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Abstract: The objective of this work is to empirically test the EMH (efficient market hypothesis) and 
compare its results to those of a viable agent-based competitor using computational simulation. The 
models are not directly fit to the data; random walk and agent-based methods of stock price determination 
are statistically compared using the criteria of stationarity, randomness, and autoregressive behavior. The 
agent-based approach used, styled the "ant trader" model, is based on the ant model established by 
Kirman in his 1993 work "Ants, Rationality, and Recruitment". Daily returns of the Hang Seng and Nikkei 
225 indices are used over the periods 1987-2007 and 1984-2007, respectively. Preliminary simulations 
run with the agent-based model indicate high sensitivity to parameter changes; parameter imbalances 
lead to unrealistic growth in returns. Batch stationarity tests using ADF and PP tests suggest that the two 
models behave similarly under the chosen parameter conditions. However, the random-walk model is 
found to be more consistent with the available data when using the Wald-Wolfowitz runs test and the Lo­
MacKinlay variance ratio test. We conclude that the EMH can be theoretically challenged by the ant 
trader model, but not empirically. The agent-based model has more realistic assumptions and is more 
flexible; however, the random walk model agrees with the stationarity and randomness properties of real­
world stock index return. 



Swisher 2 

I. Introduction l 

"The image one gets from the news is that financial markets are dominated by people. In contrast, 

a reading of a standard finance textbook ... can create the impression that financial markets are nearly 

devoid of human activity" (Thaler 1993). The field of asset pricing, specifically the valuation of stock 

market shares, has historically played host to a number of contradictory theories regarding the 

determination of prices. As the debate currently stands, the efficient market hypothesis (EMH) has 

assumed a dominant position following the enumeration of rational expectations theory at the University 

of Chicago (primarily) in the 1960s by Muth, Fama, and Lucas (Sheffrin 1996; Shiller 2000). Fama's 

specification is that "security prices always fully reflect the available information" in an efficient market 

(Shleifer 2000). Initial econometric testing regarding the efficient-markets theory confirmed germane 

hypotheses, but by the mid-1970s academics were increasingly skeptical due to the restrictive nature of 

the assumptions and contradictory empirical findings (Sheffrin 1996). As a result, alternative theories 

involving non-rational actors were developed under the banner of behavioral finance by Shiller, De 

Bondt, Thaler, Roll, and others; however, the EMH remained the de/acto central paradigm of finance, a 

position it has held for over thirty years (Hirshleifer 2001; Sheffrin 1996; Shleifer 2000). 

In such a context, questioning the current theory vis-a.-vis well-developed alternatives is perfectly 

reasonable because the consensus is not well-defined (Arthur et al. 1997; Baker and Wurgler 2007; De 

Bondt and Thaler 1984; Hirshleifer 2001; Hong and Stein 2007; Shleifer 2000; Worthington and Higgs 

2003). The objective of this work is to empirically test the EMH and compare its results to those of a 

viable competitor using computational simulation. Specifically, the individual-agent approach has been 

gaining momentum recently as the appropriate numerical tools are now widely available (Bonaneau 2002; 

Cioffi-Revilla 2002; Diks et al. 2007; Gilbert and Bankes 2002; Inchiosa and Parker 2002; Tesfatsion 

2002). This fact, coupled with intensifying doubts concerning the validity of efficient-markets theory, has 

led to intensive use of the agent-based approach with computational agent-based modeling (ABM) of 

financial markets (Bonabeau 2002). Although multiple theories currently compete with the EMH to 

varying degrees, we focus explicitly on the use of ABM to generate results consistent with Hang Seng and 

Nikkei 225 price changes. The agent-based results are compared with output from a random-walk model 

directly inspired by the tenets of the EMH; model parameters are selected such that each model is run 

with reduced elTor. However, the methodology is not entirely based on error-minimizing fitting functions; 

[ would like to thank the members of my honors research committee at ll1inois Wesleyan University: T.X. He, S.H. 
Lee, N. Jaggi, and M. Seeborg. I. Odinaka, an undergraduate at the university, gave me much-needed advice 
regarding Mathematica programming. 

I 
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stationarit/, randomness, and autocon'elograms are used as comparative metrics in order to assess model 

accuracy and appropriate characterization of historical data. Our results imply that the random-walk 

model is more consistent with the empirical facts in this particular situation. 

Throughout the 1990s, a perception has been developing that efficient-markets theory is 

inconsistent with the available data; critics cite price volatility in excess of what would be dictated by 

changes in fundamental value as evidence (Thaler 1993; Shleifer 2000). Additionally, those in behavioral 

finance argue that no time-constrained individual could ever possess the computing power required to 

calculate and recalculate the fundamental value of all stocks in a diversified portfolio (Hirshleifer 2001). 

Such skepticism is countered by those empirical results that do confirm the EMH (pearce and Roley 

1985); efficient financial markets are consistent with laissez-faire and the innate wisdom of unconstrained 

market forces (Ormerod) 998). The net result is a field characterized by theoretical conflict between 

alternative theories, a situation not uncommon in the economics discipline, but the dispute is as much 

dogmatic and political as it is empirical and scientific (Schleifer 2000). Stock markets have been 

traditionally viewed as the apogee of free-market idealism; shares are traded on a daily basis without 

significant restriction, so each stock price should represent actual (fundamental) value. Deviation from the 

correct valuation is rapidly purged from the market system by the broad mass of fundamentalist traders; 

as such, the EMH posits that each stock price reflects the discounted present value of the sum of future 

earnings. 

Confirming the applicability of bounded rationality and the imperfection of market traders leads 

to a reexamination of previous bubble-corrective incidents that brought financial ruin to millions and 

persistent negative economic consequences (Shiller 2000). Economists are prompted to question if the 

market can be manipulated to make mistakes as speculators push asset prices higher for their own self­

enrichment at the cost of macroeconomic stability (Raines and Leathers 2000). Regardless of the 

evidence, the efficient-markets theory has an incumbent advantage that can be nearly impossible to 

nullify. Resistance to theoretical change is also due to the esoteric nature of the topic, and although data 

availability is no longer a problem (Pearce 1984), financial data require statistical analysis using complex 

econometric modeling (Worthington and Higgs 2003). The utility of the ARCH model in performing data 

analysis in finance, for example, is due to the heteroscedastic and autoregressive properties of stock prices 

over time; the time-series are characterized by short-lived bursts of volatility (Shumway and Stoffer 

2006). Extensive data availability can also be viewed as a mixed blessing: although ample series are 

available for investigation, data mining (i.e. selecting the data set that maximizes model performance) can 

become endemic to the study of random walk models (Hirshleifer 2001). Consequently, rejection or 

2 A set of time-series data is said to be stationary if its mean and variance do not change as a function of time. 
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acceptance of the EMH is a function of the data set used, so no generalized conclusions are drawn by the 

literature. 

Our objective here is to empirically test the EMH and compare its results to those of an agent­

based alternative using Malhemalica-based computational simulation. The two models are empirically 

compared (without trying to find the SSE-minimizing model outcome) using the criteria of stationarity, 

autoregressive behavior, and randomncss3
. The agent-based approach used, termed the "ant trader" 

model, is based on the ant model established by Kinnan in his 1993 work "Ants, Rationality, and 

Recruitment". Daily returns of the Hang Seng and Nikkei 225 indices are used over the periods 1987­

2007 and 1984-2007, respectively. The model that most accurately reflects the conditions present in these 

real-world markets in tenns of statistical testing (stationarity, randomness, autocorrelograms) will be 

theoretically preferred. 

This study is not immune to the issue of limited applicability of results, and the detenninations 

made here regarding the efficient-markets theory are not necessarily extensible to other indices that differ 

non-trivially in tenns of period under consideration, composition of stocks, industrial concentration, or 

regional factors (Worthington and Higgs 2003; Huber 1995). Disagreement between the EMH and its 

opponents will continue regardless of new scholarly publications because stock market efficiency is a 

function of index characteristics and time; some indices are more adept at incorporating infonnation than 

others4 (Worthington and Higgs 2003). 

II. Contextual Literature 

Arguments made for efficient markets were originally theoretical, consisting of the fonnation and 

appl ication of rational expectations by Muth, Lucas, and so on; the idea of rational expectations quickly 

migrated from macroeconomics to finance, resulting in the random-walk model of stock prices (Sheffrin 

1996). The EMH is appealing partly because of its implications: stock market prices reflect all available 

infonnation concerning the discounted expected value of future corporate earnings streams, i.e. the capital 

asset pricing model, or CAPM (Ibid.). Consequently, no long-tenn profitable trading rule can be 

established as stock prices engage in a random walk around fundamental value (Ibid.). The theory 

provides a fundamentalist trading rule as follows: sell if the price is above the "true" value (overvalued) 

and buy/hold if price is below the "true" value (undervalued), where the true value reflects the future 

3 A set of time-series data is said to be random if no tendency to remain above or below the median or mean exists. 

4 Co-existence of efficient and inefficient markets implies that both sides can find supporting evidence, which leads 

to contradictory results. 
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earnings stream of the asset (Ibid.). Efficient-markets theory implies that financial analysts are redundant 

when all market actors have access to complete information, and technical analysis based on short-run 

trends is ineffectual (Hirshleifer 2001; Shleifer 2000). Volatile day trading is unproductive, assuming that 

the underlying true value is not changing in the short-run, so all the rational investor has to do is buy and 

hold undervalued stocks5 until they eventually become overvalued in the course of a random walk 

stochastic process. The discovery of a long-term profitable trading rule would invalidate the efficient­

markets theory, however (Thaler 1993). 

The EMH can be broken down into three subclasses as defined by Fama in his] 970 work 

"Efficient Capital Markets: A Review of Theory and Empirical Work": a particular market may exhibit 

weak, semi-strong, or strong efficiency (Shleifer 2000). A market is said to be weakly efficient if 

complete awareness of past information does not improve long-run portfolio profitability (Ibid.). Semi­

strong efficiency is satisfied if portfolio return cannot be increased using knowledge of publically­

available information (Ibid.). The strict criterion of strong-form efficiency is the most difficult to prove; 

we say that a market is strongly efficient if even insider (non-public) information cannot improve 

portfolio return. As SUCh, a majority of authors deal with weak-form efficiency in financial markets 

because it is difficult to properly treat the insider infOlmation set econometricalll (Sheffrin ]996). 

Although this paper does not directly test for market efficiency, the definitions are worth noting due to 

their importance in the EMH framework. The random-walk specification that will be used is weakly 

efficient; a more stringent specification would require additional evidence regarding the information set, 

which is beyond the scope of this paper. 

