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ABSTRACT 
 

 

Among the 17 Sustainable Development Goals (SDGs) proposed within the 2030 Agenda and adopted 

by all the United Nations member states, the 13th SDG is a call for action to combat climate change. 

Moreover, SDGs 14 and 15 claim the protection and conservation of life below water and life on 

land, respectively. In this work, we provide a literature-founded overview of application areas, 

in which computer audition – a powerful but in this context so far hardly considered technology, 

combining audio signal processing and machine intelligence – is employed to monitor our ecosystem 

with the potential to identify ecologically critical processes or states. We distinguish between 

applications related to organisms, such as species richness analysis and plant health monitoring, and 

applications related to the environment, such as melting ice monitoring or wildfire detection. This 

work positions computer audition in relation to alternative approaches by discussing methodological 

strengths and limitations, as well as ethical aspects. We conclude with an urgent call to action to the 

research community for a greater involvement of audio intelligence methodology in future ecosystem 

monitoring approaches. 
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1 Introduction 

 
Our climate is rapidly changing. According to the 2021 Assessment Report of the International Panel for Climate 

Change (IPCC) “human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 

years" [1] with CO2 emissions having been the major driver. This global rise in temperature [2] has impacted the 

environment in various ways: increased precipitation, rise of sea levels, loss of glacier mass, desertification, heatwaves, 

and an increased frequency of extreme weather events [1]. A massive loss of natural habitats and biodiversity [3,4], 

dangers to human health [5] and food security [6], as well as increased armed conflicts [7] are among the consequences. 

Accordingly, climate change has been described by many as ‘the greatest challenge of our time’, calling for an 

equally outstanding response by the international community. Efforts at governmental and institutional level to curb 

CO2 emissions and limit environmental pollution have largely dominated public conversations. Future technological 

breakthroughs are expected to play a major role in curbing, and even reversing emissions, for example through the 

development of renewable energy sources [8] and carbon sequestration technology [9]. 

Artificial intelligence (AI) and its sub-paradigm machine learning (ML) are among those technological concepts with 

great potential for capturing changes in our ecosystem and assisting the fight against ecological catastrophe [10,11]. 

The major promise of ML and its latest mainstay deep learning [12] comes from their capacity to automatically analyse 

vast amounts of complex unknown data based on knowledge previously gained from a set of given training data. This 

data is acquired from various sensors, such as satellites or cameras, temperature and humidity sensors, or microphones 

that monitor the acoustic environment. With the advent of cheaper, high-fidelity audio sensors, acoustic data has 

shown increasing promise in environmental monitoring, sparking the development of a novel research sub-field at the 

intersection of audio and ecological research – ecoacoustics [13,14]. 

Ecoacoustic research relies on utilising a set of auditory “indices” (essentially handcrafted features extracted from audio 

signals), which are indicative of changes in the underlying environment, typically by tracking changes in vocalising 

species [15]. However, this coarse analysis of soundscape properties fails to capitalise on recent advances in data-driven 

audio research spearheaded by ML. These advances fall under the umbrella of computer audition (CA) research. CA is 

that particular sub-field of ML, which encompasses all facets of the auditory information stream, including advances 

in identifying vocalising species [16] or on disentangling a soundscape into the underlying constituents of biophony, 

anthropophony, and geophony [17]. 

Community interest in the auditory monitoring of the environment has been increasingly rising [14]. By end of 2022, 

there were 907 615 articles indexed in the Web Of Science Core Collection related to ecology (search term: “ecolog*”), 

with the number of articles per year having more than doubled over the last 10 years (33 419 in 2013 vs 69 024 in 2022). 

5 237 of these articles deal with AI (search term: “ecolog*” AND (“artificial intelligence” OR “machine learning” 

OR “deep learning”)) and were by the majority (≈ 55 %) published in the last two years (2021 or 2022). With a 
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Figure 1: Number of (#) articles indexed in the Web of Science Core Collection over the last 10 full calendar years 
(as of 3 May 2023) related to ecology and artificial intelligence (black; left y-axis) vs ecology and computer audition 
(green; right y-axis). 

 

 

total amount of just 236 Web of Science Core Collection indexed articles (search term: “ecolog*” AND (“artificial 

intelligence” OR “machine learning” OR “deep learning”) AND (audio OR acoustic* OR sound)), CA has played 

a minor role in ecology-related research so far. However, same as for AI in general, there has also been a significant 

increase of CA-related articles in the context of ecology in recent years (see Figure 1). Exactly half of the 236 articles 

were published in 2021 or 2022. These numbers indicate that CA represents a relatively underexplored, but at the same 

time emergent method for ecological applications in the future. 

