Illinois Wesleyan University Digital Commons@ IWU

Complexes of Phosphine Ligands with the Main Transition Elements

Richard R. Clikeman '69
Illinois Wesleyan University

Recommended Citation

Clikeman '69, Richard R., "Complexes of Phosphine Ligands with the Main Transition Elements" (1969). Honors Projects. Paper 34.
http://digitalcommons.iwu.edu/chem_honproj/34

COMPLEXES OF PHOSPHINE LIGANDS WTRE THE MALN TBANSITEION ELEMENTS

By Bichard Ro Clikeman $/ / /$

Subitted for Fonors Wort
In the Department of Chemistry
T11.nows Wesheyan Univershty Bloomington. Ilitnoss 1969

Accepted by the Department of Chemistry of Illinois Wesleyan University in fulfilment of the requirement for departmental honors.

SECTION I: GERERAL DISCUSBION

In this ifst section, several general coments will be made with regard to the phosphorus atom end the varjeus 21 gands. While the first portion this paper deals in crends and oidservations on the various phosphine types, the second section is very specific. Part II outines some of the important complexes formed by reactions of the Ilgands with the maln transition metals. The tinal section is concerned whth only one 1.1 gand and one meta. It is a sumary of the research mhen Dro Ho W. Hess and I hove undertaken in an attempt to form some ohromitu coordination compounds wath 2,2 . bls(diphenylphosphine)ethene.

Phosphorus is the second group the element having a valence shell which as soolectronte with the valence shell of nitrogen. It has long been mown that mania, as well as many primary, secondary, and tertjary anines, acts as a licand foming conplexes with the man transtthon elemente. Tt then comes as no surprise to tind that the phosphonus sualogue of ammonia, phosphine, is anso a Higand.
 phomphorus 1 Igends. It appers that the order of

Imporbance, or at Iecst occurrence $1 s:$ texthary phosphne seondary phosphine> primary phosphine phosphine. It is probable that this treni is pantially due to the reatatve stabilities of the phosphine Iigands. The other rectors which enter in wil be discussed later.

The chemistry of both nitrogen and phosphorus Involves covalent bonding. The atoms of both elements possess Ione electron pairs and can act as Lewis bases in the forming of coordinate covalent bonds. One ing ask whether or not there $1 s$ any difference in the chemm istry of these two elements. The answer is that a dew finite difierence does exist. Since the principle quantum number of nitrogen 18 two, it only has s and p orbitals available to accommodate its own five eleem trons and to take part in bonding. This means that, arter it has used its three poorbitale in bonding with three substituent croups to form amines. $1 t$ can act only as a sigma-donor ligand. Phosphorus, howevers is not as limited as nitrogen, Its prineiple quantum number is three meaning that it has $3 s-3 p$. and 3 d . orbitals, The sen and poorbitals are filled similarly to those of nltrogen, allowing phosphines to act as SIgma-donore also. This still Ieeves phosphorus with pite unused deorbitals. These unpllied orbitals give the phosphomu IIgends added versetillty ginoe they are avallable to gecept bachebonding rrom metals and to
morease the owerall conjugation of complezes thereby mereasing the stobighty of the syater
fexthary phosphtnes seen to be by far the most prominent and numerous of phosphine ligends. The sube stituent groups which surround the phosphorus atom vary all the way from the completely saturated systems of the alkyls to the highly conjugated systems of the aryls. As is the case with most new discoveries, the finding that some phosphine compounds made good ligands initiated a fullmscale search for many other phosphine compounds. This was of course accomplished by playing the inductive effect against the conjugative effect by varying substrtuent groups, either from one phosphorus atom to another or on the same phosphorus atom. The imporitance of having one epect dominant over the other varies fron metal to metal. A strongly pi-bonding metal will tend to increese the importance of conjugation.

Tungsten, the heaviest of the group VIa main trene sition elements, will serve as a good illustration or the relatite mportance of inductance and conjugation effects in the dmblock elements having less than halfo flled deorbitals. Although the relative importance of pionad signembonding in determining metal-ingend strengths is stall not well established, the work of Angellot and Ingemanson with tungsten capbonst has greatly added to the undergtanding of such syst ems.

 ents a given amine and x represents a gyven phosphtaed The entre serfes of reactions was run first in toluene, and then in other solvents with Identical trends being noted for each. When any given phosphine Itgand, 1. was held constant and the amjue eroup was varied. the values or K Increased with annine group as follows: pmCH3OC6H4NHz<
 happens to be the oxdex of decreasing basicity Thas strongly tmplies that the strongest Amm bonds to $10(C 0) 5$ are formed by the strongest bane. It of course comes as no surprise that thjs would be true in the amine situation because an anine group has to rely entirely upon its Lone electron pelt to form the WonHzR bond which $1 s$ therefore strictly 2 gagma bond.

When the reverse was tried and Am was held constant While $\underset{\sim}{ }$ was wariedg the order of decreasing \mathbb{E} was this:

 this trenk as also the trend an decreasing bastefty of the phosphrnes th thevefore appears that stgme bonding ansbead op pabondine determpnes the tungetenmphosphtme bond strencth. Enthalpy and entropy calculations also
 What, howerer, The compexee (L) mfol 5 ase very savorable
to W-L slgma bonding. This is true because the carbonyl groups are good of acceptors and may be rendering the tungsten d-electrons unavallable for piobonding. Studies with tungsten complezes having less 7 -accepting ligancs may show that more dn dn bonding is possible. 2

The conclusion made in the above research does seem to be in line with what might logically be deduced. Phosphine ligends must have substantial dr odr interaction occurring within the phosphorus-metal bond before conjugation efrects at this bond become very important. When the metal is tungsten or any other metal wth a Low number of d-electrons, it is less likely that the electrons will be delocalized in the direction of the phosphorus atom to any great extent. Pi-bonding espects W11 thererore be minimized for phosphine complexes with metals having a low number of daelectrons.

Platinum lies in the sixth period tith tungsten. It will serve well as the opposite situation in which there are nine electrons in its doorbitais giving it an almost completely filled subshell. A study has been made of the platinum complexes of the type $\left(A_{n} P h_{n-3} P\right)_{2}=$ Ptc12. Nm studies of Pt-195 and P-31 coupling constants showed that the sigma-donor ability increases in the onder triethyl-\&tripropyl-\&trimotyl-phosphine. This twend $1 s$ In Ine with the fact that the electronpushing efrects of alky groups will increase as the
chain Length is hnoreased (for the tregt few oarbon atoms). Coupling constants were found to increase In the order trinluy- <aialuylohenyl- <alzyldiphenylphosphine showing that the pi-acceptor character of the phosphines increases as the number of phenyls increases. This may be thought of as an increasing delocalization of charge which is brought about by a $p \pi-d r-d \pi$ interaction along the carbonophosphorus-platinum bond.

These platinum complexes were obtained in both cisand transwplanar forms. There is an increased platinumphosphorus pi-bonding character in the cise with respect to the trans-complex. In the cis case, the platinum uses $d_{x z}$ and $d_{y z}$ orbitals along with the in-plane $d_{z y}$ piobonding orbital. In the trans case, the platinum can only use the $\mathrm{dxa}_{\mathrm{x}}$ orbital along with the in-plane orbital. According to this argument, the phosphorus atoms of the ais compounds have higher electron densities due to increased back piodonation from the platinum d-orbitals, 36

The platinux study leaves no doubt that conjugative ands therefore, pi-interactions play emtremely influential roles in the determination of platinum complexes with phosphnes. It should not be inferred from this dism oussion that sigram-bonding is no longer important where phosphine complexes with metals having nearly fulea d-shells are concerned. gigma-bonding remains important but sta relatite erect diminishes.

About as many ditertiary phosphines are mown as tertiary phosphines. The two phosphorue atoms may be Joined by many types of Inkage. They may be joined by saturated or unsaturated carbon chains. they may be ortho to one another on a phenyl ring, or they may be Joined by an ether type group. Many polydentate ligands are also mown in which other atoms or groups coordinate along with phosphorus. These are oxygen, sulfur, arsenic. selenium, acetylene, olerins, and other groups with coordinating properties similar to those of phosphorus.

Secondary phosphines, though they are not as impore tant as tertiary phosphines have a characteristic which allows them to form some complexes which tertlary phosphines will not form. In studies with complexes having the general Iomule $\mathrm{L}_{2} \mathrm{NLX}_{2}$ (where $X=h a l o g e n, ~ N C S$, or CN). It has been found that, when $I=t e r t i a r y ~ p h o s p h i n e s ~$ addition of excess phosphine to the complex results in a trisphosphine complex only if $\mathrm{X}=\mathrm{NCS}$ or CN . It has been determined that a strong field inducing Iigand Itre oyanide is necessary berore fiveccoordination will occur. Secondary phosphines, however, can form tris complexes with nickel and cobalt even when the anjon Is bromine or iodine. This higher stability of the tris compounds is attributed to the pact that the tertiary phosphines are much stronger beses therefore decreasing the positive charge on the metal and therefore the
tendency to coordinate a firth $11 g a n d$. 58
An example of a phosphine ligand type in which the phosphorus atom is not directly bonded to the methi is phosphine oxide. In the phosphine oxides coordinetion can take place only through the oxygen. An evaluation of some of the data on phosphine oxides 111 be valuable to the understanding of the nature of the pino bond. The $P=0$ stretching frequency decreases from the free 11 gand to the complex. This means that the force constant, $\mathrm{Ep}, \mathrm{mill}$ also decrease while the bond order Will increases.

Bonding in phosphine oxides involves a coordinate $\dot{p} \rightarrow 0^{-}$bond and some back-bonding $\bar{p} \leftrightarrow \overline{0}$ due to overlap of filled oxygen proorbitals with the appropriatecempty ar-orbitals of phosphorus. The back-bonding errect (1) probably great enough to cause the B-0 bond to be essentlally double bond. When complezetion occurs. there are three effects upon the $\mathrm{P}=0$ bond order. In the first. the oxygen atom being placed near the positive metal lon to which it may also form a covalent bond causes the $\vec{P} \rightarrow \overrightarrow{0}$ sigma-bond to be strengthened. This Would cause the force constant to increase. Secondy. $p r \rightarrow d r$ back-bonding will decrease at the same time. causing kpo to decrease. Thivd. when there are 10 w Qergy flled d-orbitais in the transition metal. the metal d $\|$-electrons may dript towerd the oxygen $p=0$-orbais.

This would displace the proxbitals toward the phos= phorus dr-orbitals and the rorce constant would incresse. Ilthough all or these errects are active to some extent. 1t appears that the second dominates since ppo decreases experimentally.

The natures of phosphine ligands and the metals to which they coordinate are so varied that no trend which has been mentioned holds for all cases. Section II will attempt to show what these variations are and why some of these occur.

SECPION II: SPECEIC IIGANDS

This section lists most of the ligand and complex types which are discussed in those articles which appear in the bibliography. Some of the entries state simply that a given ligand has yielded a particular complez with a given metal. while others relate further Infomation. Section II does not have to be read in its entrety to be understood. Fach entry is Pootnoted so that, if further ineormation is desired on any tople. the associated rererence can be quickly found. It should be made Clear. however, that this section does not contain every phosphine complex or complex type that has been made.

PART A: MONODENTATE MONOPHOSPHINES

PH, phosphine: Phosphine has the electron dot Sormula:

It hes been shown that the P-H bonds mainly involve pe orbitals while the unshared electron pair occupies the sorbita principaliz. 72 Phosphine corms complexes with nlckel cambonyl.

