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a b s t r a c t 

Brain connectivity profiles seeding from deep brain stimulation (DBS) electrodes have emerged as informative 

tools to estimate outcome variability across DBS patients. Given the limitations of acquiring and processing 

patient-specific diffusion-weighted imaging data, a number of studies have employed normative atlases of the hu- 

man connectome. To date, it remains unclear whether patient-specific connectivity information would strengthen 

the accuracy of such analyses. Here, we compared similarities and differences between patient-specific, disease- 

matched and normative structural connectivity data and their ability to predict clinical improvement. 

Data from 33 patients suffering from Parkinson’s Disease who underwent surgery at three different centers were 

retrospectively collected. Stimulation-dependent connectivity profiles seeding from active contacts were esti- 

mated using three modalities, namely patient-specific diffusion-MRI data, age- and disease-matched or norma- 

tive group connectome data (acquired in healthy young subjects). Based on these profiles, models of optimal 

connectivity were calculated and used to estimate clinical improvement in out of sample data. 

All three modalities resulted in highly similar optimal connectivity profiles that could largely reproduce findings 

from prior research based on this present novel multi-center cohort. In a data-driven approach that estimated 

optimal whole-brain connectivity profiles, out-of-sample predictions of clinical improvements were calculated. 

Using either patient-specific connectivity ( R = 0.43 at p = 0.001), an age- and disease-matched group connectome 

( R = 0.25, p = 0.048) and a normative connectome based on healthy/young subjects ( R = 0.31 at p = 0.028), 

significant predictions could be made. 

Our results of patient-specific connectivity and normative connectomes lead to similar main conclusions about 

which brain areas are associated with clinical improvement. Still, although results were not significantly different, 

they hint at the fact that patient-specific connectivity may bear the potential of explaining slightly more variance 

than group connectomes. Furthermore, use of normative connectomes involves datasets with high signal-to-noise 

acquired on specialized MRI hardware, while clinical datasets as the ones used here may not exactly match their 

quality. Our findings support the role of DBS electrode connectivity profiles as a promising method to investigate 

DBS effects and to potentially guide DBS programming. 
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. Introduction 

Deep brain stimulation (DBS) is a well-established treatment for

arkinson’s disease (PD), leading to alleviation of motor symptoms and

mprovement in quality of life ( Deuschl et al., 2006 ; Schuepbach et al.,
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013 ). DBS does not only exert focal effects (i.e. on the subthalamic nu-

leus; STN) but also affects distributed basal-ganglia-cortico-cerebellar

etworks ( Accolla et al., 2016 ; Helmich et al., 2012 ; Horn, 2019 ;

orn et al., 2017b ; Kahan et al., 2019 ; Lozano and Lipsman, 2013 ;

uthuraman et al., 2018 ). While the notion that DBS modulates dis-

ributed brain networks is certainly not new, we can now apply ad-

anced MRI methods to study this relationship more deliberately, as has

een done in PD ( Accolla et al., 2016 ; Horn, 2019 ; Kahan et al., 2019 ;
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2  

t  
reu et al., 2020 ),Essential Tremor ( Al-Fatly et al., 2019 ), dystonia

 Corp et al., 2019 ) or obsessive-compulsive disorder ( Baldermann et al.,

019 ; Li et al., 2020 ). 

Using preoperative diffusion-weighted imaging (dMRI), Vanegas-

rroyave and colleagues assessed the connectivity patterns of clinically

eneficial DBS electrodes in PD patients. Their results suggested that

odulation of white matter tracts connecting electrodes to superior

rontal gyrus and thalamus were associated with positive clinical im-

rovement ( Vanegas-Arroyave et al., 2016 ). Similarly, Akram and col-

eagues used preoperatively acquired dMRI to investigate the cortical

onnectivity patterns associated with treatment efficacy ( Akram et al.,

017 ). Maximal improvement in cardinal motor symptoms was asso-

iated with connectivity of DBS electrodes to different cortical regions:

remor control with connectivity to primary motor cortex (M1), bradyki-

esia with the supplementary motor area (SMA) and rigidity to both

refrontal cortex (PFC) and SMA. These two studies acquired dMRI in

ach patient preoperatively. While this approach represents the gold-

tandard of practice, and variability in fibertracts has been shown in the

BS context ( Makris et al., 2016 ), a practical limitation is that resulting

ohort sizes will often be small, studies costly and pooling across cen-

ers non-straightforward due to data-heterogeneity. Furthermore, pre-

perative dMRI data is not routinely acquired preoperatively in a large

raction of DBS patients and cannot be acquired postoperatively (with-

ut substantial constraints). This is especially relevant in novel indica-

ions such as Alzheimer’s Disease ( Baldermann et al., 2018 ; Ponce et al.,

016 ) or psychiatric indications ( Hamani et al., 2011 ; Huys et al., 2019 )

here limited numbers of patients undergo surgery, even on a world-

ide scale. The same applies to “classical diseases ” (such as dystonia)

hat are treated with unconventional targets (such as the STN), again re-

ulting in a low number of available patients, world-wide ( Ostrem et al.,

011 ; Yao et al., 2019 ). 

A potential approach to overcome this limitation is to substitute

ndividualized dMRI data with normative connectomes – i.e. atlases

f average brain connectivity calculated from large cohorts of sub-

ects ( Ewert et al., 2018 ; Horn et al., 2014a , 2019 ; Horn and Blanken-

urg, 2016 ; Marek et al., 2011 ; Thomas Yeo et al., 2011 ; Yeh et al., 2018 ;

eh and Tseng, 2011 ). A first study that explored this concept investi-

ated functional and structural connectivity profiles of the ventral in-

ermediate nucleus of the thalamus ( Horn et al., 2017a ). A second study

hen investigated optimal connectivity profiles for STN-DBS ( Horn et al.,

017b ). In this study, the optimal connectivity profiles were estimated

n one cohort from a first DBS center and used to predict the motor out-

ome in patients operated at a different DBS center ( Horn et al., 2017b ).

pecifically, structural and functional connectivity between DBS elec-

rodes and other brain regions were correlated with UPDRS-III changes

cross patients. This resulted in an optimal connectivity ‘fingerprint’ of

ffective DBS electrodes. To validate these maps of optimal connectivity,

imilarity indices between each electrode’s connectivity profile from an

ndependent cohort and the ‘optimal’ fingerprint were calculated. These

ere then correlated with empirical clinical improvement. 

The concept has since been applied to explore connectivity asso-

iated with clinical or behavioral changes in multiple diseases ( Al-

atly et al., 2019 ; ; Johnson, et al., 2020 Baldermann et al., 2019 ;

e Almeida Marcelino et al., 2019 ; Li et al., 2020 ; Neumann et al., 2018 ;

rmen et al., 2020 ; Treu et al., 2020 ). With the increasing popularity

f this approach, it is timely to compare results achieved by examin-

ng patient-specific connectivity with those obtained using normative

onnectivity data. One main limitation of the normative connectome

pproach is that connectivity data taken from atlases will never repre-

ent individual differences in connectivity profiles from the actual DBS

atients of study. Thus, the use of connectome atlases has clear simi-

arities to the use of other atlases. For instance, histological atlas infor-

ation was applied to inform DBS for decades ( Schaltenbrand G, 1977 ;

alairach and Tournoux, 1988 ). Similarly, subcortical atlases – for in-

tance of the STN – have been widely applied to study DBS electrode

lacement (for an overview see Ewert et al., 2018 ). However, despite
onceptual similarities to other atlases, some aspects of connectome at-

ases are novel and require further study. 

Here, we have retrospectively analyzed individual connectivity esti-

ates that were based on diffusion imaging data (dMRI) scanned from

ach individual patient before undergoing STN-DBS surgery. In a second

tep, we substituted these data with either a disease- and age-matched

roup connectome acquired in different PD patients or a normative con-

ectome acquired in young/healthy subjects. It should be emphasized

hat the latter was of superior quality and acquired on specialized MRI

ardware ( Setsompop et al., 2013 ) while the age-/disease-matched con-

ectome was of largely comparable quality as patient-specific data. The

nalysis reproduced workflows that were previously published using

ormative datasets. finally, we compared the amount of variance in clin-

cal improvements that could be estimated using individualized dMRI

ata versus either of the two group connectome atlases. By doing so, we

xplored the specific similarities and differences between these types of

onnectivity information when seeding from DBS electrodes to the rest

f the brain. 

