Illinois Wesleyan University

Digital Commons @ IWU

Honors Projects Computer Science

1996

Improved Data Migration and Processing for
Projecting the Financial Aid Budget

Jeftery L. Olson '96

Hllinois Wesleyan University

Recommended Citation

Olson '96, Jeffery L., "Improved Data Migration and Processing for Projecting the Financial Aid Budget" (1996). Honors
Projects. Paper 14.
http://digitalcommons.iwu.edu/cs_honproj/14

This Article is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty
Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by
the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.

http://www.iwu.edu/
http://www.iwu.edu/
http://www.iwu.edu/
http://digitalcommons.iwu.edu
http://digitalcommons.iwu.edu/cs_honproj
http://digitalcommons.iwu.edu/cs
mailto:digitalcommons@iwu.edu

;‘jmzzpmmecf “Dafﬁa W@graﬁmm anel
() o / | ,\' 2 9
j‘//) rocessiing f oF g)m()/@@fmg (%fe

Sinancial 54{112[%MJ ge’[

by Jeffery L. Olson

Improved Data Migration and Processing for Projecting the

Financial Aid Budget,

an Overview by Jeffery L. Olson

The foundation for this rescarch was laid during the 1993-94 school vear by Amy
N. Baird. Her project mode it possible to move raw financial aid information from the
AS400 to a Quattro Pro 4 spreadsheet on a PC in the Financial Aid Office. The
spreadsheet was then used to generate a series of averages that were in tum used to predict
the following year’s financial aid expenditures.

During the 1994-95 academic year, Stephaniec M. Pannier resumed the project.
Working with the Director of Financial Aid, she migrated from Quattro Pro® 4 to Quattro
Pro® 6 for Windows®. More importantly, her intensive work with spreadsheet formulas
improved the methodology used in the computer-aided budget projection.

Last fall, I again resumed work on the budget projection model that encompassed
five spreadsheets. Four of these sheets generated a set of statistical averages for each
class. Each one consisted of 101 columns containing data for the four- to five-hundred
students(rows) in each class. In addition, a fifth sheet used these averages to generate a
highly accurate prediction for expenditures in the upcoming year. However, there were
two main areas of improvement that became readily apparent: importing data and the

sheets themselves.

The BDGTPREP.EXE Program for sorting and formatting input files
The process for importing data from the AS400 to Quattro Pro® was highly error

prone and labor intensive. The three ASCII files containing the financial aid information

for each student (one containing FAF information, one with scholarship information, and
one with loan information) were imported into three columns. Unfortunately, not all
students who filed a FAF with IWU received aid (and therefore did not appear in the
second two files). As a result, the user had to go through “by hand” and align the names
in the three files to ensure that the correct information was associated with each row in
the spreadsheet.

Additionally, the entire data stream making up a student’s record in the imported
files needed to be split into columns. Quattro Pro® 6 has a “parse” option for dealing
with this situation. When the “parse” option is selected, Quattro Pro® 6 produces a
default template which can then be edited to ensure proper parsing. For example, the
template “L>>>L>>>V>>>>V>>>>>" would parse an eighteen character data stream
into 4 columns: 2 alphanumeric each containing 4 characters; and 2 numeric containing 5
numbers.

However, the files that were being imported do not contain delimiters of any kind
between fields (i.e., “0100001000” actually represents two fields: “01000” and “010007).
As a result the template line could not be automatically generated by Quattro Pro® and
needed to be typed in manually. This required one line 86 characters in length and two
197 characters in length much like the example in the preceding paragraph to be entered
error free.

After these steps were completed, the sheet was then copied three times. This
created four sheets which each contained information about all four classes. Each sheet

then had three classes edited out of it, leaving four sheets which each contained

information pertaining to one class. This data was then used to generate statistical
averages.

I immediately came to a realization after performing these steps last fall. If the
incoming data files could be programmatically combined and sorted, many hours of labor
could be saved. After sorting the input files, spaces were inserted into the output files
between fields allowing Quattro Pro® to produce a parsing template automatically. The
result was BDGTPREP.EXE. This DOS program can also be run through Windows® 3.x,
Windows NT®, Windows® 95, or 0S/2°. It takes the three text files downloaded from
the AS400, splits them by class, sorts the resulting 12 files by name, and combines them
into four output files. These are then imported into Quattro Pro®. This provides a

method where errors due to typos and human mistakes are largely eliminated.

New Layout of Quattro Pro® worksheets.

Besides improved data importation methods, many improvements have been
made to the budget projection spreadsheets as well. The “Current Year Budget” and
“Projected Year Budget @ X%” columns have been removed. Since this information is
the same for each student, it has been moved to 2 cells in the top of the sheet reducing
data redundancy. This required that formulas in other columns referring to the removed
columns be updated to the new cell location using absolute cell addressing. This allows
these formulas to copied without the cell locations referring to the budget being changed.

Color shading and boldface type has been added to help make more sense
of the vast amount of data contained in the model. Columns have also been added to the

projected freshman sheet. These columns are duplicate IWU Award and work study

columns. These can be employed to run “scenarios” for financial aid. For example, if all

IWU Talent Awards were increased by $100, what would the projected budget be?

Additionally, each class spreadsheet is actually two sheets in a “common
notebook”. Sheet B of each notebook contains the raw data that was parsed from the
input file. Sheet A contains copies of these columns as well as other columns which
mathematically manipulate the data. This provides several advantages. Columns in
sheet A can be moved around arbitrarily since their order is no longer physically
dependent on the order they are placed when parsed. Automatic updates of input data is
now possible by modifying the formulas that copy data from sheet B to sheet A. For
example, students who have no financial need have Contribution IM values of ‘99999”.
In order for the projection model to run properly, these high values must not be allowed
to skew the averages. Stephanie Pannier solved this problem by replacing these values
with ‘NN’ for ‘no need’ in what she referred to as “a tedious but important procedure.”
Now, however, these values are simply replaced when they are copied over with an IF
statement.

The budget projection spreadsheet that uses the information found in the class
spreadsheets has also been modified. Previously, data was manually copied from the
class spreadsheets into the budget projection spreadsheet. One solution could have
involved putting all the classes and the projection sheet (9 pages total) into a common
spreadsheet notebook. Unfortunately, each class sheet takes up approximately 10Mb of
space, making the overhead of such a scheme quite high. However, Quattro Pro® has the

ability to address information from another spreadsheet file in its formulas. For example

“+[FRESHMAN]A:B10” means that the cell containing this formula should be equal to
cell B10 on sheet A in the FRESMAN.WB2 spreadsheet notebook.

This allows the derived averages to be automatically copied (through formulas) to
the spreadsheet file that actually projects the budget. Pursuant to this, the rows
containing the totals and averages have been moved to the top of each class sheet. The
bottom of each class sheet can never be known before importing the data since it is
dependent on the number of students in that class. By moving these to the top, they can
by referenced in the projection sheet without yearly updates.

Data movement between Quattro Pro® files requires that the names of the class
spreadsheet files always be the same from year to year. This mandates that new
directories be created each year to sore that year’s projection. Interestingly enough, that
solves another lament of the Financial Aid Director. Hobbled by the eight character
naming convention, cryptic names had been used for files in the past. For example
“PFR9697” translates to “projected freshman class for the 1996-97 year." Now the path
in the directories helps clue us in ; “\FILES \ BUDGET\ 1996-97\ PROJECTN\
FRESHMEN.WB2.” While not as good as 255 character naming conventions, this is
certainly a step in the right direction.

The resulting product is one that has taken a great projection methodology to the
next level. A process that took more than two weeks to complete last fall can now be
easily completed within an afternoon. I would like to thank Amy N. Baird and Stephanie
M. Pannier for making this project possible with their hard work and innovation. In
addition, my thanks goes to Dr. Susan Anderson-Freed, Dr. Lisa Brown, and Dr. Lionel

Shapiro for providing me the technical background and assistance to turn my ideas into a

reality. I would also like to express my gratitude to Lynn Nichelson whose vision
directed this ongoing project, and whose dedication and enthusiasm made this project

such a great experience.

g Uinois CW@S[@%@M CMniversiZzy

Computer Aided Budget Projection:
Reference & Methodology

IWU Computer Aided Budget Methodology

Illinois Wesleyan University
Computer Aided Budget Projection:
Reference & Methodology

by
Jeffery L. Olson

I would like to thank the following people, whose contributions have made this revised

methodology possible:

Mr. Lynn Nichelson
Director of Financial Aid

Illinois Wesleyan University

Dr. Susan-Anderson Freed
Chairperson, Department of Computer Science

Ilinois Wesleyan University

Amy N. Baird &
Stephanie M. Pannier

Previous designers of the methodology this project is based on.

Page 2

IWU Computer Aided Budget Methodology

Table of Contents
INEPOAUCTION. ...ttt st ennenn e 4
INOTALION: ..ottt ettt et e s st es s eae s s es e 4
Part One- SEUPocooiii e 5
Part Two- The ‘Budget Prep” Programocooooiviiiiiiiicccceee e 7
Part Three- ASCII File Importationcccoooooiiiiiiiieceeee e 10
Part Four- Processing Bin BIOCKSccocoooiiiiii e, 13
Part Five- The Budget Projection SUmmaryc.cccocoeeoiiiiiieiececeeee e 14
Appendix A. Basic Spreadsheet Commands ..o 15
AL ..ottt ettt ettt et 15
Bin BIOCKS ...t 15
BlOCK COPY ..ottt ettt e a e s st 16
BIOCK DEIETE ...t e 16
BIOCK INSEIL.....c..oiiie ettt 16
ClOSE ..ttt st re et b et ne b ean e sasenas 17
Xt ettt e et eaeeee 17
Fal ettt bbbt b et et ens s b e ene 17
LoCKINE TIHIES ...ttt 17
INW .ttt ettt et e h et b et et e e b et R bR e b et e et eh et e etk nseba e e e e 17
OPEIL ettt et ettt et 18
SaVE ANA SAVE AS......ooiiiniie it ettt 18
] 172 (SRR s OO RSU U OSSO UU RO TU PR RUURPO 18
Appendix B. Spreadsheet Formula Development....................oocoiiiii 20
Appendix C. Printing Spreadsheetscocoooiiiiiiiiiieceee e 21
Special Characters in headers and fOOters.................ocoocooeiiiiiiieee e 22
Appendix D. Data Fields Found Within the Import Files...................cc.cooiiiiinnn 25
APPENAIX E. .ot e 28
Technical Notes Concerning the “Budget Prep” Program..............c.coooooininiinnn, 28

Page 3

IWU Computer Aided Budget Methodology

Introduction

Welcome! These guidelines will help you set up the Budget Projection Model in a
relatively short period of time using an efficient series of steps. In addition, details
concerning the manipulation, modification, or printing of sheets in the model is also

detailed.

Notation:
1) Clicking refers to putting the arrow of he mouse on something and then pressing
the left mouse button. Double-clicking refers to this same process, except

clicking twice in rapid succession.

2) When referring to selecting items from pull down menus found at the top of

windows, the Menu Name and then the menu choice to select is printed as

follows:
. Menu | Choice
3) For Menus where multiple levels of Menus pop out:
. Menu | Choicel | Choice?2 ...
4) To execute Menu | Choice, the user would click on the Menu menu name on

the horizontal bar at the top of the window, and then click on Choice from the

menu that pops down.

5) In Quattro Pro, selecting a cell can be done in two ways
. clicking on it with the mouse cursor
. using the arrow keys to highlight the border around the cell

Page 4

IWU Computer Aided Budget Methodology

Part One- Setup

In order to for project the current year financial aid budget, several preparatory
steps must first be taken. First, the financial aid information must be downloaded into
the ASCII files on a floppy disk. These files are named BDGTOTHR.TXT,
BDGT3115.TXT, and BDGT4321. TXT. Additionally, you must have approximately
2.5MB (2,500,000 Bytes)of Hard Disk space free. This can be verified by going to the
DOS prompt typing “dir’ and pressing enter. A list of files will be printed out. At the
bottom of this list you will see a line reading ‘####### bytes free’. This number must be
greater than 2,500,000.

Next, new directories to store this year’s budget projection must be created. The
first directory will group files of the same academic year (e.g., 1996-97), while the
second, PROJECTN will group ali the files used in the budget projection model. Open
the “File Manager” program from within Windows by double-clicking on the file cabinet
icon associated with it.

On the left side of the “File Manager” you will see a hierarchy of yellow folder icons.
Above this is a gray bar with boxes, representing disk drives, and their corresponding

letters next to them.

1) Click on the box labeled “C:”. This selects the computers hard drive.
2) In the left window click on the “QPW” folder to open it.
3) Click “FILES”
4) Click “BUDGET”.
5) Select File | Create Diwectory.
. You will be prompted to enter a new directory name. Type ‘199x-9y’

where x & y represent the next academic year (e.g. ‘1996-97’).

° You should now have a folder within ‘BUDGET’ with the nhame you just
entered.
6) Click on the folder you have just created to open it.

7) Select File | Create Directory

Page 5

IWU Computer Aided Budget Methodology

. Name this directory ‘PROJECTN’ to indicate that it will contain budget

projection information.

You should now have a folder within your newly created year folder
called PROJECTN

8) Select File | Exit to close the Program Manager

Page 6

IWU Computer Aided Budget Methodology

Part Two- The ‘Budget Prep’ Program

Now that you have your directories set up, and the import files in hand; you must
now run “Budget Prep”. This program sorts and formats the AS400 ASCII files into four
text files which can be easily imported into Quattro Pro.

1) Insert the floppy disk containing the three AS400 ASCII files into drive A: (your
computer’s 3% inch disk drive.

2) Start the “Budget Prep” program by double clicking on its Windows icon.
. The following should be displayed:

Welcome to automated ASCII file processing for Budget Projection!

In order to proceed, this program needs to know the
location of the input files. Additionally, this program
needs to know where it should put the processed output
files.