A voluminous literature has grown around the efficient market hypothesis; a concise summary is 

provided by Sheffrin in Rational Expectations (1996) as cited previously. The EMH assumes the 

following: investors are rational actors, imperfectly rational investors trade randomly with zero net effect, 

and arbitrage undertaken by rational actors nullifies the actions of non-rational traders (Shleifer 2000). Of 

these three, the most important assumption is arbitrage; if of sufficient number, rational arbitrageurs? can 

effectively purge the market of its irrational elements through fundamentals-based trading. Therefore, the 

requirement that market agents are perfectly rational can be relaxed and the theory remains consistent 

under suboptimal (i.e. realistic) conditions. Under these assumptions with a market composed of risk­

5 Undervalued, i.e. below fundamental value, assuming that fundamental value is well-defined and can be computed. 

6 By definition, insider infonnation is not known to the public; therefore, compiling data on such a topic might prove 

impossible. Individuals with insider information will not want to divulge the extent of their knowledge due to fear of 

prosecution or loss of trading advantage. 

7 "Rational arbitrageurs" can be classified as individuals who rationally exploit price differentials (deviation from 

fundamental value) in order to obtain trading advantage. 
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neutral rational investors, mathematical economists Samuelson and Mandelbrot proved that returns follow 

a random walk process in the mid-1970s (Ibid.). At this time, empirical evidence overwhelmingly 

supported the efficient-markets theory and arbitrage was able to explain away isolated outbreaks of 

irrational "noise trader" behavior. The 1972 event study of Scholes suggested that arbitrageurs can only 

operate when near-perfect substitutes are available for an individual stock, but his work generally 

confirmed the EMH regardless of the prerequisites (Ibid.). Of note here is that the EMH relies upon a 

multitude of powerful assumptions, mainly the primacy of rational, fundamentalist traders. The entire 

logical argument is invalidated with a violated assumption, but empirical evidence is also supportive. 

Empirical testing has proven effective in validating the efficient-markets hypothesis; see Pearce 

and Roley "Stock Prices and Economic News" and their subsequent confirmation of the EMH (1985). 

The authors use S&P500 return data coupled with data sources that address expectations and 

announcements; expectations reflect the state of the information set, while announcements stochastically 

shock the information set. Theoretically, they adapt the rational expectations framework to the question of 

predicting changes in stock index prices as follows: 

(2.1) 

The change in stock price at time t is a function of the unexpected announcements vector xu, expected 
eannouncements vector x , all previous unexpected news Ixu

, and an error term e indexed by t. Coefficient 

b should be significantly non-zero, while coefficients c and d are predicted to be zero in accordance with 

the EMH. This is because only newly-presented unexpected news should serve as a stochastic shock; 

expected news and previous surprises ought to be integrated into the price already. 

Pearce and Roley find that unexpected announcements induce nearly-instantaneous changes in 

S&P 500 price, but expected (anticipated) announcements do not have a statistically significant effect on 

stock prices (1985). These results concur with the theoretical predictions of the EMH; only surprise 

changes in the information set lead to non-trivial stock price movements. Therefore, stock prices reflect 

all available information, which includes expectations about future announcements regarding monetary 

policy and corporate finance. Pearce and Roley used the efficient-markets theory as their null hypothesis 

when conducting statistical tests regarding regression coefficients, so more precisely the authors did not 

disprove the theory. Their paper is representative of an extensive body of work that has failed to reject the 

EMH, insofar as a failure to reject represents validation and lends credibility to the proponents of rational 

expectations. 

The random walk model has been specified in a number of increasingly sophisticated ways as per 

Hagerman and Richmond "Random Walks, Martingales and the OTC" in which the authors validated the 

weakly efficient form of the efficient market hypothesis (1973). After stating that "the evidence 
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overwhelmingly shows that security returns are independent over time," the authors propose an extension 

to the EMH in which over-the-counter (OTC) securities would be used in place of stocks. A more direct 

method is used to investigate the hypothesis in this study: serial correlation coefficients are computed for 

a set of253 securities, along with the use of distribution-free runs testing, to test for autocorrelation. 

Hagennan and Richmond find that] 2.3% of the serial correlation coefficients were significantly non-zero 

at the 5% level under nonnality, but this result is discounted as flawed for a number of reasons: variable 

error, covariance with the aggregate market trend, and the nonnality assumption introduced substantial 

bias into the estimate of p. The runs test fails to find a significantly non-zero proportion of securities with 

excessive deviation from normality. Therefore, Hagerman and Richmond fail to reject the null hypothesis 

that the OTC securities market is weakly efficient as posited by the efficient-markets theory; the EMH is 

not without empirical support. 

In summation, we cannot claim that the efficient market hypothesis has explicitly failed. The 

theory has extensive empirical justification, as shown previously, and the EMH/CAPM duality has been 

very successful: the models remain essentially intact after more than thirty years of criticism. However, 

the strict assumptions of efficient-markets theory can appear implausible in the current trading 

environment and critics are numerous and vocal (Thaler 1993). Economic history is rife with examples of 

individually-ilTational herd behavior, bubble formation along with the inevitable crash: Baker and 

Wurgler cite the Nifty Fifty and the Black Monday crash of] 987 as examples of rational traders gone 

awry, violations of the EMH in the short-run (2007). Recent macroeconomic events, particularly the 

]990s "dot-com" bubble and the 2005 U.S. housing bubble, have served to discredit the concept of 

efficient financial markets. The field of behavioral finance has emerged as a center of heterodox thought 

in this area, proposing alternative theories of stock price formation (Hirshleifer 2001). 

The field of behavioral finance has propagated a number of alternative theories based around a set 

of common concepts, such as cognitive biases, but no consensus exists. Hong and Stein provide a list of 

reasons why stock prices would persistently deviate from fundamental value in "Disagreement and the 

Stock Market" (2007). Momentum, the continuation of upward or downward trend regardless of other 

factors, is the central tenet of technical analysis (momentum investing), an investment philosophy that 

argues for the intensive examination and mimicry of trend. The existence of stock price momentum again 

implies that a long-tenn profitable trading rule exists, which is inconsistent with the efficient-markets 

theory. In post-earnings (announcement) drift, returns are abnormally high/low following 

positive/negative news, respectively; the trading rule in this case is to buy stocks following a positive 

announcement. Mean reversion is equivalent to the so-called "ovelTeaction hypothesis" of De Bondt, 

Thaler (] 984); good/bad news in the short-run leads to losses/gains in the medium-run (3+ years). Almost 

all of the alternative hypotheses based on cognitive biases, such as the illusion of control, have not been 
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explored to the extent required to become serious competition for the EMH. Hirshleifer's survey article, 

"Investor Psychology and Asset Pricing", is an example of how diverse and disparate the field has 

become; many scholars are trying to connect psychological concepts with investor behavior as manifested 

in stock market prices, but a proliferation of applicable theories in cognitive psychology has resulted in a 

rather wide range of applications to finance (200 I). Each cognitive bias has been explored by a limited 

number of authors, so no one concept has reached the requisite critical mass, so to speak, to genuinely 

compete with the efficient market hypothesis. 

Sources like De Bondt and Thaler "Does the Stock Market Overreact" (1984) find an 

overreaction effect in stock prices after a significant news announcement. Theoretically, human violation 

of Bayes' rule implies that traders tend to overestimate the effect of positive unexpected news; therefore, 

we should empirically see excessive stock gains immediately after favorable announcements. This 

"overreaction hypothesis" contradicts efficient-markets theory since stock prices temporarily yet 

persistently overestimate the actual value. Monthly data on NYSE common stock returns are used from 

Jan. 1926 to Dec. 1982; the authors cite problems with the use of daily data, such as the "bid-ask" effect 

and infrequent trading. Two groups of stocks are defined: a loser portfolio, stocks that suffered negative 

news in the recent past, and a winner portfolio, stocks under the influence of positive announcements; the 

portfolios are tracked for 2-5 years after the news event. Since an unanticipated announcement would tend 

to overvalue or undervalue stocks with positive or negative reports, respectively, the authors expect that 

winners will retreat and losers will gain during the subsequent correction. De Bondt and Thaler find 

empirically that this is the case; the loser portfolio substantially outperformed the winner portfolio in 

every case considered. Therefore, an investor could formulate a contrarian trading rule as follows: buy 

stocks on negative news and sell stocks on positive news. Such a strategy could be profitable in the long­

run, according to the authors, due to this overreaction effect. The discovery of a profitable trading rule in 

the long-run implies the invalidity of the EMH as stock prices are not engaging in random walks. 

Baker and Wurgler (2007) try to prcdict stock market return using an index of investor sentiment, 

and this approach is relatively common in the literature. The theoretical concept is that price changes 

reflect exogenous changes in investor sentiment, which can be measured by a derived sentiment index. In 

"Investor Sentiment in the Stock Market", the authors construct an investor sentiment index based on six 

factors which serve as proxies: trading volume, dividend premium, the closed-end fund discount, the 

number and pr~liminary returns ofIPOs, and the equity share in new issues. Baker and Wurgler attempt 

to remove the macroeconomic components of the proxy variables in order to target solely sentiment as 

opposed to accounting for other exogenous changes. This index is moderately successful in terms of 

predicting future returns; stocks that are difficult for arbitrageurs tend to be more intensively affected by 
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changes in sentiment. These results, when combined with the conclusions of others in behavioral finance, 

imply that sentiment indices can be accurate predictors of stock market return. 

Volatility in excess of changes in fundamental value is another cornerstone of the behavioral 

finance literature, and the topic has been discussed extensively (Thaler 1993; Shleifer 2000; Shiller 2000). 

As an example, consider "What Moves Stock Prices?" by Cutler, Poterba, and Summers (1989) as 

reproduced in Thaler (1993). After accounting for changes in publicly-available information, the authors 

conclude that as much as half of the variance in stock prices remains unexplained; this result rejects the 

null hypotheses of weak or semi-strong efficiency. Again, this result suggests the fall ibility of efficient­

markets theory in certain situations. 

In Irrational Exuberance, Shiller colloquially discusses herd behavior, the idea that individual 

decision-making is influenced by the choices of others in what is termed an "information cascade" (2000). 

Such a cascade is characterized by incomplete information: since no agent knows the true fundamental 

value of an asset at a fixed point in time, the decisions of other agents in the previous period are used as a 

reference point (Scharfstein and Stein 1990). For example, the Oct. 1987 bull market was partially driven 

by money managers who wanted to continue their employment at investment firms; no manager wanted 

to miss out on the record gains that were perpetuated by the traders themselves (Ibid.). Alternatively, 

discerning the actual value of a stock takes a considerable amount of time and financial resources 

(Hirshleifer 2001); an investor might find it advantageous to bypass the research process by agreeing with 

the majority. This principle is an extension of Kirman's agent-based ant model, which is the basis of this 

paper's approach. 

As defined by Kirman (1993), the "ant model" is a well-known agent-based model of ant colony 

behavior during the search for food. The colony is exposed to two equally favorable non-exhaustible food 

sources (sites A and B) and pheromone trails from the initial scouts can be modeled as positive feedback 

(Ormerod 1998). We partition the colony's fixed 8 population into two mutually-exclusive groups: ants 

currently searching for food at site A (group A) and those foraging at site B (group B). The probability of 

a new ant selecting site A9 is directly related to the number of ants in group A, and thus indirectly related 

to the number of ants in group B. However, the random chance that an ant would spontaneously and 

independently switch from one group to another is ever-present lO (Kinnan 1993). 