. Materials and methods 

.1. Patient cohorts and imaging 

Thirty-three DBS patients from 3 different DBS centers (Center 1

London): N = 17, Center 2 (Mainz): N = 12, Center 3 (New York):

 = 4) were included in this retrospective study. Patient demograph-

cs are summarized in Table 1 . 

All patients underwent stereotactic DBS surgery for treatment of

D and received bilateral DBS electrodes ( Table 1 ). Patients had been

nrolled following the standard procedure to screen for eligibility of

BS which excluded structural brain abnormalities or severe psychi-

tric contraindications. Surgical planning was performed based on

RI imaging and DBS lead localizations were verified by microelec-

rode recording during surgery and intraoperative macrostimulation

or the New York and Mainz centers. Specifically, STN-cells were ob-

erved by a team of neurologists while slowly advancing the micro-

lectrodes from 10 mm distance toward the target. Cell activity were

anually classified into either no cell activity, cell activity of un-

nown origin or cell activity clearly attributable to either STN or

Nr by one or two expert raters. This information was used to ver-

fy the lead or to move to a different trajectory. Postoperative imag-

ng was carried out to verify accurate electrode placement in all co-

orts (see below). Specifically, the postoperative imaging parameters

ere as follow. Center 1: postoperative MRI 0.39 × 0.39 × 2.00 mm;

enter 2: postoperative MRI 0.83 × 0.83 × 0.80 mm; Center 3:

atient #1 postoperative MRI 0.51 × 0.51 × 1.40 mm, patient

2 postoperative CT 0.47 × 0.47 × 1.25 mm, patient #3 postop-

rative CT 0.46 × 0.46 × 1.0 mm, patient #4 postoperative CT

.55 × 0.55 × 1.25 mm. Clinical variables including age, sex, disease du-

ation before surgery, L-DOPA equivalent dose (LEDD) at baseline were

ecorded. Clinical improvement was measured by comparing Unified

arkinson’s Disease Rating Scale Part III (UPDRS-III) scores OFF medica-

ion preoperatively (baseline) and postoperatively ON DBS OFF medica-

ion. Improvement was expressed as percentage improvement between

he two scores. This study was approved by the local ethics committee of

he Charité, University Medicine Berlin (master vote EA2/186/18). The

tudy in London received ethical approval from the West London NHS

esearch Ethics Committee (10/H0706/68). At Columbia and Mainz

niversity, all procedures were also approved by the local Institutional

eview Board. 

.2. Preoperative diffusion MRI acquisition 

Center 1: For details on the London dataset, please see ( Akram et al.,

017 ). Briefly, imaging data were acquired on a 3T Siemens Magne-

om Trio TIM Syngo MR B17 using a padded 32-channel receive head
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oil to reduce discomfort and head motion. Siemens’ 511E-Advanced

cho Planar Imaging Diffusion WIP was used. In-plane acceleration was

sed (GRAPPA factor of 2) with partial Fourier 6/8. In-plane resolution

as 1.5 × 1.5 mm 

2 (Field of view 219 × 219 mm 

2 , TR = 12,200 ms,

E = 99.6 ms) and 85 slices were acquired with a 1.5 mm thick-

ess. Diffusion-weighting with b = 1500 s/mm 

2 was applied along 128-

irections uniformly distributed on the sphere and seven b = 0 s/mm 

2 

olumes were acquired. To correct for distortions all acquisitions were

epeated with reversed phase encoding direction (left to right and

ight to left phase encode) giving a total of 270 volumes acquired

[128 + 7] × 2). The total acquisition time for the dMRI sequences was

2 min. 

Center 2: Diffusion-weighted imaging from Mainz were acquired

ith 32-directions at b = 1000 s/mm 

2 and one b = 0 s volume images

or each acquisition (TR = 11855 ms, TE = 59 ms, fat saturation “on ”, 60

ontiguous slices). dMRI of the whole brain at 2 mm isometric voxel

esolution covering a field of view of 224 × 224 mm was obtained. The

otal acquisition time for the whole protocol was 35 min which included

4 min (3 × 8 min) for dMRI sequences. 