Current File Locations:

(Input) BDGTOTHR.TXT ----> AABDGTOTHR.TXT

(Input) BDGT3115.TXT ----> AABDGT3115. TXT

(Input) BDGT 4321 . TXT ----> AABDGT4321.TXT

(Output) FRESH_TXT ------ > CAQPWAFILESVASCIIZVFRESH.TXT
(Output] SOPH.TXT ------- > CAQPWAFILESVASCINSOPH.TXT
(Output]) JUNIOR. TXT ----- > CAQAPWAFILESVASCIHVJUNIOR. TXT
(Output] SENIOR.TXT ----- > CAQPWAFILESVASCHASENIDOR. TXT

NS A e

Enter 1-7 to modify a file location, 8 to continue:

3) Make sure all file locations are correct
. If one or more of‘the file locations is incorrect, press the number
corresponding to it followed by ENTER. You will then be prompted to

enter the new file location. When referring to output files, make sure that

Page 7

IWU Computer Aided Budget Methodology

your filename has the extension “. TXT” on the end of it. Quattro Pro will

not import files without this extension.

o When you are satisfied with the location of all of the files. Press ‘8” and
ENTER to continue.
4) File Processing will now begin. Some student records in the file will have blank

“Year” fields. As a result, the Budget Prep program will not know which output
file to put the student in.

o A screen like the following will appear:

Mo year hag been found with thiz student

First Name: “"Michael
Last Name : “"Chadwick "

Please choose one of the following:

1. Put the student in the Freshman file.
2. Put the student in the Sophomore file.
3. Put the student in the Junior file.

4_ Put the student in the Senior file.

5. Delete this student from the Budget Projection

Press 1-5. followed by ENTER:

o If the name fields are blank, choose option 5. This will discard the blank
record from the processed output.

. If the name fields are not blank, look this student up on the AS400, or
student directory and place them in the correct class. You may see the
same student’s name more than once if the year was not filled in on more
than one input file.

o If a mistake is made simply let the program finish its run. Then run
Budget Prep again. The files on your next run will replace those that were

incorrect.

Page 8

IWU Computer Aided Budget Methodology

5) When all students have been assigned a class, the program will sort and match
student records. You will see messages on the screen indicating the program’s
progress.

6) When you see the message “Process complete” close the window that the
program was running in. This is accomplished by double-clicking the gray box in

the upper left-hand corner of the window.

Page 9

IWU Computer Aided Budget Methodology

Part Three- ASCII File Importation

Now that you have processed ASCII files, you are ready to import them into

Quattro Pro 6.

1) Open Quattro Pro 6 by double-clicking on its Windows icon.
2) Select File | Open

o You will see a list of file names on the left, and a list of directory folders
on the right.

J Double click the directory folders in this order: OFFICE\ QPW\ FILES\
SHELLS the folders will appear to open as you do this revealing the next
layer of folders.

. In the file list on the right you will see a file called BPCLASS. WB2

Click on this file name, highlighting it
] Click OK- the shell will open
3) We now need to create 4 copies of this to use in our budget projection

J Select File | Save As..

This will bring up directory folder and file lists similar to the File |
Open option

Double-click on the folders to open OFFICE\ QPW\ FILES\
BUDGET\ 199x-9y\ PROJECTN

Note that the last two folders are the ones you created at the
beginning of this process

o Make Sure the PROJECTN folder is both highlighted and looks “open”

. Click above the file list box, a cursor will appear allowing you to enter a
file name

o Type ‘SENIORS’ and then Click OK

o After a brief pause the file is saved
o Repeat step 3) to create files named ‘JUNIORS’, ‘SOPHS’, and
‘FRESHMEN’

Page 10

IWU Computer Aided Budget Methodology

4)

5)

6)
7

8)
9)

10)

You should now be in the newly created ‘FRESHMEN.WB?2’ file. If not Select

File | Open and open the file

Near the bottom of the window you should see some white lettered tabs:

. Click on the one lettered ‘B’

. You should see a screen with a dark red top border, with green headings

Select Cell A16 (top white cell)

Select Motebook | Text Import

o Make sure the ‘ASCII Text File’ button is selected in the option box

o Double-click on the folders to find the ASCII Files.
The default location is OFFICE\QPW\ FILES\ ASCII

o Highlight the FRESH.TXT file

J Click OK

All of the data will be imported into column A of this sheet.

Press the END key on the keyboard, then press the ‘4 key. This will take you to

the bottom row in the sheet.

o Write this Number down, you will need in the next step

Select Notebook | Parse

o On the line labeled ‘Input’ type : ‘B:A16..A#’ where # is the number you |

just recorded as being the last row in the spreadsheet.
o Click the Create button. A parse line will be inserted into line 16.
. Click Edit- A new window will appear containing the parse line in the top
portion and student information in the bottom.

In the Parse Line there should be an ‘L’ above the first letter in
each students last name. There should also be an ‘L’ above the
first letter in each student’s first name. However, there should not
be any L’s between the aforementioned ones.
If additional L’s do appear, replace them with an “>’. This should
leave you with an L followed by 15 > or “*’ characters, followed

by another L.

Page 11

IWU Computer Aided Budget Methodology

11)
12)

ex) L>>>>>555555555>] SE55555>>>5],
Click OK at the bottom of this window to save any changes you made.
This will close the edit parse line window.
On the line labeled ‘Output’ type: ‘B:A16’ to tell Quattro pro where to
start the parsed data
Click OK
The information should now be parsed into the appropriate columns.
Select File | Save

Select File | Close

Fill in the Current Budget and Projected Budget values in A:C5..C6

Repeat steps 4-11 for “SOPHS. WB2’, ‘JUNIORS.WB2’ , and ‘SENIORS’ WB2.
Use FRESH.TXT for the SOPHS.WB2, SOPH. TXT for JUNIORS.WB2, and
JUNIORS. TXT for SENIORS.WB2

In other words, this years sophomores will be next years juniors.. etc.
Since we don’t yet have the data for next year’s freshmen we just use this

years freshmen for this sheet as well.

Page 12

IWU Computer Aided Budget Methodology

Part Four- Processing Bin Blocks

Four workbooks representing each class should now have their data parsed.
However, one crucial step remains. Bin Blocks must be used to count the number of
non-zero entries for a given column. The result can then be used to compute the
statistical averages.

1) Click on the Sheet ‘C’ tab at the bottom of the window. Sheet C is where all the
Bin Blocks are computed, their results are the automatically copied into Sheet A
to compute the formulas. To assist you, a template listing the correct Value Box
entry is listed above each Bin Block.

2) For each Bin Block:

. Select Tools | Numeric Tools | Frequency

. In the area labeled “Value Block’ type the header string appearing over the

Bin Block (e.g. A:C16..C999)

. In the area labeled ‘Bin Block’ enter the location of the 0 and 1 appearing

under the header string-- remember you are on page C! (e.g. C:A4..AS)

. Click OK |
3) Once this is done for each Bin Block, the class sheet is complete. Don’t forget to

save your work before closing.

Page 13

IWU Computer Aided Budget Methodology

Part Five- The Budget Projection Summary

The final worksheet in the projection which collates all of the projection data
must now be set up.
1) Select File | Open
o Click OFFICE\ QPW\ FILES\ SHELLS\ BPSUM.WB2
2) Select File | Save As..
o Make sure the OFFICE\ QPW\ FILES\ BUDGET\ 199x-9y\ PROJECTN
folder is highlighted & open by double-clicking on it

o Click in the box above the file list box and type the filename
‘BDGTPRIN’
. Click OK

3) This summary of the Budget Projection should already have data in it from the

class files developed above.

Page 14

IWU Computer Aided Budget Methodology

Appendix A. Basic Spreadsheet Commands

Here are a few of the more common operations that you will use when working
with Quattro Pro 6. If any command has undesired results, simply select Edit |
Undo... to return the sheet to the state it was in before your action. They are listed in

alphabetical order for your convenience:

Align

This command allows the user to cheese whether the information in the selected cells is

left justified, right justified, or centered, etc.

1) Select the cells to be aligned by painting them (click and hold the left mouse
button and move the mouse). The easiest way to paint an entire column is to
click on the gray letter heading above it.

2) In the third tool bar, the property band, click the fourth option from the left.

3) Click on the desired alignment

Bin Blocks

This command can be used to count the number of times a given value appears in a

block.

1) Find an open space in a spreadsheet.

2) Type a zero in the cell.

3) In the cells directly below this, enter the values that you want to count in
ascending order. This is your bin box. After completing the following steps,
number of times the bin box value appears is printed to the right of bin box. The
number of “other” values (those not found in the bin box) are listed at the bottom.

0 (Number of Zeros found in the column)
1 (Number of Ones found in the column)
(Number of Values > 1 found in the column)

4) Select Tools | Numeric Tool | Frequency

Page 15

IWU Computer Aided Budget Methodology

5) In the area labeled Value Block, type the column block of the values you wish to
count. (e.g. A:C16..C99)

6) In the area labeled Bin Block, enter the block where your bin block is.(e.g.
A:C100..C101)

Block Copy

Copies a value from a cell (or cells) to many other cells. This function is most useful for

copying formulas down an entire column.

1) Select Block | Copy

2) The ‘From’ area should contain the block address (e.g. A:A10) that you wish to
copy.

3) The ‘To’ area should contain the block address (e.g. A:A11..A99) that you wish to

copy the information to.

Block Delete

Deletes rows/columns from the spreadsheet.

1) Select Block | Delete

2) Enter the range of cells to delete (e.g. A:A10..A12 or A:A1..B99)

3) Select Rows or Columns to delete.

4) If the “Entire’ button is filled in, the entire row/column that a deleted cell is part
of will be removed. If partial is selected, only the portion specified in part two
will be deleted, with the rest of the rows/columns moving left/up to fill the gap.

Tip: if you delete a cell referenced in a formula that remains in the spreadsheet

afterwords, you will receive ERR messages.

Block Insert

Inserts rows/columns into the spreadsheet. The rows are inserted in the spreadsheet
before the location mentioned.

1) Select Block | Insert

2) Click whether you warnt to insert new rows or columns,

Page 16

TWU Computer Aided Budget Methodology

3) Enter the space you want to insert at.
4) Click OK.
Close

Closes the current spreadsheet. The spreadsheet will not be saved unless you click yes
when prompted (if you just saved the spreadsheet, you won’t be prompted).

1) Select File | Close

Exit
Exits Quattro Pro. If you have any spreadsheets that have not been closed, Quattro Pro
will ask you if you want to save them before exiting.

1) Select File 1 Exit

Fit

This command adjusts the width of a column so that the widest entry in that column will
fitinit.

1) Place your cursor in the desired column.

2) Click the small box in the toolbar that has two arrows in it

Locking Titles

This keeps certain portions of the spreadsheet on the screen at all times. This allows you

to view your titles, no matter where you are in the spreadsheet.

1) Place your cursor in a “cornerstone position”. All rows above this position and/or
all columns to the left of this position will remain fixed.

2) Select View | Locked Titles

3) Select whether you would like to lock horizontally(columns), vertically(rows), or
both. If the clear option is selected, the locked titles are removed.

4) Click OK

New

Page 17

IWU Computer Aided Budget Methodology

Creates a new, blank Quattro Pro worksheet.
1) Select File | New

Open

This command opens an existing Quattro Pro worksheet.

1) Select File | Open

2) Move to the desired directory by double-clicking on folders to open them. You
should see the file you want to open in the file list on the right.

3) Click on the desired file to highlight it.

4) Click OK.

Print

See Appendix C.

Save and Save As..

The Save command saves a notebook. If the spreadsheet has been saved in the past, and
you wish to save it under the same name, select File | Save. No other action is
necessary.

If you wish to save it under another name or in a new location:

1) Select File | Save As..

2) Click on the desired directory folder locations by double-clicking.

3) Click in the empty box labeled File Name.

4) Type in the name you want to use.

5) Click OK

Style

The Style option allows you to modify the way information is displayed. You can cause
numbers to be displayed as Currencies, with a ‘$* and commas.

1) Paint the portion of the Spreadsheet that you wish to apply the style to.

Page 18

IWU Computer Aided Budget Methodology

2) In the Property Band (third bar of the toolbar), click the third option from the left-
the style list. A variety of formatting styles will become available.

3) Choose the desired style.

Page 19

IWU Computer Aided Budget Methodology

Appendix B. Spreadsheet Formula Development

Quattro Pro provides formulas to manipulate the data found in your spreadsheets. The
following is a brief introduction in the topic. For a more detailed discussion, consult the
Quattro Pro documentation.

All formulas must start with a ‘“+’ or an @ Function. Mathematical operators (+,-
,¥./) can be used to perform calculations. For example, ‘+A12/A14 might compute an
average.

@ Functions are always named with an @, followed by the name of the function,
followed by values enclosed in parentheses. For example: @SUM (A1,A2) adds the
numbers in parentheses together. Alternatively, instead of putting just two values in the
parentheses, a range could be addressed as @SUM(A1..A999).

Another useful function is the @IF function. This function uses three arguments:
@IF(<this condition is true>, <this cell should = this value>, <otherwise the cell should =
this>)For example @IF(A1>A2, A1-A2, 300) means that this cell should = A1-A2 if
A1>A2, otherwise it should equal 300.

The true power of formulas can be utilized by imbedding formulas within
formulas. Any time an @Function requires a value as an argument, you can put another
argument that returns a value in its place. For example, you can have: @IF(A2>Al,
@SUM(B1..B333), @IF(A2=A1, 500, A2 - A1). The number of @Functions makes
possibilities nearly endless through combinations.

Some common formulas are detailed below:

@SUM(<value1>,<value2>..<value n>) - adds the values together

@IF (<Condition Statement>, <then value>, <otherwise value>) - if the condition

statement 1s true, this cell = <then value>, otherwise it = <otherwise value>

@ROUND(<value statement>, <number of places to round to>) - rounds off the

value in part one to the number of decimal places given in part two.

Page 20

ITWU Computer Aided Budget Methodology

Appendix C. Printing Spreadsheets
1) Select File | Print (or click the printer icon in the top toolbar)

2) Examine the ‘Print Area’ Box

Current Page - if selected, will print the entire page that you were on when
you selected File | Print. (e.g.- Page B of a notebook)

Notebook- if selected, will print all pages of the notebook. (e.g. Pages

A B, & C of a 3 page notebook will be printed.

Block Selection- Allows the user to define a section of the notebook to be
printed. (e.g. ‘A:B10..250° will print the block defined by these corners)
If the spreadsheet cannot be printed on one page, this is the best option to

select.

3) Click on the Sheet Options button on the right side of the Print Options Window

If the sheet will be printed on multiple pages, and you wish the top
headings of the columns to appear on all pages; you need to define a top
heading. For example, a top heading of ‘A:A1..Z10° would cause the top
ten rows, columns a..z, of the spreadsheet to appear at the top of every
printed page. In effect this is much like locking titles.
Similarly, if the spreadsheet is too wide to fit on one page, you may wish
to define a left heading. For example, you could define the Name
columns of students to print on all pages.
Click OK.