8 Under the assumption that the colony experiences zero population growth in the short-run. A more sophisticated 

long-run model could express population growth as a function of the quantity of food gathered in each period. 

9 Joining group A (visiting site A), leaving group B (ignoring site B). 

10 The analogous stock market situation: group A is the set of optimists (bulls); group B is a collection of pessimists 

(bears); the ants are traders who engage in a search for return on initial investment given the known risk-reward 

environment and exogenous macroeconomic variables (theoretically). 
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The site visited by most initial scouts may become very popular due to the positive feedback 

mechanism, but sudden switching to the other group can occur if a cluster of ants randomly decides to 

investigate an alternative site (Ibid.). No long-run equilibrium exists, and rapid changes can still occur 

regardless of the time horizon due to the model's statistical qualities. Kirman's simple Markov chain is 

able to explain ant behavior so well because each ant is considered as an individual agent that chooses a 

food site in each period. Ormerod states that, "the idea that the system as a whole can be understood by 

the behavior of a single, representative agent is a complete non-starter" (1998); the conventional approach 

in economics, aggregation with the representative homo economicus, cannot apply here due to the ant 

recruitment method and its reliance on positive feedback. 

Computational agent-based modeling is a relatively new simulation technique, at least in 

economics; see Bonabeau; Cioffi-Revilla; Gilbert and Bankes 2002. The increased availability of 

simulation tools has led to intensive application of this mathematical framework to a wide range of 

problems, such as individuals trying to leave a burning building through a single door (Bonabeau 2002). 

Each person is modeled as an agent with generalized behavioral rules regarding conduct in the group; for 

example, an individual attempting to escape from a fire might try to avoid or help others on the way to the 

door (Ibid.). The agent-based approach allows for precisely-defined unique actors: based on parameters, 

one agent may be more likely to attempt a reckless exit than another. Agent-based models are typically 

solved via simulation techniques because no closed-form solution can be found analytically. Therefore, 

we would expect that each trial of an agent-based model generates a unique solution that is not strictly 

reproducible if probabilistic components are involved in the modeling scheme. Parameter values are 

important in ABM because parameter inaccuracy can lead to large changes in model outcomes I I; the 

parameters of interest are usually exogenously determined, however, making empirical comparison 

difficult (Kirman 1993). 

A recent application of the interacting-agent approach can be seen in Arthur et a1. "Asset pricing 

Under Endogenous Expectations in an Artificial Stock Market" (1997) as the authors construct a self­

contained artificial stock market in which each trader is assigned his/her own unique bundle of pricing 

models. The poorly-performing models are dropped and new models are added, so each agent generates 

expectations based on the outcomes of his/her respective models. Therefore, expectations are internally 

generated, not exogenously imposed, and prices interact with expectations in a dynamic fashion. 

II Final index price is one such outcome, and we usually have a target for that value based on historical information. 

Therefore, set the expected value of final index price equal to the recorded final price in the data set in order to 

maximize the likelihood of achieving the actual quantity in a representative simulation run. 
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III. Theoretical Discussion: Random Walk Model 

As shown by Samuelson and Mandelbrot, efficient-markets theory implies that the value of a 

frequently-traded stock should engage in a random walk about its fundamental value because stock prices 

fully reflect all available infonnation about the expected value of discounted future earnings. Traders, 

who primarily concern themselves with the difference between actual and fundamental value, will quickly 

correct the price of an undervalued or overvalued stock. The availability of complete, accurate 

infonnation implies that traders are able to integrate changes in the important earnings indicators into the 

stock price almost instantaneously. Stock market indices are simply bundles of individual stocks, so index 

value should also deviate from its fundamental value in a random-walk process, where the fundamental 

value of an index is the summation of the fundamental values of its component stocks. Theoretically, we 

have that expected returns are positive and constant (Sheffrin 1996); fonnally, 

E[Zt-Zllit-11 =0 (31} 

it = actual return in time t, 

Z1 = expected return in time t, 

/1-1 =information set attlme 1-1. 

The expected value (E[] operator) of actual return minus (constant) expected return given the 

previous infonnation set is zero; actual return never deviates from expectations based on 

available infonnation (Ibid.). If deviation from expected return does occur, this disparity should 

be extremely short-lived as expectations rapidly adjust. 

The particular mechanism through which the stock price random-walk is transmitted can be 

specified in a number of equivalent ways, three of which are considered here. The simplest case of a 

random-walk model isthe driftless case with finite up or down steps at each time interval; at each 

decision point, the series either increases by one or decreases by one with equal probability. "Drift" is 

conceptually defined as the nonrandom per-period change in the dependent variable; drift ought to be 

representative of long-run change or trend. Var is the variance operator. 

ao = Po (3.2-3.5} 

Brr+1 =an ± 1 =an - C_1i8inomial[1'-1] Binomial[1, +] 

E[anJ = Po 

Var[Bn ] = n 



(3.6-3.8) 
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Figure 3.1 shows a representative simulation of this type of stochastic process. The process is non­

stationaryl2 because the variance is a function of time index n. The sequence of first differences {an- an-d 

is stationary, however; in this case, differencing can achieve stationarity. E[p(an, an-I) ] = 0 as welL I3 

Fig. 3.1: Simple random walk stochastic process. 

Value SilTple rarxbn walk with n=500 

Iter-ations 

One-dimensional random walks without drift are defined as follows in the finance literature: 

(3.9-315.) 

E[ca] = Po 

Var!ca] = Ifc-
2 

12 A stochastic process is said to be stationary if its probability distribution function is time-invariant; we would 

expect that a stationary process has time-independent moments, such as the first and second moments of mean and 

variance, if they exist. The concept of stationarity is important because non-stationarity implies that the underlying 

probabilistic process (probability density function) is changing over time. 

13 Where p is the correlation coefficient between an and an-I. 
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The untransfonned process is non-stationary, while the differenced sequence is stationary; 

2
E[p(an, an-I) ] = °since {an- an-d - N(O,a )_ 

A one-dimensional random-walk process with drift 0 is defined recursively as follows: 

8 0 = Po (3.15-3.17) 

an+1 = an + {) + I'J (0 ,'0-
2 

) 

2N(O,a2
) is a nonnally-distributed random variable with mean °and constant variance a • A typical result 

of such a process is plotted below (Figure 3.2). 

Fig. 3.2: Random walk process (with drift 15). 

Value RaIXicm walk with 0=0.2, 0<=1, n=SOO 

I!:erations 

Taking the difference Ian - no I, the absolute deviation from pure drift, we find that no particular 

distribution arises regarding the density of this quantity; each trial distribution looks entirely unique. 

Clustering occurs when the series oscillates around an arbitrary fixed point for a period of time. Figure 

3.3 provides a density plot of deviations from drift for the same simulation that generated Fig. 3.2 above. 

Fig. 3.3: Deviationfrom drift, random walk model. 

teviaticns f , pure drift (0=0.2, cr'=I, n=SOO) 

50 , 

40 . 

10 
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Magnitude 
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In this particular example, the total deviation from pure drift was 6481.5; this value will be non­

zero due to variance present in the normally-distributed random variable. For this simple random-walk 

model, the first differences are normally distributed with mean 0 and variance (J2. This directly follows 

from the recursive definition of an as specified previously. 

I~=o I a~ - no I =deviation from drift =5481.5 (3.18-3.19; 

Figure 3.4 shows the density of first differences for the {an-an-d terms in our example:
 

Fig. 3.4: Relativefrequency offirst differences, random walk model (with drift).
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First Difference 

We have 11 = 0.243 ::::; 0.2 = 0 and ~ = 0.958 ::::; 1 for the set of first differences in our example; 

Il~ 0 and (J2~ 1 as n~oo, so even n=500 is a sufficiently small sample size such that we find significant 

deviation from the normally-distributed ideal. Because the first differences are normally distributed, we 

would expect that p(1 dan> 1d~.I) ::::; 0 with sufficiently large n. In other words, a time-series data set 

generated via an underlying random walk process should have no autoregressive properties 14 whatsoever; 

the expected correlation coefficient between successive values ought to be zero or near zero. 

Ip(l dan, 1dan_I)1 » 0 implies that the data are not the result of a random walk process, regardless of the 

drift parameter O. The random walk process with drift, as defined previously, is non-stationary because its 

variance is a function of the time index n. First, we examine E[~]: 

14 The term "autoregressive" refers to p(an, an-p) t- 0, p > 0, (n-p):::: O. 
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(3.20-3.23 

E[an ] =Po - (n - 1) ,j + 5 =Po + n6 

Since E[an] is a function of the time index n, the process is already proven non-stationary. The variance of 

the nih term can be expressed as follows since the sum of normally-distributed random variables has the 

propelty N(Il' ,cr21) + N(1l2 ,cr22) + ... + N(llk ,cr\) = N(LIlk> L cr2k), 

'/'ar[a]rr = ""m-1Lf1':.O "'ar[a ] 'I 'rr + .',]'" 2 = len~ r- 1"JC""2 + (J" 2 =I"rrT 2 ('."'.,24-"'.25.",'oJ-.JI 

limn->¢O Varlan] = x 

Therefore, additional evidence is provided for non-stationarity of the random walk with drift process as 

the variance of the nth term is again a function of time index n, As n increases, we would expect that the 

range of possible outcomes becomes larger, but the final position of the series is still distributed 

approximately normally around E[anl Although the random walk with drift process itself is non­

stationary, its first differences are stationary as {I dan} - N(8,cr\ 

The three random-walk processes discussed have common characteristics that can be empirically 

tested for regardless of the particular model specification used, and these traits are shared by all random­

walk models: 

(i) E[p(l dan, 1dan_i)] = 0; 1d = first difference; 

(ii) {an} is non-stationary; 

(iii) {L'lan} is stationary; 

(iv) limVar(aJ=oo, 
n-wo 

Our purpose in examining multiple specifications was to draw out these useful shared traits. The presence 

of autoregressive behavior in the first differences of a particular time-series data set indicates that original 

series was not the product of a random walk process, Additionally, testing for stationarity in the 

unmodified and first difference financial time-series can validate or invalidate the random walk 

hypothesis (Diba and Grossman 1988). Tests for non-stationarity include the augmented Dickey-Fuller 

(ADF), Phillips-Perron (PP), and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) tests for unit roots; 

the existence of a unit root implies that the original series is non-stationary, but differencing may be used 

to obtain a stationary series. Therefore, tests are available that will evaluate the soundness of the EMH as 

manifested in the random walk hypothesis using data from the Hang Seng and Nikkei 225 stock market 

indices. Drift parameter 0 can be interpreted as the long-run trend regarding the value of the index as 

determined by corporate finance and macroeconomic fundamentals; the EMH posits that stock prices will 
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engage in a random walk around this trend as all available infonnation has already been integrated into 

the price. 

IV. Theoretical Discussion: Agent-based Model 

As summarized by Onnerod in Butterfly Economics, the agent-based approach to time-series 

modeling defines a finite number of groups that probabilistically interact with each other according to 

simple behavioral rules (1998). ABM treats each individual separately, and although the behavioral rules 

may be unifonn across individuals and groups, large-scale simplification and aggregation is impossible. 