Center 3: The diffusion weighted image sequences from New York

ohort were acquired with 64-directions at b = 1000 s/mm 

2 and 6

 = 0 s/mm 

2 volumes were also acquired. In-plane resolution was

.88 × 1.88 mm 

2 (TR = 8500 ms, TE = 108 ms, slice thickness = 2.50 mm).

o correct for distortions, three acquisitions (2 b = 0 s/mm 

2 and 1

 = 1000 s/mm 

2 volumes) were repeated with a reversed phase en-

oding direction (left to right and right to left phase encode) giving a

otal of 73 components ([64 + 6] + 3). The total acquisition time for the

MRI sequences was 10 min. 

.3. Diffusion pre-processing and tractography 

For all but the Mainz cohort (where only one b0 volume was ac-

uired), the diffusion data were acquired with reversed phase-encode

lips (left-to-right and right-to-left), resulting in pairs of images with dis-

ortion going in opposite directions. From these pairs, the susceptibility

nduced off-resonance field was estimated using a method described by

ndersson et al. (2003 ) as implemented in FSL ( Smith et al., 2004 ) and

he two images were combined into a single corrected one using Topup

s implemented in FSL v5.0. The output from Topup was then fed into

ddy (FSL v5.0) for correction of eddy current distortions and subject

ovement ( Andersson and Sotiropoulos, 2016 ). In the Mainz cohort,

nly Eddy was applied. 

Tractography was performed using the generalized Q-sampling

maging method ( Yeh et al., 2010 ) as implemented in DSI studio

 http://dsi-studio.labsolver.org ) using the default parameter sets imple-

ented in Lead-Connectome ( www.lead-connectome.org ; Horn et al.,

014b ), which performed whole-brain fiber tracking in patient space

nd transformed of the tractogram into ICBM 2009b Nonlinear Asym-

etric (‘MNI’) space ( Fonov et al., 2011 ). Whole-brain tractograms

ere estimated by random-sampling of seedpoints within a white-

atter mask defined by (i) segmenting structural (T1 and T2) imag-

ng data using the New Segment approach as implemented in SPM12

 Ashburner and Friston, 2005 ) and (ii) linearly co-registering the mask

o b0-space. In total, 200,000 fiber streamlines were estimated in each

atient. Tractograms were then nonlinearly warped into standard space

sing Advanced Normalization Tools (ANTs; stnava.github.io/ANTs/;

vants et al., 2008 ) and the “Effective: Low Variance + subcortical

efinement ” preset implemented in Lead Connectome ( Ewert et al.,

019a ). Naturally, the same warp was used as in the process of transfer-

ing DBS electrodes into standard space (see below). To investigate the

ole of diffusion-artifacts (especially in the cohort from center 3, where

iffusion-correction was not available), we repeated the analysis but in-

tead nonlinearly co-registered between diffusion and anatomical space

sing a linear stage followed by a SyN stage with default parameters. 

http://dsi-studio.labsolver.org
http://www.lead-connectome.org
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a  
.4. Localization of DBS electrodes and VTA estimation 

DBS electrodes were localized using Lead-DBS ( https://www.lead-

bs.org/ ; Horn and Kühn, 2015 ) in its current (version 2.2.3; Horn et al.,

019 ) using PaCER ( Husch et al., 2018 ) or the TRAC/CORE approach

 Horn and Kühn, 2015 ) for either postoperative CT or MRI, respectively.

riefly, postoperative CT or MRI were linearly co-registered to preop-

rative MRI using ANTs. Subcortical refinement was applied as imple-

ented in Lead-DBS to correct for brain shift that may have occurred

uring surgery. All preoperative volumes were then normalized into

NI space applying the same deformation fields calculated in previous

teps mentioned above. 