NOTE- Be sure that the blocks defined in your headings, and the

block defined in the Block Selection do not overlap. If they do,

the same information will be printed twice:

This is OK:

Block Selection- A:C10..299

Top Heading- A:A1..Z29

Left Heading- A:A10..C99

Page 21

IWU Computer Aided Budget Methodology

Block Selection- A:A10..299
Top Heading- A:A1..29
Left Heading- A:A10..C99
4) Click the Page Setup button on the right side of the Spreadsheet Print Window
o Select Portrait or Landscape orientation for the paper by clicking the
appropriate button in the bottom center of this window.
Generally, if your spreadsheet is very wide, Landscape orientation
is the best choice. This will help keep the spreadsheet from
spilling over 1 or more pages to the side.
. Click Print scaling from the list of buttons on the left hand side of the
window.
By entering a scaling percentage, you can shrink the size of the
type being printed. This will reduce the amount of pages needed
to print the spreadsheet.
If the ‘Print to Fit’ box is checked, Quattro Pro will shrink the text
so it fits all on one page. However, this often causes the type to be
printed too small to read easily. ‘
Click OK when done.
5) Click Print Preview to examine the sheet as it will be printed. When done
examining the preview, click the red X at the top of the preview.
6) If you are not satisfied with the sheet as it looked in the print preview, repeat
steps 2-5 as needed.

7 Click the Print button. Your document will be sent to the printer

Special Characters in_headers and footers

Quattro Pro has special characters that can be inserted into the Header or Footer
of your document. For example, you may want the pages numbered, or today’s date
printed on the Top.

1) Follow the instructions for printing as above

Page 22

IWU Computer Aided Budget Methodology

2) Click the Page Setup button on the right side of the main print window

3) Click the Header/Footer button from the list on the left side of the Page Setup
Window.

4) Type the Special Characters into the Header and/or Footer as desired as outlined
below.

You can type words in the Header/Footer Fields and they will be printed at the very top or

bottom of every page.

To align text use the | as follows:

This text is on the left side of the page | This is centered | This is on the right

A -prints A on the left side of the page.

|A -centers the letter A on the page

A -prints the letter A on the right side of the page

These special characters can be used to print out certain data.

#d - Current Date, short international format (DD/MM/YY)
#D -Current Date, long international format (Day Month, Year)
#ds -Current Date in standard short format (MM/DD/YY)

#DS -Current Date in standard long format (Month Day, Year)

#t -Current Time in short international format
#T -Current Time in Long international format
#ts -Current Time in short standard format

#Ts -Current Time in long standard format

#p -Current Page Number

#P -Total Number of Pages in the Document

#f -Notebook Name

#F -Notebook Name including its Directory Path

#n -prints all text following it on a new line

For example, a header of:

Page #p || #Ds

Page 23

IWU Computer Aided Budget Methodology

would cause “Page 17 to be printed on the left top corner, and “01/01/96” to be printed in
the upper right.

Page 24

IWU Computer Aided Budget Methodology

Appendix D. Data Fields Found Within the Import Files

The Processed files returned by the Budget Prep program contain the following fields,

separated by spaces:

LastName

FirstName

MI

State

Year
FamilyMembersInCollege
M

EFC

ParentAGI

StudentAGI

FisapAGI
FinancialNeed

Pell

Map

IWU_Grant
IWU_GrantWithAlumni
IWU_Grant OS
IWU_Grant_OS_Alumni
OutsideScholorship
NoNeedScholorship
SpecialCorp NMSC
MeritCorp NMSC
OneTimeNMSC
AlumniAcademic

AlummiWithNeed

Page 25

IWU Computer Aided Budget Methodology

TalentMusic
TalentArt
TalentDrama
MusicWithNeed
ForeignStudent
Ministerial
ParentsAssoc
PreTheology
IWU_NationalMerit
Music

Giese

Alkonis

Stevenson

Rupert

Mahlstedt

Senate

Presser

Brokaw

Shanks

Baker
AlumniAchievement
StateFarmMinority
EBRust

Special Award
MusicAward
IWU_NationalMeritWithAlumni
InternationalStudentAchvmnt
NeedBasedGift
MusicHonors

SEOG_Initial

Page 26

WU Computer Aided Budget Methodology

SEOG_Renewal
IllinoisMerit
MeritRecognition Need
Perkins

Perkins ST

Nursing

Nursing ST

Stafford IS
Stafford OS
Stafford IS ST
Stafford OS ST

LULU

LULU_ST

EdgarSmith

Methodist

Massock

Ferguson

Tripp

Myers
IWU_StudentEmployment
IWU_EmploymentPartial
WorkStudy
WorkStudyPartial

Page 27

IWU Computer Aided Budget Methodology

Appendix E.

Technical Notes Concerning the “Budget Prep” Program

The following error messages may be returned during a program run.

“Unable to open X file. Program terminated.”

-- This indicates that one of the 7 file locations specified in the initial screen of Budget
Prep was invalid. This 1s most likely caused by its path (Drive and directory location) not
existing. If the file 1s an input file, the file may also not have been found at the named

location.
The program was compiled using the Borland C++ Compiler version 4.52. It was

targeted for DOS, making it highly compatible with a variety of operating systems that
run on IBM compatible PCs.

Page 28

LS RS R ok ok ok ok sk ok ok ok S oF ok ok ok ok ok S ok Sk ok b Sk ok ok Sk ok b ok Ak Sk ok ok b ok ok Sk ok Sk o b ok SE Sk o Sk ok b ok ok ok Sk b sk S ok ok S ok Sk b E ok A A kb Sk e ok o b
/7 Budget Prep- a ASCII file sorting, matching, and formatting program
s by Jeffery L. Clson

Sk ok ok ok ok gk ok e b ok ok sk ok ok ok ke Sk ok o ok ok ke ok ok e Sk Sk b A S b ok ok sk e Sk b ok o o ok ok ok ok sk i Sk S ok ok ke ok ok ok bk ko ok b b ok ke ke Sk o b e

/7

/4 INPUT FILES: EDGTOTHR.TXT- IM,FM,EFC,AGI, and Financial Need

LS BDGT3115.TXT- Pell MAP,IWU grants, Misc. Awards

s BDGT4321.TXT- Misc.Awards, SEOG, Loans, Work Study

s

// TEMPORARY FILES: OTHR 1.TXT- Freshman portion of EDGTOTHR.TXT

e _OTHR_2.TXT- Sophomore portion of BDGTOTHR.TXT

s _OTHR _3.TXT- Junior portion of EBDGTOTHR.TXT

S _OTHR_4.TXT- Senior portion of BDGTOTHR.TXT

S

s 3115 1.TXT- Freshman portion of BDGT3115.TXT

LS 3115 2.TXT- Sophomore portion of BDGT3115.TXT

S 3115 2.TXT- Junior portion of BDGT3115.TXT

‘s 3115 4.TXT- Senior portion or BDGT3115.TXT

e

4 4321 1.TXT- Sorted Freshman porticon of BDGT4321.TXT
S 4321 2.TXT- Sorted Sophomore portion of BDGT4321.TXT
s 4321 3.TXT- Sorted Junior portion of BDGT4321.TXT

oS 4321 4.TXT- Sorted Senior portion or BDGT4321.TXT

/.

4 _OTHR 15.TXT- Sorted Freshman portion of BDGTOTHK.TXT
7 _OTHR 25.TXT- Sorted Sophomore portion of BDGTOTHR.TXT
v _OTHR_35.TXT- Sorted Junior portion of BDGTOTHR.TXT

A/ _OTHR 45.TXT- Sorted Senior portion of EDGTOTHR.TXT

e

S/ 3115 15.TXT- Sorted Freshman portion of BDGT3115.TXT
v 3115 25.TXT- Sorted Sophomore portion of BDGT3115.TXT
s 3115 35.TXT- Scrted Junior portion of BDGT3115.TXT

s 3115 45.TXT- Sorted Senior portion of BDGT3115.TXT

,

A 4321 15.TXT- Sorted Freshman portion of BDGT4321.TXT
A7 4321 28.TXT- Sorted Sophomore portion of BDGT4321.TXT
S 4321 38.TXT- Sorted Junior portion of BDGT4321.TXT

Y4 4321 45.TXT- Sorted Senior portion of BDGT43Z21.TXT

7/

J// OUTPUT FILES: FRESH.TXT~ Sorted, combined data for Freshmen

‘0 SOPH.TXT~ Sorted, combined data for Sophomores

A JUNIOR.TXT- Sorted, combined data fcr Juniors

v SENIOR.TXT- Sorted, combined data for Freshmen

//

7/ FUNCTION: Will first split each file into four separate files by class:
A7 Freshman, Scphomores, Juniors, and Seniors. Each of the
L/ 12 resulting files will then be alphabetically sorted by
A name. These data files will then be combined by class ({ex:
4 OTHR 1.TXT, 3115 1.TXT, & 4321 1.TXT would be combined to
o4 form the FRESH.TXT output file). When the files are ccmbined,
ol a space will be inserted between filelds. This will allow
s QuattroPro vé6.0 to automatically place the fields into

7/ separate cells in the spreadsheet.

7 ke ok Sk ok ok ok ok ok ok ok Sk ok & sk ok ok ok ok o o ok sk ok ok O ok ok ok ok ok ok ok Ok D ok b b b ok ok A Sk ok ok ok A b b ok ok Sk ok ok Sk o ok ok ok ok Sk Sk ok b oA Sk ok ok Sk o ok Sk ok b
A

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream.h>
#in-lude <fstream.h>
#include <fcntl.h>
4include <io.h>
#inciude <sys\stat.h>»
#include <string.h>
#include <errno.h>

o T A ._'_"“ T~
Filnclude <COnl1ld.fi~

#include “dynarray.h"

/’/ A A IR IR e R R B Bl S a I Sl e AP P S S e A I b i i S B e e AR S A g A i g SRR P S g
;
// Stores the Lengths of each field in a table, they are Indexed in the

n

4 table by their names using an enumerated type
s Sk o ek Ak K ok kS ok ok ok ok ok Sk e ok Sk ok ok Sk ok Sk Sk Sk ok ok ok Sk Sk ok Sk ok Sk ok Sk ok ok ke Sk ok b S b v ok o Sk ok ok S A ok ok ok o ok ok ok Sk ok o R ok ok

const LastNamelength = 16;
const FirstNameLength = 12;
const MILength = 2;
const Statelength = 2;
const YesarLength = 2;
const FamilyMembersInCollegelLength = 2
const IMLength = 9;
const EFCLength = 5z
const ParentAGILength = 8;
const StudentAGILength = 3;
const FisapAGILength = o
const FinancialNeedLength = 9;

/7 Fields Unique to BDGT3115 (ie NOT Names or Year)
const Pelllength =
const MapLength =
const IWU GrantLength =
const IWU GrantWithAlumniLength
const IWU Grant OSLenqgth =
const Iwu:Grant:OS_AlumniLength
const OQutsideScholorshiplength =
const NoNeedScholorshipLength =
const 3pecialCorp NMSCLength =
const MeritCorp NMSCLength =
const CneTimeNMSCLength =
const AlumniAcademicLength =
const AlumniWithNeedLength
const TalentMusicLength =
const TalentArtLength =
const TalentDramalength =
const MusicWithNeedLength =
const ForeignStudentLength
const Ministeriallength =
const ParentsAssocLsength =
const PreTheologylength =
const IWU NationalMeritLength =
const MusicLength =
const Gieselength =
const AlkonisLength =
const 3StevensonLength
const RupertLength =
const MahlstedtLength
const Senatelength =
const Presserlength =
const BrokawlLength =
const ShanksLength =
const RakerLength =

I I
il 1l
D R T T T LT TR N R TR PR PR VL VN TR PR VRN PR Y

~e

it

D e R T T T P

GO UM @O AN o RN g @ @O m o ;oo omo g, a

~u

// Fields Unique to Bdgt4321 (ie NOT Names or Year)
const AlumniAchievementLength = 3
const StateFarmMinorityLength =
const EBRustlLength =
const SpecialBAwardLength =
const MusicAwardLength =
const IWU NationalMeritWithAlumnilLength =
const InternationalStudent2chvmntLength =
const NeedBasedGiftlength =
const MusicHonorsLength =
const SEOG Initiallength =

(&7

AT TR TN TR R T L T L T I Y BT |

vy O o v g1 Ot

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

SEQG Renewallength =
IllincisMeritLength =
MeritRecognition NeedLength =
Perkinslength =
Perkins STLength
NursingLength =
Nursing STLength
Stafford ISLength =
Stafford OSLength =
Stafford IS E£TLength
Stafford 0S STLength
LULULength =

LULU STLength =
EdgarSmithLength =
MsthodistLength =
MassockLength =
FergusonLength =
TrippLength =
MyersLength =

IWU StudentEmploymentLength
IWU EmploymentPartiallength
WorkStudyLength =
WorkStudyPartiallength =
CRLength =

1

1l

i

Na Nu NE Ns Na NE Na S N

PR

LT T Y Y

CYTE TR YRR YR

Mot ot Or gt gt gy 0ot gnoan
<~

=
~e

~e Sa

&S ek ek ok b Sk sk kS ok ok ok b b b bk ok ke ok ok b b Sk o b o Sk ok ok o Sk Sk ok Sk Sk ok A S ok ok ok R ok S ok Sk ok ok ok ok Sk ok Sk e Sk ok ok ok ok Sk ok b Sk o ok ok ok ok Sk
5L

a
s

4
e

typedef struct BdgtOthr Form
{
char LastName
FirstName
MI
State
Year
FamilyMembersInCollege
M
EFC
ParentAGI
StudentAGI
FisapAGI
FinancialNeed
CR

s
/7

s

/7

typedef struct Bdgtl3ll5 Form
[

1

LastName

FirstName

MI

Year

Pell

Map

IWU Grant
IWU:GrantWithAlumni
IWU Grant OS5
IWU Grant O3

char

Alumni

s

Structure cof the data fields in the BdgtOthrFile

ek kb o b Sk ok b ok Sk b ok o b b Ak ok o ok ok o b ok ok ok A S ok S ok Sk ok b b b o R Sk ok ok J OF R kS oF Sk ok T ok ok ok Sk R sk ok b Sk Sk 5k oF ok oF o ok ok Sk ok ok A b

[LastNameLengthl,
[FirstNameLength],
[MILength],
[StatelLength],
(YearLength],
[FamilyMembersInCollegeLength],
[IMLength],
[EFCLengthl},
[ParentAGILength],
[StudentAGILength],
[FisapAGILength],
{FinancialNeedLength],
[CRLength]

Total: 87

Sk e b b S ok Sk o Sk ok Sk ok Sk Dk ok o Sk Sk sk Sk o Sk Sk o Sk Sk ok o ok Sk ok e Sk ke o b R Sk D o Sk ok Sk A Sk Sk ok Sk Sk Sk o Sk o Sk ok ok Sk b R ok o ok ok o o o o b b b