Many economic models can be solved by resorting to the representative agent approach and aggregating 

across a particular group, but agent-based models are defined by the inter-agent or inter-group dynamic; 

using a single agent to model the behavior of a cluster of agents will remove the micro-level mechanics 

that enable person-to-person interaction. The statistical nature of ABM implies that each model trial will 

generate a unique outcome because random variables are embedded into the recursive equations; 

however, the outcome of the nih period takes the previous n-l outcomes as given. Therefore, the Markov 

chain ABM approach requires the use of simulation and variation of parameters in order to reach any 

well-supported conclusions as one cannot test directly for agent-based behavior in financial time-series. 

The ant model framework (two groups, four flows between them) was adapted from Kirman's "Ants, 

Rationality, and Recruitment" (1993). We will now proceed to the development of the agent-based "ant 

trader" investor sentiment model. 

n : time index 

an : buyerlbullish/optimistic group of traders 

bn: sellerlbearish/pessimistic group of traders 

Cn = an- bn : difference 'in group sizes (net optimism, sentiment index) 

pen) : stock (index) price as a function of time 

N: total number of traders participating in the market 

(.i1-44} 
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PI: random a~b switch probability, pI E (0,1) 

P2: a~b persuasion parameter, [P2(bn)] E (0,1) 

P3 : random b~a switch probability, p3 E (0,1) 

P4 : b~a persuasion parameter, [P4(~)] E (0, I) 

Ps : translational parameter (c(n) to ~P(n)), p5 E (-co,co) 

pra-bln =pl +p:dbfn-1J (4.5-4.10) 

an = Binomial[an_l, 1- .Ci Ci - oJ'n J + 8inomiaf[bn_l. pr b -'> a:!n I 

an =Binomial[cn_l . .ora .... 0),1 J+ Binomial[bn_l. 1- .orb -'> aln )= r'J - an 

PiO) = Po 

P(n) = P(n-1) +,c'5 ic(n::J 

An expression can be obtained for the expected value of price, E[P(n)], as a function of the 

expected value of optimist group ~, E[~]. Expected value must be defined recursively as dictated by the 

agent-based model's struchlre of repeated binomially-distributed draws. 

Efac~=ac 

E[a,;] =E[Binomia1[an_> 1- P.D. ...... 6),J - Binomia1[bn __ .• p(b -1- aU] 
== (E aJf-- ])(1- E pt'a ...... b),J) - (E[o'l_: )(E[p(b ...... a ,JI 
=(E[an_J)(l - P~ - P2 E[br._:])- (E[O'l_J)(P3 - P4 E[ar._J) 

=(E[an_d)(1 - P: - p~(K - E[a,._J)) - (K - E[alt_J)(pj - P4 E[an __ J) 
E[a _j' == f r 

__ ,] (l -
,.L 
l.J - p~ K -

_I 
- p .• K') - E [a __ _ ] 2 (P1"..- - p .. 'Ip-K- E[a. _ . _ ..rv, n -T ....'" :J _ "'Y, 

Price is a recursive function of the expected value of~: 

E[P On = PO
 
E[P (n)) = E[P (n - 1 ] + P5 (2 E[an ] - K)
 

With p, = P3, P2 = P4, so-called "balanced parameters", we have that'S:
 

E[a,,- = a~ 

E-P (n)] = PC 

This implies that the sequence {pen)} is stationary ifand only if the parameters are balanced. {(pen)} is 

non-stationary if the parameters are imbalanced. A similar process can be repeated for the variance of the 

{~} and {pen)} series: 

IS From a market perspective, parameters remain balanced only in the absence of stochastic infonnation shocks. 
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,'ar[C<\J] ='1} 

Var[an] ='I.'ar[Bincmia1[all_L ! - p{a - c.1I]~Binomia1[&1I_1, pCb ~ a)lI]] 

=(E[all -d . - E[y ~ 6~1I])(E[p(a - 6)11])"'- (E[oll_11,(E[ b - al1l ])C - E[p(o, .... alII]) 

= (E[<1I1 -dX - P1 - P::lE[bll -dXP1 ... P2E[oll-d) - [bll -d)(P3 + P4 E[an-dX - P3 - P4E[an-d> 

=(E[all -11)(. - P1 - 1'2 - - E[all-d»(P1 ~ 1'2- - -E[an-d»"'- .' -E[all -d)(;3'" P4 E[all-1DC- - P3 - P4 E[all -d) 

Yar[all ] = !\"P3:: - F3} .,. E[~-d ;;1 ( -~::;n)- p12+':'JP2_;\-2 P::l2-P3+P32 .,.z-..:-P4 ·'::KP3 P4!~ E:[an_d(P42-n2 } 

~E['-"1I_1l2[ n'),2p1-')-~~Fi'P4( -2P3"t"_ -P4)] 

Again, the variance ofP(n) is a recursively-defined function of the variance of~; 

\'ar[P(O)J = 0 

Var[P (n)) = Var[p (n - 1 +4 'P5 ~ Var[anJ 

Balanced parameters (PI = P3, P2 = P4) will result in zero variance in the oth period and constant variance in 

all subsequent periods. Imbalanced parameters generate a monotonically increasing/decreasing sequence 

{Var[P(n)]} as n - 00; therefore, parameter balance is required for variance stationarity as well. The 

following conclusions regarding the "ant trader" model are consequences of our expressions for the 

expected value and variance of the P(n) tenns. 

(i) t1P(n) = P(n) - P(n-l) = Psc" = Ps(2~-N) from the definition of the agent-based model. 

(ii) E[t1P(n)] = 0 with balanced parameters; 

(iii) E[t1P(n)] is non-constant with imbalanced parameters. 

(iv) Var[t1P(n)] = 4(psiVar[an] = c with balanced parameters (c = constant). 

(v) Var[t1P(n)] is non-constant with imbalanced parameters. 

(vi) Therefore, the {t1 P(n)} series is non-stationary with imbalanced parameters. 

Our simulation results indicate that the {~} series is (approximately) nonnally distributed with mean 

11=(N/2), as is {t1a,,} with mean 11=0, given that the parameters are balanced. As a reSUlt, {t1pn} is also 

nonnally distributed; again, this only applies for balanced parameters, which cannot be used with non­

zero trend. Please see Figures A.l, A.2, and A.3 in the appendix. 

Our "ant trader" model has the following theoretical properties: 

Fig. 4./: Stationarity ofagent-based model (based on parameters). 

Series I Balanced I Imbalanced 

{pen)} stationary non-stationary 
{6P(n)} stationary non-stationary 

Since both indices have sample means that are not equal to their initial values, imbalanced parameters are 

required in order to match this long-run upward trend. Consequently, this implies that the stationarity of 

first-differences is the decisive difference between the EMH-based random walk model and the ant trader 
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model; stationarity of the non-differenced series will not be decisive. IfE[p(P(n), P(n-l))]!- 0, then only 

the ant trader model can adapt via parameter fitting and the random-walk model is inconsistent with the 

data. The need to raise the asset (index) price if buyers outweigh sellers in period t is an expression of 

simple supply and demand equilibration; the price adjusts according to investor sentiment in order to clear 

the market in every period. 

V. Algorithm Implementation and Validation 

Both the random-walk model and the ant trader model were implemented in Mathematica 5.2 and 

6.0 environments. Approximately ten independent notebooks were written for various tasks, including 

model validation and the recording of simulation data for later analysis. The following pseudocode 

attempts to summarize how this was accomplished, starting with the random-walk model. 

RWM Algorithm 

Clear all variables (s, k, b);
 

Define s, k, b (starting point, length of simulation, drift term);
 

Draw k terms from the sequence {sn} such that So = S, Sn+1 = Sn + b + NID[O,I];
 

Manually export {sn} to Stata 10, compute Mean[ {sn}] and Variance[ {sn}]};
 

Go to start until a set number of entries have been exported.
 

ABM Algorithm 

Clear all variables (N, k, S, PI - Ps); 

Define s, k, N (starting point, simulation length, number of traders); 

Define PI, P2, ... , Ps (as in section IV); 

Draw k terms from the ~P(n) sequence {rn} such that ro= 0, rn+l =j(rn), wherejoperates on rn; 

Define the pen) sequence {sn} such that So = S, Sn+1 = Sn + rn; 

Append data file "ABMdata.txt" with new entry {parameters, Mean[ {sn}], Variance[ {sn}]}; 

Go to start until a set number of entries have been written to the data file. 

In the agent-based algorithm, the functionjtakes two binomial draws using the previous period's value 

for an, the bullish group. Given ~P(n), an can be backwards-constructed 16 using parameter values. Both 

algorithms were designed to run repeatedly in order to generate a sufficient number of end results for 

statistical testing. The purpose of the data file is to record all simulation results in a text format that is 

easy for Stata 10 to interpret. Please see Section XII (Appendix II) for more information. 

16 With full knowledge of parameter values, an can be derived using the definitions established previously. 
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While the random-walk model code was straightforward and could be validated by inspection, the 

agent-based model was evaluated through the use of two illustrative cases: no random switching and no 

persuasive switching. In the case of no random switching, we set PI = P3 = a and expect that one group 

will come to dominate the other if the absolute magnitudes of P2 and P4 are large enough, given that P2 

and P4 are equal. Let ao = 50, bo= 50, N = 100, So = 10000, k = 100, P2 = P4 = 0.005, and Ps = 1; in this 

situation, P2 and P4 can be considered large as they are half their maximum allowable values. The specific 

simulation that follows is typical of the class of results with this type of parameter scaling. Figures 5.1 

and 5.2 plot ~P(n) and pen) versus time index n with no random switching, high persuasion. 

Fig. 5.1: L1P(n) VS. n; no random, high persuasive component. 

LlP(n) LlP(n) vs. n 

-~ n 
80 100 

Although the parameter scheme does not suggest a long-run trend for ~P(n), the series becomes 

stuck near ~P(n) = -100 around n = 40. As the majority of traders cluster in one group with bn ~ lOa, it 

becomes increasingly unlikely that the other group, bullish an, will regain agents. This persuasive effect, 

coupled with the lack of random switching to restore the system to equilibrium (an = bn), suggests that the 

system will become fixed at one extreme (an = 100) or the other (an = 0). Such an occurrence is most 

likely when the persuasive parameter is large, because the popular group becomes "locked in" by its own 

success in gaining the majority share of available members (N). 

Fig. 5.2: P(n) vs. n; no random, high persuasive component. 
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Since an;:::; 0 with n 2: 40, as seen above, the price series pen) achieves its steepest rate of descent 

at roughly 100 index points lost per time period. Consequently, the index has become completely 

devalued after a relatively short period of time. When P2 and P4 are scaled down by 1-2 orders of 

magnitude, the result is much less predictable; index price pen) stays within a few thousand points of its 

initial value So after 100 iterations, and the net price change is near zero. Both of these results correspond 

to what we would expect theoretically from the agent-based model: the random switching component 

adds noise and tends to bring the system back to equilibrium, while the persuasive component pulls the 

system away from equilibrium and represents self-reinforcing momentum investing. In the absence of 

random switching, the agent-based model spends most of its time in a disequilibrium state; however, this 

effect is significantly weakened when the persuasive parameters are made less important. Figure 5.3 

attempts to show, using a representative simulation result, what happens when P2 and P4 decrease by an 

order of magnitude (P2 = P4 = 0.0005). Again, this result typifies the entire class of possibilities. 

