded from this set) 
II 5 means no crossover occurs 
1* 
Example: locus = 1
 
DNA3: 11 i2 hl h2 cl c2 I 02
 
DNM: il 12 Hl H2 Cl C2 I 01
 
*1 
Ilcout«"reproduction"«endl;
 
I I cout«" Ini tial: "«pair_log [0] [0]«" "«pair_log [0] [1] «endl;
 
int k = N/2-l;
 
int pl, p2, locus;
 
int offset;
 
float trans;
 

II Copy all survivors to newDNA:
 
int i=O, ib = 0;
 
while(i<N/4)
 
{
 

for(int y=O; y<S*S; y++)
 
{newDNA[ib] .locus[y] = DNA [ pair_Iog[i] [0]] .locus[y];}
 



ib++;
 
for(y=O; y<S*S; y++)
 
(newDNA [ib] .locus [y] = DNA [ pair_log [i] [1] ] .locus [y] ; )
 
//cout«ib«"takes: "«pair_log[i] [0]«" "«pair_log[i] [l]«endl;
 
i++; ib++;
 

for(i=O; i<N/4; i++) 
( 

II This means: do for each pair of DNAs 
II First copy DNA1 and DNA2 in DNA[k+1] and DNA[k+1] respectively 
++k; p1 = k; 
for(int j=O; j<S*S; j++) 
(newDNA[k] .locus[j] newDNA[ pair_log[i] [0] ] .locus[j];) 
++k; p2 = k; 
for(j=O; j<S*S; j++) 
(newDNA[k] .locus [j] = newDNA[ pair_log [i] [1] ] .locus [j] ;) 
II Choose a random locus: 
locus = rand()%(S - output - 1) + 1; 
Ilcout«"Locus: "«locus«" of "«S«endl; 
IIProceed only if the locus is not terminal 
if(locus!=S - output - 1) 
( 

Ilcout«"GO"«endl; 
for(int m=locus; m<=S-output-1; m++) 
( 

Iloffset = locus*S;
 
II Each block of info is of size m*S
 
for(int f=O; f<S; f++)
 
( 

trans = newDNA[p1] .1ocus[m*S + f]; 
newDNA[p1] .1ocus[m*S + f] = 

newDNA[p2] .1ocus[m*S + f]; 
newDNA[p2] . locus [m*S + f] = trans; 

IIHere we are now going to call mutation. The only parameter of mutation 
Ilis the DNA index 

for(i=O; i<N; i++) 
( 

for(int x=O; x<S*S; x++) 
(DNA[i] .locus[x] = newDNA[i] .locus[x];) 

} 

Ilcout«"end reproduction"«endl; 

II Here we introduce mutations: 

for(k=(N/2); k<N; k++) 

mutation (k) ; 



} 

void mutation(int which) 

II Here we mutate each nonzero connection with a probability of "mut" 
II This function is to be executed only on the newly formed generation 

for(int x=O; x<S*S; x++) 
( 

if (DNA[which] .locus[x] != 0.0) II Only if this is an 
allowed route 

if(mut>(rand()%100)) 
( 

DNA[which] .locus[x] random ( ); 

} 

int convergence() 

II Right now, the convergence test is that the fitness has exceeded 90% 
if(fitness>0.90) 

return 1; 
else 

return 0; 
} 

void create_log() 

II This function will be used to create a statistical log 

} 

float random ( ) 
( 

float temp;
 
temp = rand()%10000;
 
if(rand()%2)
 

return temp/10000.0;
 
else
 

return (-1.0)*temp/10000.0; 
} 

void getprobs () 

II Get the empirically derived probabilities via stream prob: 

void test_create() 

II Simply output one of the nets and have it rendered by neuralizer 

II File format: 

1* 
9 
1 3 



4 5 
6 7 
8 9 
0.0 0.0 0.0 0.5 0.3 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.5 0.3 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.5 0.3 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.2 0.2 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.2 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

# give size of network 
# input nodes 
# inner nodes 
# context nodes 
# output nodes 
# matrix follows: 

*1 

II Output the net size, given by S:
 
out«S«endl;
 
II Output start and end for input:
 
out«l«" "«input«endl;;
 
II Output start and end for hidden:
 
out«input+l«" "«input+hidden_size«endl;
 
II Output start and end for context:
 
out«input+hidden_size+l«" "«input+2*hidden_size«endl;
 
II Output start and end for output:
 
out«input+2*hidden_size+l«" "«S«endl;
 

II Now output all DNA sequences:
 
for(int k=O; k<S; k++)
 
( 

for(int i=O; i<S; i++) 
( 

out«DNA[Nipop-2) .locus[i + k*S)«" "; 
} 

out«endl; 

void load_I(float activation[], int i) ( 
II Map the values read to the first activation levels: 
Ilcout«"-----------------"«endl; 
I lout«"LOADING ... "«endl; 

for(int k = 0; k<input; k++)
 
(in»activation[k]; }
 
Ilout«endl;
 
II Now read the goal behavior:
 
for(k = 0; k<output; k++)
 