This article aims to give a comprehensive, but non-exhaustive overview of applications, in which CA has already been 

employed to retrieve information that potentially allows for the identification of ecologically critical processes and 

states. The catastrophic effects of climate change are spread over different domains of our planet’s ecosystem. In our 

attempt to categorise the different capabilities of CA in the context of ecology, we distinguish between application areas 

related to organisms and applications related to the physical environment (see Figure 2). Each of the following two 

sections is dedicated to one of these categories; concrete applications of CA are given in italics at the beginning of 

paragraphs. Thereafter, we discuss the advantages and limitations of CA for ecology-related applications as compared to 

alternative methods, and address ethical issues. Finally, we conclude and call to action for further research on automatic 

audio-based ecosystem information retrieval. 

 

 

2 Organism Monitoring 

 
2.1 Animal Surveillance 

 

Animal detection and classification. CA has already been used to detect and classify several animals in the past [18–

20]. The availability of audio recordings over a wide area can not only identify which animals are present in the 

region, but also roughly how many of them and where they are moving. Animal monitoring therefore presents a great 

opportunity to use CA [18]. 
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Figure 2: Categorisation of ecology-related application areas for computer audition as adopted in this work. 

 

Animal movement and population analysis. Changes in the movement of animals could indicate possible dangers such 

as natural disasters [21]. However, animal movement profiles can also be used to analyse population dynamics at 

different locations. This would provide insight into the evolution of species populations and give the opportunity to 

save endangered species from extinction through early interventions. 

 

2.1.1 Land Mammals 

 

Animal trait analysis. Land mammals produce diverse sounds in nature, such as when defending territories, fighting 

with other animals, or during mating season [22]. With the help of these sounds, zoologists can gain a variety of 

valuable insights into the animals’ way of life and use this information for further analyses. Moreover, the automatic 

characterisation of biological traits in animals, such as by sex and age groups, can help monitor the health of packs and 

herds in the wild [22]. 

Species richness analysis.A major problem of our time is the change in biodiversity and species extinction. It is a great 

advantage to be able to cover extensive areas with microphones to gain insights of animal populations. Audio recording 

and subsequent automatic audio analysis are particularly useful in places where it is difficult to make full-coverage 

camera recordings, such as in forests. The presence and composition of different animal sounds provides information 

about the composition of vocalising species and the orthopteran species richness, as well as about the structure of the 

landscape and the intensity of land use [23]. 
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Detection of danger for animals. Another application area of CA is the protection of animals. Especially in agriculture, 

attacks by wild animals are a major hazard. Therefore, several solutions have already been developed in the field of 

computer vision to detect relevant situations [24–26]. Nevertheless, visual solutions have the problem that cameras 

usually cannot fully cover large pastures. CA offers the advantage that large fields for animals can be fully ranged, 

recording audio with microphones. In case of a foreign animal entering the pasture or, at the latest, when the herd is 

attacked by wild animals, the farmer can be informed immediately. Even an attack by humans on endangered animals – 

e. g., by poachers [27] – can be detected by means of CA at an early stage through gunshot recognition [28,29]. 

 

 

2.1.2 Maritime Life 

 

Recording sounds with microphones under the water surface covers a larger space than, for example, diving in with 

cameras. In water, sound propagates with a higher velocity and over greater distances than in air. This is conversely to 

vision, which is dramatically hindered in water. 

Coral reef integrity evaluation. Coral reefs are called the ‘rainforests of the sea’ [30] and represent ecosystems of high 

biodiversity. Underwater soundscapes are recently being used to monitor coral reefs [31]. The practice of dynamite 

fishing causes severe harm to the reefs [32,33]. Such endangering human activity could be automatically ‘heard’ by a 

CA system. In addition, due to rising sea temperatures and the acidification of the oceans, mass ‘bleaching’ of coral 

reefs is now a common phenomenon. A healthy coral reef can be acoustically distinguished from a damaged one, as its 

bright, loud, and diverse soundscapes guides the recruitment of reef organisms [34]. 

Whale monitoring. By sensing and analysing underwater animal sounds, such as sounds produced by whales for 

communication purposes or caused by their movement patterns, conclusions can be drawn with respect to their 

population, behaviour, and habitat [35–37]. Large bioacoustic archives like the Orchive [38,39] represent a useful data 

foundation for a CA system [40,41]. 