Fig. 5.3: P(n) vs. n; no random, low persuasive component. 
AP(n) c>P(n) vs. n Pin) Pin) vs. n 
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Bullish group 3n stays within] 5 traders of its initial equilibrium allocation; as a result, the price series 

pen) changes much more slowly, which is again consistent with our theoretical expectations. 

When persuasive switching is removed (P2 = P4 = 0), the agent-based model is qualitatively 

analogous to the random-walk case. The ~P(n) series reverts to higher-frequenci 7 white noise, with the 

noise increasing in amplitude as PI and P3 increase, assuming that PI = P3. Noise in ~P(n) translates to 

added noise in the price series pen) by definition. Therefore, as the random switching parameters increase, 

possible movement away from initial price So increases. The persuasive component of ABM is the central 

assumption that sets apart the random-walk and agent-based approaches. As such, the proposition that the 

agent-based model loses its uniqueness when the persuasion parameters are removed is not unreasonable. 

Without rigorous proof, such a characterization is useful for assessing our untested model. Without going 

into further detail, we can claim that the agent-based model responded to the hypothetical situations 

presented by the case studies as expected, which suggests that the model is functioning as defined. 

17 When compared to the other case studies in this section. 
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VI. Data 

Hang Seng and Nikkei 225 stock index data were obtained over the periods 1987-2007 (5080 

obs.) and 1984-2007 (5797 obs.); summary statistics, bivariate correlations, and graphical analysis follow 

here and in the appendix. The two indices in question were chosen for their instability during the period, 

coupled with the fact that a minority of authors has used data from Asian markets before and after the 

1997 financial crisis; i.e. there is sufficient variation for the models to explain. The following tables 

(Tables 6.1-6.5; Figures 6.1-6.2) characterize the data sets in terms of variable definitions, summary 

statistics, bivariate correlations, and the density of returns. 

Table 6.1: Variable definitions. 

Variable I Units I Definition 

Returndaily unitless 

Open HKDlYen 

High HKDlYen 

Low HKDlYen 

Close HKDlYen 

Change HKDlYen 

Volume shares 

Daily percentage change in index price;
 

Index price at open of trading session;
 

Highest index price during trading day;
 

Lowest index price during trading day;
 

Index price at close of trading session;
 

Daily change in index price, unweighted;
 

Number of shared traded during trading day.
 

Note that Returndaily is defined as the percentage change in index price; only active trading days were 

recorded in the data set, so weekends and holidays are excluded. Therefore, bias is introduced since we 

would expect above-average volatility fol1owing weekends as new information needs to be integrated into 

stock prices. 

Table 6.2: Summary statistics for the Hang Seng index variables. 

Variable lObS I Mean I Std Dev I Variance I Skewness I Kurtosis 

Returndaily 

Open 

High 

Low 

Close 

Change 

Volume 

5079 

'4516 

4516 

4516 

5080 

5080 

1496 

0.0549875 

10559.73 

10636.03 

10474.56 

9700.088 

0.0552217 

451774.7 

1.667655 

4562.354 

4588.401 

4527.343 

4940.557 

1.667572 

460654.9 

2.781074 

2.08*107 

2.11*107 

2.05*107 

2.44*107 

2.780795 

2.12*1011 

-1.929032 

0.0279019 

0.0207726 

0.0331988 

0.1162412 

-1.929172 

3.358333 

48.46569 

2.569677 

2.566115 

2.572902 

2.233254 

48.46553 

17.3229 

Hang Seng daily return is skewed to the right (negative skewness), thus the distribution is highly peaked 

and asymmetric. 
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Table 6.3: Summary statistics for the Nikkei 225 index variables. 

Variable lObS I Mean I Std Dev I Variance I Skewness I Kurtosis 

Returndaily 

Open 

High 

Low 

Close 

Change 

Volume 

5796 

5146 

5146 

5146 

5797 

5797 

1275 

0.0166975 

18592.2 

18723.54 

18450.42 

17921.21 

0.0166881 

75584.78 

1.364516 

6449.565 

6472.333 

6422.845 

6408.639 

1.364399 

187426.1 

1.861903 

4.16*107 

4.19*107 

4.13*107 

4.11*107 

1.861584 

3.51*1010 

0.0557901 

0.7960269 

0.7852155 

0.805568 

0.9091101 

0.0558421 

2.328616 

10.14701 

3.457427 

3.436237 

3.473681 

3.604324 

10.14902 

7.45228 

Daily return of the Nikkei has no skew, is relatively symmetric about zero, and is peaked. 

Table 6.4: Hang Seng bivariate correlation coefficients. IS 

Hanq Senq Close Close1d Close2d Close3d Returndailv Return1d 

Close 1 

Close1d 0.0234 1 

Close2d -0.0016 0.6918 1 

Close3d 0.0007 -0.3709 -0.854 1 

Returndaily 0.0072 0.883 0.6148 -0.333 1 

Relurndaily1 d -0.001 06069 0.8833 -0.7573 0.6943 1 

Relurndaily2d -0.0008 0.3291 0.7542 -0.8841 0,3766 08557 

Relurndaily3d -0.0012 0.1442 0.5227 -0,7964 0,1649 0.5934 

Volume 07354 -0,0094 -0.025 0.0049 -0.0013 -0.0192 

Time 0.8819 0,0074 -0,0004 -0.0003 -0.0073 -0.0001 

Return2d Return3d Volurne 

1 

0,9014 1 

-0.0059 -0.0009 1 

0,0001 0.0001 0.5814 

Table 6.5: Nikkei 225 bivariate correlation coefficients. 

Nikkei 225 Close Close1d Close2d Close3d Returndailv Return1d 

Close 1 

Close1d 0,0164 1 

Close2d 00003' 0,7081 1 

Close3d -0.001 0.3865 0.8566 1 

Relurndaily 0.0133 0.953 0.6821 0.3783 1 

Returndaily1 d 0.0005 0.6752 0.955 0,8226 0,7131 1 

Returndaily2d -0.0007 0.3717 0.8177 0,9556 0.3973 0.86 

Returndaily3d -0,0011 0.1753 0,575 0.863 0,1914 0,6088 

Volume -0.4401 -0.0506 0.0067 0.003 -0.0597 0.0083 

Time -0.4416 -0,0127 -0,0007 -0,0003 -0.0131 -0,0007 

Return2d Relurn3d Volume 

1 

0.9059 1 

0.0039 0.004 1 

-0.0003 -0,0002 -0,592 

18 Note: Close Id = firsl difference of closing price, Returndaily 1d = first difference of dai Iy return, etc. 

Time 

1 

Time 

1 
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The correlation coefficients between Returndaily and its differences (Returndailyl d, Returndaily2d, and 

so on) are negatively related to difference number for both indices, as expected, in Tables 6.4 and 6.5. 

Upon examination of Figures 6.1 and 6.2, we cannot claim that daily returns are normally distributed; this 

contradicts the efficient markets hypothesis. Please see the appendix for additional graphical analysis 

(Figures A.4-A.9). 

Figure 6.1: Distribution ofHang Seng daily return. 19 

Density vs. Daily Return (percentage points) 
Hang Seng 
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Daily Return 

Figure 6.2: Distribution ofNikkei 225 daily return. 20 

Density vs. Daily Return (percentage points) 
Nikkei 225 
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Daily Return 

19 Hang Seng returns are not normally distributed; the Shapiro-Wilk normality test indicates that, with the null 
hypothesis of non-normality, P>Z=O.OOO. The Shapiro-Francia test agrees with this result. 

20 Nikkei 225 returns are also not normally distributed when using the same normality tests. 
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VII. Statistical Testing Procedure 

The efficient market hypothesis will be examined through three batteries of econometric testing: 

stationarity/unit roots21 (ADF, PP tests), autocorrelation, and randomness (Wald-Wolfowitz, Lo­

MacKinlay tests). A random walk model has certain statistical properties that can be tested for 

empirically: non-stationarity of the untransformed series, stationarity of differenced series (or the Jog 

return series), and independence of successive values. The drift telm 0 will be used to approximate the 

linear trend in fundamental value without actually attempting a regression that tries to derive fundamental 

value for a number of reasons; previous attempts at predicting "true" fundamental value have not been 

entirely fruitful due to a number of innate causal reasons, such as stock prices themselves causing changes 

in fundamental value and the use of stock prices as a macroeconomic indicator. Drift 0 will be selected 

such that final price matches the expectation value of the last term of the simulated series. 

The ADF and PP tests assume the null hypothesis of non-stationarity (the existence of a unit 

root); the alternative hypothesis is stationarity (Dickey and Fuller 1979; Phillips and Perron 1988). Tn the 

Wald-Wolfowitz non-parametric test for randomness, serial independence of the data, i.e. randomness, is 

assumed as the null; the alternative is therefore non-randorrmess. A "run" is defined as a sequence of 

successive values that are all above or below the median (by default; the mean can also be used at the 

decision point). The null hypothesis of the WW test is rejected when the number of runs in the data is 

small relative to the sample size, which implies that the runs present are longer than would be likely under 

the serial independence assumption (Wald and Wolfowitz 1943). The Lo-MacKinlay variance ratio test 

partitions the data set into increments (subintervals) based on aggregation values q = 2, 4, 8, 16 and 

computes the variance of each increment. The Lo-MacKinlay test assumes that the subintervals are 

homoscedastic under the random walk null hypothesis, which implies that the increments should have 

similar variances; the alternative is a non-random walk process. After taking a variance ratio that 

compares the largest incremental variance to the variance of the data set as a whole, the test accepts or 

rejects the null hypothesis based on the test statistic z*(q). Therefore, the conclusion will be subject to the 

value of q, which is an externally-determined parameter (Lo and Mackinlay 1988). 

Simulation data derived from the ant trader model will be subject to stationarity tests, the 

examination of autoregressive traits (visual inspection of autocoITelograms), and randomness testing. We 

expect to find that the untransformed series and first differences in price are non-stationary, and 

significant autoregressive behavior can only be explained by the agent-based model. Empirical modeling 

in this case is the application of previously discussed theoretical models to the specific case of Nikkei 225 

21 ADF: Augmented Dickey-Fuller test, PP: Phillips-Perron test; both are stationarity tests. 
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(1984-2007) and Hang Seng (1987-2007) index prices using parameter estimation by fitting expected 

mean and variance to the data. Statistical testing, with the exception of the Lo-MacKinlay procedure, will 

be executed with built-in Stata 10 routines. Specifically, a Stata module implementation of the Lo­

MacKin lay variance ratio test written by Baum in 2006 will be used22 
• 

VIII. Results 

We first need to obtain a theoretical estimate for the random walk model's mean and variance. 