Structure of the data fields in the Bdgt3115.TXT File

sk ko o ok S Sk ok ok b b ok ok b ok e ok Sk b b ok Sk s b Sk ok Sk Sk Sk b Sk Sk Ok b b b o Sk ok ke ok sk ok ok Sk S ok o o S Sk Sk ok ok S Sk ok Sk ok ok Sk R ok Sk ok ok Sk Sk ok ok Sk ok b

[LastNamelength],
[FirstNameLength!,
(MILengthl],

[YearLength],

[Pelllength],

[MapLengthl],

[IWU_ GrantLength],

[IWU GrantWithAlumnilLength],
[IWU Grant OSLength],

[IWY Grant OS Alumnilengthl],

).

i

,//" o Sk ok K ok ok ko ke ok ok ok ok b ok ok ok ok ok Sk ke ok oA b ok ok Sk Ok ok ok ok ok S ok ok ok ok b ok ok ok Dk b o o Sk o ok ok ok b A ok ok ok ok O ok ok ok R ok o Sk ok ok b b
P

OutsideScholorship
NoNeedScholorship
SpecialCorp NMSC
MeritCorp NMSC
OneTimeNMSC
AlumniAcademic
AlumniWithNeed
TalentMusic
TalentArt
TalentDrama
MusicWithNeed
ForeignStudent
Ministerial
ParentsAssoc
PreTheology

IWJ NationalMerit
Music

Giese

Alkonis

Stevenson

Rupert

Mahlstedt

Senate

Presser

Brokaw

Shanks

Baker

CR

// Total:

[CutsideScholorshiplengthl],
[{NoNeedScholorshipLengthl,
[SpecialCorp_NMSCLength],
[MeritCorp NMSCLength],
[OneTimeNMSCLength],
[AlumniAcademicLength],
[AlumniWithNeedLength},
[TalentMusicLength],
[TalentArtLength],
[TalentDramalength],
[MusicWithNeedLength],
{ForeignStudentlLengthl],
[Ministeriallengthj,
{(ParentsAssocLength],
[PreTheologyLength],

[IWU NationalMeritLength],
[MusicLength],
[GieseLengthl],
[AlkonisLengthl],
[StevenscnLengthl],
[RupertLength],
[MahlstedtLengthl],
[Senatelength],
[PresserLength],
[BrokawLength],
[ShanksLength],
[BakerLengthl,
[CRLength] ;

198

/7 Structure of the data fields in the Bdgt4321.TXT File

/’// Sk Sk ok oA ok kv k ok ok ok ok dk o kb ok ok b ok ok o R Sk ok ok ok ok O b Ok ok ok ok Dk b ok ok ok ok ok kb ok ok ok b b ok b ok ok ok ok ok ok ok o ok b e b ok o ok

typedef struct Bdgt432]1 Form

{
char

LastName

FirstName

MI

Year
AlumniAchievement
StateFarmMinority
EBRust

SpecialAward
MusicAward

IWU NationalMeritWithAlumni
InternationalStudentAchvmnt
NeedRasedGift
MusicHonors

SECG Initial

SECG PRenewal
IllinoisMerit
MeritRecogniticon Need
Ferxins

Perkins ST

Nursing

Nursing ST

Stafford IS
Stafford 08
Stafford 18 ST
Stafford OS ST

LULU

LULU ST

EdgarSmith

[LastNamelengthj,
[FirstNameLengthl],

[MILength],

[YearLength],
[AlumniAchievementLength],
[StateFarmMinorityLengthl,
[ERRustLength],
[SpecialAwardLength],
[MusicAwardLength],

[IWU NationalMeritWithAlumniLengthl],
[InternationalStudentAchvmntLengthl],
[NeedBasedGiftLengthl],
[MusicHonorsLength],

[SEOG Initiallength],
[SECG_RenewalLength],
[IllincisMeritLength],
[MeritRecognition NeedLength],
[PerkinsLengthl,

[Perkins STLength],
[NursingLengthl,

[Wursing STLengthij,

{Stafford ISLength],

[stafford OSLength],

[Stafford OSLength],
[Staffcrd 0S STLength],
[LULULengthl],

[LULU STLengthl],
[EdgarSmithnlengthl],

Methodist [MethodistLength],

Maszszoc [MassockLengthl,
Ferguson [FergusonLengthl,
Tripp [TrippLength],
Myers MyersLength],

IWJ StudentEmployment
IWU_ EmploymentPartial

IWU StudentEmploymentLength],
IWU EmploymentPartiallength],

—_ e — —

WorkStudy WorkStudyLengthl],
WorkStudyPartial WorkStudyPartiallength],
CR CRLength];

// Total: 188

/// K e ke Sk Sk S Sk Ak e ok ok ok A ok A K Sk ok ok ok Ak ok ok b ok ok ok S Sk ko ok ok b A S ok ok e S kb ek ok ok ok b b ok b b b ok b Ak ok ko
/

7/ These unions allow each line of a file teo be accessed as a continuous
27 string or by field

Sf Rk w ok e ok ok ok ok sk Sk ok ok ok ek ok Sk kb o ok b ok b ok S ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ok ok Aok ok ok ok S Sk ok A e ok ok b b bk ko kb e o b ok o o
£

enum Filelengths { BdgtOthr Len = 87, Bdgt3115 Len = 198, Bdgtd3Zl Len = 198};

union BdgtOthr Type

{
char Al1l[BdgtOthr Len];
BdgtOthr Form Field;

i

union Rdgt2ilf Tvpe

{
char Al1[Bdgt3115 Len];
Bdgt 3115 Form Field;

bi

union Bdgtd3Zl Type

{
char All[Bdgt432]1 Len];

Bdgt4321 Form Field;
}

typedef struct BdgtOthrNode* BdgtOthrNodePtr;

typedef struct BdgtCthrNode
i
BdgtCthr Type Data;

b
typedef struct Bdgt3115Node* Bdgt3ll5NodePtr;

typedef struct Bdgt3lltiNode
i

Bdgt311l: Type Data:
I

typedef struct BdgtildZlNode* Bdgtd4321NodePtr;

typedef struct RBdgti321Node
i

Bdgt4i2i Type Data;
1
J

r

// S ok ok b ok ko b Ak ok b b S ok b o o o ok ok b A b o ok A ok ok Sk ok Sk bk ok S ok b b ok e S b ok o ok ok ok A Sk ok ok b A R b b b b b b b b b S g A b b b

/7 Default locations of the files

R RS S R i e i S P I S 2R P g sk g gk i e e g S S S R g b S 2 i S b g g R P P g S S

Y

S/ Input Files

char BdgtOthr File[80] = "A:\\BDGTOTHR.TXT";
char Bdgt3115 File[80] "A:\ABDGT3115.TXT";
char Bdgt4321 File[80] = "A:\\BDGT4321.TXT";
/7 Temporary Files

char* FreshOthrFile "C:_OTHR 1.TXT";
char* SophOthrFile = "C:_OTHR 2.TXT";
char¢ JuniorOthrFile "C:M_OTHR 3.TXT";
char* SeniorOthrFile "C:_OTHR 4.TXT";

i

char* ScrtedFreshOthrFile

Ml

“C:_OTHR 1S.TXT";

char* SortedSophOthrFile = "C:_OTHR 25.TXT";
char* SortedJuniorOthrFile = "C:\\ OTHR 3S.TXT";
char+ SortedSeniorOthrFile = "C:\\ OTHR 4S.TXT";
char* Fresh3115File = "C:\\ 3115 1.TXT";

]

"C:\\ 3115 2.TXT";
"C:_ 3115 3.TXT";
"Ci\\ 3115 4. TXTY;

char* Scoph3115File
char* Junior3115File
char* Senior2115File

char* SortedfFresh311%File = "C:_3115 1S8.TXT";
char* sortedSoph3115File = "C:\\ 3115 2SS TXT";
char* Sorteddunior3l15File = "C:\\ 3115 SH TAT™;
char+ SortedSenior3lloFile = "C:\\ JllJ _45.TXT";
char* Freshi321File = "C:\ 4321 1.TXT";
char* Scphi321File = "C:\\ 4321 _2.TXT";

char* Juniord4321File CaA\ 43“1 3 TXT";

char* Seniord32lfile = "Ci_ 4321 4 TXT";

char* SortedFresh4321File = “C:\\ 4321 1S5.TXT":
char* SortedSophd321File = "C:\\ 43”1 25.TXT";
char* SortedJunior4321File = "C:\\ 4321 3S5.TXT";
char* SortedSeniord321File = “C: _43”1_4C TXT";

S /Cutput Files

char FreshOQutputFile [80] "CIANNOFFICEN\QPWAN\FILES\\ASCII\\FRESH.TXT";

char SophQutputFile[80] = “C:\\QFFICEM\QPWA\\FILES\\ASCII\\SOPH.TXT";
char JuniorCutputFile[80] = "C:\\OFFICE\\QPWA\FILES\\ASCII\\JUNIOR. TXT";
char SeniorOutputFile[80] = "C:\\OFFICE\\QPW\YFILES\\ASCII\\SENIOR.TXT";

/7 Handles the Open, Write, and Close functions use to access files
enum FileIndexes { Freshman, Sophomore, Junior, Senior, Input 1;

int HandleOthr([5
int Handle3115(5
int Handled3211(5
int HandleOutput

’
’
’

1;
]
1
(41

int HandleSortedOthr(4];
int HandleSorted3115{4];
int Handle3orted43211[4]:;

int HandleTempCOutput;

/7 Set up buffers for file 1/0
BdgtOthr Type BdgtOthr Buf;
Bdgt3115 Type Bdgt3ll5 Buf;
Bdgtd321 Type Bdgtd3Zl Buf;

BdgtOthr Type BdgtOthr OutBuf;
Bdgt3115 Type Bdgt3115 QutBuf;
Bdgtiill Type BagtdIZl CutBuf;

//: Define three dynamically allocated heaps using the Dynamicldrray defined in

S dynarray.h

DynArray HeapOthr;
DynArray Heap3115;
DynArray Heapd321;

int IndexOthr;
int Index3115;
int Index42321;

char CurrentlLast[LastNameLength+1];
char CurrentFirst([FirstNamelength+1];

char Tenplast[LastNameLength+1];
char TempFirst[FirstNameLength+1];

char LastOthr[LastNameLength+1];
char FirstOthr[FirstNameLength+l];

char Last3115[LastNamelLength+1];
char First3115[FirstNamelength+1];

char Last4321[LastNamelength+1];
char First4321[FirstNamelength+1l];

int i,j, Class, Choice; //counting variables for loop structures
int More2115, Morei4321;

int ErrorCode = 0;

/'/ Sk ok ok ok b ok e ok ok Sk ok ok ok ok Tk Sk ok R ok Sk ke ok R b sk ok ok ok sk ok Sk b ok e e ok ok ok ok Sk e ok kb Sk b ok ok sk ok b Sk kR R ok Dk ek ok b ok ok ok ok b ok R ok ok

A Function Prototypes
_.’/ ok ko ke b e ok ok b ok ok ok o ok sk kb e ok ok ok o ok O e o ok Sk ok Sk ok o o S ok e S Db b b b A b b o ok ok ok ok ok ok Ok e Sk A ok ok Sk ok Sk ok ke b ok R Sk o R ok b X

int GetClass (int &, char*, chart);

/’/' s ok Sk ok ok ok ok ok Sk e Sk e b N b b o ok b sk ok e b b ok S O o b ok S ok ok R Sk ok s b b oF ok b b S b o b b b Sk e ok sk ok ok b o oF R ok ok oF ok b

7 Main Program

///‘ Nk ok ke ok ok ok b bk ok Sk ok b R b Sk b ok ok ok ok ke b ok ok o Ok ok ok ok b ok Sk Ok 5k sk ok b b b ok ok b ok o ok o Sk o Sk Sk ok ok ok ok b ok Sk ok R Sk b o o o e Sk ko ok o e o
void main ()
{
// These are the pointers used in the Dynamic array
BdgtOthrNodePtr TempOthrPtr;
Bdgt3115NodePtr Temp2lloPtr;
Bdgti321lNodePtr Tempd3Z1lPtr;
/

char Blank3115[Bdgt3115 Len] S/ used te set the file burfer to all blanks

char Blank4321[Bdgt4321 Len];

clrscr ()
cout << "Welcome to automated ASCII file processing for Budget FProjection!'™;
cout << endl << endl;

cout << "In order to proceed, this program needs to know the " << endl;
cout << "leocation of the input files. Additionally, this program ™ << endl;
cout << “needs to know where it should put the processed output ™ << endl;

cout << "files. " << endl << endl:
Cholce = 0;
while (Choice != 8)

1

cout << "“Current File Locations:" << endl;
cout << "1, (Input) BDGTOTHR.TAT ----> " << BdgtOthr F
1 F

AL Bl

cout << "2 {Input) BOGTZ115.TAT ———--3> " << Bdgtld

i

cout << "3 (Input) BDGTAZZ1.TXT ----> " << Bdgt432l File << endi;

cout << "4, (Cutput) FRESH.TXT ——-—---—- > " << FreshOutputFile << endl;
cout << 5. (Dutput) SOPH.TXT -——---- > " << SophOutputFile << endl;
cout << "é. {Output) JUNIOR.TXT ----- > " << JurniorOutputFile << endl;
cout << "7, (Qutput) SENIOR.TXT ----- > " << SeniordDutputFile << endl;
cout << endl;

cout << "Enter 1-7 to modifyvy a file location, 8 to continue: “;

10

cin >>» Choice;

case] o
cout << "Cld Location : " << BdgtoOthr File << endl;
while (1)
{
cout << "Enter New Locaticn : ";
cin >> BdgtOthr File;
strupr (BdgtOthr File);
ErrcrCode = open{BdgtOthr File, O RDONLY};
if {(ErrorCode < &
cout << "Invalid File Name"<< endl;
else
close(ErrorCode) ;
break;
}
t
clrscri);
} break;
case HE|
cout << "0ld Location : "™ << Bdgt3lib File << endl;
while (1}
[
1
cout << "Enter New Locaticn = M
cin >>» Bdgt3115 File;
strupr (Bdgt3115 File);
ErrorCode = open(Bdgti3ll5 File, O RDONLY);
1f (ErrorCode < 0)
cout << “Invalid File Name" << endl;
else
{
zlose(ErrorCode) ;
break;
}
}
clrscr();
} break;
case Y
cout << "Old Location : " << Bdgti432l File << endl;
while (1)
{

cout << "Enter New Location : “;
cin >> Bdgt4321 File;
strupr (Bdgtd321 File);
ErrorCode = open(Bdgtd4321 File, O_RDONLY);
if (ErrorCode < 0)
cout << "“Invalid File Name" << endl;
else
{
close(ErrorCode) ;
break:;