P(Ph) 3 , triphenylphosphine:
TI(IV): Triphenyl phosphine resots with titanium tetrachloride resulting in a compound which was not
characterized since it is extremely sensitive to moisture. It 18 assumed. however, to have octahedral coordingtion and be animolecular. non-1onic complex 15

Fe(II): Coordination compounds of the type FeX2$\left(P(P h)_{3}\right) 2$ have been prepared where $X=C I . B r$, ox I. Pmr studies show thet the bromine complez has a Pseudotatrahedral structure, honever dimeric species arecdiscussed by Neldin 40.56

Co(II): This terthary IIgand forms tetrahedral complexes. $\operatorname{co}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2}$, where $\mathrm{X}=\mathrm{Br}$ or I. 24.70

Ni (II): The form, $\mathrm{NH}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, 15 general for complexes in which $X=C 1, B r, I, N C S$, nd NO3. Where $\mathrm{X}=\mathrm{ha}$ logen, the complezes have been shown to be totrahedral by K-Tay studies and dipole moment measurements. The X=MCS complex is thought to be transmplanar because of Its lon dupole moment and diamagnetism. These configura= thons can be explained as a combination or steric and electronic erfects. The pield-inducing errect of the hailde and triphenylphosphine Ilgands is too low to form square-planar, diamagnetic compounds and the size os thep bulky triphenylphosphine prevents polymerization of the complexes to form octahedral species. The thiocyanato= group is a gtrong field IIgand, on the other hand. which makes the square-planar form desimable, $64,68,70$

The pseveompentacoordinated complex $\left(m-C_{5} \mathrm{H}_{5}\right) N$ (PPhz)Ph wes recentiy prepared and studied by X may teohniques. The nickel is bound to one molecule of trie phenyl phosphine. one molecule of cophenyl, and one molecule
of the π-oyclopentadienyl Ligand which is romally a tridentate. 19

Rh(I): The comples (RhCl(PRh3)3) has activity as a homogeneons hydrogenation catalyst. 20
$\operatorname{Pd}(I I): \quad\left(P d X(C O)\left(P P h_{3}\right)_{2}\right)^{+},\left(P d X\left(P h_{3}\right)_{3}\right)^{+} \cdot \operatorname{PaX}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$. and. $\left(P d H\left(P h_{3} P\right)_{3}\right)\left(B P h_{4}\right)$ have all been synthesized for $X=C 1$. Er. and I. They are plenar complexes. 20

Pd(0): The complex $\left(\operatorname{Pd}\left(\mathrm{PhP}\left(0-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{PE} \mathrm{t}_{2}\right) 2\right)(\mathrm{PPh} 3)\right.$ has been characterized. ${ }^{14}$

W(0). Au(I): PPh has been studied in the phose phinemanine equilibrium: (Am)W(CO) ${ }_{5}+P h_{3}=\left(P P h_{3} W W(C O)_{5}\right.$ + mo 2 The layered structure of another tungsten complex. tricarbonyl-oyclopentadienyltungstiotriphenylphosphine gold. has been deduced by X-ray studies. 59

Os(0): Crystallographic investigations prove that Os(CO) $)_{3}\left(P M_{3}\right)_{2}$ is trigonal bipyramidal with the carbonyl groups in the molecular plane. 45

IT(I): Trans-(TrCI(CO)(PPn3) $)_{2}$ Inds use as a homogeneons hydrogenation catalyst and in oxidative add1tion reactions. 20

Pt(II): Platinum carbonyls, tetraphenyl borate salts. and halogen complexes containing triphenylphosphine are knomn. 20.21

P(Me) 3 , trimethylphosphine:
Mo(0): Trimethyl phosphine reacts with dibenzene molybdenum under nitrogen to form a yellon coordination compound too unstable to be characterised. 17

LT(ITI): Dotohedral. slxmoordmate complexes ame

 The phosphines occupy trans posttions. 26
(EtaN)PP2, diethylaminodifluorophosphine:
$\mathrm{N}(0)$: The complexes of $\mathrm{Ni}(0)$ with diethylaminodifluorphosphine are four coordinated. This IIgand elther occupies all iour positions or fust two, the other two being held by carbon monoxide. ${ }^{61}$
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{PGl}, 2$-chlorom 13,2 menzodioxaphosphole:
Wi(0): This monodentate tetracoordinates with nickel(0). Nrar studies of the complex formed are compared With studies of the $\left(E_{2} \mathbb{N}\right) P P_{2}$ complezes to show that, during complexation, the chlorine substituents cause a greater hyioridization of phosphorus orbitals than do fuorlne substituents. 61
(paTOL) $3^{p}, \operatorname{sra}-\mathrm{potolyl}$ phosphine:
Pe(TI): The complex. $\mathrm{Pe}\left((\mathrm{poTol}) 3^{\mathrm{P})} 2^{\mathrm{Br}} 2\right.$ was prem pared and its kinetics of ligand exchange studied by sot.pic pma. The compound has a pseudomtetrahedral com ordination. Second order kinetics were obtajned for the LIgand exchange indicating an associative mechenism having a itwacoordinate trensition state. other dinalobise (try opetolylphosphine) iron(TI) complexes were also comed. It has been tound that the lability trend of this Ifgand 4 manny due to an enthalpy of activetion epect and 1s in the order: Pe> Mi> Co. 40
 where X mbre or T, have been tomed and found to be tetrem hedral compounds in which the cobalt is in a spin quartet. 70
 Bre, I. are paramagnetio and have been given pseudotetrahedral structures in the solid state. If $\mathrm{X}=\mathrm{SCM}$. the complezes are diamagnetic and probably planar. spece tral studies have shown that in benzene solution the chloro- and bromo compounds have small amounts of diam magnetic forms. the dipole moments of the compounds increase in the order: $X=C 1<B r<I$. This trend is attri.e buted to the expansion of the PNIX bond angles. 65

REtCy, dieyclohexylethylphosphine:
Wi(II): The complezes of this ligand are of the type trans $\left(\mathbb{M}\left(\text { PECCy }_{2}\right)_{2} X_{2}\right)$, where $X=C 1$. Br, or MCS. 58

PEt, Cy, cyclohexyldiethylphosphine:
Ni(II): The complexes formed by this Ilgand are very analogous to those of dicyelohexylethylphosphine as might be expected. Squaremplanar coordination compounds, $\left(\mathrm{ML}\left(\mathrm{PE}_{2} \mathrm{CY}\right)_{2} \mathrm{~K}_{2}\right)$, where $\mathrm{X}=\mathrm{Cl}$, Br , or NCS are formed. ${ }^{58}$

PEtPh ${ }_{2}$ diphenylethylphosphine:
Cofil): Seable cris-phosphine, cyano compounds were obtaned in the presence or excess phosphine the equila
 the magnetic moment (2.0 BM) obtained (or this compound

Is typion 1 of Prewcomdnate lownspin co(II) compleres. It has been tound that. it this sttuation, coftr) seens to have a greater tendeney to Svewcoordinate than MI (II). This conelustion is based upon the fact that a strong ligand such as cN is required before Mi(II) will Pivecoordinate. whereas a weaker ligand NCS will accomplish the same thing with Co(II).?
M(II): The square planar complex (Ni(PEtPh2) CN_{2}) reacts with another mole of diphenylethylphosphine in solution to give a stable five-coordinated intermediate as shown by Visible spectra. This intermediate is probably trigonal bipyramidal since the two phosphine ligands are trans in both cases. The reactions are different for different anions and the stable intermediate is not formed. The CN seems to inhance the metalophosphine bond. The fivee coordination is not noted either with merely siemandonating ligands inse amines. It seems to taire a π-donor $11 \pi e$ phosphine along with a possible bacl donation by the nete. 58

Complexes of the type $\left(\mathrm{Nix}_{2}\left(\mathrm{PEtPh}_{2}\right)_{2}\right)$, where $\mathrm{X}=\mathrm{Cl}$ Br, and $I_{\text {, were }}$ prepared and studied by X-ray and other bechniques. The chlorlde alone was diamagnetic in the sole state while the bromide and lodide were paramanetic hating, by analogy with triphenylphosphine oomplezes, the tetrahedral structures In solution, they axe similax to
 merio with high dipole moments and similar spectra.

Therefore even $\left(\mathrm{NiCl}_{2}\left(\mathrm{PEtPh}_{2}\right)_{2}\right)$ seems to form some paramagnetio species in solution. The equilibrium between isomers is effected by experimental conditions.

These results lead to the assumption that, in solum tion. $\left(\mathrm{MN}_{2}\left(\mathrm{PEtPh}_{2}\right)_{2}\right)$ exista as an equilibrium lixture of square-planar and tetrahedral isomers. The 1somers of $\left(\mathrm{NHBr}_{2}\left(\mathrm{PE}_{\mathrm{H}} \mathrm{Ph}_{2}\right)_{2}\right)$ were the first examples of square-planar. tetrahedral isomerism in complexes of Ni(II) or any metal. 38
PMePh_{2}, diphenylmethylphosphine:
Pt (II): The coordination compound $\left(\mathrm{PMePh}_{2}\right)_{2} \mathrm{PtCl}_{2}$. exists in both cise and trans-planar 1somers. The Pt-195 and P-31 coupling constants are always greater for the cis compound. The phosphorus chemical shift for the cis compound is upifeld from the trans compound. There is an Increased $\mathrm{Pb}=\mathrm{P} \boldsymbol{\pi}$-bonding character in the cis- with respect to the trans-isomer. In the cis case. the Pt uses $d_{x z}$ and $d_{y z}$ orbitals along with the in-plane d mebonding orbital. In the trans case, the Pt can oniy use the dxe orbital along with the in-plane orbital. According to this argument, the phosphorus atoms of the cis compounds have higher electron densities due to increased backdonation rrom the platinum deorbitals. This compound also dimerizes through chlorinemridging to give the com ordination compound, $\left(\mathrm{MePh}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2} \mathrm{Cl}_{4}\right.$. The trisphosphine complex can be prepared by adding excess phosphine. This was proven by conductivity and P-31 nmr measurements and isolation of $\left(\left(\mathrm{MPR}_{2} \mathrm{P}\right)_{3} \mathrm{PtCI}\right) \mathrm{CI}{ }^{36}$

Diphenymethy phosphino also combines with platimus In complezes containing the ingands. podithocunate and 3,4.5-trimethozyithiobenzoate. Since both are bidentate 14gands, they fom square pyramidal complezes with the single molecule of diphenylmethyl phosphine occupying a position above the plane of the two chelate rings of the other licand. Prir studies have shown that exchange occurs for the PMePh_{2} Ifgand at room temperature even when there is no excess ligand present. 32
$P\left(C_{3} \mathrm{H}_{7}\right) \mathrm{Ph}_{2}$, diphenylpropylphosphine:
Ni(II): This ligand forms complexes of the type $\left(\mathrm{NaX}_{2}\left(\mathrm{P}^{\left.\left.\left(\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{Ph}\right)_{2}\right)}\right)_{2}\right.$ where $\mathrm{X}=\mathrm{CI}, \mathrm{Br}$, or I . These compounds are tetrahedral in solid state and monomeric with high dipole moments in solution. In solution, the constitute Curther examples of square-mplanarmtetrahedral geometrical isomerism. Both forms have been isolated for (NiBr2$\left.\left(P\left(C_{3} \mathrm{Fr}_{7}\right) \mathrm{Ph}\right)_{2}\right)$ when the propyl group is in both iso and nomnal Poms. 38

Pt(II): Cls and trans-planar complexes of platinum having the roxmula, ($\left.\mathrm{P}\left(\mathrm{C}_{3} \mathrm{H} \mathrm{H}_{7}\right) \mathrm{Ph}_{2}\right)_{2} \mathrm{PtCl}_{2}$ are formed. The cis compound has a higher electron density along the Ptop bonde the complem will also add another molecule of the 1 gand to rom the trisphosphine complex as shown by
 briaged almer $\left(\left(6_{3} \mathrm{Hq}_{7}\right) \mathrm{Ph}_{2}\right)_{2} \mathrm{Pt}_{2} \mathrm{CH}$ is also formed. 36

MKeqkh. dmethympheny phosphine:
It(IIT): Detahedral, shxocordinated complezes ate formed having the romulae (TrLu(PMer Ph) $)_{2}$. where $L=C L_{\text {, }}$ Co, COOR. COOH H_{0} or combinations thereof. The phosphines occupy trans positions. 26
I.