Based on the long-term DBS settings, volumes of tissue acti-

ated (VTA) were estimated using a Finite Element Method (FEM)-

ased model as implemented in Lead-DBS ( Horn et al., 2019 ). This

odel estimates the E-field (i.e. the gradient distribution of the

lectrical charge in space measured in Volts per millimeter) on

 tetrahedral four-compartment mesh that accounts for grey and

hite matter, electrode contacts and insulating parts. Grey mat-

er was defined by components of the DISTAL atlas ( Ewert et al.,

018 ) (STN, internal and external pallidum, red nucleus). The elec-

ric field (E-field) distribution was then simulated using an adapta-

ion of the FieldTrip-SimBio pipeline ( Vorwerk et al., 2018 ) that has

een integrated into Lead-DBS ( https://www.mrt.uni-jena.de/simbio/ ;

ttp://www.fieldtriptoolbox.org/ ). The E-Field gradient was thresh-

lded for magnitudes above a commonly used value of 0.2 V/mm to

efine the extent and shape of the VTA ( Astrom et al., 2015 ). VTAs

ere warped into template space (2009b NLIN ASYM “MNI ” Space,

onov et al., 2011 ) by applying the same warp of the ANTs registra-

ion to VTA files. This is the space in which both group connectomes

ere available and hence, VTAs were used as seeds in this space. Fig. 1

rovides an overview of the methodology applied. 

.5. Structural connectivity estimation 

Whole-brain structural connectivity profiles seeding from bilateral

TA in each patient were calculated using three different approaches:

irst, patient-specific dMRI data were processed for each patient, indi-

idually. Second, a disease- and age-matched connectome was estimated

ased on a cohort of 85 Parkinson’s Disease patients acquired within

he Parkinson’s Progression Markers Initiative (PPMI). Third, connectiv-

ty profiles were estimated based on a state-of-the-art multi-shell dMRI

ataset based on 32 healthy young subjects that were scanned on spe-

ialized MRI hardware within the Human Connectome Project (HCP).

he latter two group connectomes were created by performing whole-

rain tractography in each individual patient/subject, normalization of

racts (using the same methods as in the present study) and aggregation

f tracts across patients/subjects. This led to whole-brain tract-density

mages seeding from VTAs for each patient based on patient-specific,

ge-/disease-matched and healthy-/young connectivity data. 

Patient-specific dMRI data : Each patient’s specific connectome was

ased on dMRI data acquired pre-operatively. Using the generalized

-sampling imaging approach (which was applied in all three modal-

ties) as implemented in DSI Studio ( http://dsi-studio.labsolver.org/ ,

eh et al., 2010 ), a whole-brain set of 200,000 fiber tracts was esti-

ated using the default processing stream of Lead Connectome. This

ed to one set of (whole-brain) tract-density volumes for each patient. 

Age-/disease-matched connectome: dMRI data from 85 patients were

btained from the Parkinson’s Progression Markers Initiative (PPMI)

atabase ( Marek et al., 2011 ) and processed using DSI Studio/Lead-

onnectome in the same fashion as described above. This PPMI con-

ectome of PD patients that is approximately age- and sex-matched

o our full cohort was previously computed ( Ewert et al., 2018 ) and

as been used in DBS studies, before ( Horn et al., 2017b ; Irmen et al.,

019 ; Neumann et al., 2018 ). The underlying dMRI data had been ac-

uired in 64 gradient-directions at b = 1000 s/mm 

2 . In-plane resolution
as 1.98 × 1.98 mm and 72 slices with a 2 mm thickness were ac-

uired. Detailed scanning parameters can be found on the project web-

ite ( www.ppmi-info.org ), processing details are reported in Ewert et al.

2018 ). 

Young/healthy connectome: dMRI data from 32 healthy young sub-

ects of the Human Connectome Project at Massachusetts General Hos-

ital ( https://ida.loni.usc.edu/login.jsp , Setsompop et al., 2013 ) were

btained and processed using DSI Studio/Lead-Connectome in the same

ashion as described above. This ‘MGH Adult Diffusion’ dataset of the

CP was acquired using state-of-the-art scanning sequences on special-

zed hardware and from a quality perspective may be considered as one

f the best openly available, in-vivo dMRI datasets. Diffusion-weighting

ith b = 1000 s/mm 

2 and 3000 s/mm 

2 was applied along 64 directions.

urthermore, additional shells at b -values of 5000 and 10,000 s/mm 

2 

ere applied along 128-directions. In-plane resolution was 1.5 × 1.5 mm

nd 96 slices with a 1.5 mm thickness were acquired. 