/7

s
e

clrscr{(};
) break;
case 4 N

cout << "Old Locaticn : " << FreshOutputFile << endl;

cout << "Enter New Location : ";
cin >»>» FreshOutputFile;
strupr (FreshOutputFile);
clrscr();
} break;
case § |

cout << "Old Location : " << SophOutputFile << endl;

cout << "Enter New Location : ";
cin »> SophOutputFile;
strupr (SophQutputFile);
clrscri{);
} break;
case © HE|

cout << "0ld Location : " << JuniorOutputFile << endl;

cout << "Enter New Location : ";
zin »> JuniorOutputFile;
strupr (JuniorOutputFile) ;
clrscri{):
! break;
case

~1
—_~

cout << "Old Location : " << SeniorOutputFile << endl;

cout << "Enter New Location : ";
cin >> SeniorOutputFile;
strupr{SeniorOutputFile);
clrecr{);

|} break;

V// switch(Choice)

V\// while
cout << "Beginning file processing.™ << endl;

ok ok ok sk ok ok ok ke ok ok b b ok e ok ko e S ok Sk ok ok o e ok Sk ok e o o ok ok ok ok ok i sk ok ok Dk Sk ke o ok ke ok ok Sk ok ok Tk ok R ko ok A ok b ok ok ok b ok o

Split the Othr file by class

ok ok ok ok ok gk ke e e o Sk ok ok ok b ok Sk ok ok ok ok b oE ok b ok ok ok ok ke b ke ok b ok b ok b Sk e o b ok b o ok b ok ok kv Sk b gk ok ok ok ok b ok ok ok S b o ok ok b 3 b

HandleOthr{Input] = open(BdgtOthr File, O RDONLY | O TEXT);

HandleOthr [Freshman] = open(FreshOthrFile, O RDWR ;| O CREAT | O TRUNC |

O_APPEND, S IREAD | S IWRITE) ;

HandleOthr [Sophomore] = open{SophCthrFile, O_ﬁDWR [O CREAT | O TRUNC |

C_APPEND, S5 IREAD | S IWRITE);

HandleOthr [Junior] = open(JuniorOthrFile, O_RD@R | G CREAT | O TRUNC |

O APPEND, S IREAD | S_IWRITE};

HandleCthr [Senior] = open(SeniorOthrFile, O RDWR | O CREAT | O TRUNC |

O AFPEND, S IREAD | S IWRITE);
for (i = Freshman; i <= Input; it++}

if t(HandleOdthr[i] < 0)

cout. << "Unable to open OTHR files, program halted™;

exit{l);

Class = -1;

while (read(HandleOthr[Input], BdgtOthr Buf.all, Bdgtdthr Len})

if { BdgtOthr Buf.Fi

BdgrnOthr Buf.

Tlass = Freshman;
else 1f (BdgtOthr Buf.Field.Year[0] == 'S5' &&
BdgtOthr Buf.Field.Year([l] == 'O')
Class = Sophomcre;
else if (BdgtOthr Buf.Field.Year[0] == 'J' &&
BdgtOthr Buf.Field.Year[1] == 'R')
Class = Junior;
else if (BdgtOthr Buf.Field.Year[0] == 'S' &&

BdgtOthr Buf.Field.Year[1l] == 'R’
Class = Senilor;

else

{

)

strncpy (CurrentlLast, BdgtOthr Buf.Field.LastName,
LastNameLength} ;

strncpy (CurrentFirst, BdgtOthr Buf.Field.FirstName,
FirstNameLength) ;

GetClass(Class, Currentlast, CurrentFirst):

switch (Class}

I
L

case Freshman : |

BdgtOthr Buf.Field.

BdgtOthr Buf.Field
} break;
case Sophomore : |

BdgtOthr Buf.Field.
BdgtOthr Butf.Field.
} break;
case Junior]
BdgtOthr Buf.Field.
. BdgtCthr Buf.Field.
} break;
case 3enicr N

BdgtOthr Buf.Field.

Year{C]
Year (1]

Year [0]
Year (1]

~2
"
Y
[a e
[

N
)]
Y

Year[0]
1]

BdgtOthr Buf.Field.Year|

} break;

}

}\// end else
// If Freshman..Senior add it to
if (Class »>= Freshman && Class <= Senior)

the corrent file

write (HandleOthr([Class], BdgtOthr Buf.All, BdgtOthr Len);

(i=
close{ HandleOthri{i

yi

cout << BdgtOthr File << " split into feour classes." << endl;

/7 Split 3115 File by class

’/ Sk ok b o ok S A ok ko ok ok ok ok ok b W o b SE o o o b b ok b o e Sk Sk Sk ok ok ok S o ok ok ok ok ok Sk ok S ok b ok o ok ok ok A ok ko o o
s

Handle3115[Input] = open{Bdgt3115 File, O RDONLY | & TEXT);

/,/ W ok ok Sk ok ok Sk ok o A Sk o gk Sk ok ok o sk ok b sk o Sk ok ok o Sk ok Sk o o Sk ok ok o Sk sk b Sk o b ok ok Dk ok ok Sk ok A o ok o b ok o o A A

Freshman; 1 <= Input; i++) S/ closes the files that were processed
]

Handlelll5[Freshman] = open({Fresh3115File, O RDWR | O CREAT { C TRUNC |

O_APPEND, S TIREAD | S IWRITE):;

Handle3115([Sophomore] = open(SophSlIBFile, O_ﬁDWR | O CREAT | O TRUNC |

O_APPEND, S TIREAD | S IWRITE);

Handle3115[Junicr] = open{Juniocr3l1tFile, O*RBWR | & CREAT | O TRUNC

G _AFFEND, S _IREAD | S IWRITE);

Handle3115[Senicr] = open{Senior3ll5File, O _RDWR | O CREAT | © TRUNC |

O AFPEND, 5 IREAD | S IWRITE):
for (i = Freshman; i <= Input; i++)
if (Handle3115[1i] < 0)

cout << "Unable to open 3115 files. Program Halted™;

exit (1)

Class = -1;
while (read{Hand1e3115{Input], Bdgt311i% Puf.All, Bdgt3ll5 Lenj)

if (Bdgt3ll5 Buf.Field.Year([0] == 'F' &&
Bdgt3115 Buf.Field.Year([l] == 'R' |
Class = Freshman;
else if (Bdgt311l5 Buf.Field.Year(0] == '3' &&
Bdgt3115 Buf.Field.Year[l] == '0")
Class = Sophcmors;
else if (Bdgt3l115 Buf.Field.Year[0] == "J' &¢
Bdgt3115 Buf.Field.Year([l] == 'R')
Class = Junior;
else if (Bdgt3115 Buf.Field.Year[0] == '§' &&
Bdgt3115 Buf.Field.Year[l] == 'R’)
Class = Senior;

else

I
L

strrncpy (CurrentlLast, Bdgt211% Buf.Field.LastName,
LastNameLength) ;

strncpy (CurrentFirst, Bdgt3115 RBuf.Field.FirstName,
FirstNameLength);

GetClass (Class, CurrentlLast, TurrentFirst);

switch (Class)

{

case Freshman : {

Bdgt311% Buf.Field.Year([0! = 'F';
Bdgt311% Buf.Field.Year[l] = "R';
} break;

case Sophomore @ |
Bdgt3115 Buf.Field.Year([0] = '§'";
Bdgt3115 Buf.Field.Year([l] = '0O";
} break; B

case Junior HER|
Bdgt3115 Buf.Field.Year([0] = 'J';
Bdgt3115 Buf.Field.Year{l] = 'R';
} break; B

case Serior |
Bdgt3115 Buf.Field.Yesar([0] = 'S';
Bdgt3115 Buf.Field.Y=ar[l] = 'R";
} break; -

}
V// end else
/7 If Freshman..Senior add it to the corrent file
if (Class »= Freshman && Class <= Senior)
write(Handle3115([Class], Bdgt3115 Buf.All, Bdgtll15 Len);

{i=Freshman; 1 <= Input; 1++) /4 closes the files that were processed
close|{ Handlel31150i]):

cout << Bdgt3llb File << " split into four classes." << endl;

S ok W ok sk ok ok A s b ok Ok ok Sk ok e Sk b b ok ok o ok ok Sk Sk sk ol o b ok ok o o b b ok ok o o ok b ok b ok ok b S ok ok ok o ok ok b Sk ok ok b e

J a1 Ei e s
Split 4321 file by class
ook o sk s b ok b 3 ok ok ok ok sk b ok b ok b Db b ok W sk b Sk ok b ok b o ok b ok b ok S ok b o ok e o b N ok o e ok ok o b b

Handled4321 [Input] = open(Bdgt43Z1l File, O RDONLY | O TEXT);

Handlef321{Freshman] = open{(Freshd4321File, ¢ RDWR | O CREAT | ¢ TRUNC |
O _APPEND, S_IREAD | S_IWRITE);

Handled4 321 [Sophomore] = open(Sophé321File, © RDWRE | O CREAT | O TRUNC |
O APPEND, S IREAD | S _IWRITE);

open(Junior4321File, O RDWR | O CREAT | O TRUNC |
O _APPEND, S IREAD | S _IWRITE);

open (Seniord321File, O _RDWR | O CREAT | C TRINC |
O APPEND, S_IREAD | S_IWRITE);

I

Handle4 321 [Junior]

I

Handled 221 {5enior!

pa-

for (i = Freshman;

i

<= Input; i++)
if (Handled4321[(i] < 0}

<< “Unable to open 4321 files. Program halted.";
)

Class = -1;
while (read(Handle4321{Input], Bdgt4321 Buf.All, Bdgt4321 Lenj)

if (Bdgti321 Buf.Field.Year[0] == 'F' &&
Bdgt4321 Buf.Field.Year[1] == 'R')
Class = Freshman;
else if (Bdgtd321 Buf.Field.Year[0] == '3' &§
Bdgt4321 Buf.Field.Year[l] == '0')

Tlass = Sophomore;

else if (Rdgt#4321 Buf.Field.Year[0] == 'J' &&
Bdgt4321 Buf.Field.Year[1l] == 'R')
Class = Junior;
else if (Bdgt4321 Buf.Field.Year[0] == 'S' &&
Bdgt4321 Buf.Field.Year[l] == 'R')
Class = Senlor;
else

{

strncpy (Currentlast, Bdgt4321 Buf.Field.LastName,
LastNameLength) ;

strncpy (CurrentFirst, Bdgt4321 Buf.Field.FirstName,
FirstNameLength) ;

GetClass (Class, Currentlast, CurrentFirst);

switch (Class)

{

case Freshman : ({
Bdgt4321 Buf.Field.Year{0] = 'F';

Bdgtd321 Buf.Field.Year[1l] = 'R';
} break:;

case Sophomore @ {
Bdgt4321 Buf.Field.¥Year[0] = 'S';
Bdgt4321 Buf.Field.Year({l] = "0";

} break;

case Junior HE
Bdgtd4321 Buf.Field.Year(0] = 'J';
Bdgtd3zl Buf.Field.Year[l] = 'R';
} break:;

case Senior R
Bdgt4321 Buf.Field.Year (0] 'St
Bdgt432Z1 Buf.Field.Year[l] = 'R';
} break;

I

}

V\// end else
S/ If Freshman..Senior add it to the corrent file
if (Class >= Freshman && Class <= Senior)
write(Handled321([Class], Bdgtd321 Buf.All, Bdgt4321 Len);

}

for (i=Freshman; i <= Input; 1++) S/ closes the files that were processed
close{ Handled321[1i]);

cout << Bdgt4321 File << " split into four classes." << endl << endl;

//// kA kA ok Sk kA R Ak Sk R o ok ok b ok ok sk ok b ok ok o Sk b sk ok ok ok i ok ok Sk b b o Sk Sk b ok ko o ok Sk F o b A ok b ok b

s Sort BdgtOthr Files

JA kb ok o ok ok ok o ok ok ke ok Sk Sk Sk o b ok ok b o b ok b ok o e b b ko bk Sk o ok R ok ok b ok A ok o b Sk ok o b ok b o A b o ok

HandleOthr [Freshman] = open(FreshOthrFile, O RDONLY | O TEXT);
HandleCthr [Sophomore] = open(SophOthrFile, O RDONLY | O TEXT);
HandleCthr [Juniocr] = open(JuniorOthrFile, O RDONLY | O TEXT);
HandleOthr[Senior] = open(SeniorOthrFile, O RDONLY | O TEXT);

HandleSortedOthr [Freshman] = open(SortedFreshOthrFile, O_RDWR |
O _TRUNC | © APPEND, S IREAD | S IWRITE);
HandleSortedOthr [Sophomore] = open(SortedSophOthrFile, O RDWR |
O TRUNC | O APPEND, S IREAD | S IWRITE)
HandleSortedOthr [Junior] = open(SorEedJuniorOthrFile, O RDWR | O CREAT |
o _TRUNC | O_APPEND, S _IREAD | S_IWRITE);
HandleSortedOthr [Senior] = open(SortedSeniorOthrFile, O RDWR | O CREAT |
O_TRUNC | O APPEND, S IREAD ! S IWRITE;:

O_CREAT |

O CREAT |

—~

for (C

{

lass = Freshman; Class <= Senicr; Class++)

/// Fook ok Sk b ok ok ke Sk ok ok ok Sk ok ok b b o ok A ok ok ok R A ok Sk b ok b o ok b R b ok Sk ok R ok b b Sk b o b

// Read the current file into a heap
//’ A A ok b ok ok b Sk ok sk ok sk ok ok ak ok ok ok ok b A b A R A kA ok b o o b b ok o ok o R b o A b

//long 1lseek (int handle, long offset, int fromwhere) ;

//FPut the file ptr at start of file
//1seek (HandleOthr({Class], 0L, SEEK SET);

S/ Keep Reading in records from the current file

while {read(HandleOthr([Class], BdgtOthr Buf.All, BdgtOthr Len))

{
// Determine the proper place to add the record in the heap
TempOthrPtr = (BdgtOthrNodePtr)malloc (sizeof (struct BdgtOthrNode)):

J/Copy file info into a new node to bhe added to the heap
strncpy (TempOGthrbPtr->Data.All, BdgtOthr Buf.All, BdgtOthr Len):

strncpy (CurrentlLast, BdgtOthr Buf.Field.LastName, LastNameLength):;
J/CurrentLast [LastNameLength] = '\0';

strncpy (CurrentFirst, BdgtOthr Buf.Field.FirstName, FirstNamelLength):
J/CurrentfFirst {FirstNameLength+1l] = '\(0';