I

Pt(II): Cis- and Trans-planar bisphosphine compounds are romed with chloride acting as the ot her ligand. The trisphosphine compound is also formed with one of the two chloride ions in the coordination sphere, the chlorines bridged dimer, $\left(\mathrm{Ph}_{2} \mathrm{MeF}\right)_{2} \mathrm{Pt}_{2} \mathrm{Cl}_{4}$, also has been cheracterized. 36

P($\left.3_{3} \mathrm{H}_{7}\right)_{2} \mathrm{~Pa}$ dipropylphenylphosphine:
Pt(II): Lise other lisands of its type dipropyle phenylphosphine forms compounds cis and trans- $\left(\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{PhP}\right)_{2}$ Ptol2 and the trisphosphine. The chloridembridged dimer has also been Isolated. 36
FBuPh_{2}, butyldiphenylphosphine:
MI (IT): Complexes of the type $\left(\mathrm{Ph}_{2} \mathrm{BuP}\right)_{2} \mathrm{NH}_{2}$, where $X=6 I$. Br. and $I_{\text {, are pamagnetio and tetrahedreg in the }}$ solid atate and an equilibrium mixture of paranagetic tetrahedrat and diamagnetic aquaremplanar specastint benzene solut ton 38,67

Pb(IX): OLSm and transw isomers extst for the omplet (PhBuP) PFOH_{2}. Addtion of excess phosphine leads to the trisphosphine, uni manvalent electrolyte. ($\left(\mathrm{Ph}_{2} \mathrm{BuP}\right)_{3}$ PCl $) \mathrm{ch}$. The ohlorinempidged diner also forms 36
PBu_{3}, tributylphosphine:
CI(III): The 11 gand reacts with anhydrous CrCl_{3} in bencene and toluene forming non-electrolytic, binuclear complexes of composition $\left(\left(\mathrm{Bu}_{3} \mathrm{~F}\right)_{2} \mathrm{CrCl}_{3}\right)_{2}$ and structure: ${ }^{47}$

Mn: Tributylphosphine acts as a Iigand in the peculiar complez, bis(tetracarbonyl(tributylphosphine)mangenese) o mereury, containing a metalmetal-metal bond. The tolloning stmuture possessing a distorted D_{4} posnt symmetry was deduced irom infrared spectral studies: $5^{\circ \%}$

Co(TI): The complex Co(PBu$)_{3}\left(\mathrm{CN}_{2}\right.$ is stable in soluthon In phe presence or excess phosphine but has not Ben Esolated This Is anothex exampe in wheh the twem coordnetion in Co(TT) 3 s controlled by the anton. 7
 Abxtum whth dre besphosphine. pourmcoordenated counterm part 2n ethanol. This ravemcoordnation 1 s controlied by the "strong anton $\mathrm{CN}^{\mathrm{co}}$ (ow also NCs ${ }^{\infty}$). ${ }^{37}$

W(0): The 11gand replaces amine groups on tungsten carbonyl to fomm (Bu_{3} P)W)CO) $5^{\circ}{ }^{2}$

Pt(0): The cis and trans-planar isomers of $\left(B u_{3} P\right)_{2}$ PtOH_{2} rom and can react with excess phosphine to give the Exisphosphine $\left.\left(\mathrm{Bu}_{3} \mathrm{P}\right)_{3} \mathrm{PtC1}\right) \mathrm{C1} .36$

P($\left.C_{3} H_{7}\right)$ 3 trip propylphosphine:
Co(II): This ligand roms Co(II) compleres having this equilibrium in solution: $\left.\operatorname{Co(PPr})_{3}(C N)_{2} \rightarrow \operatorname{Co}^{(P P r}\right)_{2-}$ $(\mathrm{CN})_{2}+\mathrm{PPr}_{3}{ }^{\circ}$. The trisphosphine compound has not been isom Lated.?

Pt(IT): The cisa and trans- isomers of the squarem planes $\left(\mathrm{Pr}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}$ have been made and the trisphosphine compler $\left.\left(P_{3} P\right) y^{p+c l}\right)\left(1\right.$ exists in solution. ${ }^{36}$

PGy, tricycloherylphosphine:
$\operatorname{Cr}(I I):$ Tricyclohexylphosphine reacts mthecral and CrBre forming coordination compounds of the form $\left(\mathrm{CrX}_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right)$. These complexes are unstable and dissoctate phosphine to form compler salts whlch are probably polym mexse ${ }^{47}$

Cr(TIT: The binuelear chlorinembidged diner of pormula $\left(\left(\mathrm{Cy}_{3}\right)_{2} \mathrm{CrCL}_{3}\right)_{2}$ hos been ohareoterzed along with the monomer CrBx_{3} 2PCys 4 ?

Co(II): The spin-rree, tetrahedral complex. Co(PCy) has been studied, ${ }^{24}$
$W(0):$ The complex $\left(\mathrm{Cy}_{3} \mathrm{P}\right) W(\mathrm{CO})_{5}$ has been studied. It was determined that sigma-bonding is responsible for the strength of the $W-P$ bond instead of pi-bonding. ${ }^{2}$
$\mathrm{PBu}_{2} \mathrm{Ph}$, dibutylphenylphosphine:
NII (II): The compounds of type $\left(\mathrm{PhBu}_{2} \mathrm{P}\right)_{2} \mathrm{NIX}_{2}$, where $X=C 1, B r$. or I, are trans-planar and diamagnetic. 67
$\left(\mathrm{Cl} \cdot \mathrm{CH}_{2}\right) 3^{\mathrm{P}}$, trisehloromethylphosphine:
WI(II): This ligand has substituent groups on the phosphorus which are slightly more electronegative than a phenyl group would be but has no pi-bonding. It was there fore a good ligand to be complexe with Mi (II) to form $\left(\left(\mathrm{Cl} \cdot \mathrm{CH}_{2}\right) 3^{\mathrm{P}}\right)_{2} \mathrm{NIX}_{2}$, where $\mathrm{X}=\mathrm{CI}$, Br, and I, in a study of the relative importances or inductance and resonance effects in substituent groups. 6 ?
(p-Anis) $3 P_{2}$ tri-p-methoxyphenylphosphine:
NII(II): Complexes of the type ($\mathrm{p}-\mathrm{Anis})_{3} \mathrm{P}_{2}{ }_{2} \mathrm{NX}_{2}$. where $X=C 1, B r$, and I, are paramagnetic and have been given a pseudo-tetrahedral structure in the solld state. When $X=\mathrm{NCS}$, the complex is probably planar and diamagnetic. Benzene solutions of the chloro- and bromo- complexes have gmail amounts of diamagnetic species in equilibrium with paramagnetic species. Dipole moments increase in the order $\mathrm{X}=C 1<\mathrm{Br}<I$ and is attributed to $P=\mathrm{Ni}-\mathrm{X}$ bond angle expansion. ${ }^{65}$
($\mathrm{Ph} \cdot \mathrm{CH}_{2}$) SP^{P}, tribenzylphosphine:
 where $\mathrm{X}=\mathrm{Cl}$. Br, I, sud WCS, were comparable to trialtylphos. phines and dimmbutylphenglphosphine for these halogeno. and thiocyanato complexes. They are monomerio and diamagnetio. They are essentially trans-planar both in solu tion and solid state. Small amounts of cise isomer may De present.) This was proven by a comparison of reflecte ance spectra of the solid to absorption spectra of the 11quid. ${ }^{66}$
$\left(\mathrm{Ph}^{\circ} \cdot \mathrm{CH}_{2}\right)_{2} \mathrm{PPh}$, dibenzyl phenylphosphine:
N1(II): This ligand forms compounds or the type $\left(\left(\mathrm{Ph}_{\mathrm{CH}}^{2}\right)_{2} \mathrm{PPh}\right)_{2} \mathrm{NI}_{2}$, where $\mathrm{X}=\mathrm{Cl}_{1}, \mathrm{Br}, \mathrm{I}_{0}$ and $\mathbb{N C S}$, which are exactly anzlogous to those formed by another member of its family, tribenzylphosphine ${ }^{66}$
$\left(\mathrm{Ph}_{\mathrm{CH}}^{2}\right) \mathrm{PPh} \mathrm{Z}_{2}$, bearyldi phenylphosphine:
MI(II): Compounds of the formula ($\left.\left(\mathrm{Ph} \cdot \mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right)_{2} \mathrm{KXX}_{2}$. Where $X=C 2, B r, ~ I, ~ a n d ~ N C S, ~ w e r e ~ i s o l a t e d, ~ T h e ~ h a l o g e n o-~$ complexes can be isolated in both the paramagnetre and diamagnetic isomeric torms. These are interchangeable upon heating or variation of solvent. The thiocyanato complex 13 of the diamagnette torm. The paramagnettc Lorns prom bably contain small amounts of danagnetic 1 somer as is deduced from slightly low magnetio susceptoblitses along whthrealectance spectre Paramgnetzo ssomers are tetram hedral (analogons to complexes of triphenylphosphine). white
diamanctio torms are transmplanar in the solta state fanm alogous to twialyiphosphine complezes). Fow bensene solum thons of the para-diamanetio equilibria, the relative pere centage of paranagnetie teoner increases in the order $01<$ BreI. The equilbria are rapid. 66
$\mathrm{CH}_{2}: \mathrm{CH}^{\circ} \cdot \mathrm{CH}_{2} \cdot \mathrm{PPh}_{2}$, allyldiphenylphosphine:
$\mathrm{NI}\left(\right.$ II): The coordination compounds $\left(\mathrm{CH}_{2}: \mathrm{CH}^{\circ} \mathrm{CH}_{2} \circ \mathrm{PPh}_{2}\right)_{2}{ }^{-\prime}$ HiX_{2}, where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, andI, were studied. Isomeric solids were diamagnetic only, The para-diamagnetic equilibrium exists in solution in the order of increasing paramagnetic form C1<Br<x. ${ }^{66}$

P(1-Pr)Ph2, diphenylisopropylphosphine:
Ni (II): Complezes ($\left.(1-\mathrm{Pr}) \mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{Ni}_{2}$, where $\mathrm{X}=\mathrm{CI}$, Br. I, exhibit square-planar-tetrahedral isomerism. Por $\mathrm{X}=\mathrm{Br}$; both forms have been isolated in the solid state. 66
(motol) 3^{P}. trin-intolyl-phosphine:
Co(II): The complezes of form ($\left.(\text { m-Tol })_{3} \mathrm{P}\right)_{2} \mathrm{Com}$
H_{2}, where $\mathrm{X}=\mathrm{Br}$ or I_{a} are tetrahedral with cobalt in a spin quartet. ${ }^{70}$

Wif(II): The nickel compounds are analogous to the cobalt complexes except that the nickel is in a spin triplet. ${ }^{70}$

Phepr, diphenylphosphine:
Co(TI): Duphenylphomphine wnites with CoBry to form three dureerent compounds. The first 1 the dep

 unhomivalent electrolyte having a tetrahearal conflo guration. The third is $\left(\left(\mathrm{Ph}_{2} \mathrm{PH}\right)_{4} \mathrm{CoBr}\right)_{2} \mathrm{Br}$. This comples is a uni-divalent electrolyte having the bronineobridged structure: ${ }^{50}$

WI(II): The ligand reacts with $\mathbb{N i}-\mathrm{Br}_{2}$ in the following manner: $\mathrm{HIBr}_{2}+4 \mathrm{Ph}_{2} \mathrm{PA} \quad\left(\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{Ni}\left(\mathrm{HPPh}_{2}\right)_{2}\right)+2 \mathrm{HBr}$ 。 The complex is squaremplanar. ${ }^{50}$
$\mathrm{Cu}(\mathrm{I})$: Copper (I) halides of the following struetures have been btained: $\left(\mathrm{Ph}_{2} \mathrm{PHCu} \cdot \mathrm{X}\right)_{4},\left(\left(\mathrm{Ph}_{2} \mathrm{PH}\right)_{2} \mathrm{Cu} \mathrm{Cu}_{2}\right.$. $\left(\mathrm{PH}_{2} \mathrm{PH}\right)_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}$, and $\left(\mathrm{Ph}_{2} \mathrm{PH}\right)_{3} \mathrm{Cu} \cdot \mathrm{X}_{0} \mathrm{I}_{2} 50$
$\mathrm{Pd}(\mathrm{II}):$ Reactions of the ligand with PdCl_{2} result
In the chlorine bridged diner: 50

$\mathrm{P}\left(\mathrm{OCH} \mathrm{C}_{2}\right)_{3} \mathrm{CC}_{2} \mathrm{H}_{5}{ }^{\circ}$
W(0): This ligand forms complexes of the foxm
(11gand) (co) 5 with tunsten carbonyl. ${ }^{2}$
$\mathrm{P}\left(\mathrm{SCH}_{2}\right)_{3} \mathrm{COH}_{3}{ }^{\text {: }}$
T(O): This ligand displaces an anine group trom