 

 

2.1.3 Birds 

 

Birds represent organisms which are rapidly affected by changes in the environment. In the mining industry, caged 

canaries were carried down by miners into the mine tunnels. Whenever there was a leak of dangerous gases, such 

as carbon monoxide, the gases killed the canaries, which served as a warning for the miners to exit the tunnels 

immediately [42]. 

Birds are messengers that tell us about the health of the planet because they are widespread, they connect habitats, 

resources and biological processes. They also contribute to ecosystem services – as natural enemies of pests, pollinators 

of fruit, and seed transporters [43]. Birds also play a key role in cycling nutrients and helping to fertilise marine 

ecosystems [44]. Whether ecosystems are made for agricultural production, wildlife or water, success can be measured 

by the health of birds. 
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Ecosystem evaluation. Bird sound classification aids to determine their presence, tracking their migrations, and 

measuring their population [16,19,45]. A decline in bird numbers informs about a damaged environment [46], e. g., 

due to habitat fragmentation and destruction, pollution, and pesticides introduced species, etc. Furthermore, birds 

provide insect and rodent control, which results in tangible benefits to humans. Insect outbreaks can annually have a huge 

negative economic impact in agricultural and forest products, and some birds can be effective to substantially reduce 

insect pest populations without the health, environmental, and economic risks of harmful pesticides [47]. Microphone 

arrays can record bird data in a continuous manner, where other sensors such as cameras would struggle – e. g., for 

the tracking of nocturnally migrating birds [48], night vision cameras (requiring expensive complex manufacture with 

high-voltage power supplies to operate) would be required. The acoustic performance of bird communities reaches its 

maximum at dawn and dusk, when species are contemporarily singing and producing choruses [49]. Measuring the 

length, energy, and frequency components of choruses can, e. g., reveal the ambient temperature [50] and, thus, the 

subsequent changes caused in the physiology of organisms. 

 

 

 

 

 

2.1.4 Insects 

 

 

 

Insects are essential in food chains and cycles; they pollinate fruits, flowers, and vegetables, and are also very important 

as primary or secondary decomposers. Insects are under immense pressure from land use intensification and climate 

change effects, threatened with extinction or showing significant population declines [51]. Many insects are omnivorous, 

they eat a variety of foods including plants, fungi, dead animals, and decaying organic matter. Thereby, insects help 

breaking down and disposing wastes. Predatory or parasitic insects help keep pest populations, such as other insects 

or weeds, at a tolerable level. They are also the sole food source for many amphibians, reptiles, birds, and mammals. 

Further more, CA could give us relevant insights into insect control. 

Hive integrity monitoring. Bees contribute to complex, interconnected ecosystems that allow a diverse number of 

different species to co-exist [52]. Acoustical non-intrusive sensors are being introduced along with temperature and 

moisture sensing for subsequent machine learning-based bee hive colony activity health and status monitoring [53]. 

Pest infestation recognition. In recent decades, acoustic approaches have provided non-destructive, remote, automated 

detection and monitoring of insect and pest infestations for pest managers, regulators, and researchers [54]. Microphones 

are useful sensors for airborne signals, specially ultrasonic sensors, which are particularly effective for detecting wood- 

boring pests like termites at frequencies of more than 20 kHz. 

Pest control assistance. Insect pests can also pose a serious threat to agricultural and forest ecosystems, but they are 

difficult to control. Novel research on methods for acoustic data analysis based on active sound production by larvae 

(i. e., stridulations) can give insight into larval ecology produced by pests [55] and opens up new pest control avenues. 
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2.2 Plant Bioacoustics 

 

 

The field of plant bioacoustics is a rising exploration field focussing on measurement and interpretation of sounds and 

vibrations created by or within plants, with special interest to signals produced by plant-dwelling insects/animals. 

Plant health monitoring. Bioacoustic tools have been applied to measure mechanical properties of plant structures, 

optimise mechanical harvesting, and detect the distribution of root systems, as well as to monitor plant health [56], 

photosynthesis, and ecology [57]. Recent experimental studies open the possibility of assessing the stress of plants by 

using ML algorithms on acoustic signals, e. g., analysis of ultrasound emitted by plants to determine their health [56,58]. 

In addition, acoustic and vibration sensors are used by entomologists to detect hidden infestations of invasive insect 

species, and to monitor insect movement, feeding, and mating activities on host plants [59], and as a reliable assessment 

of hidden pest infestations, including invasive insect species of importance for plant biosecurity [56]. 