IndexOthr = (HeapOthr.count()) + 1;

while (! {IndexOthr == 1 ||
//Below performs: NewLastName > OldLastName
{{strcmp{Currentlast,
strncpy (TempLast,
({(BdgtOthrNodePtr)HeapOthr [IndexOthr / 2])->
Data.Field.LastName,
LastNameLengthj) < 0) 1

((strcmp (CurrentlLast,
strncpy (TempLast,
((BdgtOthrNodePtr)HeapOthr [IndexOthr / 2])->
Data.Fieid.LastName,
LastNameLength))} ==) £&
(strcmp(CurrentFirst,
strncpy (TempFirst,
((BdgtOthrNodePtr)HeapOthr [IndexOthr / 21)->
Data.Field.FirstName,
FirstNameLength)) <=0}))y))

// terminate when the root is reached or the element
A/ is in its correct place

// check the next lower level of the heap
HeapOthr.assign(IndexOthr, HeapCthr [IndsxOthr/271:;
IndexOthr /= 27

(heap sort)
ign{IndexOthr, TemplthrPtr);

VS end while(read files)
/."/ LR P A I I P A A P P P I P P e P S A b T P P A I I P R O O I N 4
// Sort the Heap
--’/’ Wk Sk Sk ok ok K b W ok ok ok sk ok ok kb Sk ok ok ok ok ok b ok e b b Sk b Sk Wk Sk ok o ok kb ok b e ok e ok
int parsnt, child;
BdgtOthrNodelPtr ItemCthrPtr;

~,

for (IndexCthr = HeapOthr.count{] ; IndexOthr > 0; IndexOthr --)

/¥ delete element with the highest key from the heap */
/* save value of the element with the highest key */

ItemOthrPtr = (BdgtOthrNodePtr)HeapOthr(1l];
TempOthrPtr = (BdgtOthrNodePtr)HeapOthr[IndexOthr];
/* use last element in heap to adjust heap */
parent=1;
child=2;

while {(child <= IndexOthr)
{
if (<hild < IndexOthr)
J* find the largest child of the current parent */
if {(strcmp(strncpy(Currentlast,
({BdgtOthrNodePtr)HeapOthr[child]) ->
Data.Field.LastName,
LastNameLength),
strncpy (Templast,
{ (BdgtOthrNodePtr)Heaplthrichild + 1])->

LYY

Data.Field.LastName,
LastNamsLength))

AN
<
—

il ({strcmpi{ strncpy(Currentlast,

({BdgtOthrNodePtr)HeapOthr [child]) >
Data.Field.LastName,

LastNameLength),

strncpy (TemplLast,

((BdgtOthrNodePtr)HeapOthr [child + 1]1)->
Data.Field.LastName,

LastNameLength)) == 0} &&

{strcmp(strncpy(CurrentFirst,
((BdgtOthrNodePtr)HeapOthr [¢child]) ->
Data.Field.FirstName,
FirstNamelength),
strncpy (TempFirst,
((BdgtOthrNodePtr)HeapOthrichild + 1])->
Data.Field.FirstName,
FirstNameLength)) < Uiy o)

child++;

if ((strcmp{ strncpy(Currentlast,
TempOthrPtr -> Data.Field.LastName,
LastNameLength),
strncpy (TemplLast,
({BdgtOthrNodePtr)HeapOthr{child])->
Data.Field.LastName,

LastNamelLength)) > 0}
// if the current name 1is greater than the one in the heap
// then this is the correct position to add it.... OR

[T ((strcmp(strncpy(Currentlast,
TenpOthrPtr -> Data.Fileld.LastName,
LastNamelLength),
strncpy (TempLast,
((BdgtOthrNodePtr)HesapOthr [child])->»
Data.Field.LastName,
LastNameLength)) ==0) &&

(strcmp(strncpy(CurrentFirst,
TempOthrPtr -> Data.Field.FirstName,
FirstNameLength),
strncpy (TempFirst,
{ (BdgtOthrNodePtr)HeapOthr [child]l)->
Data.Field.FirstName,
FirstNameLength)) >=0)))

// 1if the last names are the same, but this first name is
// grater than or equal to the one in the heap... this is
// the correct position to add it so...

break;
else
{

i

// move to the next lower level
HeapOthr.assign(parent, HeapOthr[child]}):;
parent = child;
child *= 2

’

[N

}
} // end while
HeapOthr.assign(parent, TempOthrPtr);

HeapOthr.assigniIndexOthr, ItemOthrPtri; /7 Place the scorted Item at

[mi

// end of the heap; don't sort
// this space on next pass
Vo end for each item sort

IndexOthr = Heapothr.count();

/7 write out sorted file & empty the heap as you go
for (j=1; j<=IndexOthr; j++)
{
write (HandleScrtedoOthr[Class],
({BdgtOthrNodePtr)HeapOthr {i]) -> Data.All,
BdgtOthr _Len);

delete (BdgtOthrNodePtr)HeapOthr(jl; // free memory at heap address
HeapOthr.remove (i) ; // remove its poiter from heap

17/ end for each class of BgdtOthr file
for (i = Freshman; 1 <= Zenior; 1++)

close(HandleOthr (1]}
close (HandleSortedCthr (1]} ;

conut << "BdgtOthr files sorted by name.™ << endl;

// K R A Ak R S R R o b b kb o o o Sk o OF o b o b e o o b o ok o b b b ok R o b A R o b o b o R b o b b S ok ok ok o

Vo Sort Bdgt3115 Files

Nk ek e N ok s N ok Sk ok Rk ok Sk ok e R Sk ok ok ok S o ok sk o ok Sk ok ok Sk gk ok S b ok S ok o ok ok ko ok ok

Handle31ll5[Freshman] = open(Fresh3115File, O RDONLY | O TEXT);
Handle3115 [Sophomore] = open(Soph31i5File, O RDONLY | O TEXT);
Handle3115[Junior] = open(Junior3115File, O RDONLY | O _TEXT};
Handle3115([Senicr] = open(Senicr3li5File, O RDONLY | O TEXT);

HandleSorted3115[Freshman] = open(ScrtedFresh3115File, O RDWR | O CREAT |
O TRUNC | O APPEND, S IREAD | S IWRITE);

HandleSorted3l15[Sophomore] = open(SortedSoph3l15File, O RDWR | O CREAT |
O _TRUNC | O APPEND, S IREAD | S IWRITE);

HandleSortedil15[Junior] = open(SortedJunior3l15File, O RDWR | O CREAT |
O TRUNC | O _APPEND, S IREAD | S _IWRITE);

HandleSorted3l15[Senior] = open{SortedSenior3115File, O RDWR | O CREAT |
O TRUNC | O _APPEND, S IREAD | S_IWRITE);

for (Class = Freshman; Tlass <= Senior; Class++)
(

13

//’ deok F A S S b e ok W ok Sk e ok ok e Sk b sk ok ok R Sk ok S ok Sk b Sk o ok ke Sk Sk ok OF ok b b sk o b ok b b
/

// Read the current file inte a 3115 heap

J R Rk ek ok ok s Sk Sk e Sk ok Kk ok ke s Sk K S Sk ok R Sk o S sk ke Sk Sk Sk ko
/

// FKeep Reading in records from the current file

while (read(Handle3115(Class], Bdgt3115 Buf.All, Bdgt3115 Len))

{
// Determine the proper place to add the record in the heap
Temp3115Ptr = (Bdgt3llSNodePtr)malloc (sizeof (struct EBdgt3115Node));

//Copy file info into a new node to be added to ths heap
strncpy (Temp3l1l5Ptr->Data.All, Bdgt2115 Buf.All, Bdgt3115 Len);

strncpy (CurrentlLast, Bdgt3115 Buf.Field.LastName, LastNameLength):

s

s
s

S/

S/Currentlast [LastNameLength] = '\0';

strncpy {(CurrentFirst, Bdgt3115 Buf.Fiesld.FirstName, FirstNameLength);

s/CurrentFirst [FirstNamelength+1] = ‘'\G';
Index3115% = (Heap3llS.count ()) + 1;
while (! {Index3115 == 1 ||

//Below performs: NewlastName > OldLastName
{(strcmp(Currentlast,
strncpy (Templast,
((Bdgt3115NodePtr)Heap3ll15{Index3115 / 2])->
Data.Field.LastName,
LastNameLength)) < Q) ||

{ (strcmp(Currentlast,
strncpy (TempLast,
{ (Bdgt3115NodePtr)Heap2115[Ind=x3115 / 2])->
Data.Field.LastName,
LastNameLength)) == 0) &&
{strcmp(CurrentFirst,
strncpy (TempFirst,
((Bdgt3115NodePtr)Heap3ll5[Index3115 / 21)->
Data.Field.FirstName,
FirstNameLength)) <=0)) Y))

S/ terminate when the root is reached or the element
4/ 1s in its correct place

// check the next lower level of the heap
Heap3llS.assign(Index3115, Heap3ll5[Index311R/271);
Index3115 /= 2;
}
// end while (heap sort)
Heap3ll5.assign(Index3119, Temp3ll5Ptr);

V,/ end while(read files)

ook ok o s Sk ok Sk A gk ok e sk o Rk kb bk kA ok Sk kb 56 b ke bk ok ok ok ok b e b ok Ak ok ok ok ok ok

Sort the Heap3ll5

Yok ke Ak e Ak A R A Ak ek kA A Wk ok e ok b A ke kA R b Ak ok e ok A A A A A
int parent, child;

Bdgt3115NodePtr Item3115Ptr;

for (Index311%5 = Heap3llS.count () ; Index3115 > 0; Index3115 --)

/* delete element with the highest key from the heap */
/* save value cf the element with the highest key */
Item3115Ptr = (Rdgt3115NodePtr)Heap3115[1];
Temp3l15Ftr = (Bdgt2115NodePtr)Heap3ll5[Index31151;

/* uze last element in heap tc adjust heap */
parent=1;
child=2;

while (child <= Index3115)
¢
if (child < Index3115)
/* find the largest child of the current parent */
if ((strcmp(strncpy(Currentlast,
((Bdgt3115NodePtr)Heap3115[(child])y~>
Data.Field.LastName,
LastNameLzngth),

ast,

15NodePtr)Heap3115{child + 1])->
Data.Field.LastName,

LastNameLength)) < D)

[l {(strcmp(strncpy(Currentlast,

{ (Bdgt3115NodePtr)Heapl3115{child])->
Data.Field.LastName,

LastNameLength),

strncpy (TempLast,

{(Bdgt3115NodePtr)Heap31l5(child + 1])->»
Data.Field.LastName,

LastNamelLength;) == 0) &&

CurrentFirst,

{{Bdgt2115NodePtr)Heapl115[(child)) >
Data.Field.FiratName,

FirstNameLerngth),

strncpy (TempFirst,
{(Bdgt3115NodePtr)Heap3115(child + 1})->

Data.Fleld.FirstName,

FirstNameLengthi}) < OV

d

(strcmp(strncpyv(Cur

child++;

if {{=tremp(strncpy{Currentlast,
Tempill5Ftr -> Data.Field.LastName,
saztNamelength),

strnepy {Templast,
{{Bdgt3115NodePtr)Heap3115([child})->
Data.Field.LastName,

LastNamelength)) > 0)

S/ 1f the current name is greater than the one in the heap

// then this is the correct position to add it.... OR

+

YT

|1 {({(strcmp(strncpy(Currentlast,
Temp3l15Ptr -> Data.Field.LastNam=,
LastNamelength),
strncpy (TemplLast,
{ (Bdgt3115NodePtr)Heap3115[(child])->
Data.Field.LastName,

LastNameLength)) =0) &&

Il
|

(stremp(strncpy(CurrentFirst,
Temp3115Ptr ->» Data.Field.FirstName,
FirstNamelLength),
strncpy (TempFirst,
{ {(Bdgt3115NodePtr)Heap3115{child]i->
Data.Field.FirstName,
FirstNameLengthj) >=0)))

/4 1f the last names are the same, but this first name is
/7 grater than or equal to the one in the heap... this is

sy

S/ the correct position to add it so...

break;

else

{

// move to the next lower level
Heap3llb.assign(parent, Heap3115([child});
parent = child;
child *= 2;

i

V' / end while

Heap3ll5.assign{parent, Temp3ll5Ptr);

Heap3llS.assign(Index3115, Item311%Ptr;; // Place the sorted Item at the
// end of the heap; don't sort
J/ this space cn next pass

V 4/ end for each item sort

Index3115 = Heap3ll5.count();
S/ write out sorted file & empty the heap as y

for (j=1; j<=Index3il5; Jj++)
{

3
[t
Q
S

write (HandleSortedl3115[Class],
{ (Bdgt3115NodePtr)Heap3115[3]) ~>» Data.All,
Bdgt3115 Len):

delete (Bdgt2llSNodePtrjHeap3ll5[j]l; // free memory at heap address
Heapl3llS.remove ()7 /s remove its poiter from heap

1
V// end for each class of Bgdt3115 file

for (i = Freshman; 1 <= Senior; i++;
{

(\' 0

lose (Handle3115(1i]);
lose

{HandleSorted2115(11);

o

cout << "Bdgt3ll5 files sorted by name." << andl;

A P g g i B b S G b i R S I d S P b b b P i P i P b b S S e P b P S b P P

Scrt Edgtd4321 Files

Wk o ok ok ok A ok b b b o ok b ok ok ok b b b ok b S ok ok ok b b sk o b S b Sk o Sk ok sk ok o sk ok ok o b Sk b ok ok ok b b b ok ok b ok ok b ok A o b

Handle4321 [Freshman] = open(Fresh4321File, C RDONLY | O TEXT);
Handled 321 [Sophomore] = open{Soph4321File, O RDONLY | O TEXT);
Handled 321 [Jun 1ov1 = open(Junicr4321File, O RDONLY | O TEXT);
Handle4321(Senior] = open(Senior4321File, O RDONLY | O_TEXT);
HandleSorted4321 [Freshman] = open(Sortedfreshd321File, O RDWR | O CREAT |
O TRUNC | O APPEND, 5 IREAD | S IWRITE):;
HandleSorted432]1 [Sophomore] = open{SortedSophd321File, C RCWR | O CREAT |
O _TRUNC | O APPEND, 5 IREAD | S IWRITE);
HandleSorted4321 [Junior] = Jp@n(SortedTunlor432lF11e O RDWR | O CREAT |

O_TRUNC | O APPEND, S IREAD | S5 IWRITE);
HandleSortedi321 [Senior] = open{ScortedSenior43Z1File, O RDWR | O CREAT |
O_TRUNC | O APPEND, S IREAD | S_IWRITE);

for (Class = Freshman; Class <= Senilcr; iClass++)

{

//'/ o o e ok b ok ok Sk b b ok ok b b b ok b b o ok b ok ok b S ok gk Sk b o o A b b ok A o e b o o

/7 Read the current file into a heap
SR A FEEEEEESEEEEEEFEE SRR R EEEEEE S R e

v

/7 Keep Reading in records from the current file
while (read(Handled32][Class], Bdgt4221 Buf.All, Bdgt4321 Len))
!