P(0wn-Bu)g, traterz-butoxphosphtne:
W(0): This Ligand, along whe others mentioned here, vas used to displace an anine group of a tungsten cerbonyl to fown (11gand) (co) 5 . This was done as part of an equilibrium study designed to determine the type of bonding in the W oo P bond. It is mostly sigmstype bonding since the value of the equijbrium constant for the various phosphine ligands tried werepnajrect proportion to the basicities of those ligands. ${ }^{2}$

P(OPh) 3, tro phenoxyphosphine:
Mn: This Ifgand, like tributylphosphine, whose Mn-complez structure has previously been show, forms the complex bis tetracarbonyl (trjphenoxyphosphine)manganese)mercury containing a $\mathrm{Mn} \sim \mathrm{Hg}-\mathrm{Mn}$ bond. 57

U(O): The complex ($\left.\mathrm{P}(\mathrm{OPh})_{3}\right) W(\mathrm{CO})_{5}$ was prepared and used in the study of the GmP bond. ${ }^{2}$
$P(P h)(C \equiv C=C H 3) 2$, bis(1-propynyl)phenylphosphine:
Rh(I): This ligand reacts with the rhodiun dicarm
 This complex is an undissociated monomer in solution and 1 sa seuareplanar solid. Infrared spectra have shown that the triple bond doek not coordinate shnce the carbonarbon muttrple bond stretching frequenctes are the same for the complex as for the rree 1igand. 55

P(C10 Fge) 3. tris(cerrocenyl) phosphine:
Bh(I): The flrst transition metal complex of this unusual ligand was recentiy prepared. It is $\operatorname{Rh}(C O)=$ C1 ($\left.\left.C_{10} \mathrm{H}_{\mathrm{g}}\right)_{3}\right)_{2}$. The Intrared spectrum of this compound does not show the expected RhoCl stretching frequency but it is believed possible that the ferrocenyl groups are arranged in such a manner as to suppress it. 55

Ph $\mathrm{PC=CHPh}, \theta$-styryldiphenylphosphine:
Bh(I): This llgand Corms the square-planer complex Bh(co)cl(1igand) 2 for both its cis- and trans- forms. Attempts at coordinating the double bond have been Inconclusive. 55

SiH3PH2 monosilylphosphine: $\left(\mathrm{SiH}_{3}\right)_{2} \mathrm{PH}_{2}$ disilylphosphine: (siH3) 3^{P}. trisilylphosphine: Although no complexes have been formed as jet using these compounds as ligands. 1t seems probable that they vill find such a use in the near future. 31,34

PE\&; triethylphosphine:
TI(IV): The Iigand reacts with Ticlu to give an unstable compound which could not be characterized. It is assumed to have octahedral coordination. 15

Cr(IT): CrCl_{2} and CrBr_{2} react to form $\left(\mathrm{CrX}_{2}\left(\mathrm{PE} \mathrm{t}_{3}\right)_{2}\right)$ which may be polymersc. 47

Cri(IXI) Anhydrons CxCl3 reacts whth the Heand to form the chlormembridged diner ($\left.\left(\mathrm{E}_{3} \mathrm{P}_{2}\right)_{2} \mathrm{CrCl}_{3}\right)_{2}{ }^{\circ}$
 $(\mathrm{CN})_{2} \mathrm{f} \mathrm{CO}\left(\mathrm{PE} \mathrm{H}_{3}\right)_{2}(\mathrm{CN})_{2}$ exists for the eyano complex of $\bar{\square}$ this ligand with cobalt. The complex (Go(mesityl)2 $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right)$ has also been studied. 16

NI(II): The complezes of type NiK_{2} (ligand) 2 has been prepared and are square-planar when $\bar{X}=$ halogen. The complex in which $X=C N$ exhibits a four-coordinete-five-coordinate equilibrium with its trisphosphine counterpart. 37.64

Ni(III): Dipole moment measurements confirm the structure of ($\mathrm{NiBr}_{3}\left(\mathrm{PEt}_{3}\right)_{2}$) to be square pyramidal with the two phosphines trans to each other and one bromide at the apex. 5 ?

Pd(II): Triethyiphosphine forms the cations $\left(\operatorname{Pax}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right)^{\text {thd }}\left(\mathrm{PdX}\left(\mathrm{Et}_{3} \mathrm{P}\right)_{3}\right)^{t}$, where $\mathrm{K}=\mathrm{Cl}, \mathrm{Br}$, Ip or H. It also forms tetraphenyl borate and tetra T1uoroborates. 20

Pt(II): The complexes of the ligand with platinum are similar to those of palladium. 20,21
$\mathrm{PEt}_{2} \mathrm{Ph}$, diethylphenyl phosphine:
Fe(TI): The reactions of Grignard reagent or lithium compound of a complex containing thss ligand are:
 where Remest tyl, 2 moiphenyl., 2methyl-a maphthyi and
pentachlorophengl. 16
Co(TI): (CoBre(PEt2Ph)2) undergoes reaotions with organometallie reagents which are analogous to those for the lron (II) complex mentioned above. 16 The trisphosphine, Co(PEti2 Ph$)_{3}(\mathrm{CN})_{2}$ has been isolated. It has a megnetic moment of 2.OBM mhich is typlcal of fivew coordinated Lowmspin co(II) complexes.?

ME(II): Cordination compounds with formula Wi(FRt, $\mathrm{PPh}_{2} \mathrm{~K}_{2}$ where $\mathrm{X}=\mathrm{NCO}$ and CN, Pomm and the cyano complex form the trisphosphine complex in solution with excess phosphine. This five-coordinated intermediate Is probably triegonal bipyramidal since the original two phosphines are trans in both eases. 58

Ru(II): The triclinic crystals of trios-chloroo heranss(diethylphenylphosphine)dirutheniun(II)trichlorem cris(diethylphenylphosphine)ruthenate(II) are shown by Xerey to contan units having two atoms of approximately octahedrally coordinated ruthenium bridged by three enlorine atoms. 60

PARTB: DIPHOSPHINES THICH ARE TOT JOINED BY AN AROMATTC RTNG (AND RELATED POLYDENTATES)

EtRPGZHSEt, 2mdethylphosphinoethyt othyt sutides
Wh(TT): Thes Ifgand scts as a bidentate in simost s11 complexes of the form Ni (14gend) X_{2}. where $\mathrm{X}=\mathrm{Bx}$. T, CI, NCS, and CIOL or combinations of these Most
of these conplexes are 5-coordinated mith square pyramdal configurations. The thiocyanato complex, however, appetres as two 4 somers, which appear to be a diamagnetlo, fourcoordinated. square-planar species in which the Iigand 18 a monodentate bonding at phosphorus:

and a paramagnetic, octahedral, six-coordinated species in which the ligan is a bidentate:

The second isomer shows tetrahedral distortions from the regular O_{h} symetry. 53
$\mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{PE}_{2}\right)_{2}, 1,2-\mathrm{bis}(\mathrm{atethyl}$ phosphino) ethane:
TI (IV): TACI4Teacts with this ligand to form a presuably octahedrally coordinated complex too sensutuve to nolsture to be characterized. 15
co(II): $\operatorname{co(11gand})_{2} I_{2}$ has one unpaired electron and is uni-univalent in nitrobenzene, $T t$ is, thererore. probably five-coordinated in solution and octahedral In thetsolid stote. 3
co(IIT): Co(ligand) $X_{2} X_{2}$, where $X=C 1$, Br, and I_{2} are all unfwntwaiont in nitrobencene. They are all ditagnetio or sheghty paramagnetio indicating octohedral conflgurstion, all electrons being pared. the halogen
stoms ray ocoupy the trana positions. 3
N2(0): Nackel oarbonyl cem be substatuted by onzy

MI (TI): Neten(TI) compounds nvolving this 1 gand are squaremplanar and diamacnetio. 3

NI(II): NI(IIgand)Bre is an octahedral, polymerie solid. 3
$P d(I T): P d\left(I I_{\text {gand }}\right) C l_{2}$ is a monomer. 3
$\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Ag}(I):$ These metal cations form compzexes Which are conducting in nitrobenzene. They are fourm coordinated. 3

Au(I): Gold differs from the other coinage metals In that it is reluctant to attain four-coordination. Instead, it forms the innear. two-coordinated dimer TAu(IIgend)Aul. Ihis complex can be oxidized to give
 4-coordinated gold atoms. 3

$$
\mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{PM}_{2}\right)_{2}, I_{1} 2 \mathrm{mis}(\text { dimethylphosphino) ethane: }
$$

Tertiary phosphines can stablize lownolent
beanse of their capacity to form r mbonds to transtion metals. of the first trangition series. only titantur(o) and manganege(0) falled to form complexes which were thematiy stable. culo) gave Inoefintte results. The aomplexes were prepered by reduction in mup with sodtum naphthatentde the compounds ase thermally stable but Trery sensetive to asp oxidation 18

TI(TV): The complex of Tycti wth this Ilgand 1 extrenely sensitive to moisture but it probably has an ootahedral coordnation 15
 type (metal(11gand) 3) are octahedral, d^{6}-complexes. Oxidation in air is fast and in the order $V>C r>m o y$ W. 17,18

Fe(0): The fourmcoordinated, d8-iron (0) complex. 1s diamognetio and planar. There may be some metal-metal Interactions since the complex is a harder, higher melter than the compesponding spectes of $60(0)$ and $31(0) .18$
$C o(0):(\operatorname{Co}(1$ Igand) $)$ is tetrahedral since it
Is isomorphous with the corresponding nickel compler. 18
N1 (0). Ni(II), Pd(O), Pd(II): The Ilgend gives themally stable, airsensitive, fourecoordinated compounds by peduetion or the corresponing Ni (II) and Pd(II) compleses with NaBH_{4}, 4
 (aphenylphosphino)ethane, is inactive toward hydrogen and carbon monoxide under ambient conditions. the analogue with 7,2 bis (amethylphosphino)ethane as peactive due to the fact that $1 t$ ls less electronegative than dpe. thereby giving the metal atom a higher electron denstity and encoureging oxidetion the analogue reacts with hydrogen helldes to form addutional sompounds. 1

Pu(TT): os(TT): Complexes of this 2 gand mith these two catione were the pret examples of conplexes
hating both an organto group end a hrarogen abon btrachec by stgmambonds to the motal. Formulae are of the types chse(MR2(13gand) $)$ and cts- and transa (MRR(11gand)2).

$C_{2} 44\left(P_{2}\right)_{2}, 1,2$ mis(dipenylphosphino)ethane(=dpe):
Gx: Dpe would not completely replace CO groups In ohromium carbony1. Two or four $C 0$ molecules remained attached to the metal. 17
$\operatorname{Co(II):~Codper2}$ compounds, where $\mathrm{X}=\mathrm{CI}, \mathrm{Br} \mathrm{I}_{\mathrm{p}}$ were shown to have pseudowtetrahedral conrigurations by comparing their optical electronic spectra and magnetie moments with those of the already characterimed pseudo. tetrahedral cobalt(II) phosphine complexes. The magnetic monents inorease in the order expected: CI $<B r<I$. Additional dpe results in Co(dpe) $2 \mathrm{X}_{2}$. Epr spectra alons wth observetions on similar compounds of the type (co(dpe) $\left.2^{T^{t}}\right)\left(Y^{\infty}\right)$, where I is a non coordinating anion 11ke perchlorate or tetraphenylborate. The bonds are shmine to those for Coldpe) 2 X 2 but not identionl. This suggests that a pentaweoordinated species with the other halogen ocoupting a sixth coordinated position or a tetragonel hexa-coordinated structure with one com bond short and the other song. 35.44

NH (0), The Irgend forms Micol2 dpe and us able to displace all of the carbony to yleld Naped which Aa thermany stable but airasensitive. 13.14

NA(IT): NI(ape)K2 ooordnation conpounds, where
 Fisible spectra and nax results, showing them to be dian magnetic \ln solld state and in solution.