(in»goal[k];}
 
for(k = 0; k<output; k++)
 
(in»probs [k] ;}
 



1* 
cout«"Activation map after load: "«endl;
 
for(int m = 0; m<S; m++)
 
(cout«activation[m]«" ";)
 
cout«endl;
 
*1 

} 

void I_H(float activation[], int i) ( 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 
int setoff = 0; 
for(int k=O; k<input; k++) 
( 

II Now looking at input gene k
 
for(int j=O; j<hidden_size; j++)
 
{
 

II Now looking at link to a certain hidden node from input 
node k 

activation[j + input]+= (DNA[i] .1ocus[k*S + input + setoff + 
j])*activation[k] ; 

) 

} 

1* 
cout«"Activation map after I_H: "«endl;
 
for(int m = 0; m<S; m++)
 
(cout«activation [m]«" ";)
 
cout«endl;
 
*1 

} 

void H_C(float activation[], int i) { 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 
int setoff = input*S; 
for(int k=O; k<hidden_size; k++) 
( 

II Now looking at hidden gene k
 
for(int j=O; j<hidden_size; j++)
 
( 

II Now looking at link to a certain context node from hidden 
node k 

activation[j + input + hidden_size] = 
(DNA[i] .1ocus[k*S + input + hidden_size + setoff + 

j] )*activation[k+input]; 

}/* 
cout«"Activation map after H C: "«endl;
 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*1 

} 

void H_O(float activation[], int i) { 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 



int setoff = input*S; 
Ilout«"Activation before of "«i«" is "«activation[S-l]«endl; 

for(int k=O; k<hidden_size; k++) 
( 

II Now looking at hidden gene k
 
for(int j=O; j<output; j++)
 
( 

II Now looking at link to a certain context node from hidden 
node k 

activation[j + input + 2*hidden_size]+= 
(DNA[i] .10cus[k*S + input + 2*hidden size + setoff + 

j] )*activation[k + input]; 

Ilout«"Activation map after H 0: "«endl;
 
Ilfor(int m = 0; m<S; m++)
 
II(out«activation[m]«" ";}
 
Ilout«endl;
 

II See a breakdown of the activation: 

for(int m = 0; m<output; m++) 
( 

Ilcout«"OUT "«m«"in DNA "«i«" : "«activation[S-output+m]«endl; 
out«activation[S-output+m]«" "; 

out« " ; goal: ";
 
for(m=O; m<output; m++)
 
( 

out«goal[m]«" "; 
) 

for(m=O; m<output; m++) 
( 

out«probs [m]«" "; 
) 

out«endl; 

II Now see if the output satisfies the goal. If so, add 1 in the fit_log 
for 

II that DNA. Else, do nothing. 

int results[output];
 
int fitness_coef;
 
fitness_coef = 1;
 

for(m = 0; m<output; m++) 
( 

Ilcout«"OUT "«m«"in DNA "«i«" : "«activation [S-output+m]«endl;
 
if (activation[S-output+m]<1.0)
 
(results [m] = O;)
 
else {results[m] = 1;}
 

}
 

II See if results are like expected
 
I I out« "GOAL: "«goal [0] «endl;
 
Ilout«"Fitness of "«i«" before is "«fit_log[i]«endl;
 



for(m =0; m<output; m++) 
( 

Ilcout«"Doing DNA "«i«endl;
 
Ilcout«"RAW: "«results[m]«" - "«goal [m]«endl;
 

if (resul ts [m] ! =goal [m]) {f i tness_coef = 0; break;} 

fit_log[i] += fitness_coef;
 
Ilout«"Activation of "«i«" is "«activation[S-l]«endl;
 
Ilout«"Results of "«i«" is "«results[O]«endl;
 
Ilout«"Fitness of "«i«"after is "«fit_log[i]«endl;
 

} 

void C_H(float activation[], int i) { 
II Currently looking at DNA[i] 
II For each input layer, pour its effects in: 
int setoff = input*S + hidden_size*S; 
for(int k=O; k<hidden_size; k++) 
{ 

II Now looking at hidden gene k
 
for(int j=O; j<hidden_size; j++)
 
{
 

II Now looking at link to a certain context node from hidden 
node k 

activation[j + input]+= 
(DNA[i] . locus [k*S + input + setoff + j]) 
*activation[k+input+hidden_size] ; 

} 

1* 
cout«"Activation map after C_H: "«endl;
 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*1 

void test_evaluate(int N) 

for(int i = 0; i< N; i++)
 
{cout«"Fitness of "«i«" "«fit_log[i]«"."«endl;}
 
Ilfor(i = 0; i< N; i++)
 
II{out«"Ranklog of "«i«" "«rank_log[i] [1]«". "«endl;}
 

void zap_I(float activation[]) 

for(int i=O; i<input; i++)
 
activation[i] = 0;
 

1* 

for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 



*1 
}
 

void zap_H(float activation[])
 

for(int i = 0; i<hidden_size; i++)
 
activation[i+input] = 0;
 

1* 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*1 

}
 

void zap_C(float activation[])
 

for(int i = 0; i<hidden_size; i++) 
activation [i+input+hidden_size] = 0; 