Drought detection. The acoustic performance of some organisms shows the magnification of the effects of climate 

change. Drought [60], for example, produces stress on trees and leads to an increased vulnerability to insect attacks [61] 

as insects are drawn to stressed trees using chemical signals, but also are attracted by the sounds emitted by tree cells 

[62]. These sounds, which are produced by forest trees when being under drought stress, are known as cavitation, which 

is the result of cells collapsing by gradual dehydration. The majority of these sounds emitted are within a frequency 

range of 20 kHz to 200 kHz [61] and carry information for insects, that can perceive such signals. 

Defoliation monitoring. Defoliating insects have a large impact on ecosystems and are influenced by climate change as 

well [63]. Therefore, changes of their behaviour can be used as an indicator of, e. g., an increasing amount of CO2 in 

the atmosphere. Early detection of these changes is of great importance. Thus, this acoustic feedback from insects can 

have a positive effect, as it can be detected by CA and thus indicate defoliation, forest decline, and CO2 increase. 

 

 

 

 

 

3 Environment Monitoring 

 

 

 
Identification of short- and long-term environmental changes: detection of natural disasters – deforestation recognition. 

Environmental changes are becoming increasingly rapid and have an impact on many areas of life. Therefore, it 

is important that these changes are identified at an early stage so that appropriate countermeasures can be taken. 

Such environmental changes can be natural changes in the form of natural disasters, such as earthquakes or volcanic 

eruptions [64], but also man-induced changes [65], like deforestation [66]. Earthquakes induce sounds in various natural 

objects, which can be detected [67]; and the progressing deforestation of the rain forest can be ‘heard’ by recognising 

and analysing sounds of chainsaws or large machines. 
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3.1 Water 

 

Water serves as nutritional source [68], as a habitat for various animals [69,70], or can simply be used to maintain 

hygiene and therefore avoid several diseases [71,72]. Every living being on our planet needs water to survive. Therefore, 

we have to ensure the quality and quantity of this vital resource. 

Water can be encountered in three physical states: solid, liquid, and gaseous. Thus, we have various ways to make use 

of this element as an input for a CA system. 

 

3.1.1 Melting Ice 

 

Melting ice monitoring. In times of melting polar ice caps [73] it would be helpful to monitor the process of the melting 

ice. Cracking sounds in icebergs, ice floes, or glaciers can serve as acoustic indicators [74–76] detectable and 

interpretable by means of CA. On the one hand, the monitoring of melting ice can be important for study purposes, e. g., 

to gain knowledge about how long the melting process lasts before a chunk of ice breaks down from a glacier [77]. 

On the other hand, it can be utilised for the prediction of avalanches or floods and, therefore, enable precautions or 

appropriate countermeasures. Melting glaciers can also cause enormous landslides and tsunamis [78,79]. According to 

researchers, there is a ticking time bomb at the moment in Alaska within the Barry Arm area, the Barry glacier, which 

has the potential of causing a mega-tsunami [80]. 

 

3.1.2 Floods 

 

Flood prediction. Not only the sound of cracking ice might be helpful in predicting floods or flood waves, but also the 

sound of flowing water (e. g., in rivers), since this sound reflects the water flow velocity [81,82]. The sound is generally 

generated by particle collisions through streamed sediment movements as well as the flow of water over submerged 

obstructions [82]. These factors might be very helpful for roughly inferring the amount of flowing water and predicting 

overflowing rivers and lakes in order to appropriately prepare surrounding areas for such crises. While flood prediction 

models (even ML-based ones) already exist [83,84], they might not have the ideal temporal or spatial granularity 

for dealing with flash floods, especially in densely populated areas. Complementing existing systems with area-wide 

auditory sensing could facilitate a more comprehensive real-time monitoring of how flooding spreads throughout a 

particular city or neighborhood and help authorities adapt their evacuation protocol accordingly. 

 

3.1.3 Water Supply 

 

Water scarcity prediction. In addition to the early prediction of floods due to the sound of running water, CA could also 

predict the opposite. That is, if there is minimal audible sound it might be a clue for drying up rivers, lakes or natural 

fountains and, thus, be a sign of imminent water shortage in a certain region. Via early prediction of water scarcity in 

specific areas, artificial irrigation facilities could be constructed in advance or the people living in such areas could be 

relocated. 
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3.2 Meteorological Phenomena 

 

The mass of air that we denominate as the atmosphere represents only about 5% of the total volume of our planet, but is 

crucial for all forms of life on it. The discipline of meteorology describes the study of atmospheric processes including 

weather phenomena. Acoustic measurements can give relevant meteorological information, such as air pressure-related 

measures and wind characteristics [85]. 