Structural connectivity between each VTA and voxels in the rest of

he brain was estimated using the above connectome datasets and led

o whole-brain fiber-density maps as produced by the Lead Connectome

apper software ( Horn et al., 2019 ). To do so, fibers traversing through

TA were selected from the group connectome and projected to volu-

etric space of the brain in template space of 2 mm isotropic resolution,

enoting the number of fibers (connected to the VTA) that traversed

hrough each voxel. To ensure this didn’t affect results, the step was re-

eated by exporting density-maps in 1 mm resolution. In addition, to ex-

lore the similarity and differences between patient-specific and young-

healthy, age-/disease-matched connectivity in specific cortical regions

e added a region-of-interest (ROI) analysis. Here, structural connectiv-

ty to primary motor cortex (M1), supplementary motor area (SMA), pre-

upplementary motor area (pre-SMA) and dorsomedial PFC as defined

y the HMAT ( Mayka et al., 2006 ) and Brainnetome atlases ( Fan et al.,

016 ) were calculated. ROIs were chosen from prior literature-informed

ypotheses ( Akram et al., 2017 ; Vanegas-Arroyave et al., 2016 ), indicat-

ng that effective DBS was associated with connectivity to these brain

tructures. 

.6. Estimating a model of optimal connectivity profiles 

To estimate a model of optimal connectivity, structural connec-

ivity (tract-density) maps (based on either patient-specific, age- and

isease-matched or young/healthy data), seeding from bilateral VTA

ere Spearman rank-correlated with %-UPDRS-III change across pa-

ients in a voxel-wise fashion. This led to a map that showed positive

r negative associations with UPDRS-III improvements (henceforth re-

erred to as R-maps ). Spearman’s correlation was used because structural

onnectivity results are generally non-Gaussian distributed ( Horn et al.,

014b ). R-maps denote to which areas connectivity is associated with

eneficial or detrimental outcomes. By doing so, their spatial distribu-

ion is a direct estimate of the optimal connectivity profile of STN-DBS

lectrodes for PD. In case of patient-specific connectivity, for method-

logical considerations, two pathways were chosen to derive at group-

evel R-maps. The first (which is equivalent to the pathway used in case

f normative connectomes) involved warping fibertracts to template

pace and aggregating tract-density maps there (from which R-maps

ere calculated). The second created tract-density maps in native space

from unnormalized fibertracts) and ported these maps into template

pace to create R-maps. This was done to rule out effects introduced by

he order of processing steps. 

.7. Estimating improvement in out-of-sample patients 

To estimate DBS outcome in out-of-sample data, spatial correlations

etween the optimal structural connectivity model (defined by data-

riven R-maps or a previously published optimal model from 2017b )

nd the VTA-derived structural connectivity profile in each patient were

https://www.lead-dbs.org/
https://www.mrt.uni-jena.de/simbio/
http://www.fieldtriptoolbox.org/
http://dsi-studio.labsolver.org/
http://www.ppmi-info.org
https://ida.loni.usc.edu/login.jsp
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Fig. 1. Applied methodological pipeline of data analysis: (A) For each patient, DBS leads were localized in MNI space using Lead-DBS software, and volumes of 

tissue activated (VTA) were estimated based on the actual DBS stimulation parameters. Streamlines representing traversing through each patient’s VTA to the rest of 

the brain were selected from either patient-specific dMRI data, an age- and disease-matched group connectome or a young-/health group connectome, resulting in 

DBS stimulation-dependent connectivity “fingerprints ”. (B) Connectivity “fingerprints ” were obtained for each patient using each of the three sources of connectivity 

data. Across each group of patients, an optimal connectivity profile (R-Map) was generated by correlating connectivity fingerprints with UPDRS-III improvement. (C) 

R-maps represent models for “optimal ” connectivity fingerprints. Comparing similarities between each new (out-of-sample) patient’s connectivity fingerprint with 

these models (by means of spatial correlation), clinical improvements can be estimated (shown in D for a leave-one-out design). 
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alculated. For instance, in some analyses, this was done in a leave-one-

ut fashion (i.e. data from patients #1-32 were used to create an R-map,

hich was then compared to the connectivity map of patient #33 to

stimate improvement in this patient. The same was iteratively done

or all patients.). The resulting similarity indices – again expressed as a

spatial) Spearman’s rank correlation coefficients – estimate ‘how opti-

al’ each connectivity profile was and used to explain the variance in

linical improvement (%-UPDRS-III improvement) in a linear regression

odel. 