Using this estimate, E[Jl] from the model can be matched to the sample mean in real-world cases (Hang 

Seng and Nikkei 225). Regarding the agent-based model, only a large-sample simulation could provide 
2the necessary relationship between parameter values and Jl or a , so such a simulation is attempted. Given 

the poor results of this effort, ceteris paribus studies are done in which a selected parameter is allowed to 

vary within ±5% of its initial value. Next, E[Jl] and E[d] are derived for the agent-based model using the 

definitions established in Section IV; again, the purpose of this is to match E[Jl] to the sample mean by 

varying the model's parameters: PI, P2, ... , Ps. Finally, stationarity and randomness testing is done using 

Stata 10 in order to determine which model best reflects market conditions for the two indices. 

The random walk with drift and "ant trader" models are fit to the data using the first and second 

central moments of mean and variance, respectively. Therefore, we need to obtain E[Jl] and E[a2 
] in each 

case in order to plausibly match real-world behavior. For the random walk model, these expected values 

can be found analytically; k stands for the number of model iterations. 

- 1 "".1< E a ) 
.- ~ L.n=O r. _ l2 " ~ i ro-1 . :;: 

- - ~ ~-DI'rI--1
.1<-1 ..... '-'. :1' 

_ 1 '}'<. -. 
- - t...J~-... llDo + notI< .. -v. • = 

E[j.L] = Po + '},·l;c 
~ 

Since k and Po are taken as given based on the data, we can only change the drift term 0 in order to retain 

consistency with the sample mean and variance. The assumption made here was that the random (non­

drift) component is normally distributed with mean 0 and variance 1; additional flexibility requires 

22 Baum's module, revised as of2007, is available at: hllp://idcas.re,pec,orgi f oclbocodc/A56740hlml. 
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changing these parameters, which will not be considered here. () will be selected to match the sample 

mean, so this current scheme allows for no control over variance. 

Simulations were run using the agent-based model with randomly drawn parameter values 

uniformly distributed on finite intervals. Po and k were fixed based on the index used (Hang Seng or 

Nikkei); N was fixed at 100; PI, P2, P3, P4, and Ps were allowed to vary as Figure 8.1 shows. 

Fig. 8.1: Allowed parameter ranges, m=2450 simulation. 

PI ,P3 € [0.(1'1, O.IJ 

P2 ,P4 € [O.(Ii}05, 0.005] 

ps€[1,10J 

The simulation program, executed in Mathematica 6.0, calculated the first four central moments (mean, 

variance, skewness, and kurtosis) for each trial. Each trial was represented by a line in the data file, which 

recorded the central moments coupled with relevant parameter values, as shown in Figure 8.2.23 

Fig. 8.2: Mathematica-generated dataftle. 

A31,fja ta . txt : 

We then attempted to regress these moments on the recorded parameter values for each draw 

using Stata 10. The fol1owing results are for the Nikkei 225 simulation with Po= 9927, k = 5796, N = 100, 

Ps = 5 fixed for all trials; m = 2450 total trials were run, so the data file had 2450 lines. Sample mean was 

regressed on parameter values PI, P2, P3, and P4 initially; the result was surprising as no variables are 

significant at the 0.10 level, although P4 is close (Table A.5). However, even this weakly-significant 

variable is contradictory because all parameters should matter theoretically, according to our definitions. 

Regressing variance 011 the set of parameter values {PI, P2, P3, P4} generated a similar result; the constant 

term was the most significant, indicating high variance regardless of parameters (Table A.6). We did 

achieve significance ofp2 at the 0.10 level; again, the other parameters are not significant. This implies 

that parameters reduction in the agent-based model may be possible, as only a subset of the available 

parameters is important in explaining simulation mean and variance. Please see the appendix for a full 

listing of attempted regressions (Tables A.I-A.6). 

23 11 = skewness, 12 = kurtosis. 
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This null resultZ4 implied that our model specification was incorrect. The probabilistic definition 

of the "ant trader" model suggested that only the relative parameter values were important, i.e. the ratios 

Randomratio:= P3 / PI and Persuasratio:= P4 / Pz· Independent variables Randomdiff:= P3 - PI and 

Persuasdiff:= P4 - pz could have explanatory power if the difference in parameters was influential. 

Although most regressions did not assign significance to these new variables, the persuasion ratio was 

significant at a=0.05 when predicting sample mean. Our simulation results yielded one definite 

conclusion: model outcomes "explode" when the parameters become imbalanced; Highly unequal 

parameters (PI »> P3, pz »> P4, or vice versa) lead to large sample means of ±] 06 or more. A plot of 

frequency vs. mean for the simulation data (m = 2450) clearly shows a twin-peaked distribution that is 

skewed away from zero and towards extreme values (please see Appendix, Figure A.] 0). These mixed 

results suggest that another analytical tool is necessary, specifically variation of parameters around an 

arbitrary starting point, in order to maintain relative stability while simultaneously exploring individual 

parameter effects on the central moments. 

Given a starting point of {p" Pz, P3, P4, Ps, N} = {O.05, 0.00], 0.05, 0.00],5, 100}, parameters pI, 

Pz, P3, and P4 were varied individually with tolerance ± 5% ceteris paribus. Initial price Po and duration k 

(total number of iterations) were specified according to real-world Hang Seng and Nikkei 225 data. 

Parameter values used are specified in Table 8.3, as shown below: 

Table 8.3: Allowed ranges, variation ofparameters. 

Parameter I Hang Seng I Nikkei 225 

P1 0.05 ± 5% 0.05 ± 5% 
P2 0.001 ± 5% 0.001 ± 5% 
P3 0.05 ± 5% 0.05 ± 5% 
P4 0.001 ± 5% 0.001 ± 5% 
Ps 5 5 
N 100 100 
Po 2583 9954 
k 5080 5797 

Samples of size n=50 were used for each set of parameters, i.e. fifty runs ofthe model each time, where 

the parameters PI, ... , P4 were discretely varied from Px-5% to Px+5% in intervals of I%. The averages of 

the first four central moments were recorded for each parameter set across the fifty model runs. Results 

were graphed with SSE-minimizing linear (sample mean case) and polynomial of order 2 (sample 

variance case) interpolating functions. We will consider the E[Il] vs. pz case as representative, and the 

remainder of the graphs can again be found in the appendix (Figures A.I ]-A.20). In this case, simulation 

24 These unsuccessful regression results have no bearing on the remainder of our simulations or statistical tests. 
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results indicated that E[~] is indirectly related to P2 and therefore directly related to P4; the relationships in 

Figure 8.3 and Figure 8.4 are subsequently linear. 

Fig 8.3: E[J.11 VS. Pl, Hang Seng model. 

E(~) vs. p2, ceteris paribus (Hang Seng) 
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Fig 8.4: E[J.11 VS. Pl, Nikkei 225 model. 

E(~) vs. p2, ceteris paribus (Nikkei 225) 
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Variance was found to be directly related to the difference Ip4 - P21; increased deviation of P2 from the 

fixed value of P4 results in an exponential increase in the sample variance. As expected, PI was also found 

to be indirectly related to E[~], which implies that P3 is directly related in an analogous fashion. The 

difference IPrpii affects sample variance directly, behaving in the same way as Ip4-P21. Parameter Ps was 

not a significant predictor of sample mean or variance within the 5% tolerance. 
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We can rely on our explicit fonns ofE[a"J and Var[anJ in order to compute the needed quantities 

E[~J and E[cr2J; the rest follows directly in Figure 8.5. 

Fig. 8.5: Expectation values for first and second (central) moments, "ant trader" model. 

1 k 
EUL] = k l:E[~ . 

:r.=') 

1 k 

E[~] = k _ 1 ~ (E[~J - E[,u )2 
r~=,•.,' 

Recall that E[a"J has been recursively defined previously. Therefore, given a parameter set, we can use 

Mathematica to solve for these expectation values, which will be set equal to sample mean and variance. 

Now that E[~(PI,P2,... )J and E[cr2(PhP2,... )J are well-defined for both the random walk and agent-based 

models, we can proceed to parameter selection, point-by-point simulation, stationary testing, and 

comparison to the actual data. Table 8.4 lists the parameters selected for each model, based on the index, 

in order to match the first two central moments; sample mean was prioritized over variance. Thirty trials 

will be computed for each set of parameter values, and stationarity/randomness tests will be individually 

applied to each run. Augmented Dickey-Fuller and Phillips-Peron unit root tests are used in combination 

with the Wald-Wolfowitz runs test and the Lo-MacKinlay variance ratio test. All routines were perfonned 

in Stata 10, with the results reported in Tables 8.5 - 8.6. The ADF test has no lags or drift/trend tenn, and 

the PP test uses the default number of lags (nearest integer value of 4(k/l 00)219, where the series is k 

periods long (k iterations in the model). 

Parameter 

Ii 

P, 
P2 
P3 
P4 
Ps 
N 

po 
k 

Table 8.4: Parameters/or statistical testing. 

Hang Seng (RWM) I Nikkei 225 (RWM) I Hang Seng (ABM) I Nikkei 225 (ABM) 

2.8014 

2583 

5080 

2.7568 

9954 

5797 

004944 0.04945 

0.001 0.001 

0.05 0.05 

0.001 0.001 

5 5 

100 100 

2583 9954 

5080 5797 

In the results presented over the next three pages, the simulation program was run without 

checking for non-negativity of the price series at each iteration. Since negative price is nonsensical and 

cannot be transfonned via logarithms, these results will be referred to as "possibly negative" whereas the 

trials that were later hand-picked for non-negativity will be labeled "non-negative". 
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Table 8.5: Stationarity tests, Hang Seng Index, {Pn} series, possibly negative. 25 

~ ABM' ADF I ABM' PP I RWM' ADF I RWM' PP 

1 0.900 0.767 0.932 0.932 
2 0.997 0.890 0.708 0.709 
3 0.000 0.134 0.950 0.950 
4 0.800 0.724 0.510 0.517 
5 0.980 0.804 0.966 0.967 
6 0.995 0.892 0.924 0.925 
7 0.847 0.787 0.292 0.298 
8 0.992 0.858 0.974 0.974 
9 0.627 0.753 0.982 0.982 
10 0.522 0.653 0.994 0.995 
11 1.000 0.993 0.552 0.573 
12 0.163 0.571 0.881 0.881 
13 1.000 0.994 0.993 0.992 
14 0.906 0.789 0.990 0.991 
15 0.997 0.953 0.999 0.999 
16 0.965 0.861 0.944 0.945 
17 0.995 0.662 0.581 0.605 
18 0.726 0.750 0.962 0.962 
19 1.000 0.998 0.956 0.956 
20 0.061 0.246 0.977 0.977 
21 1.000 0.986 0.991 0.992 
22 0.413 0.510 0.969 0.969 
23 0.829 0.773 0.267 0.253 
24 1.000 1.000 0.798 0.787 
25 0.980 0.654 0.850 0.846 
26 0.986 0.863 0.997 0.997 
27 0.971 0.930 0.995 0.995 
28 0.869 0.611 0.986 0.986 
29 0.858 0.450 0.951 0.951 
30 0.711 0.572 0.986 0.986 

25 Null hypothesis: existence of a unit root (non-stationary), p-values are reported, 5% critical value: -2.86. 
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Table 8.6: Stationarity tests, Nikkei 225 Index, {Pn} series, possibly negative. 