Wind analysis. The movement of winds have huge implications for storm systems and precipitation patterns. Specifically, 

winds transport dust from desert regions to faraway locations, making changes in the environment [86]. Recording 

aeroacoustic noise generated by wind flowing past a microphone, and decomposing the acoustic spectra into low- 

frequency components, can provide wind speed and wind orientation. A recent study analysed the frequencies 

composing the wind-induced acoustic signal measured by microphones [85]. The acoustic spectra recorded under 

a wind flow can be decomposed into low-frequency components, mainly reflecting the wind velocity, and higher 

frequency components, regarded to depend on the wind direction relative to the microphone. Therefore, CA as approach 

to monitor the wind has a huge potential to show climate disruptions and provide potential help, adaptively controlling, 

for instance, energy-generating wind mill farms and at the same time recognising potential disruptions in their routine. 

Hurricane and tornado detection. Numerous geophysical and anthropogenic events, such as hurricanes and tornadoes, 

emit infrasound, i. e., acoustic waves below the human hearing range of about 20 Hz that can be captured by low 

frequency microphones. The rate of severe storm environments becomes greater in the northern hemisphere due to 

temperatures rises [87]. Tornado-producing storm systems emit infrasound up to 2 hours before tornado genesis, which 

can be detected from large distances (in excess of 150 km) due to weak atmospheric attenuation at these frequencies. 

Thus, infrasound could be used for intelligent, long-range, passive monitoring and detection of tornado genesis, as well 

as for the delineation of tornado properties [88]. 

 

3.3 Fire 

 

The world’s flora and fauna are under threat from the increased frequency and strength of wildfires, that also more and 

more affect residential areas causing immense damage to communities. 

 

3.3.1 Wildfires 

 

Wildfire detection and classification. Wildfire seasons are getting longer and more intense [89], and fire brigades 

need to figure out how to best spread their limited resources. In that respect, crown fires, which burn through the 

upper layers of trees, are more intense and have a higher velocity than surface or ground fires. Early detection as well 

as distinguishing between different types of fires are crucial for combating large wildfires, as it determines the type 

of response needed. Image information can be utilised for fire detection and categorisation. However, in practice, 

categorisation is hampered by limited visibility due to smoke. In contrast, temperature, humidity, and smoke sensors 

are tailored to detect the presence of fire, but are insensitive to its type. To that end, CA can be used to ‘hear’ fire from a 
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large distance, while acoustic fire properties have been also previously shown to vary across different fire types, thus, 

enabling their audio-based classification [90,91]. Furthermore, audio information captured via microphone arrays can 

be used to determine the location of lightning thunder sources, since lightning strikes are one of the major causes of 

forest fires. 

Recognition of reignition. A further challenging factor is that fires naturally disrupt monitoring systems put in place 

too close, as the fire itself, or the water used to extinguish it, damages the sensors. Thus, immediately after a fire, 

affected areas are left without proper sensory coverage. This constitutes a crucial risk as the reignition of fires in 

already burnt-out areas is a major problem for firefighters. A poignant example is the August 2021 fire of Varympompi 

(near Athens, Greece)1, which was initially controlled by the fire brigade, only to be reignited a few hours later due to 

insufficient supervision, with the majority of its destruction coming with the second wave. This example illustrates that 

it is imperative to rapidly (re-)deploy sensing equipment in allegedly cleared areas. Those areas, however, might be 

heavily affected by smoke (especially if the fire is still ongoing in nearby land), making it hard for image or smoke 

sensors to detect potential sources of rekindling. Therefore, CA might be a good option for this scenario as well. 

However, domain adaptation is going to be an issue as the sound of fire might differ between forests. 

 

3.3.2 Fire Damage Evaluation 

 

Communities around the world struggle to reconvene their lives in the aftermath of a catastrophic fire, especially if the 

fire affected residential areas. One of the usual reaction to such fires is the promise to rebuild all destroyed or affected 

buildings. Unfortunately, building is a major source of CO2 emissions, necessitating an environmentally-friendly 

rebuilding paradigm. This includes the effort to salvage as much as possible from the remnants of an urban fire. 

Structural integrity evaluation. A major consideration after a building fire is its effect on structural integrity, which is 

the ability of a structure to withstand the required load without collapsing. Determining the extent of damage, however, 

is not an easy feat, especially as any investigation should be conducted by means of non-invasive techniques in order not 

to further compromise the structure. Generally, a building’s integrity is dependent on the strength of the materials the 

building is made from, which is in turn reflected by the way sound propagates through the materials. Thus, CA presents 

a novel avenue of investigating changes in material strength, which can provide useful information on the damage a 

building has sustained. As a recent example of such work, Schabowicz and colleagues [92] studied the condition of 

materials subjected to fire, and utilised acoustics for identifying the degree of degradation of fibre-cement boards. 