Throughout the paper, we used randomized permutation tests

5000 permutations) to test for significance (at a 0.05 significance
evel) and all analyses were carried out in MATLAB (The Mathworks,

atick, MA). 

. Results 

Our DBS cohort included 33 patients enrolled at 3 independent cen-

ers (7 females, mean age 62.5 ± 1.6 years). The average disease du-

ation in the entire sample was 12.9 ± 0.8 years. Reduction in LEDD

omparing baseline to post-DBS on average was 61.5 ± 3.6%. Baseline

PDRS-III score was 42.0 ± 2.8, postoperative score 28.1 ± 2.1 points

leading to a 51.0 ± 3.0% improvement). LEDD reduction and UPDRS-III
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Fig. 2. DBS electrode reconstructions in the three cohorts from the three cen- 

ters. Subcortical structures are defined by the DISTAL Atlas ( Ewert et al., 2018 ), 

axial and coronal planes of the 7T MRI ex vivo human brain template shown 

( Edlow et al., 2019 ). 

Fig. 3. Two representative examples of structural connectivity between indi- 

vidual DBS sites (left hemisphere) and the rest of the brain based on patient- 

specific connectivity, the disease- and age-matched connectome and young- 

/healthy connectome. A sagittal plane of the 7T MRI ex vivo human brain tem- 

plate ( Edlow et al., 2019 ) is shown at x = 3 mm. The yellow sphere represents 

the VTA. While in most patients, connectivity profiles were largely similar using 

either method (as in case #1), few patients had differing results across methods 

(as in case #2). 
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Table 2 

Correlations between connectivity metrics. R -values show agreement be- 

tween connectivity estimates connecting VTAs to M1, SMA, pre-SMA, and 

PFC across the group of patients. For instance, the first entry denotes that 

connectivity strength between VTAs and M1 estimated using patient-specific 

connectivity (i) and an age-/disease-matched connectome (ii) correlated by 

a Spearman’s rho of 0.73. Note that similarities between patient-specific and 

group-level data become lower when advancing in frontal direction while 

it remains high between normative connectomes. (iii) stands for the young- 

/healthy connectome. 

M1 SMA pre-SMA PFC 

i vs ii R = 0.73, 

p = 0.004 

R = 0.43, 

p = 0.009 

R = 0.33, 

p = 0.062 

R = 0.18, 

p = 0.17 

i vs iii R = 0.57, 

p = 0.004 

R = 0.40, 

p = 0.015 

R = 0.33, 

p = 0.044 

R = 0.21, 

p = 0.17 

ii vs iii R = 0.85, 

p = 0.001 

R = 0.85, 

p = 0.001 

R = 0.70, 

p = 0.002 

R = 0.96, 

p = 0.001 

(i) patient-specific connectivity, (ii) age-/disease-matched connectivity and 

(iii) young-/health connectivity. 
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mprovements were not significantly different across the three datasets

 p > 0.05 for both variables). Of all patients, 4 were tremor-dominant,

1 were akinetic rigid and 8 were mixed following criteria defined in

ggers et al. (2011 ). 

DBS electrode placement was comparable across the three cohorts

 Fig. 2 , see also Fig. S1) and structural connectivity profiles from two

ypical patient cases are shown in Fig. 3 . Distances between active elec-

rode centers and the closest voxel center in the STN were calculated

nd this was used to estimate how many electrode contacts were inside

 < 1 mm), at the border (1–2 mm) or outside ( > 2 mm) of the STN (given
 diameter of the electrodes of ~1.24 mm and a voxel-size of 0.22 mm

n the STN atlas). 57 contacts were inside, 8 at the border region and 4

utside the STN (also see Figs. S2 and S3). 