1* 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*1 

}
 

void zap_O(float activation[])
 

for(int i = 0; i<output; i++)
 
activation [i+input+2*hidden_size] 0;
 

1* 
for(int m = 0; m<S; m++)
 
{cout«activation[m]«" ";}
 
cout«endl;
 
*1 

void reader ( ) 

int var, netsize;
 
cout«"EXEC ... "«endl;
 
int i=O, k=O;
 
net»netsize;
 
for(i=O; i<8; i++)
 
{net»var; }
 

II Now read all the nodes: 

for(i=O; i< (netsize*netsize); i++)
 
{
 

net»DNA[O] .locus[i];
 

1* 

The result of an actual run with a simple grammar and lexicon: 



On the left, the activation vector values are given.
 
On the right the goal (4 integers) followed by the emprically
 
derived probabilities are given.
 

0.716201 0.173128 1.01498 -1.58204 ;goal: 0 0 1 0 0 0 100 0 
-0.2566 2.05349 -0.806758 -0.538999 ;goal: 0 1 0 0 0 50 0 50 
-0.872261 -0.548271 1.83518 -0.683912 ;goal: 0 0 1 0 0 0 100 0 
0.415694 -0.682706 0.268519 2.12091 ;goal: 0 0 0 1 0 50 0 50 
-0.344395 -2.38433 1.98221 0.984567 ;goal: 0 0 1 0 0 0 100 0 
-0.65301 1.29327 -1.4838 -0.302755 ;goal: 1 0 0 0 20 40 0 40 
0.683539 0.286735 1.00589 -1.68528 ;goal: 0 0 0 1 0 0 0 100 
-0.810814 0.859668 1.81191 -1.76955 ;goal: 0 0 1 0 0 0 100 0 
-0.386184 2.50422 -0.842853 -0.94859 ;goal: 0 1 0 0 0 50 0 50 
-0.950282 -0.276894 1.81345 -0.93052 ;goal: 0 0 1 0 0 0 100 0 
0.368719 -0.519315 0.255435 1.97243 ;goal: 0 0 0 1 0 50 0 50 
-0.372678 -2.28595 1.97433 0.895171 ;goal: 0 0 1 0 0 0 100 0 
-0.670039 1.3525 -1.48855 -0.356579 ;goal: 0 1 0 0 20 40 0 40 
0.673286 0.322396 1.00303 -1.71769 ;goal: 0 0 1 0 0 0 100 0 
0.104003 0.401435 0.181701 1.13572 ;goal: 0 0 0 1 20 40 0 40 
0.786486 -0.0713404 1.03456 -1.35989 ;goal: 0 0 1 0 0 0 100 0 
-1.21436 3.24581 -1.64016 -2.07708 ;goal: 0 1 0 0 20 40 0 40 
0.345557 1.46233 0.911744 -2.75357 ;goal: 0 1 0 0 0 0 100 0 
-0.0933173 1.08777 0.126739 0.512031 ;goal: 0 1 0 0 0 0 100 0 

*/ 



Program used to derive empirical probabilities 



#include <stdlib.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <time.h> 
#include <math.h> 

II This is the program that takes a stream of words and calculates 
II the probabilities for different gram. categories to follow a word 

II Takes a maximum of 15 categories 
II Takes a maximum of 30 words 

of stream out ( "probs. txt" ) ; 
ifstream in("rawstream.txt"); 

int grammar, lexicon, words; 

struct word{ 
int own; 
int category[15]; 
float category-per[15]; 
int most; 
int least; 
int total; 

word[30] ; 

int current, next; II for word in stream 

int main () 

int temp; 

II Initialization: 

for(int i=O; i<30; i++) 
( 

word[i] .own = 0;
 
for(int k=O; k<15; k++)
 
{
 

word[i] .category[k] = 0; 
word[i] .category-per[k] 0.0; 

} 

word[i] .most = 0; 
word[i] .least 0; 
word [i] . total = 0; 

in» grammar » lexicon » words;
 
for(i=O; i<lexicon; i++)
 
{
 

in»temp;
 
in»word[temp] .own;
 



II Read the first word from the stream 
in»current; 
for(i=O; i«words-l); i++) 
( 

in»next;
 
word[current] .category[word[nextj .own]++;
 
word[current] .total++;
 
current = next;
 

II Now, for every word, calculate the probabilities 
for(i=O; i<lexicon; i++) 
( 

II For each gram. cat, calculate a % 
for(int k=O; k<grammar; k++) 
( 

word[i] . category-per[k] = float(word[i] .category[k])1 
float(word[i] .total); 

word[i] . category-per [k] *=100. 0; 
} 

II Now find least and most 

II Now output the results 

in.close() ;
 
in. open ( "raws tream. txt" ) ;
 
for(i=O; i<lexicon; i++)
 
( 

out«"Word "«i«": "«endl;
 
for(int k=O; k<grammar; k++)
 
( 

out«k«": "«word[i] . category-per [k] «endl; 

in.close() ;
 
out.close() ;
 
return 0;
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