 

4 Discussion 

 
The identified applications of CA in the context of ecology demonstrate the potential of this so far largely disregarded 

methodology to allow for a more comprehensive picture of our planet’s ecosystems and to facilitate a prevention of 

nature and living beings from harm. Even though the number of studies on ecological information retrieval by means 
 

1https://go.ifrc.org/reports/14615 (as of 15 July 2022) 
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of CA is comparatively low – some work presented here dealt with acoustics, but did not employ machine learning 

methodology, our overview shows that we are steering the right course by being open-minded for novel approaches 

at a time where our planet undergoes significant changes and we humans need to find solutions for capturing these 

changes to countersteer or timely protect ourselves and other organisms from their consequences. However, what are 

the advantages of CA over alternative approaches? What are its limitations? Are there considerations from an ethics 

perspective? Is CA already set to reasonably contribute? In the remainder of this work, we aim to give answers to these 

questions. 

 

 

4.1 Computer Audition vs Alternatives 

 

There are several ways to capture ecological processes on our planet with audio recording being just one example 

suited for intelligent/ML-based analysis. Visual sensing is another example of established data collection for intelligent 

computer-based analysis, i. e., computer vision. In addition, various other sensing alternatives, e. g., other physical or 

chemical sensors, exist that can be used to gather input data for intelligent organism or environment monitoring as well 

as associated harm detection systems. Finally, sensors can be compared with the non-technology-based abilities of the 

human individual. In Table 1 we compare acoustic sensing with other eligible sensing modalities for subsequent ML 

analysis on the basis of specific criteria. In doing so, we indicate to the best of our knowledge, whether the different 

modality-specific entries can be regarded as an advantage, a disadvantage, or as neutral, respectively. 

 

 

4.2 Limitations 

 

In Table 1 we benchmarked audio against other data modalities as the input for intelligent ecology monitoring 

systems. According to this comparison, audio has certain advantages over other modalities, such as low sensor costs in 

combination with a wide range of recording coverage, richness of information within one recording, and a number 

of pre-trained ML models available. However, we have to point out that our comparison is based on the theoretical 

assumption of an optimal recording setting and an ideal data storage, transmission, pre-processing, and analysis 

workflow. Unfortunately, this assumption is usually not fulfilled for ‘in-the-wild’ scenarios. For example, one challenge 

with regard to audio might be the installation of microphones in ‘free nature’ and the long-term power supply of the 

recording device as well as a potentially necessary data transmission module operating across a wide temperature 

range and different (possibly extreme) weather conditions. Another challenge might be the automatic separation 

of application-relevant audio information from (background) noise. Nevertheless, the question if audio represents 

a suitable modality for an (intelligent) organism and/or environment monitoring scenario generally depends on the 

specific task of interest. For many tasks, a combination of different sensing modalities and, thus, an extension of some 

existing approaches for audio might be ideal. 

In the following, we disclose limitations that are not specific to audio, but inherent to intelligent data analysis in general. 
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Table 1: Comparison of acoustic sensing for intelligent organism and environment monitoring vs other sensing 
modalities with regard to seven key criteria. Classification by the authors: +/green shading = advantageous, +-/orange 
shading = neutral, -/red shading = disadvantageous; m = meter(s); ML = machine learning 

 
Modalities Acoustic Visual Other physical Chemical Human 

 

 

 

 

Criteria 

Sensing of airborne sound 

including infrasound, 

sound in human audible 

frequency range, and 

ultrasound using 

microphones 

Optical sensing by means 

of 2D, 3D, high-speed, 

thermal, aerial, and 

microscope cameras 

Sensing of physical 

parameters other than 

airborne sound and visual 

information, such as 

temperature, current, 

humidity, fluid level, 

acceleration, pressure, and 

solid-borne sound 

Sensing of chemical 

information, such as analyt 

composition, presence of 

specific elements, element 

concentration, and 

chemical activity 

Non-technology-based 

sensing by means of 

human sight, hearing, 

smell, taste, and touch 

Data throughput 
Maximum amount of data 

that can be 

transmitted/processed per 

time 

+ 
Extent of audio data 
is modest most of 
the time 

+- 
2D images tend to be 
petite, while 3D 
images or videos 
tend to be 
comparatively large 

+ 
Data stream is 
manageable in size 

+ 
Data stream is 
manageable in size 

+- 
Sensing continuous- 
ly; however, cannot 
really be transmitted 
from one human to 
another or to a 
computer 