The $\mathcal{Y e l l o w ~ M I (d p e)}{ }_{2} X_{2}$, where $X=C 1, B r$, and I, seems to undergo coordintion change from the solid to the red solution. an:octahedral coordination is postulated por the solid with dissolution giving dissoclation.

$$
\mathrm{Ni}(\text { dpe })_{2} \mathrm{X}_{2} \rightleftharpoons \mathrm{~N}(\text { dpe }) \mathrm{X}+\text { dpe }
$$

The strong anion, CN, causes the rormation of HI(ape) ${ }_{2}(C N)_{2}$ a trigonal bipyramidal. five-coordinated complex in which one dpe molecule acts as a bidentate and the other as a monodentate. A dimer is also rormed having the form: 23.43 $(G N)_{2}(a p e) N i(a p e) N 1(a p e)(C N)_{2}$
HI (III): The dark brown NI (dpe)Bry has been isolated. 43
Ho(0): The asmagnetse compound Mo(dpe) 3 ts prew pared bs reaction of dpe with dimenzenemolybdenum. The compound air-oxidizes muickly. ${ }^{17}$

Pd(0): Two molecules of ape chelate to form a fouro coordnated complex. The ligand also porms a mixed diphosphine complex with omphenylenebstiethytphosphtne. 14 Pd(II): The dinttrate. (Pd(dpe)2)(NO3)2 has been 1nolated. blong whth ita asbromo anslogue. ${ }^{24}$

Ru(TL). Os(TI): Formulae for these convlexes are
 $\mathrm{XeCH}, \mathrm{Br}, \mathrm{I}, \mathrm{SCM}$, or $\mathrm{H}, \mathrm{B}=\mathrm{alky}$ or aryI. 25
$\operatorname{Ix}(\mathrm{I})$: The compounds (Tr(dpe) $\left.)_{2}\right) \mathrm{CI}$ and (Ir(dpe) $\left.)_{2}\right) \mathrm{BE}$ rorm adducts, incorporatins $\mathrm{co}, \mathrm{PF}_{3}, \mathrm{O}_{2} \cdot \mathrm{H}_{2} \cdot \mathrm{D}_{2}, \mathrm{NO}_{2}, \mathrm{ECl}$, HBr. and SO_{2} tnto the coordination sphere to become five. coordinated. This "cationic" coordination compound is in accord with the concept that coordinately unsaturated and lon-valent metal compleres act as bases toward even such a weak acid as the hydrogen molecule?
$\mathrm{Me} \cdot \mathrm{C}\left(\mathrm{CH}_{2} \cdot \mathrm{PPh}_{2}\right)_{3}, 1,1,1-\mathrm{tris}(\mathrm{dipheny} 3$ phosphinomethy1). ethane:
$N(0): \operatorname{Pd}(0):$ Isomeric conflgurations of the trion phosphine-tri phosphine complezes $M(1 i g a n d)_{2}$, where $M=N i$ or $P d$, are designated α and β. The two isomers readiy convert, and this new type or isomerism is one in which the oniy arperence lies in the number of points of attachment of the potentially tridentate 1Igend. These possiblitites exist:
(A)

(D)
 footanearal)

Theo-1somer has a sero alpole roment and therepore wery
high symmetrya The related tetrahedral complexes. e.s.

Wlapol2 have derwnte dipole momente of 1 m D, yet grater
 Tore. D. Tt 4 surprising to see NL(O) and Pd(0) aceomm nodating sux donor atoms givine an effectuve atomo nuber of rour beyond the nert inert gas. The ready convercion of the se to the more stable, lower-coordination number of $4151 n$ accord with the expectation that the simth end posstbly espth phosphorus atoms binding enercy to the zerovalent metal As smail.

The expected conilguration 13 B since it would shon the greatest energy baxrier between the two coniaguretions. accounting for the isolation of the two in pure form. ${ }^{4}$
CH_{2} (PPh2) ${ }_{2}$, bisdiphenylphosphinomethane:
WI(II): The symmetrical Ni (IIgand) $2_{2} X_{2}$ complexes have been 1solated for $X=C I, B I_{0}$ and I. These compounds probably are square-planar with the ligand acting as a monodentere. The only complex of $\mathrm{Ni}(I I)$ In which this 11 gand acts as a bIdentate 1 N $\mathrm{NI}\left(11\right.$ gand) $\mathrm{CO}_{2} \mathrm{e}^{14}$

Ru(II) © Os(II): Severel ootahedrel. sigmambonded organom and hydridom complexes with th1s ligand are known. 25
$G_{3} H_{6}\left(\mathrm{PPh}_{2}\right)_{2} 1^{1} 3 \mathrm{mbis}(\mathrm{diphenyl}$ phosphino) propane:
Co(TI): Complexes of the rom $\operatorname{Co(Ilgand)X_{2}}$, where $\mathrm{X}=\mathrm{CJ}, \mathrm{Br}_{\text {, and }} \mathrm{I}$, have pseudombetrahedrel confgurations
 WCS. the compleres ate durem havang the romanime $\left.(\operatorname{Cor} 2 \operatorname{sand})_{1} 5_{2} \alpha_{2}\right)_{2} 0^{42}$
 Br, and I, exhiblt squaremplanaswetrahedral equiltbryma In solution, When $X=C N$, the complewes comed mey be fives coordinated monomers and diners. 23.43
$\left(\mathrm{CH}_{2}\right)_{4}=\left(P P_{2}\right)_{2}, 4.4$ bis(diphenylphosphino) butane:
Co(II): Thls ligand forms Co(IIgand) X_{2} complexes. Where $X=B x$ or NCS. They are both probably pserdo-tetrae hedral. The dimers of the type (Co(1igand) $\left.1.5^{X_{2}}\right)_{2}$ form Cor $\mathrm{X}=\mathrm{NCS}$ or CN .733

HI (II): N (IIgand) Br_{2} is pseudo-tetrahedral with strone distortions oi Its T_{d} structure. The thlocyanato analogue $1 s$ diamagnetic and squaremplanar. All thiocyanate componds of nickel with phosphines are planar. even if the corresponding halogen compounds are pseudo-tetrahedral. This ney be due to the high nitrogen donor porer of the WCS group which is capable or inducing a singlet ground state In all cases. 39 The cyano complexes are dmers arcept for the square-planer $N 1(11 \mathrm{gand})_{2}(\mathrm{CN})_{2} 0^{23}$
$\left(\mathrm{CH}_{2} \mathrm{~S}^{\left(\mathrm{PDh}_{2}\right)_{2}} 1\right.$, 5-bis (daphenylphosphino) pentane:

 tetranearal. 33
ethy"lomedes
Co(TI): NA $(T T):$ A11 complexes co(12gand $1 X_{2}$, whexe KwCl, Bx I, or NCS, axe pgeve cetrahedra, The complexes
or ntorel are exactly analogonas. exoept that the thtom cyanate 15 squaremplanar All of these compounds are mononers and atmiarities between oxystal field speotra of thes aligand and $\left(\mathrm{CC}_{\mathrm{n}} \mathrm{P}\right)$ compounds show that the otyen atom is consistentis uncoordinated. 33
$\mathrm{C}_{3} \mathrm{H}_{6}-\left(\mathrm{PCY}_{2}\right)_{2} \cdot 1,3-\mathrm{bIs}(\mathrm{dicyclohexylphosphino)}$ propane; $\mathrm{C}_{4} \mathrm{H}_{8}-\left(\mathrm{PCy}_{2}\right)_{2}, 1,4$-bis (dicyclohexylphosphino)butane; and

$\mathrm{Pe}(I I) ; \operatorname{Co}(I I) ; \mathrm{Ni}(I I):$ These three diphosphines form compounds of the general composition ((1igand)MX X_{2}. where $\mathrm{H}=\mathrm{NI}, \mathrm{Co}, \mathrm{Fe}$, and $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}_{0}$ and NO_{3}. The cobalt complexes are tetrahedral. while planar configurations are found for those of niekel.

Cu(II): Copper forms bromine complexes with the pirst and third ligands of this series. 48
 syclobutene:

Fe(II): This unusual ingand reacts with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
 coordinates one iron atom, while the two phosphine groups coordnate the other. This Iigand also acts as a bldentate with certain metal halides. ${ }^{8}$

अhapmaphas bisldiphenylphosphino)acetylene (mppa)

$$
\operatorname{Ag}(I) ; \operatorname{Au}(I) ; \operatorname{Au}(I I I) ; \operatorname{Pd}(I I) ; \operatorname{Pt}(I I) ; P t(I V):
$$

Bh(III): Ir(III): $\operatorname{Ir}(I)$: The halides of all of these metals form DPPA-bridged complexes of varting types. Raman speotre of DPPA show a CEC stretching frequency which 19 much lower than norme. It is so low, in ract, that the shift cannot be explained solely in texm of the electrom negative $P P_{2}$ group's inductive erfect. The chance is at least partially due to a drift of pi-electron density away from the actylene bond and toward the empty $d \pi$ phose phorus orbitals. This weakens the triple bond, but strengthens the adjacent PrC bond. The structure of DPPA is Inear with proda overiap: ${ }^{8}$

$\mathrm{Cis} \mathrm{CH}_{2} \mathrm{H}_{2}-\left(\mathrm{PPh}_{2}\right)_{2}$. cisel. 2-bis(diphenylphosphino)-
ethylene:
Ph(T): Tonic complexes. ($\left.\mathrm{Bn}(\text { IIgand })_{2}\right) \mathrm{X}$ have been teolated. Dimers also rom of the type (Bn(12gand) $)^{6}$ (An(col) x_{2}), where $X=B$ on C. 35
frans $-\mathrm{C}_{2} \mathrm{H}_{2}-\left(\mathrm{PR}_{2}\right)_{2}$, trans-1,2, Dis (at pheny phosphtno) ethylene:

Rh(I): When the rhodum carbongh chlowde dumer. (Antcol2CL) 2 reats. polymeric complezes having the roxmula (Rh(co)cl(11gand) axe obtained. 55
$\mathrm{Ph}_{2} \mathrm{PacH}_{2} \mathrm{OOCHH}_{2}-\mathrm{PPM}_{2}$, bas (diphenyIphosphinonethyl) ether:
Bh(I): The tonic complex, ($\left.\mathrm{Bn}(11 \text { gand })_{2}\right)\left(\mathrm{BF}_{4}\right)$, shows increased association as solution concentrations are in creased. 55
$\mathrm{Ph}_{2} \mathrm{P}^{\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)} 3^{\mathrm{S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}, 1,3 \text {-bls }(\text { di phenglphos. }}$ phinopropylthlolpropane: This tetradentate Iigand forms
 $P d_{\text {. }} P$). AII of these compounds are diamagnetic, while the analogous fivemcoordinate serles of complexes (Co(IIgand) $\left.{ }_{2} X\right) Y$ (where $X=C I, B r i$, and $Y=\mathrm{BPh}_{4} ; \mathrm{X}=\mathrm{Cl}$ and $\mathrm{Y}=\mathrm{ClO}_{4}$) are paramagnetic with one unpaired electron.

Co(II): The above mentioned cobalt coordination compounds have a square pyramidal structure.

W(II): While the fourmcoordinate nielel compounds are squaremplanar. the fivewcoordnate ones are trigonal Blpyramidal. The most probable structures for these comm plexes are the following:

or

Pa(II): Pt(TI): These metals give fwameowinnete complexes which ase squaje pyramdel. Whe possible structrues ame: 29

 phenylphosphine:

Mo(0): The structure of tetracarbonyl (diphenyl 2 (prop-cis-i cenyl) phenylphosphine)molybdenum(0) has been determined by X may methods. The configuration is square bipyramidal with the ligand chelating through phosphorus and the olefin bond in the molecular plane.

Cr: W: Similar compounds have been obtained with these netals. 54

PABTE: BIPHOSPHINES IN WHICH THE PHOSPHORUS ATOMS OCCUPY FOSTTIONS ORTHO TO ONE ANOTHER ON A BENZENE RTMG (AND BETATED POLYDENTATES)
 omalylphenyldiphenylphosphine($=A p)$:
 nam studies show that this Iugand acts as a brdentstes

Ag(T) The Lhgand aote as monodentate in the matrax
 $\mathrm{AgNO}_{3}(A P) e^{5}$

Pd(II) P (II): In aII of these connlexes, the IIgand As b bidentate, They take the rom $H_{2}(A P)$ (1T MmPd.
 stronger tendency to form ohelate complexes with Pt(II) than $\mathrm{Pd}(\mathrm{II})$ probably because of a weaker metal-olerin bond for pd(IT). 6

phine $(=M P):$
Ou(I): The compound (CuI•MP) 2 is analogous to the cooresponamg complex involving AP. 5

Dipheny (omethytthophenyl) phosphine; bis (omethylthyophenyl) pheay phosphine: txis (o-methylthlophenyl)phosphine tess(omdiphenylphosphinophenyl)phosphine: The structures or these Itgands are, respectively:

HE(IT), Pd(TI): These polydentate Llganda showed
 pleres, athough they read 2 y poxm shem por NI(TI) * Thit goes whth the observed trend that, as atonde vetuthencwaces.
 the tendency to pom 1 ipe-coordmats complexet decreaseas The thtoether contaning Iigands have Less tondenoy to Pom Plwemoordinate conplexes than the polyphosphine ILgands since thioethers are less easily polamized and fomn locs covalent bonds with Pd(II) than phosphomus fomas. Bteric factors may also enter in to ald fivecoordination wh the thest tetradentates IIke $\mathrm{P}\left(0-\mathrm{PhPPh}_{2}\right) 3.28,30$
$0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PEt}_{2}\right)_{2}, 0-p h e n y l e n e b i s(d i e t h y l p h o s p h i n e):$ II(TV): The Ingand combines wth TICI4 to give a empound too unstable to be characterized.