~ ABM' ADF I ABM' PP I RWM' ADF I RWM' PP 

1 0.995 0.940 0.979 0.979 
2 0.901 0.639 0.751 0.759 
3 0.000 0.027 0.971 0.971 
4 0.090 0.402 0.632 0.623 
5 0.964 0.788 0.996 0.996 
6 0.789 0.694 1.000 1.000 
7 0.998 0.972 0.993 0.993 
8 0.991 0.903 0.988 0.988 
9 0.997 0.893 0.995 0.995 
10 0.187 0.394 0.706 0.716 
11 0.996 0.928 0.994 0.993 
12 0.997 0.890 0.973 0.972 
13 0.994 0.880 0.912 0.913 
14 0.076 0.576 0.776 0.784 
15 0.988 0.952 0.877 0.876 
16 0.050 0.519 0.960 0.960 
17 0.100 0.367 0.992 0.992 
18 1.000 0.998 0.988 0.987 
19 0.000 0.025 0.891 0.889 
20 0.926 0.812 0.977 0.977 
21 0.963 0.883 0.984 0.984 
22 0.688 0.578 0.976 0.977 
23 0.001 0.173 0.923 0.924 
24 0.788 0.750 0.948 0.948 
25 1.000 0.997 0.944 0.944 
26 0.375 0.481 0.521 0.526 
27 1.000 0.994 0.951 0.951 
28 0.998 0.955 0.584 0.627 
29 0.000 0.257 0.863 0.862 
30 0.005 0.154 0.893 0.892 

The ADF and PP test results for the differenced series all had p-values of 0.000 or less; therefore, the first 

differences are stationary without exception in all cases. One possible explanation for this result regarding 

the agent-based model; as this was expected for the random walk model, is that our parameters were too 

close to the balanced case to make much of an impact. Test results imply that the ant trader model was 

biased towards stationarity even in the price series, which is a surprising result that goes against our 

expectations and the empirical realities of the data. Table 8.7 attempts to summarize the results of the 

stationarity tests; the major implication is that the random walk model was consistent with the actual data. 

Since the actual indices were non-stationary in the {Pn} series and stationary in the {~Pn} series, the 

agent-based model presents a problem when its {Pn} terms are stationary. Although the agent-based 

model generated a more realistic estimate for test p-values in the N225 case, the random walk model is 

perfectly accurate in predicting stationarity. 
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Table 8.7: Stationarity test results, summary, model comparison, possibly negative. 

n=30 (per model) I ADF' {p} series I pp. {p} series I ADF- {~p} series I pp. {~p} series
 

Hang Seng
 0.851 0.000
 

Nikkei 225
 

0.863 0.000 

0.451 0.000
 

HSI: ABM average
 

0.425 0.000 

0.748 0.000 0.000
 

HSI: RWM average
 

0.803 

0.863 0.000 0.000
 

N225: ABM average
 

0.862 
0.661 0.000
 

N225: RWM average
 

0629 0.000 

0.900 0.000 0.000
 

% stationary, ABM
 

0.898 

a = 0.10 6.67% 0% 100% 100%
 

HSI
 a = 0.05 3.33% 0% 100% 100% 

a = 0.01 3.33% 0% 100% 100%
 

% stationary, RWM
 a = 0.10 0% 100% 100%
 

HSI
 

0% 
a = 0.05 0% 100% 100% 

a = 0.01 

0% 

0% 100% 100%
 

% stationary, ABM
 

0% 

a = 0.10 6.67% 100% 100%
 

N225
 

30.00% 
a = 0.05 6.67% 100% 100% 

a = 0.01 

20.00% 

16.67% 6.67% 100% 100%
 

% stationary, RWM
 a=0.10 0% 100% 100%
 

N225
 

0% 

a = 0.05 100% 100% 

a = 0.01 

0% 0% 

0% 0% 100% 100% 

Autocorrelation plots ofreturns can provide qualitative information regarding the adherence of a 

model to the empirical ideal. Again, the random walk model outperformed the ant trader model in this 

dimension of comparability; please see the appendix, Figures A.21-A.24. The RWM generates 

alternating, seemingly random correlation coefficients between the nIh period and previous periods, which 

is in accordance with empirical reality. However, the ant trader model exhibits strong autocorrelation in 

returns which is not present in daily data. We conclude that the random walk model has outperformed the 

agent-based model in terms of autoregressive behavior. 

From this point onward, all results deal with non-negative simulation data. The Mathematica 

program was repeatedly executed until the price series did not fall below 20% of its original value at any 

point during the run; only those runs which satisfied this requirement were added to the data set. This 

stipulation was made because we felt that the possibility of negative price should be ruled out entirely, 

even if the runs selected do have systematic bias away from zero. After recording a total of 120 non­

negative trial runs, two different transformations, log price26 and first differences, were applied to the data 

in order to generate a stock index return series for testing. Weekly data was taken by reducing the 

sampling rate to 1/5 in order to compensate for daily trading biases, such as the bid-ask effect and 

26 The log price series is defined by (Log price)l = Ln[(PI)/(P,_I)]. This transformation works properly only if the 
series is non-negative and far enough away from zero. 
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infrequent trading. Tables 8.8 - 8.11 report the general results obtained; "100% stationary" indicates that 

the 30 samples for that case were all stationary, i.e. the null hypothesis of a unit root (non-stationarity) 

was rejected at the a = 0.05 level for every individual sample. Tables 8.8-8.9 below outline our results 

when the log price transformation was used. 

Table 8.8: Random walk test results, log price series, non-negative. 

Hang Seng, LN, a=0.05 I ABM RWM I Actual 

Aug. Dickey-Fuller 100% stationary 100% stationary stationary 

Phillips-Perron 100% stationary 100% stationary stationary 

Wald-Wolfowitz 100% non-random 100% non-random random (p-value=0.27) 

Lo-MacKinlay (q = 2) 63.3% random 100% non-random non-random 

Lo-MacKinlay (q = 4) 90% non-random 100% non-random non-random 

Table 8.9: Random walk test results, log price series, non-negative. 

Nikkei 225, LN, ,a=0.05 I ABM RWM I Actual 

Aug. Dickey-Fuller 100% stationary 100% stationary stationary 

Phillips-Perron 100% stationary 100% stationary stationary 

Wald-Wolfowitz 100% non-random 100% non-random random (p-value=0.62) 

Lo-MacKinlay (q = 2) 90% random 100% non-random non-random 

Lo-MacKinlay (q = 4) 100% non-random 100% non-random non-random 

Both the agent-based and random walk models generated stationary series after transformation, 

which is consistent with our previous results and the actual stock price data. As the real-world price series 

is random according to the Wald-Wolfowitz test, neither model managed to match this behavior. The Lo­

MacKinlay variance ratio test provided conflicting results depending on the aggregation parameter q, but 

the RWM was in agreement with the actual data regardless of q while the agent-based approach was 

random in the majority with q = 2. Therefore, the log transformation again suggests that the random walk 

model is more harmonized with the actual data. The Hang Seng and Nikkei indices appear to behave quite 

similarly insofar as both are efficient according to the WW test and inefficient via Lo-MacKinlay. 

The log price series is viewed as the best return specification available, but the results of the 

Wald-Wolfowitz and Lo-MacKinlay tests, that the random walk series is non-random, are contrary to our 

expectations. Taking the ratio of (Pt)/(P I -,) is problematic in this case because the innovations (random 

component) in our random walk model were drawn from a normal distribution that did not depend on the 

magnitude of the series itself. Consequently, as the upward trend term is larger than the innovations, the 

relative price change will decrease as PI increases over time. Therefore, (log price)l heteroscedastically 

goes to zero as t increases since variance as a function of time declines monotonically as well. In response 
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to this problem, we decided to compare the log price results to the case offirst differences, as shown 

below in Tables 8.10-8.11. 

Table 8.10: Random walk test results, .first differences, non-negative. 

Han Sen, 1d, a=0.05 ABM RWM Actual 

Aug. Dickey-Fuller 100% stationary 100% stationary stationary 
Phillips-Perron 100% stationary 100% stationary stationary 
Wald-Wolfowitz 100% non-random 96.6% random random (p-value=0.47) 

Lo-MacKinlay (q = 2) 100% random 100% non-random non-random 
Lo-MacKinlay (q = 4) 100% non-random 100% non-random non-random 

Table 8. JJ: Random walk test results, .first differences. non-negative. 

Nikkei 225, 1d, a=0.05 I ABM RWM I Actual 

Aug. Dickey-Fuller 100% stationary 100% stationary stationary 
Phillips-Perron 100% stationary 100% stationary stationary 
Wald-Wolfowitz 100% non-random 90% random random (p-value=0.62) 

Lo-MacKinlay (q = 2) 93.3% random 100% non-random non-random 
Lo-MacKinlay (q = 4) 100% non-random 100% non-random non-random 

Using the first differenced price series, the runs test now concludes that return is randomly 

distributed around its median for the random walk model, which makes intuitive sense. As a result, the 

RWM is now even more compatible with the Hang Seng and Nikkei stock index price data. The agent­

based results have not changed significantly; the Lo-MacKinlay test result still depends on q when 

comparing the q = 2 and q = 4 outcomes. Although the Lo-MacKinlay conclusion differs from that of the 

runs test in every case, the agent-based model and its ambiguous variance ratio test remains inconsistent 

with the actual result for both indices. Therefore, despite the contrarian Lo-MacKinlay results, we can 

again conclude that the random walk model is closer to agreement with the real-world price data using 

both the log price and first differenced series. We found that the RW1vl' outperforms the agent-based 

approach in both the negative and non-negative simulation samples. The final result is an unambiguous 

classification of the Nikkei and Hang Seng markets as weakly efficient, thus the random walk model can 

better explain stock price behavior in this type of situation. 
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IX. Concluding Remarks 

When compared to the ant trader model, the random-walk model is more consistent with the data 

available on the Hang Seng and Nikkei 225 stock market indices over the 1987-2007 and 1984-2007 

periods, respectively. This result, which is supported using both negative and non-negative simulation 

samples, cannot be easily generalized to other markets. Various empirical papers have found inconsistent 

results regarding the efficient-markets theory; some financial markets appear to be efficient in the 

short/long run, while others are not (Worthington, Higgs 2003). Therefore, our results only apply to the 

particular situation examined and are possibly a byproduct of the data at hand, which includes the 1997 

Asian financial crisis. We did not want to selectively isolate any financial crises in order to make the 

statistical tests as robust as possible, and an obvious extension of this work is the consideration of 

different periods of time. It is plausible that the market operates efficiently over celtain time scales and 

not others; an adjustment period immediately following a financial disaster may temporarily inhibit 

market efficiency, for example. The results in this case imply that efficient-markets theory cannot be 

challenged on empirical grounds using stationarity when the comparison group is simulation data 

generated using the ant trader model. Although the EMH assumptions are unpalatable, inflexible, and 

unrealistic, the resultant simulation data are consistent with actual data when using return 

autocorrelograms, stationarity (ADF, PP tests), and randomness (Wald-Wolfowitz runs test, Lo­

MacKinlay variance ratio test) as cross-model comparative tools. A number of useful properties of the 

agent~based model have been established regarding mean and variance, and variation of parameters 

yielded insight into the underlying agent-agent dynamic. We hope to continue to improve on the agent­

based approach27 as manifested in the ant trader model as this concept is still in its infancy when 

compared to the thirty years of refinement that the random walk model has undergone. 