Covered area 
Sensor range regarding 

spatial coverage 

+ 
Several hundred to 

several thousand m2 
(e. g., thunder); 
360° recording angle 
possible 
(omnidirectional 
microphone) 

+ 
Variable dependent 
on specific camera 
type; especially high 
range for 
aerial/satellite 
cameras; limited 
angle of view 

+ 
From focused on one 
location but poten- 
tially representative 
for a bigger area, 
e. g., temperature, to 
nearly global cover- 
age in satellite use 

+- 
Very focused on one 
location; sometimes 
representative for a 
bigger area, e. g., soil 
composition, atmos- 
pheric chemistry (via 
satellites) [93] 

+- 
Depends on the 
modality (vision, 
touch, etc.); can be 
large but also quite 
limited 

Privacy 
Extent of personal data 

collected by the sensor; 

importance/possibility of 

data anonymisation [94] 

+- 
Critical in case 
human voice is 
recorded [95]; not 
applicable for most 
scenarios in the 
context of ecology 

+- 
Critical in case 
human faces are 
recorded [96]; not 
applicable for most 
scenarios in the 
context of ecology 

+ 
Not critical 

+ 
Critical blood or 
saliva analysis, or 
genetic sequencing 
not applicable in 
context of nature 

+ 
Unproblematic as no 
human data are 
recorded at all 

Info richness 
Amount of information 

extractable from recorded 

data 

+ 
Many sound sources 
possible within one 
audio recording, 
e. g., animal sounds, 
rain, cars, etc. 

+ 
Many objects, 
classes, locations can 
be captured in one 
photo or video 

+- 
Mostly built to sense 
specific information, 
i. e., only the desired 
information is 
recorded 

+- 
Mostly built to sense 
specific information, 
i. e., only the desired 
information is 
recorded 

+ 
Due to synchroneous 
multimodal sensing 
of the human body, 
lots of information is 
captured and 
processed in the 
brain 

ML models 
Availability of 

(pre-trained) machine 

learning models 

+ 
Many pre-trained 
models available, 
which use raw audio 
or acoustic features 
as input 

+ 
Many pre-trained 
models available, 
which use raw video 
or visual features as 
input 

+ 
Several available 
models [97–99] 

- 
Very few to none 
existent models with 
respect to climate 

- 
No models available 

Costs 
Costs incurred by sensor 

+ 
Microphones are 
very cheap; even 
specialised 
microphones are not 
too expensive 

+- 
Some cameras can 
be relatively cheap, 
others are very 
expensive; satellites 
or microcameras are 
extremely expensive 

+ 
Mostly relatively 
cheap 

+ 
Sensor 
materials/resources 
can be expensive, 
i. e., sensor costs 
vary a lot 

+ 
The human body 
needs no further 
sensors; auxiliary 
means such as 
glasses are not too 
expensive 

Pollution 
Pollution caused by sensor 

+ 
Each sensor pollutes 
the environment to 
some degree; can be 
reused very often 

+- 
Shooting satellites 
into orbit emits lots 
of burnt gas and 
precipitates debris 
[100,101] 

+ 
Each sensor pollutes 
the environment to 
some degree; can be 
reused quite often 

+- 
Each sensor pollutes 
the environment to 
some degree; can be 
reused only 
sometimes 

+ 
Presumably the most 
environment- 
friendly option 
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4.2.1 Generalisability 

 

One of the major critiques of ML systems – including CA systems – is their (lack of) ability to generalise. This is 

especially relevant for the applicability of models in real world settings. Moreover, the deployment environment of an 

intelligent system should be identical to the training environment – a constraint that is hard to satisfy without vastly 

increasing the amount of bias-free training data. Alternatively, domain adaptation algorithms [102] can be used to 

explicitly minimise the discrepancy between source and target domains. For intelligent audio applications in particular, 

the notion of generalisation is closely linked to that of robustness to different perturbations. Traditionally, robustness has 

been studied under the auspices of speech enhancement [103], where (human) speech constitutes the signal of interest 

and (environmental) noise the unwanted interference that needs to be removed. However, in our case the opposite is 

required – human voices would need to be removed in order to get more robust measurements of the environmental 

conditions [104]. 

 

 

4.2.2 Efficiency 

 

Data is the fuel that drives contemporary AI applications. Bigger and better data usually leads to bigger and better 

models, which require (vastly) more computational power to be trained [105]. It is thus imperative to seek more 

resource efficient approaches for AI in general and CA in particular, including the ability to learn from sparse data. 