Nif(0): This ligand reacts with nlokel carbonyl to give the complex:

Complem I has rair thermal stability and decomposes only slowit In alw. The Ifgand also replaces carbon monoxide from the complex I to give type II:

Reactions of type I compounds with halogens results in replacement of the carbon monoxide to gite planer. disw magnethe halogen compounds on heh stablity. 12.13

Mo10): Three equivalents of Ligand meact with dibenanem wolybdenum to sorm Mo(11gand) $3^{\circ} 17$
po(0): Several mixed 1 gend complexes involving this 11gand and omphery lonebis(ctethyl) phosphine hera been produced soma (1) (4) and pd(Tr) menmedates were anso formed. ${ }^{4}$

M(O): Whis 21 gend WIt meplace two of the anmon conoxiciea on nacen carbonyl. 13
--G6H4 (PPhe) o-phenylenebis(diphenylphosphine):
NH(0): Complexes exactly analogous to those formed by reaction of omphenylenebis(diethyl phosphine) with nicrel carbonyl have been isolated. 13
 phenylphosphtne.

Pd(0): Pd(II): The mixed phosphine complex (Pd. $\left(P h P\left(0=C_{6} H_{4} P_{E E}\right)_{2}\left(P_{P h}\right)\right)$ has been isolated. A Pd(II) comm ples was an intermediate in its production. 14
$(0)_{\text {Sele }}^{\text {PPM }}$
diphenyl(o-methylselenophenyl) phosphine(-sep):
 ssolated. 30

diphenyl (oodiphenylars inophenyl) phosphine $(=\mathrm{AEP}):$

Nu(II): AsP Porms many compleres with this metal

 Infrased shows gcw groups to be bonded through nitrogen. These complexes are square planar. (Nufap) $\left.)_{2} x\right)\left(10_{4}\right.$
 netwe mad frweasoordnated Thotr oathons have squarem
 *a sotid and tivacoordunted in solution. Tt shows betregonal albtortione emon oh symuetry. ${ }^{2 ?}$

PART D: OTHERS

$\mathrm{Ph}_{3} \mathrm{PO}_{,}$triphenylphosphine oxide:
Mns Fe: Co: N1: Cu: The complexes $\left(\mathrm{Ph}_{3} \mathrm{PO}_{2} \mathrm{MX}_{2}\right.$ form (ohere $H=60, X=61, B r, I)$ and the perchlorate complexes $\left(\mathrm{Ph}_{3} \mathrm{PO}\right)_{4}(\mathrm{ClO})_{2}$ (where $\mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{H}, \mathrm{Mn}, \mathrm{Cu}$) vere also Asoleted. In phosphine oxides, coordinatjon can tale place only through the oxygen. 4,49

Me, PO, trimethylphosphine oxide:
Co: $\left(\mathrm{Me}_{3} \mathrm{PO}_{4} \mathrm{CO}\left(\mathrm{ClO}_{4}\right)_{2}\right.$ and $\left(\mathrm{Me}_{3} \mathrm{P}_{2}\right)_{2} \mathrm{COCl}_{2}$ have been Isolated 4.49

Cy3FO, trieyclohexylphosphine oxide:
NI(II), $\operatorname{Co}(I I):$ The complexes (Cy3 $\mathrm{PO}_{2} \mathrm{HX}_{2}$ (wherecx= halogen or NO_{3}) have been characterized. 46,47

EtPO, triethyiphosphine oxide: This ILgand pomas compleares which are similar to its methyl analogue. 49
$(E G-0)_{2}-P-(s)_{2} \cdot 0.0^{\circ}-d 1 e t h y l d t h i o p h o s p h a t e:$
Pt(IT): This IIgand bonds through sutpur. The comples which forms whth pletinum(TI) is b13(0,0"-dethytat thiophosphato) platimu(II)methyldiphenyIphosohine which has the structure: 32

Diphosphine ant Diphosphine-11ke compounds: Diphose phine, $P_{2} H_{4}$. is an unstable compound to which various gubstatuent groups can be added to form potentially bldentate IIgands. Although these compounds are potentialy bidentates, they senerally act as monodentates either in monomers or bridged complexes. A typicel example or such a bridged spectes $\mathfrak{\text { as: }}$

$$
(c 0)_{3} \frac{\mathrm{CP}_{2} \mathrm{CP}}{\mathrm{CP}_{3} \mathrm{CH}}-\mathrm{N}(60)_{3}
$$

Tetraphenyldiphosphinpis a monodentate \ln complezes with copper(T), nickel(II), palladium(II), and cobaIt(II), Thile betracyelohexyldiphosphine tomas threemembered ring whth several transition metal tons. An example of thes unvsual syster 1s: 4

SECRTOM TTE: GESEARCR ON CHROMTUM COMPLEAES

 WTTH 2.2-BTS(DTPEENTLPHOSPHINO)ETHANEI have been engaged in research with Dr. W. W. Hess In an attempt to obtain, purify, and characterize the coordination compounds formed by 1,2 obls(diphenylphosphino) ethane (=ope) and chromium(II). This is a continuation of a project which was begun by Dr. Hess, Although this research has not as yet been brought to a satisfactory conclusion, great deal has been discovered about the nature of these chromitum complexes. A rev of those observations will be elucidated in this section.

The ligand was prepared according to the method of Chats and Booth. 71 I. 2 wis (diphenylphosphino) ethane It oufte stable in solid fom in atmospheric oxygen but It does exhibit a tendency to oxidize to the corresponding phosphine oxide when it is melted or in solution ghis was denonstrated by bubbling oxygen through s solution of the 1 gand in tetrahydrofuran to which a small anount of 2,2 -dmethortpropane had been added. Apter the oxycen had been allowed to bubble through the solut on for mpprozImately one homp the solvent system was evaporated and a melting point or the recomered oxystals taten. The melthg polnt Incheated that the whte solld was an
 oxtde.

The majowity of attempts at isolating ohroniun conplexpa have been centered around a single basio reaction of cxcl-6H2O mith the ligand. The hydrated salt is dissolved in 2,2-DMP and is heated. The salt stovly dissolves and the heating causes the solution to modergo a color change from green to deep purple. The metal solution 2 s then added dropwise to a solution of dpe In THP to which a Iftile 2,2 mDIP has been added. (The 2,2-DWP is used since it seems to act as a scavenger to remove watex molecules from the reaction system. It Is hoped that, by so doine. $\mathrm{H}_{2} \mathrm{O}$ will be restrained from competition with dpe for coordination positions on chromim (TTY). Anhydrons chromium chloride was not used In the pres place because it is an extrenely steble moleoule which does not dissolve to any ertent in most solvents Iseleib and Frohlich have however run some anhydrous chromium reactions in benzene and toluene so that avenue of seseareh will be gtudied further. 47 ?

Wost of the eariy reactions were run undex ambient condttions in the atmosphere. As the metal solution 3 added under such conditions. the solution slowly changes from belng clear and colorless to a deep brulsh. purple. Atter the solution hed been allowed to stand for four or ivp days in a seated plasir bnough bune
somb tomod In che rlask thot it oon d be colleetect and etudied. Under the microscope, the soltd appered 6o be clese blue and microoorystalline and. although 1 ts melting point was questionable, tt was sent off tor analysis. the analysis unfortunately did not ift any of the possible epirical formulae well enough.

By varying this atmospheric method slightly other blue compounds having widely divergent meltang points were obtalned. The only one which had a really good melting point wes the compound which had been obtained by adding hearane to the reaction mixture just after the seaction had occured. The blue compound which precipitated mmedsately had a meltins point of $135-136.5^{\circ} \mathrm{C}$. The other sollds were obtained by other methods and theiz nebulous melting points hinted at a solvation erfeet.

An attenpt wes then made to prove the theory that the blue compounds were merely the same compound in Vathous stages of solvation. Mull and KBr infrared spectra were taken of all of the compounds alons tith the ligand. Spectra were also run of THE and acetonitrite neet, Meanmhie, a Iarger reaction wes run mhoh dupe 1heated the omginal run The Plask was kept sealed meept when man 11 aliquots of solution were removed for tasting. As severat weeks passed. It was realised that more and moxe blue solit was preotpiteting from the reacton
nitture Becense the rlask had memained stoppered, tht phenomenom could not be explained as nerely a concentration empect. Atmospherio oxysen eame under ausploton and its efrect was investigated. When pure orygen was bubbled through the reaction mixture, a blue compound precipitated almost immediately. Indicating a dipinite effect or oxygen upon the complex. Solutions from reactions run under nitrogen on the contrary. could stand for veeks under nitrogen without any noticeable prectpitation occurringo

It seems obvious that some sort of oridation of efther the individual Ifgands or the complex as a whole is cousing the appearance of at least one new species minch is insoluble in TEF , The fact that the compounds In solution can be altered even apter they have tully Pormed leads one to the rollowing tno possiblittes. FImst that sometmes a ligand whlch has been attached to the centrel chromium atom w11 give up one or both of Its coordination positions at least momentariy. At that point, the phosphorus could be oxidized with the result being the rometion of a phosphine oxide. Secondy, an alternetive mechanism might be an tnsertion reaction m^{m} whioh the oxygen atom would come to 114 betweon chromum and phosphorus bonding to both of them. It 1 the mueed the cose that phosphine oxtde bonds are involved, $3 t$ as Inkly that only one of the two
phosphorus atoms ta the chelate xing ban been oxtdited, since seven-membered rings are quite uncomon due to inm creased strain.

Recently, one reaction has been run and workedwup ontirely under nitrogen atmosphere and another has been run under oxyeen. The two resulting compounds are now beine studied. The melting point of the compound which was prepared under nitrogen seems to be indicative of sone colvation either by THE or water, but the complex prepared under oryeen shows no solvation and has a falriy sharp melt at approrimately $330^{\circ} \mathrm{C}$. These coordination conpounds will be studied further in the hope thet they may be representative of two extremes, and that the combination of those two extremes will explain the other compounds which have previously been prepored.

Bome zerovalent phosphine complexes have been prepared strply by dissolving zerovalent nickel in the phosphine at elevated temperatures. As an ertension of the maln project. I atterpted this type of a reation between dpe and chromivm metal. The retal and ligand were sealed in an evacuated glass tube and placed in an oven at $200^{\circ} \mathrm{C}$. The metal does not seen to be at all soluble in the melted ligand, but perhaps wth ineressed temperature some complexation will ocour.

In the course of my researoh, tt became necessary to devise may 1 kely mpirion fomule and find the
parannt compostuhom ot eqch element mvolved an each formula Tt was atso necessary to taye the data which was mecelved from the analysis of a given compound and detamine the lowest approrimate whole number ratio of the atoms of the elements which had been analysed. These tho tasins can be tedious at best so I wrot two computer programs, one for each problem, in order to reduoe the time spent in problem solving They are written in BASLC Ianguage.

Program (I) as designed so that the number of atoms of each element in a given empirical formula can be entered as data and the conputer will give the percent composition of each element involved. Program (II) does the reverse of program (I). Composition data us entered and the emplrical pormula $i s$ printed out along Whth the next four integral matiples of the emplrical Pommun. Although these programs involve only those elements directiy associated with my work, it can quicily be seen that the entre periodic chart could easily be Incorporated for aded flexibllity.