27 The next step is to allow agent-based model parameters to vary over time in response to generalized exogenous 
changes in consumer confidence, macroeconomic health, or consumer confidence. 
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XI. Appendix I 

Figure A.l: Density vs. anfor simulated {an}
 

(runfor 10,000 periods, P/=P3=0.05, P2=P4=0.001, p5=5, N=IOO).
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Figure A.2: Density vs. l'1an for simulated {l'1an} (run/or 10,000 periods). 
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Figure A.3: Density vs. I'1pnfor simulated {l'1pn} (runfor 10,000 periods). 
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Figure A.4: Weekly return ofthe Hang Seng index vs. time in trading days: 1987-2007. 28 
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Figure A.5: Weekly return ofthe Nikkei index vs. time in trading days: 1984-2007. 
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Figure A. 6: Daily closing price ofthe Hang Seng index vs. time in trading days: 1987-2007. 
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28 Note: return is calculated as the percentage change of the index over the appropriate time period. 
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Figure A. 7: Daily closing price of the Nikkei 225 index vs. time in trading days: 1984-2007. 
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Figure A.8: Autocorrelations ofdaily return for the Hang Seng index, 0-20 period lags. 29 
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Figure A. 9: Autocorrelations ofdaily return for the Nikkei 225 index, 0-20 period lags. 
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29 Note: shaded box indicates 95% confidence band. 
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Table A.I: Regression results, mean = f(Randomdifj; Persuasdiff), simulated data (m=2450). 

sou rce 55 df MS Numbe r of obs = 2450 
Fe 2, 2447) = 1.16 

Model 1.4067e+12 2 7.0333e+11 prob > F 0.3139 
Residual 1.4846e+15 2447 6.0672e+11 R-squared 0.0009 

Adj R-squared = 0.0001 
Total 1.4860e+15 2449 6.067ge+11 Root MSE 7.8e+05 

mean coef. Std. Err. t p>ltl [95% Conf. Interval] 

randomdi ff 386892.3 430497 0.90 0.369 -457283.9 1231069 
persuasdiff 1.07e+07 8560967 1.25 0.210 -6050560 2.75e+07 

_cons 6459.175 15750.16 0.41 0.682 -24425.85 37344.2 

Table A.2: Regression results, variance = f(Randomdiff, Persuasdifj) , simulated data (m=2450). 

Source 55 df MS Number of obs = 2450 
Fe 2, 2447) = 1.22 

Model 6.9231e+22 2 3.4616e+22 prob > F 0.2949 
Residual 6.9335e+25 2447 2.8335e+22 R-squared 0.0010 

Adj R-squared = 0.0002 
Total 6.9404e+25 2449 2.8340e+22 Root MSE 1. 7e+11 

variance coef. std. Err. t p>ltl [95% Conf. Interval] 

randomdi ff -4.58e+10 9.30e+10 -0.49 0.623 -2. 28e+11 1. 37e+11 
persuasdiff 2.72e+12 1. 85e+12 1.47 0.142 -9.10e+11 6.35e+12 

_cons 2.03e+11 3.40e+09 59.61 0.000 1. 96e+11 2.10e+11 

Table A.3: Regression results, mean = f(Randomratio, Persuasratio), simulated data (m=2450). 

Source 55 df MS Numbe r of obs = 2450 
Fe 2, 2447) = 2.73 

Model 3. 3135e+12 2 1. 6567e+12 prob > F 0.0651 
Residua1 1. 4827e+15 2447 6.0594e+ll R-squared 0.0022 

Adj R-squared = 0.0014 
Total 1. 4860e+15 2449 6.067ge+ll Root MSE 7.8e+05 

mean Coef. Std. Err. t p>ltl [95% Conf. Interval] 

random ratio 4794.755 11938.55 0.40 0.688 -18615.95 28205.46 
persuas ratio 26921. 57 11643 2.31 0.021 4090.413 49752.74 

_cons -38893.41 28545.08 -1. 36 0.173 -94868.42 17081. 6 

Table A.4: Regression results, variance = j(Randomratio, Persuasratio), simulated data (m=2450). 

Sou rce ss df MS Numbe r of obs = 2450 
Fe 2, 2447) = 1. 32 

Model 7.492ge+22 2 3.7465e+22 prob > F 0.2667 
Residual 6.932ge+25 2447 2.8332e+22 R-squared 0.0011 

Adj R-squared = 0.0003 
Total 6.9404e+25 2449 2.8340e+22 Root MSE 1. 7e+ll 

Coef. Std. Err. t p>ltl [95% Conf. Interval]variance 

random ratio -1.98e+09 2.58e+09 -0.77 0.444 -7.04e+09 3.08e+09 
persuas ratio 3. 57e+09 2.52e+09 1.42 0.157 -1. 37e+09 8.50e+09 

_cons 2.01e+ll 6. 17e+09 32.51 0.000 1. 89e+11 2.13e+ll 



Table A.5: Regression results, mean = f(pI,p2,p3,p4). 

Source I SS 

f,:loljel 2384*101<12 

Residual 1.483*10-"15 

Total 1486*10"15 

df 

4 
2445 

2449 

fi'S 
5.961*10"11 
6.068*10"11 

6.067*10"11 

~'J 

P>F 
.A,dj RA2 
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Table A.6: Regression results, variance = f(pI,p2,p3,p4). 

Source I 
"-'lodel 

Residual 
Total 

variancel 

p1 
p2 
p3 
p4 

constant 

SS Ijf MS 

9 122*10"'22 4 2280'10"22 
6931 *1 0'''25 2445 2834*10"22 
6.940*10"25 2449 2.834*10"22 

Coef St,j Err t P~ltl 

3.37*10"10 1.31 *1 0"1-1 0.26 0.797 
-4.34*10"12 2.62*10'12 -1.66 0.098 
-5.63*10"10 1.32*10"11 -0.43 0.670 
106*10"12 2.64*10J'12 040 0.687 
213*10/'11 1.50*'101<10 14.22 0000 
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N 2450 
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Figure A.I 0: Frequency vs. sample meanfor simulated Nikkei 225 data, uniformly distributed parameters 

{p}, P2, P3, P4} in ranges specified in the text, m=2500. Note the local minimum near j.J.=0. 
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Figure A.II: Variance estimates VS. Pl, Hang Seng simulation. 
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Figure A.I2: Variance estimates vs. P2, Nikkei 225 simulation. 
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Figure A.I]: Mean estimates VS. P/' Hang Seng simulation. 
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Figure A.14: Mean estimates vs. P /, Nikkei 225 simulation. 
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Figure A.15: Variance estimates vs. PI, Hang Seng simulation. 

E(a') VS. p1, ceteris paribus (Hang SengI 
5.0[ '·08 

45[.03 

4.0[.08 

3.5['08 

3.0['08 

'b 2.5['08
iii 

2.0[«J8 

1.5[·08 

1.0[.08 

.oe'07
 

O.OE.OO
 

0.047 0.048 0.049 0.050 0.051 0053 

Elo')' (S.02E +131(p1)'· (504E+12)(p'l) + 12GE+'11 pi 
R' =0.975 

Figure A.16: Variance estimates VS. Ph Nikkei 225 simulation. 
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Figure A. J7: Mean estimates VS. P.o, Hang Seng simulation.
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Figure A./8: Mean estimates VS. P5, Nikkei 225 simulation. 
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Figure A.J9: Variance estimates VS. P.o, Hang Seng simulation.
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Figure A.20: Variances estimates VS. P5, Nikkei 225 simulation. 
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Figure A.21: Autocorrelations, 100 lags, daily return ofHSI. 
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Figure A.22: Autocorrelations, 100 lags, daily return ofN225. 
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Figure A.23: Autocorrelations, 100 lags, ABM-simulated return ofHSI (trial #10). 
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Figure A. 24: Autocorrelations, 100 lags, RWM-simulated return ofHSI (trial #20). 
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XII. Appendix II 

Figure A2.l: Mathematica code, random-walk model. 

Clear[a, ,3 .. n., x, s, t. p1, p2 .. p3, p4, p5, A, B. G.. H, J, 

f,g,h,j] 

s := 9954 

k:= 5797 

,; :=2.7568 

dra\'; [x_Integer] ' ­

UestList[!I+" + Ra.l1:1o ll:!A.r ray [Uol'lllalDistribution[O, 1].1] &, s, k] 

A = natten [dra'.''\ [k]] ; 

Figure A2,2: Mathematica code, agent-based model. 

q = 0; Labe1 [s tart] ; Clear [a:, fJ. n " k.. s, t, p1, p2. p3, p4, p5, A, B, G, H, J, f ,. g, h, j];
 

6:= O.Ol;k :=5796; s:= 9927.:n :=100:
 

p1 : = Ran~lomReal [{ 0.001 - " .. 0,001, 0.001 + " .. 0.001}]: p2 : = 0.05; p3 : = 0,001;
 

p4:= 0.05; p5 :='5; j[z_] := s+ z.:
 

f[n_, s_ .• p1 ! p2_, p3_, p4_, p5_. k_] ._
 

HestList[
 

(p5) ..
 

(2 .. 

Clip [ 

(First [RandomInteger [BinomialDistribution[Rolmd [( ((~./ p5) + n) /2)].' 

1-p1 .. n+p1 .. (((,JI/p5) +n} /2) -p2J, 1]] + 

First [RandomInteger [BinomialDis tribution [n - R01llld [( (0:!1 / p5) + n} ./ 2) ] . 

(p3) UUI/p5) +n) /2)+ (p4)], 111), {1 .. n-1}] -n) &., O. It]; 

A = fEn, S, pl .• p2, p3, p4, p5, x]; 

B = Thre.ad [j [Table [Apply [Plus, Take [A, i J1, {i " 1. k + 1} J1 ] ; 

G = {!t. pl. p2. p3, p4, p5, Round [N [Mean [Ell], R01llld [N ['v'ariance [B] ] L 
N[Ske~mess[B]], N[Kurtosis[Bll};G»->-ABHdata; <1+= 1; 

If[q <: 149, Goto [start] ] 

ABMdata is a data file which would be exported later by the user when the simulation is 

complete (q = 150). Mathematica 6.0 was used in both cases. This code will not work properly in a 

Mathematica 5.2 environment as certain functions are not available. The binomial distribution is used 

because each agent makes an independent switching decision in every period; the agent either leaves or 

remains in its current group with fixed probabilities, thus the final size of a group is binomially­

distributed. In other words, a group of traders changes size based on its agents engaging in repeated 

Bernoulli trials, where "success" is staying in the group and "failure" is switching to the other group. 
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