Two learning paradigms that may be of use here are those of transfer learning [106] and zero-shot learning [107,108]. 

While transfer learning describes the approach of reusing learned knowledge/a pre-trained model on a new task, the 

method of zero-shot learning allows a model to classify samples for whose class no example data were available during 

the training phase. In general, the field of sustainable AI [109] is about developing AI that is compatible with sustaining 

environmental resources for current and future generations, while keeping in mind that there are environmental costs to 

AI itself. 

 

 

4.2.3 Bias 

 

All real-world AI technologies are plagued by bias. Audition in particular is affected, as sources of signal are difficult to 

determine and can come from a wide range of generative factors. The typical AI setup involves sampling from the real 

world, creating a dataset, and training a model to perform a task in this sampled space. Through identifying spurious 

correlations and bias from study design sampling methods, AI models are often able to perform well in these sampled 

datasets. This wrongly suggests a true underlying signal and so opportunity for AI to help in a field. This has been 

demonstrated in the recent COVID-19 pandemic, where early research suggested COVID-19 was uniquely identifiable 

from infected individuals’ respiratory sounds [110]. Moving forward, CA for the environment should be directed down 

biologically plausible avenues and significant work should be done on study design and bias mitigation. 
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4.3 Ethical Considerations 

 

4.3.1 Privacy 

 

Data protection is a critical issue in the era of big data [111]. It regards the possibility of mass surveillance, especially 

in applications such as large-scale environmental monitoring. A widespread deployment of sensors, in our case 

microphones, in combination with an ML system potentially violates the privacy of citizens around the world by 

collecting, storing, sharing, and analysing data without their knowledge or permission. A straightforward solution 

for this problem is to automatically remove all speech information immediately after the recording and before any 

subsequent processing is done [104]. However, this strategy might lead to suboptimal results as any source separation 

algorithm invariably introduces unwanted artefacts and information loss. 

 

 

4.3.2 Fairness 

 

When intending to deploy an ML system for a global endeavour such as tackling ecological challenges, it is essential to 

provide adequate performance guarantees for all parts of our planet’s ecosystem, irrespective of where in the world 

those may be [112]. This becomes particularly pressing as the areas of the world that are most in danger, tend to be 

more strained for resources. Unfortunately, it is easy to imagine a scenario where the richest countries collect most of 

the data within their borders, leading to an underrepresentation of the world’s more vulnerable countries in the training, 

and, consequently, to the underperformance of the algorithms when deployed on their premises. 

 

 

4.3.3 Trustworthiness 

 

While AI is often touted as a technology capable of operating completely autonomously, AI applications are usually 

embedded in an ecosystem involving other entities, such as humans. These entities have to trust the AI system under 

consideration of known limitations. For humans, trustworthiness is largely related to explainability [113], i. e., the 

understanding of how the machine came to a certain decision. 

 

 

4.3.4 Beneficiary 

 

Some applications outlined in this work seem to be beneficial for human individuals at first glance, such as the early 

detection of a tornado. However, in this work, we regard the basic need of mankind to further populate the Earth as 

its habitat as given and, under these circumstances, the prevention of human beings from physical harm or material 

damage might prevent costly and pollutive medical interventions or the resources-consuming replacement of destroyed 

goods. Thereby, we followed the dominant paradigm, putting humanity and its interests in the centre of discussion, but 

we acknowledge the need for a holistic consideration of our natural ecosystem. 
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5 Conclusion 

 
In this article, we first pointed out that there is a lack of research on intelligent acoustic solutions for monitoring 

ecological phenomena. In order to motivate more work in this field, we gave an overview of applications, in which CA 

has already been employed in the context of ecology or in which CA could be employed in future as acoustic sensing 

(without subsequent ML stage) has already shown promise. We depicted that CA has the potential to complement 

alternative methods due to properties like a cost-effective coverage of large areas and the availability of pre-trained 

ML models. Moreover, in the audio domain certain ecological changes become apparent before they are noticeable in 

other modalities. This allows CA for an early detection of potentially harmful, ecologically critical processes and states. 

However, more work needs to be done to exploit the full potential of audio intelligence in this area. In particular, it 

is important to overcome some methodological limitations, while always meeting legal requirements and respecting 

ethical values. The combined processing of audio data and data from other domains in intelligent multimodal systems 

would be worth striving for in the future as well. 

With this work, we would like to convince researchers of the potential of audio intelligence for ecology-related 

monitoring tasks, in times in which our planet undergoes a severe transformation and we need to tackle the situation in 

order to prevent nature and living beings from harm. 
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