Program (I)

05 TNPVT A, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E} \mathrm{F}$

15 LET $D 1=D 2+\left(5{ }^{2} 25.9994\right)$
20 LES XI $=((\mathrm{A} 22.0112) / D 1) 6100$
25 LEM $22=\left(\left(B^{*}-00797\right) / D 1\right) \cdot 100$
30 LETL $x 7=((C, 30.975) / 01) * 100$
35 LEL $\left.\times 4=\left(D D^{*} 52.01\right) / D 1\right) * 100$
40 LET $\times 5=((E \cdot 35.453) / D 1)=100$
45 ZER $X 6=((2515.9994) / D 1) \% 100$
50 PRTNT WUMBER OR ATOMS OF $\mathrm{C}, \mathrm{H}, \mathrm{P}$ ©R,GL,O TM COMPOUND
55 PRINI A, B, C, D, E, F

65 BRINT $\times 1,42,13,24,4,5,46$
70 END

```
    0, LMPUR A,B,C,D,E, %,C
    $0 LEL X(1)=A/22,0121
    25 Lू1 X(2)=B/1.00797
    20 LHI X(3)=6/30.9738
    25 LET X (4)=D/52.996
    30 LET X (5)=R/35.453
    35 LET K (6)=F/15.9994
    40 TEN X (7)=6/24.0067
    45 LEM J=X(1)
    50 FOR T=1 20 7
    55 LP X(I)=0 THEN 70
    60 IT X(T) =J TEEM 70
    65LET J=&(I)
    70 NEXTS T
    75LET Y(I)=(K(1))/J
    80 LET Y (2)=(X(2)//5
    85 LET I (3)=(X(3))/5
    0 LMTE Y (4) =(X(4))/J
    95 IET Y(5)=(X(5))/J
100 LEEP }X(6)=(X(6))/J
105 LEP Y(7)=(X(7) //J
210 PRINT m EMPIRICA FORMULAE SUBGCRIETS IGULTTPLIED BY 2,2,3.4.50
115 PRINT Y(I):Y(2);Y(3);Y(4);Y(5):\Psi(6):W(7)
120 FOR H=2 1O 5
125 FOR I=1 TO ?
```



```
135 NEXT 1
140 PRINR K(1):4(2):U(3):K(4):K(5):K(6):K(7)
245 NEXP N
350.mDD
```


FOONOMS

(I) E. W. AbeI, D.A. W. MC.ean, and I. E. Babherval, Jo Chem. Soc. A1. 133 (1969).
(2) R. J. Angelich and C. M. Ingemanson, Inorg. Cheme
(3) J. C. Badlar and C. E. Wynore. J. of Inorge and Muct. Chemo 14.42 (1960).
(4) E. Banuster, R. D. Barnes, and F. A. Cotton. Je Chem. Soc. 2199 (1960).
 Chems. 7.552 (19683).
 Chemo 7.558 (1968b)。
(7) M, Bressman P. Bigo, and A. Turco. Inorge Chemes $7.1460(1968)$.
(8) A. J. Carty and A. Erraty: Inorg. Chem. 8.543 (1968).
(9) D. T. Catone and I. Taska J. Amer. Chem. Soc. 89,532 (1966).
(10) J. Chatt and G. Booth. J. Chen. Soo. 3238 (2965).
(12) J. Chatt and B. A. Butber, Chem. Comme 501 (2967).
(12) J. Chatt and F. A. Harty Chem and Ind. 14ph (1958).
(13) J. Chatt and A. Hart. J. Chem. Soo. 1378 (1960).
(14) J. Chatt, F. A. Hert, and F. E. Wetson, y. Chem. Soc. 2537 (1962).
(15) J. Chett and \mathbb{Z}. G. Hoyter. J. Ghem. Soc. 1343
(16) J. Chatt and B. I. Bhav, J. Chem. So0. 285 (1961).
(17) J. Ghatt and H. H. Watson. Bxoc, Chem. Soc. 243

(19) W. B. Churohth and T. A. OBrlen. J. Chem. Sog. 42. 266 (2966).
(20) W. C. Clari and I. R. Diton. Jamer. Chem. Soos. 91. 596 (1969).
(21) H. C. Clark, K, R. Dixon, and W. J. Jacobs. J. Amex. Chem. Soc. 91. 1346 (1969).
(22) B. F. Clark, C. G. MCAlister, and J. R. Olechowskl, Tnorg. Chern. 4,246 (1965).
(23) B. Corain, Po RIgo, and A. Turco, Inorge Cheme 7.1623 (1968).
(24) Fin. Cotton. et. 21. J. Aner. Chem. Soc. 83, 1780 (1961).
(25) Jo Ghatt and R. G. Hazter. J. Chem. Soc. 6017 (2963).
(26) A. J. Deeming and B. L. Shaw, Jo Chem. Soc., A3. 443 (1969).
(27) T. D. DuBots and D. W, Meek, Tnoxs, Chemo. 6 . 1395 (1967).
(28) Ga Dyer, Do W. Meek, and M. O. Workman, Inore. Chem. 6. 1404 (1967a).
(29) T, D. Dubois and D.W. Meek, Thorg. Chem., 8 , 146 (1969).
(30) G. Dyer, D. W. Meek, and M. O, Woxkan, Tnorg. Chems: 6, 1543 (19670).
(32) E. A. V. Ebswortho Gilidewell, and G. M. Sheldrict, J. Chera. Sog. A3, 352 (1969).
(92) J. P. Fackler, J.A. Fetchin, and W. C. Seidel. So Amer, Chem. Soc.0 91, 1217 (1969).
(33) J. Gelsomint and L. Saccont, Tnore. Chem. 7. 291 (1968).
(34) C, Gludewell and 0 . M. Sheldmict, J, Chem. Soc. A3. $350(1969)$.
 $689(1963)^{\circ}$
 Ghem: 6, $2135(2967)$.
(37) G Guasta Lla, P. Rtgo and A Turgo, Tnore Chen. 8. 375 (1969).
$(38) \mathrm{A}$. G. Havter and F . B . Humiec. J. Amex. Cheme 300. 84,2004 (1962).
(39) Re G. Hayter and F. S. Humiec. Mors. Chems 4. $1701(1965)$.
(40) W. D. Morrocks, D. Forster. and L. H. Pignolet. Inorge Cheme. 7. 828 (1968).
(41) W. D. Horyocks De Do Hall, and Ge Re Van Hecke, Tnors. Cheme. 6. 694 (1967).
 J. Amer. Chem. Soc. 86,3031 (1964).
(43) W. D. Horyocks and G. R. Van Hecke. Tnorg. Chem. 5, 1968 (1966).
(44) J. E. Huheey. Jo Chem.Ed. 40,153 (1963).
(45) J.A. Tbers and J. K. Stalick. Thorge Chems. 8. $419(2969)$.
(46) K, Yesieib and A. Breck, Z.Anore. Alle. Cheme, $277.258(2954)$.
(47) स T Ts letb and H. O. Pronlich Z. Anors. Alles. Chers. 298. 84 (1959).
 $322,169(1962)$.
 Chem. 304 : 73 (1960).
(50) R Tssteib and Re Wensohuh, Z. Anors. Alls. Chemo 305. 15 (1960).
(51) K. A.Jensen and B. Nygaard, Aota Chemica Boandinartos. $3.474,(7949)$.
(52) © H. Laptar. J. Chem. Phys. 42, 2992 (1964).
 2185 (1967).
 43. 28 (2969).
(55) J. T. Nagne and J. P. Mitchener. Inorg. Chem.
(56) L. NaTdun. Gaze. Ch3me Tcat. 90,391 (1960).
(57) D. J. Parter. Jo Chem. Soc, A2, 246 (1969).
(58) C. Pecile, P. R1go, and A. Turco, Inorge Gheme.
(59) He II Powell and J. B. Wilpord, J. Chem. Socs. A1. 8 (1969).
(60) K, A, Raspin, J. Chem. Soc. A3, 461 (1969).
(61) G. B. Reddy and R. Schmutzier. Inores Chero. 6 . 823 (1967).
(62) P Rossi and A. Sacco. Chem. Comme 602 (1965).
(63) A. Saceo and R . Ugo. 3. Chem. Soc. 3274 (1964).
(64) 1. D. Venanzi, J. Chem, Socs, 719 (1958).
(65) I. M. Venanzi. et al. J. Chem. Soc. 4816 (1961b).
(66) In M. Venanzi. et als. J. Chem. Soc. 693 (1962).
(67) H. M. Venanzi, et ato J. Chem. Soc. 2705 (2961a).
(68) L, M. Venanzi. et al. J. Chem. Soc. 3625 (2963).
(69) A. D. Westland and I. Westland, Canad. Je Cheme 43.426 (2965).
(70) G. M. Ta has etat. Jo Chem. Phys. 42.2126 (1964).
(77) J. Chate and G. Booth, J. Chem. Soc. 3378 (2962).
(2) 3 . W. Van Wazer, MPhosphorus and Its compounde. mentrelence publishers. The. Hov Port, 1958 V. I. P. 180

Abet, E. H, B. A. M. MeLenn, end I. T. Sabherwal. 1969. BGynthetio and Spectroscopic studies on Diphenylphosphine Conpiexes of Copper (I)." J. Chen. Soc. $11: 136$.

Angelics, RoJ., and Co Mo Ingemenson. 1969. Equiphbriwn Scudies of Ehosphine and Ambe Substitution Reaction of Tungsten Carbony?." Inoxe. Chem. $3: 03$.

Bethar, 3 , C, and C. E. Whmore, 1960 . "Uncomon Com
 diphosprine. J. Tnorg, Nucl. Chem. 14:42.

Damistex, En, Ro D. Bernes, and Pa, Cotton, 1960. The Errect of Compex-momation by Phosphane oriaes
 2999.
 Metal Conplares of Unsaturated Textany Thosphines and Arstnes. TT, Qmpleres of Copore (T) ad gitrap (I): Thorg Chemg $7: 552$.

Benete, H. A. W, R, Kneer, and R. B, Wyinotm. 19600. "Metal Complazes of Jnsaturated Tertiagy Fhoaphines and Arsines. TVI. Chelrte Monooleran Complezes or Patinum (II) and Tainadiun (IT), Lnows Chem. 7.533.

Exessmen. M. P. Rigo, and A. Turco. 1968. "Tive. Gom ordmetea Low-3pln Complezes of Gobelt(IT) with Tertuery and Ditertiany Fhosphines." Inowe Chea. $7: 1460$,
 thon. This. Low-Spin Tronsitlon Mets 1 Conplexes
 Lgeng: Tgoves Cheq. 9,151

Cotone, D. Lu and Le Vacka 1966. "A Hen Serjer of Four Fivew and Sax-Goordneted Tradiun Complexpa. X. Amer. Chem. Soc. 93.5324.

Chatt, J., and G Buotho 1965. "Some Complezes of Dim tertiary Ehosphtnes with Micken(TI) and Nikel(ITI)." I. Ghem. Boce 3238.

Chatt, J. and B.A. Butter. 1967. BGome Bdation Beacm tions of a New Bhodium(I) Ditertians Phosphine Complex: Chom Comio 501.

Chatt. J.. and F. A. Hait. 1958. "Fhosphine Conplexes of Zewovaleat Mickel." Chem. end The 147.

Chstt, J. . and F. A. Hart 1960. Reactions of Textiary Diphosphines with Nickel and Nickle Cexbonyl." J. Chem. Soc. 1370.
chatt, J. Pa_{A} A. Hext, anç H. B. Watson. 1962 "Complex Compounds of Ditextiaxy Phosphines and Arsines with Natel (0) and Falladium (0). ${ }^{\circ}$ I. Chem. Soc. 2537.

Chett, J., and R, G, Hayter. 1963. "Bome Complenes of Tertiary Fhosphnes and Tertisry Diphosphines with Titanim Chlorides ${ }^{*}$ J. Chem. Soc. 1343.

Chatt, J. and B. T. Shaw. 1961. MIkyls and Aryls of Trensition Metals. Eart IV. Cobalt(II) and Iron(IT) Demivatives." J. Chem. 300.285.

Chat, J. and F . B. Wetcon. 1960. bDitertiany Phosm phine Complexes of Molybdenum (0)." Proo. Chem. Soc. 243.