// Determine the proper place to add the record in the heap
Tempd 321Ptr = (Bdgt4321NadePtrimalloc (sizeof (struct Bdgtd321Node!);

’

A /Copy file info into ¢

strncpy (Currentlast, Bdgtdizl Buf.Field.LastName, LastNameLength);
AA/Currentlast{LastNamelLength] = '"\0';

strncpy (CurrentFirst, Bdgti432l Buf.Field.FirstName, FirstNameLength);
J/CurrentFirst [FirstNameLength+1] = '\0';

Index43Z21 = (Heapldl32l.count() } + 1;

while {!{Index432]1 == I
//Belcw performs: NewlLastName > OldLastName
({strcmp(Currentlast,
strncpy (TemplLast,
((Bdgt4321NodePtriHeapd 321 (Indexd 321 / 2])1->
Data.Field.LastName,
LastNameLength)) < 0}

{(strcmp(Currentlast,
strncpy (TempLast,
((Bdgtd4321NodePtr)Heapd321l [Indexd321 / 21)->
Data.Field.LastName,
LastNameLength}) == () & &
{strcop{CurrentFirst,
strncpy (TempFirst,
({Bdgt43Z21NodePtriHeapdd2l [Indexd 321l / 2])->
Data.Field.FirstName,
FirstNamelLength)) <=0)) Yy o))

// terminate when the root 1s reached or the element

s

S/ 1s in its correct place

// check the next lower level of the heap
Heapi32l.assign(Indexd321, Heapd321[Indexd321/2]1);
Indexd3z1 /= 2;

I
/s end while (heap sort)
Heapd32l.assign{Index4321, Tempd321Ptr);

./ end while(read files)
//"‘ Mok ok kg ok Sk e b A ok ke ke ok ok ok S e Ok ok ok Sk ok Sk Sk ok b b b b b kb ok ok o ok b b b ok ok S ok U ok
S/ Sort the Heap
VAR SAREE S SSE LTSS IS IS EE LS EEESFEEESEEEEE SRS Ea S

int parent, child;

Bdgtd3Z21NcdePtr Itemd 321Ptr;

for (Indexd4321 = Heapd32l.count() ; Indexd42Zl > U; Indexd3Zl --)

St delete element with the highest key from the heap */
A* save value of the element with the highest key */
Itemi3Z1Ptr = (BdgtidZZ1NodePtr)Heapd321[1];
Templd321Ptr = (Bdgtd321NodePtr)Heapdl321l[Indexd321];
/* use last element in heap to adijust heap */

while {child <= Indexl221)

1f (child < Index4321)
S* find the largest child of the current parent */
if ((strcmp(strncpy(lurrentlast,
((Bdgtd221NodePrriHeapd 321 [child]j-»

Data.Field.LastName,
LastNameLength),
strncpy (TemplLast,

{{Bdgtd321NcdePtr)Heapd 321 [child + 11)-

Data.Field.LastName,
LastNameLength)) < M)

Il ((strcmp(strnc

py (Curzentlast,
(=

(
Jdgtd321NodePtr)Heapd321 [child]) ->
Data.Field.LastName,
LastNameLength),
strncpy {TempLast,

.

((Bdgt4321NodePtriHeapd3Z21l{child + 1]1->

Data.Field.LastName,
LastNameLength)) == 0)

[stremp(strncepy (CurrentFirst,
{({Bdgti321NodePtr)Heapd321{child})->
Data.Field.FirstName,
FirstNameLength),
strncpy (TempFirst,

{ (Bdgt4321NodePtr)Heapd 321 [child + 1]1)->

Data.Field.FirstName,
FirstNameLength)) < 0)y)

child++;

if ((strcmp{ strncpy(Currentlast,
Temp4321Ptr -» Data.Field.LastName,
LastNamelLength),
strncpy (Templast,
{ (Bdgt4321NodeFtr)Heapd321{child})->
Data.Field.LastName,
LastNamelength) j > 0)

v

// then this 1is the correct position to add it.... OR

Il {({strcmp{ strncpy(Currentlast,
Tempd321Ptr -> Data.Field.LastName,
LastNameLength),
strncpy (Templast,
{(Bdgt4321NodePtr)Heapd321 [child]) ->»
Data.Field. LastName,
LastNameLength)) ==

{strcmp(strncpy(CurrentFirst,
Tempd321Ptr -> Data.Field.FirstName,
FirstNamelLength),
strncpy{TempFirst,
((Bdgti321NodePtr)Heapi321[child])->
Data.Field.FirstName,
FirstNameLength)) >=0)))

// 1f the last names are the same, but this first name is
// grater than or equal to the one in the heap... this 1is
// the correct position to add it so...

break;

else

{

// move to the next lower level
Heapld32l.assign(parent, Heapd321{child]};
parent = child;

Child =

/7 1f the current name 1is greater than the one in the heap

&&

}
V S/ end while
Heapid32l.assign{parent, TempdliZlPtr);
Heapld3Zl.assign(Index4321, Itemd2Z1Ptr); // Place the sorted Item at the
// end of the heap; don't sort
// this space on next pass
v /7 end for each item sort

Indexd4321 = Heapd43Zl.count();

/7 write out sorted file & empty the heap as you go
for (j=1; j<=Index4321; j++)

i
t

write (HandleSorted4321[Class],
((Bdgt4321NodePtr)Heapd3z1l[j]) ->» Data.All,
Bdgt4321 Len);

delete (Bdgt43Z1NodePtr)Heapdd2l([j]; // free memory at heap address
Heapd321l.remove (), // remove its poiter from heap

}
}// end for each class of Bgdt4321 file

for (i = Freshman; i <= Senior; i++)
{

close (Handled4321[1i]);

close (HandleSortedd4321({il);

1
H

cout << "Bdgtd321 files sorted by name." << endl;

S Sk ok ok ok Sk ok ok sk Sk b ok Sk Sk ok ok ok ok Sk Sk Sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok Sk ok ok ok ok sk Sk ok ok ok Sk ok ok Sk Sk Sk Sk Sk b kb ok ok ok ok ok ok Sk ke Sk ok b b b

L)

/7 Combine sorted files Into output Files
//" Mok ok sk ok ok o ok A Sk o ok Sk ok Sk A ke ok ok ok oF ok i oF ok Sk Sk ok ok ok ok b S e Sk b D Dbk b ok b ok e b Sk Sk b ok bk ok ok ok ok ok ok Dk ok ok ok ok A Sk o ok o

~
S

" Set up blank strings to print out if a matching record is not found
strncpy (Blank3115, Bdgt3115 Buf.All, Bdgt31l5 Len); // make sure the end

strncpy (Blank4221, Bdgt4321 Buf.All, Bdgt43Zl Len); //of line char 1is at end

strnset(Blank3115, ' ', Bdgt3l1l5 Len - 1); // sets entire string to ' '
strnset (Blank4321, ' ', Bdgtd4321 Len - 1); // except for eoln char.

for (Class = Freshman; Class <= Senior; Class++)

switch (Class)
{
case Freshman:
{
HandleSortedOthr[Class]= open (SortedFreshOthrFile,
O_RDONLY | O TEXT);
HandleSorted3115(Class]= open(ScrtedFresh3115File,
O_RDONLY | O TEXT);
HandleSorted4321(Class]= openi{SortedFreshd3ZiFile,
O_RDONLY | O TEXT);

HandleCutput [Class]= open(FreshOutputFile, O RDWR | O CREAT |
C TRUNC | O AFPPEND, S IREAD | S IWRITE);
if (HandleOutput [Class] < 0)
{
cout << "Unable to create Freshman output file. Frogram halted.";

} break;

case Sophomore:
{
HandleScortedOthr [Class]= open(SortedSophOthrFile,
O_RDONLY | O TEXT):
HandleSorted3115[Class]= open(SortedSoph3l1l5File,
O _RDONLY | O _TEXT);
HandleSortedd32]1[Class]= open{SortedSoph4321File,
G _RDONLY | O_TEXT):;

HandleCutput (Class]= open(SophOutputFile, O RDWR | C CREAT |
O TRUNTZ | O APPEND, S IREAD | S IWRITE);
if (HandleOutput[Class] < 0)_ B
{
cout <<"Unable to create Sophomore output file. Program halted.";
exit (1) ;
}
} break;

case Junior:
{
HandleSortedOthr [Class]= open{SortedJuniorOthrFils,
O RDONLY | O TEXT);
HandleSorted3115[Class]= open(SortedJunior3115File,
O_RDONLY | O TEXT);
HandleSorted4321[Class]= open(Sortedduniord3Z1lFile,
O RDONLY | O TEXT);

HandleOutput [Class]= open(JuniorCutputFile, O _RDWR | O CREAT |
O TRUNC | O APPEND, S IREAD | S IWRITE);
if (HandleOutput[Class] < 0)
{
cout << "Unable to create Junior output file. Program halted.™:
exit (1)
}
} break;

case Senior:
{
HandleSortedOthr [Class]= open{ScortedSeniorOthrFile,
O_RDONLY | O TEXT);
HandleScorted3115([Class]= open{SortedSenior3115File,
O_RDONLY | O TEXT);
HandleSortedi321[Class]= open(SortedSeniori321File,
O RDCNLY | O_TEXT);

HandleCutput [Class]= open(SeniorCutputFile, O RDWR | O CREAT |
O TRUNC | O APPEND, S IREAD | S IWRITE);
if (HandleOutput{Class] < 0)
{
cout << "Unable to create Senior output file. Program halted.";
exit (1)
}
} break;

default: cout <<"PROGRAM ERROR- Invalid switch for final sort."<< endl;
} // end switch

More3lls
Mored 321

il

read{HandleSorted3115([Class],Bdgt3115 Buf.All, Bdgt3115 Len);
read (HandleSorted4321 [Class],BRdgtd221 Buf.All, Bdgti3Z21 Len);:

while(read{HandleSortedOthr[Class],BdgtOthr Buf.All, BdgtOthr Len))
{
strncpy {LastOthr, BdgtOthr Buf.Field.LastName, LastNameLength):
strncpy(Last3115, Bdgt3115 Buf.Field.LastName, LastNameLength);

strncpy(Last4321, Bdgt432l Buf.Field.LastName, LastNameLangth);

struncpy{Firstothr, BdgtOthr Buf.Field.FirstName, FirstNameLength);
strncpy (First3115, Bdgt3115 Buf.Fileld.FirstName, FirstNameLength;;
strncpy (First4321, Bdgt3115 Buf.Field.FirstName, FirstNameLength);
strncpy (BdgtOthr CSutBuf.All, BdgtOthr Buf.All, BdgtOthr Lenj;
strncpy (Bdgt2l1ls QutBuf.All, Bdgtill5 Buf.All, Bdgt211l5 Len):
stincpy {BdgtiZZl OutBuf.All, Bdgti321 Buf.All, Bdgt432l Lenj;

ite(HandleOutputiClass], BdgtOthr OutBuf.Field.LastName,
LastNamelength) ;
write (HandleOutput [Class], " ", 1);
write{HandlsOutput[Class], BdgtOthr OutBuf.Field.FirstName,
FirstNameLength) ;
write (HandleOutput [Class], " ", 1);
write (HandleOutput [Class}, BdgtOthr OutBuf.Field.MI, MILength);
write (HandleOutput [Class], " ", 1}:
write(HandleOutput[Class], BdgtOthr OutBuf.Field.State, Statelength};
write (HandleCutput(Class], ™ ", 1)
write (HandleOutput[Class], BdgtOthr OutBuf.Field.Year, YearLength);
write{HandleOutput [Class], " ", 1;;
write (HandleOutput [Class], BdgtOthr OutBuf.Field.
FamilyMembersInCollege,
FamilyMembersInCollegeLength) ;
write (HandleOutput[Class], " ", 1):
write{HandleOutput{Class], BdgtOthr OutButf.Field.IM, IMLength);
write (HandleQutput [Class], ™ ™, 1});
write{HandleOutput[Class], BdgtOthr OutBuf.Field.EFC, EFCLengthj;
write{HandleOutput[Class], " ", 1);
write (HandleOutput [Class], BdgtOthr OutBuf.Field.ParentAGI,
Par=ntAGILength);
sl, ", Li:
s], BdgtOthr OutBuf.Field.StudentAGI,
StudentAGILength) :

write{HandleQutput [Cla:
write (HandleOutput [Cla

UJ u

write{HandleOutput {Class], " ", 1);
write (HandleOutput [Class], BdgtOthr OutBuf.Field.FisapAGI,
Fi=apAGILlength) ;
write(HandloOutput[Class}, 1)
write (HandleOutput [Class], BdgtOthr OutBuf.Field.FinancialNeed,
FinancialNeedLength);
write (HandleOutput[Class], " ", 1);

if { ((strcmp(LastOthr,Last3115)) != 0) ||
((strcmp(FirstOthr, First3115)) !=0))
strncpy (Bdgt3115 OutBuf.All,Blank3115, Bdgt3115 Len) ;
// if this dcesn't match the
S/ Othr file, print blanks

7/ It these are the same student, then get the next student record
else
if (More3l15)
More2ll5 = read(HandleSorted3115[Class],Bdgt3115 Buf.All,
Bdgt2 llB_Len);

write (HandleCutput ss], Bdgt311l5 OutBuf.Field.Pell, Pelllengthj:

[Cla
write(HandleOutput[Class]}, " ", 1);
write(HandleOutput [Class], Bdgt311l5 OutBuf.Field.Map, MaplLength);
write (HandleOutput[Claszs], " ", 1);
write{HamndleOutput {Class], Bdgtl3ll: OutBuf.Fi=z1d.IWU Grant,

write{HandleQutput[CTlass],
write (HandleOutput[Class],

write (HandleOutput[Class],
write (HandleQutput [Clacss

write (HandleOutput [Cla
write (HandleOutput [Cla

]