Chatt, Jo, and H, Re Wetson. 1962. "Complexes of Zerom ralont Trancition Metals with the Dtertiony Phosphane. Io Chem, Soc. 25450
 and Moleculer Structure of a - phenyl Complex of $\mathrm{HLerel}\left(\mathrm{m}_{5} \mathrm{H}_{5}\right) \mathrm{Hi}\left(\mathrm{PPh}_{3}\right) \mathrm{Th}^{48}$ J. Chem. Soc. A 2.266 .
 Hyarides TV Tho Smithesis of Platinum and fatLadium Cations. $\left(\operatorname{MX}(\mathrm{CO})\left(\mathrm{R}_{3} \mathrm{~F}\right)_{2}\right)^{+}$and $\left(\operatorname{HX}\left(\mathrm{R}_{3} \mathrm{~F}\right)_{3}\right)^{+3}$ J. Aner. Chem. Soc. 91:596.

Glam, H. C., K. B. Dxon, and V. J. Jacobs. 1969. "Chemstry of netal Hydrides. V. Freneration of

 "Zerovalent Mokel Conplaces. I. Syntheas of Tetratus HekeI (0) Complexess" Inove. Chen. 4:246.

Coxaln, B., F . Eigo, A, Turco. 1968. "Conplexes of Wickel(I) Cyenide with Ditertiary Fhosphines." Inore. Chem. 7:1623.
cotcon, F. A.s O. D. Faut, D. M. In Goodgame, and R. H. Holm. 1961. "Magnetic Investigations or Spinmeree Cobaltous Complexes. VI. Complexes Contaning Phosphines in the Spectrochemical Sexies." J. Amer. Chem. Soe. 83:1780.

Cotton, F. A., and Wilkinson, G. 1966. Advanced Inorganic Chemstry. PE. 680-81. New York: Interscience publishers.

Davies, $C, G_{0}, J . D$ Donaldson, and R. B. Simpson. 1969. "Phosphite Complexes of Tin(II). ${ }^{10}$. Chem. Soc. A3:417.

Deening. A. J., and Bu Lu Sho 196. "Oxidative Adaition of Alkyl or Aryl Chlorofomates to the Complexes ($\operatorname{IxCl}(00) \mathrm{u}_{\Omega}$) ($\mathrm{L}=$ Ginethylphenyiphosphine or -arshe, or Trinechylphosphine) Iridium - cerboxy - complexes. 3. Chem. Soo. A3:443.

DuBois, T. D., and D. W. Meek. 1967. "Five-Coordanathon. IV. Hickel(II) Complexes of Dinhenyl(o.. diphenylarsinophenyl) phosphine." Znors. Chem. 6.1395.

Dyer. G. D. W. Meek, and M. O. Worman. 1967a. MPal. ladiun(II) Complexes with Folydentate FhosphorusBulrur Ligands" Inorg. Chem. 6:1404.

Dyer, G., D. W. Heek, and M. O. Worman, 1967b, "MyeCoordination. VII Diamegnetio Niokel(II) Com paezes with Folydentate Phosphines Containing Bulur and Selenium Donor Atoms." Inarg. Chem. $6: 1543$.

Prosorth, E.A. Vo. C. Glidewell, and G. Bheldrick, 1969. "Bome Reactions of trisilylphosphue." 1. Chen. Boc. A3:352.

Fackier, J. Pe, J. A. Fetohio, and M. C. Beddel. 1069. "Btruotural Interconversions and Ligand-Exohange Reactions of Rhosphne Adducts to Platinum(II) Complexes. I Amer. Chom. Soe. 91:1217.

Muneay, a, E. 1903. "Chemstery of Diphosphoma Conpounds." 1 . of Chem Ed. $40: 153$.

Wers. J. A. and J. K. Stallok, 2969 . Whe caymat and Molecular structure of Tacorbonylbis(triphenyl-
 8:419.

Iscleid. V. Ko, and A. Brack. 1954. "Darstellung des Tricyelohexylphosphins und seiner Dexivate." Z. Anors. A118. Cheme 277:253.
 des 2 - und 3 wertigen Chroms." Z.Anorg. Alag. Chem. 298:84.

Lscleib. H., and G. Hohrela. 1961. "Sonmermetallmonplexe ditertidier Fhosphine." Z. Anorg. Alle. Cher. 312:169.

Issletb, K., and B. Mitscherling. 1960. "Phosphinoxyd... Komplexe von Kobalt- und Nickelsalzen. ${ }^{13}$. Anorg. A115. Chem. 304.73.

Issleib, Ko. and E. Wenschuh. 1960, "SohwermetallKompleze dea Diphenylphoshins." Z. Anorg. Alls. Chem. $305: 15$.
Jensen, I. A, mad B. Nygard. 1949. "Stereocheristry or 5-coordinated componds. II. On the Confteranthon of the Whoke Compound ($\left.\mathrm{NiBr}_{3}\left(\mathrm{Et}_{3} \mathrm{~F}\right)_{2}\right)$ " Acta Chenses Scandinvice 3:474.

Iamar, G. N. 1964. "IBotropic Shifts of Some Ionso Compleses of Cobnt(II) and Niokel(II): Eviaence for Ion Paringe ${ }^{\text {to }}$ Io Chen. Fhys. $41: 2992$.

Lajlone, T., and J.E. Siemaus. 196\% "inickle conplexes with 2 -Diethylphosphincethyl fthy Sulfae, ${ }^{*}$ Inore. Chem. 6:2135.

Lustio. N. 1969. "The Synchesis of Triphorophosphazo Compounds. Inors. Chen. 8:443.
Luth, H., A, Robson, and M. R. Truter. 1969. "The Crybtat and holecular Structure of Tetracarbonyl(diphengl2 -(prop-ans-1-eny) pheny phosphine molybdenua(0).

Wagne. T, Te, Bnd T, P, Mitohener., 1969. Mhodum(T) Compleces Containing Mon- and Ditertiary Phosphines and arenes. Inorg. Chem. 8:519.
 phosphne coupleaes of Wekal(T) and Covalt(IT). Tnore Cleme 7:291.

GHdewell, Gn, end G M. Sheldriot. 1969. Freparathon and Properties of Monom and Di-bilylphosphtne and Mono- and Disilyl-axehere Je Chem. Sog. A3:350.

Gorley. Fim and A. Saceo. 1963. sobut prodotti di reazione del sall di cobalto(II) oon $1,2-b i s d i-$ fenilobefnoetano. Gazz. Chim. Ital. 93:687.

Gaim. 3.0. R. L. Kelter, and W. Momarlane. 1967. ah Thosphorus-31 Nuclear Magnetic Resonance Study of Texthary Phosphine Complexes ot Platinum(II). ${ }^{3}$ Inores. Chen. 6:1133.

Guastalle, G. F. Rigo, and A. Turco. 1969. whermodynemic Btudies of the Rolative Stabilities of Biam and Tris-phosphine Complexes of Fickel(II) Cyantie in Solution. " Inorg. Chem. 8.375.

Hayter, R. G. and $P . S$. Humiee. 1962. "Square FlanarTetrehedral Isomenism Among Some Complexes of Niokel(II). A New Type of Geonetric Isomeriam. "? د. Aner. Chem. Sop. 34.2004.

Hayter. R . G. and P . B. Tuniec. 1965. "Square-PIenarTewnahedral Isomertam of Whael Balide Conpleres of Diphenyalkylphosphanes. Inore. Chems 4:1701.

Horvocks, W. D. D. Forster, snd L, H. Pignolet, 1968. "Dihalobis(triarylphosphine) Lxon(II) Complexes. Tsotroptc Mobon Megnetio Resonence Shatts and the Kinetios of Ligand. Exehange." Inorg. Chem. 762,

Horrocks, W, D., D.D. Ha11, and G. R, Van Hecke. 1967. "pitentiary Phosphine Complexes of Cobalt. Specm tral. Magnetio, and Eleatron Faramgnetio Resonanoe Studies." Inorg. Chem. 6.694.

Hompoks, W. D. GeN. Lamer, and R. C. Taylor, 1064. Trotsopte Proton Mometie Resonance Shirts in m-Bonding Ligands Coordinoted to Eeremagnetio Nokel(IT) and Cobate(II) Rectylacetonates." d. Aner. Chom. Soc. 86:3031.
 Thosphine Conpletes of Nokel. Qpeotmel. Magnetio. and Troton Reconance Studies. A Manarmetrahedral Dquilortum " Lnore. Cheng 5:1969.
 aritobrtae e le bramilarshe." Gaze. Chum. Ital. 90.391.

Panker, D. J. 1969. Tufrared Bpectra of bishetram carbonyl (trtphenozyphosphine)manganese)mercury and bis(tetracarbony (tributy phosphine)manganese)mercury ${ }^{9 \prime}$ Jo Chen. Soc. $A 2: 246$.

Pecile, G. P. Bigo, and A. Tureo. 1967, "Reactien of trans- $\left(\mathrm{N} 1\left(\mathrm{PR}_{3}\right)_{a} \mathrm{~K}_{2}\right)$ Complexes with Phosphines and Amines. Formation of Staile Five-Coordinate Intermediates." Inors. Chem. 6:1636.
Powell, H. H. and J. B. Wirord. 1969. "The Crystal and Molecular Structure of Tricambonylwowaclopentam dienyltungetiotriphenylphosphtnegold. J. Chem. Boes A1:8.

Baspin, K. A. 1969. " "Phe Structures of Binuclear Ruthenium Complexes. Fart II. The Crystal and Molecular Structure of $\left(\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{Et} \mathrm{D}_{2} \mathrm{PhF}\right)_{6}\right)^{+}\left(\mathrm{RuCl}_{3} \ldots\right.$ $\left.\left(E t_{n} P h P\right)_{3}\right), t r i-\operatorname{moh}$ oromexakis(diethylphenyl-phosphine)dirutheniun(II)tmichlorotise(diethy?phenyIphosphine)muthenate (II)." J. Chem. Soc. A3:461.

Beddy, C. S. and R., Schmutzlex. 3967. "PhosphorueFluomine Chembtry XVIII. Nuclear Nagnetio Resonshes Studies on Coordination Compounds InTolving Rlourine-Containg Phosphine Ligands." Enors, Chem. 6.823.

Rossi, H . and A, Sacco. 1965 . A Ditertiary Phosphne Complex of Cobalt(0). Chem. Comm. 602.

Seceo. A. and R. Ugo, 1904. nHydrido-compleres of Transition Metals. Part I. Hydrido Complazes of Ehodium(I), Cobalt(I), Cobalt(III)" J. Chem. Soc. 3274.

Tenonz1. L, H. 1958. Whetrahedral Hatel(IT) Complexes and Ractors Detemining Thein Fometion. Fart T. Bistriphenylphosphine niack(II) Compounds." 3.Chem. Soo. 719.

Vensar1. I. Mo, M. C. Browning, R. T, Daties. D. J. Morgen, and Le E. Butbon 19610 . Tetrahedrat Nucket(TI) Somplezes and the Tectore Determining Their Pormetion. Part III. Complexes Whth Thim arytphosphines: I. Chem. Soc. 4816.

Veranat, L. M. M. O. Dromane. J. R. Hollor. D. J. Morgan. S.A. J. Frett, and I. Q. Button. 1962. MMetram hedrat Nockel(LI) Complexes and the Fsotors Detex muing Thein Pomation Part IV. Complexes with Tribenzyln, Dibenzyphenyl- Benzyldiphenylwand Allylaiphenyl-phosphine." J = Chem. Soe. 3625.

Venanzi. L. M., C. B. C. Croussmater, M. H. Gutohinsons J. Ro Mellor, and I, E. Sutton. 1961a. Tetran hedral Nickel(II) Complexes and the Factors Deter.. mining Their Formation, Fart II. Complexes with Dibutylphenyl mosphine and Butyluiphenylphosphine: J. Chem. Boc. 2705.

Venenzi, I. M., G. Garton, D. Be Hem, and H. M. Powell. 1963. "retrahedral Nickel(II) Complexes and the Pactors Detemining Their Pomation. Part T. The Tetrahedral Comordination of Niokel in Dichlorom bistriphenthphosphinenickel." $\tilde{y}_{\text {= Chem. Soc. }} 3625$.

Westland. A ${ }^{\text {A }}$, and Ls Westland. 1965. "Addition Com" pounds of Titanimm(IV) Chomide Containing Elements of Groups V and VI as Donor Atoms." Cened. J. Cheme $43: 426$