= (HandleOutput [s],
ss],

Nrit Clas
thcthudle\utLut[Cla

write (HandleOutput [Class],
write(HandleOutput[Class],

write {HandleCutput [Class],
write (HandleOQutput[Class],

write (HandleOutput [Class],
write(HandleOutput [Class],

write (HandleQutput [Class],
write(HandleCOutput [Class],

write{HandleGutput{Class],
write (HandleOutput [Class],

write (HandleOutput [C

Class],
write (HandleOutput [Class

sl,

write (Handledutput[Class],
write (HandleOutput [Class],

write (HandleOQutput[Class],
write (HandleOutput [Class],

write (HandleQutput(Class],
write (HandleOutput [Class],

write {HandleOutput[Class],
write (HandleOQutput [Class],

write(HandleOutput[Class],
write{HandleOutput [Class],

write (HandleQutput [Class],
write({HandleOutput [Class],

write(HandleOutput[Class],
write (HandleOutput [Class],

write (HandleOutput [Class],
write(HandleCOutput{Class],

write(HandleCutput[Class],
write (HandleOutput [Class],

write (HandleOutput [C
write (HandleOutput |
write (HandleOutput [
[C
(C
[C

[Y]

las
Clas
Clas
s

un w

write (HandleQutput
write (HandleOutput

]

1

1,

]

1

i
write (HandleOutput [C]

Cla
Cla
‘1a

lfl Lfl

IWU Grantlenrgth);
" n 1‘ - -
] Jr
Bdgt3115 OutBuf.Field.IWU GrantWithAlumni,
IWU GrantWithAlumniLength) ;
11 ||I 1); -
Bdgt3115 OutBuf.Field.IWJ Grant OS,
IWU Grant OSLength);
11" n l‘,‘;
Bdgt23115 OutBuf.Field.IWU Grant OS Alumni,
IWD Grant OS AlumnilLength);
n n 1)- - - -
7 ’
Bdgt3115 OutBuf.Field.OutsideScholorzhip,
Qutside3cholorshiplength);

" II, 1)

Bdgt3115 OutBuf.Field.NoNeedScholorship,
NoNeedScholorshipLength) ;

n ||, 1};

Bdgt3115 OutBuf.Field.SpecialCorp NMSC,
SpecialCorp NMSCLength);
" I|, 1);
Bdgt3115 OutBuf.Field.MeritCorp NMSC,
MeritCorp NMSCLength):;
" |II 1);
Bdgt3115 OutBuf.Field.CneTimeNMSC,
OneTimeNMSCLength) ;
AR ||, 1);
Bdgt3115 OutBuf.Field.AlumniAcademic,
AlumniAcademicLength) ;
" ", 1)’.
Bdgtl115 OutBuf.Field.AlumniWithNeed,
lumniWithNeedLength);
n Ill l);
Bdgt3115 OutBuf.Field.TalentMusic,

TalentMusicLength) ;

;s 1)
Bdgt23115 OutBuf.Field.TalentArt,
TalentArtLength);
T, 1)
Bdgt3115 OutBuf.Field.TalentDrama,
TalentDramalength) ;
v, 1)
Bdgt3115 OutBuf.Fieid.MusicWithNeed,
MusicWithNeedLengthi;
" ", l);
Bdgt3115 OQutBuf.Field.ForeignStudent,
ForeignStudentLength) ;
v, L)
Bdgt3ll5 OutBuf.Field.Ministerial,
MinisterialLlength);
”" I|, 1)’.
Bdgt3115 CutBuf.Field.ParentsAssoc,
ParentsAssoclength) ;
1:

Bdgt3115 OutBuf.

" on
14

Field.PreTheology,
PreTheologyLength);

1t “, l);

Bdgt3115 OutBuf.Field.IWU NaticnalMerit,

IW] NationalMeritLength):;

n Ill 1)’.

Bdgt3115 OutBuf.Field.

n ||, l);_

Bdgt3115 OutBuf.Field.

”" ||’ l),

Bdgt2115 OutBuf.Field.

Music, MusicLength);
Giese, Gieselength):

Alkonis,

AlkonisLengih) ;

write (HanpdleQutput [Cla
write {HandleCutput{Cla

”rlfecqandleOutput
write {HandleCutput[C

write (HandleCutput [
write (HandleOutput (¢
arlue(Handleﬂutput[

jrite (HandleCutput {C

write (HandleOutput [C
write (HandleCutput [Cla
write (HandleOQutput [Cla
write (HandleOutput[Cla
write (HandleOutput [Cla
write (HandleQutput[Cla
write (HandleOutput [Cla

if |
{((strcmp(FirstOthr,

strncpy (Bdgt4321 CutBuf.All,Blank4321,

£

else
if (Mored221)

Mored 321 =

write{HandleOQutput[Class],

write (HandleOutput [Class
write (HandleOutput [Class],

[a—
~

i

1

4
4

e(HandleOutput{Claaa ,
e (Handlielutput Ik_, a

e(Hanu eCutput [C1
te

{(HandleOutput [C1

I

U]UJ
v

[P S R

1

Ul

1

te (HandleQutput [Class],
i 53]

cl
el l“dnu*c U _r'dt[fla

wn w

’

write (HandleOutput [Class],
write (HandieOutput [Class],

write (HandleQutput [Class],
write (HandleOutput[Class],

write (Handlelutput [Class],
write (HandleOutput [Class],

write (HandleOutput [C

Class],
write (HandleCutput [Class],

write (HandleCutput [Class],
write (HandleCOutput [Class],

write (HandleOutput[Classi,

{(strcmpi{LastOthr, Last4321);

If these are the same student,

read (HandleSortedd321[Class],Bdgti32l

1) -
Bdgt2115 CutBuf.Field.Stevenscn,
StevensonlLengyth) ;
11 ||, 1),
Bdgt3115 OutBuf.Fisld.Rupert, RupertlLength);
n ||, 1);

Bdgt3115 OutBuf. .Mahlstedt,

MahlstedtlLength);

1" “, l)’.
Bdgt3115 OutBuf.Field.Senate, Senatelength);
n ", l);
BdgtSllB#OutBuf.Field.Presser,
PresserlLength);
" ", 1);
Bdgt3115 OutBuf.Field.Brokaw, BrokawLength);
1" ", l);
Bdgt2115 OutBuf.Field.Shanks, ShanksLength);
1" ll, l);
Bdgt311l: CutBuf.Field.Baksr, BakerLength);:
" ‘I’ l);
b= 9) |]
First4321)) =0))

Bdgt43Z1 Len) ;
// 1f this doesn't match the
/4 Othr file, print blanks

then get the next student record

_Buf.All,
Bdgt4321 Len):

Bdgt4321 OutBuf.Field.AlumniAchievement,
AlumniAchievementLength) ;
" ||l 1);
Bdgt4321 OutBuf.Field.StateFarmMinority,
StateFarmMinorityLength):

n n 40
y o+l
Bdgtd3Zl OutBuf.Field.EBRust, EBRustLengthi;
" 11 l).
’ ’
Bdgt4321 OutBuf.Field.Specialiward,

SrecialAwardLength);

[T} 1y .
Y i

Bdgt4321 OutBuf.Field.MusicAward,
MusicAwardLength) ;
n ‘|I l);
Bdgt4321 OutBuf.Field.
IWU NationalMeritWithAlumni,
IWU NationalMeritWithAlumniLength);

n |l, 1);

Bdgt4321 OutBuf.Field.
InternationalStudentAchvmnt,
InternationalStudentAchvmntLength;)

n ", l),

Bdgt4321 OutBuf.Field.NeedBasedGift,

NeedBasedGiftLength);

" |II 1);

Bdgt4321 OutBuf.Field.MusicHonors,
MusicHonorsLength) ;

1 ||I l);
Bdgt4321_0utBuf.Field.SEOG_Initial,

SEOG Initiliallength);
" n, 1); -

write{HandleOutput [Class],

write (HandleOutput [Class],
write (HandleOutput [Class],

write (HandleOutput [Class],
write (HandleQutput [Class],

write (HandleCutput (Class],
write (HandleOutput[Class],

write (HandleCutput[Class],
write (HandleOutput[Class],

write (HandleOutput [Class],
write (HandleQutput{Class],

write (HandleCutput [Class],
write (HandleOutputClass],

write (HandleCOutput [Class],
write (HandleOutput {Class],

write (HandleOutput [Class],
write (HandleOutput[Class],

write (HandleCutput [Class],
write (HandleOutput [Class],

write (HandleOutput[Tlass],
write (HandleQutput [Class],

write (HandleQutput [Class],

write (HandleOutput [Class],

write (HandleOutput [Class]
([]

write (HandleOutput [Class

write (HandleOutput[Class],
write {HandleOutput [Class],

write (HandleOutput [Class],
write {HandleOutput [Class],

write (HandleOutput [Class],
write (HandleOutput {Class],

write (HandleOutput [Class],
write(HandleOutputClass],

write (HandlieOutput [Class],
write (HandiedutputiClass],
write (HandleCutput(Class],
write (HandleOutput[Class],
write (HandleOutput (Class],
write (HandleOutpu* [Class],
write {HandleOutput [Class],
write (HandleOutput [Class],

write (HandleOutput [Class],
write (HandleOutput[Class],

write (HandleQutput[Class],
write (HandleOutput [Class]

Bdgt4321 OutBuf.Field.SECG Renewal,
SEOG Renewallength) ;
" " 1); -
Bdgtd4221l OutBuf.Field.IllinoisMerit,
IllinocisMeritLength);
" Il, 1),.
Bdgt4321 OutBuf.Field.MeritRecognition Need,
MeritRecognition NeedLength);
n “/ 1);
Bdgtd321 OutBuf.Field.Perkins,
PerkinsLength) ;
1)) l‘, l);

" I|, 1);
Bdgt4321 OutBuf.Field.Nursing 3T,
Nursing STLength);

1" ll, 1);

Bdgt4321_0ut8uf.?ield.5 a

v, 1)
Bdgtd321 OutBuf.Field.Stafford O3,
Stafford OSLength);
A
Bdgt4321 OQutBuf.Field.Stafford IS ST,
Stafford OSLength):

1" 1"
!

1)
Bdgt4221 OutBuf.Field.Stafford Os ST,
Stafford_O S3TLength) ;
" 1‘, 1);
Bdgt4321 CutBuf.Field.LULU,
" ", l);
Bdgtd4321 CutBuf.Field.LULU

LULULength) ;

am
oLy

LULU STLength);
" 1‘, 1);
Bdgtd321 OutBuf.Field.EdgarSmith,
EdgarSmithLength) ;
n “, l);
Bdgtd2l CQutBuf.Field.Methodist,
MethodistLength) ;
" ‘II l);
Bdgtd32l OutBuf.Field.Mas

sock,
MassockLength) ;
", 1)
Bdgtd4321 OutBuf.Field.Ferguson,

r
=
r

ergusonlength) ;
" “, l);
Bdgt4321 CutBuf.Field.Tripp, TrippLength);
n n 1);

Bdgt4321 OutBuf.Field.Myers, Myerslength);
[T 1\.
!
Bdgt4321 OutBur.Field.IWU StudentEmployment,
IWU btudentEmplovment ength;;
" H, l);
Bdgtd4321 OutBuf.Field.IWU EmploymentPartial,
IWU_EmploymentPartiallength);
11 li, 1);
Bdgt4321 OutBuf.Field.WorkStudy,
WorksStudylLength);
n n l);
Bdgtd 321 OutBuf.Field.WorkstudyPartial,
WorkStudyPartiallength';

»

write (HandleOutput[Class], BdgtOthr QutBuf.Field.CR, CRLengthj;

close (HandleSortedOthr[Class]
close(HandleSorted3115(Cla
cleose(HandleScorteddZ21(C1la
close{HandleOutput {Class]) ;

ﬂ

Ul [4]
[&]

~e

~s

switch (Class;
i

case Freshman : cout << "Freshman "; break;
case Sophomore : cout << "Sophomore "; break;
case Junior : cout << "“Junior "; break ;
case Senicr : cout << "Senior “; break;

cout << "data matched by name & collated into output file." << endl;

s/ end for each class

)

S e Aok sk gk sk ok sk sk ok ok sk sk Sk sk ok ok sk ok ok S ok sk ok sk sk Sk ok ok ok sk b sk o b sk ok b ok b ok S

s

s, Remove temporary files

4 e ke sk sk ok gk Sk ok sk s sk sk ok s ok b b b sk Sk s o S b ok ok b ok Db Sk ok oh sk ok b ok o A e

remove {FreshOthrFile) ;
remove (SophOthrFile) ;

remove (JunicrOthrFile) ;
remcve {SenlorCthrFile);

remove (SortedFreshCthrFile; ;
remcove (SortedSophOthrFile) ;
remove {SortedJuniorOthrFile) ;
remove (SocrtedSeniorQthrFile);
remove (Fresh3l115File) ;

remove {Soph3115File);

remove (Junior3115File);
remove (Senior3115File) ;

remove (SortedFresh3115File);
remove (SortedSoph3115File);
remove {Sorteddunior2l15File
remove {SortedSeniorill15File

Y
i
)]
e/

LPHh43ZlFlle)

, (ophd321File);
remev e(JunluL4“¢lrile);
remove (Seniord321File);

remove (SortedFreshd321File) ;
remove (SortedSophf221File) ;
remove {(SortedJuniord3Z1File);
remove (SortedSeniord321File) ;

cout << "Tempcrary files removed." << endl;
out << "Process complete.
S/ end mainf)

int GetClass (int &Class, char* LastName, char* FirstName)

clrscril;
while {(!iClass »= 1 && Class <= 5))

.
1

cout << "No year has been found with this student"™ << endl;
cout << "First Name: ''" <K nrTrt << oendl;

FirstName <<
<< LastName << "''™ << endl << endl;
cne of the following:" << endl;

udent in the Freshman file." << endl;

2oun < "Last Name ron

cout << "p

tD b o
o
e
=

cout «< he st

cout << " 2, Put the student in the Sophomore file.™ << endl;

cout " 3. Put the student in the Junior file."™ << endl;

cout " 4. pPut the student in the Senior file."™ << endl;

cout " 5. Delete this student from the Budget Projection << endl;

cout << "Press 1-5, followed by ENTER: ";

switch (Class)

!

case 1 : Class = Freshman; break;
case 2 : Class = Sophomore; break;
case 3 : Class = Junior; break;
case 1 : Class = Senior; break;

—

clrscr{);
return Class;
I/ end procedure

	Illinois Wesleyan University
	Digital Commons @ IWU
	1996

	Improved Data Migration and Processing for Projecting the Financial Aid Budget
	Jeffery L. Olson '96
	Recommended Citation

	tmp.1222379220.pdf.B0DCG