Average volumes of VTAs were 149 ± 68 mm 

3 (left) and 175

 118 mm 

3 (right). This led to connections of 2999 ± 1363 of stream-

ines per VTA in patient-specific data, 27,548 ± 8951 in the age-/disease-

atched connectome data and 21,875 ± 17,791 in the healthy/young

onnectome. On average, spatial correlations amounted to R = 0.39

 0.05 between patient-specific and age-/disease-matched connectivity

across the whole brain), to R = 0.38 ± 0.05 between patient-specific

ata and the young/healthy connectome and to R = 0.58 ± 0.05 be-

ween the healthy/young and age-/disease-matched connectomes. This

as the case for most patients, and fibers predominantly connected to

he sensorimotor strip (M1, SMA or pre-SMA). Only in a few patients did

atient-individual structural connectivity estimates differ largely (for an

xample see bottom row of Fig. 3 ). 

Correlations between patient-specific and young-/healthy connectiv-

ty estimates across the group of patients were high for apical cortical

egions but lower for more frontal regions (see Fig. S5). Specifically, con-

ectivity estimates between electrodes and these regions as estimated

rom patient-specific versus the healthy-/young connectome correlated

cross patients: primary motor cortex: R = 0.57, p = 0.004, supplemen-

ary motor area: R = 0.40, p = 0.015, pre-supplementary motor area pre-

MA: R = 0.33, p = 0.044 and dorsomedial prefrontal cortex: R = 0.21,

 = 0.17. Furthermore, an outliner analysis using skipped correlations as

mplemented in the robust correlation toolbox ( Pernet et al., 2013 ) was

erformed to further confirm these results (Table S1). Furhter corre-

ations between patient-specific and age-/disease- matched connectiv-

ty, young-/healthy and age-/disease-matched connectivity are shown

n Table 2 . P -values were corrected for multiple comparisons using the

onferroni–Holm method. 

In Horn et al., 2017b , an R-map that defined optimal connectivity

alues was estimated based on a two-center cohort of N = 95 patients.

ere, this R-map was used to account for a certain percentage of out-

ome in the presnet independent three-center cohort based on individ-

alized diffusion data ( Fig. 4 ; R = 0.28, p = 0.045). When instead us-

ng the age- and disease-matched connectome ( R = 0.30, p = 0.031)

r the young-/healthy connectome ( R = 0.33, p = 0.021), correlations

emained significant. These estimates were not significantly different

rom each other in head-to-head comparisons based on a Fisher r-to-z

ransformation ( p > 0.8 for all comparisons). 

In a next step, we calculated data-driven optimal connectivity maps

R-maps) from scratch based on the presnt three-center cohort us-

ng patient-specific dMRI, the age-/disease-matched connectome or the

oung-/healthy connectome, respectively. Using either metric, connec-

ivity to primary motor cortex (M1) and primary somatosensory cortex
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Fig. 4. Validation of optimal connectivity profiles estimated in, Horn et al., 

2017b ) on the present three-center cohort ( N = 33), in which individual dMRI 

data was available. Clinical improvements could be significantly estimated using 

patient-specific connectivity (A), a disease-/age-matched connectome (B) and a 

young-/healthy connectome (C). 
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Fig. 5. Structural connectivity (patient-specific connectome, age-/disease- 

matched and healthy-/young) estimated change in UPDRS-III score using a 

leave-one-patient-out model ( N = 33). Optimal structural connectivity model 

generated with patient-specific connectome (A), age-/disease-matched connec- 

tome (C) and young-/healthy connectome (E) effectively estimated patient’s im- 

provement based on respective connectome (B, D, F). Slightly more variance 

was estimated from the patient-specific connectivity model than the other two 

metrics. Please note that values shown on the R-maps are not necessarily sig- 

nificant since mass-univariate tests were applied. Rather, the spatial profile of 

these maps was used to make predictions in out-of-sample data which are then 

tested for significance. 
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S1) was negatively correlated with DBS outcome. In contrast, connec-

ivity to pre-SMA, anterior cingulate and medial frontal cortices was

ssociated with beneficial DBS outcome ( Fig. 5 ). 

All three metrics, i.e. patient-specific connectivity ( R = 0.43;

 = 0.001), age-/disease-matched connectome ( R = 0.25; p = 0.048)

nd healthy-/young connectome ( R = 0.31; p = 0.028) could account

or a significant part of the variance in clinical outcome in a leave-

ne-out design ( Fig. 5 ). In case of patient-specific connectivity, a sec-

nd analysis pathway (see methods) was tested, that led to inferior

esults ( R = 0.35, p = 0.017, see Fig. S6). Based on these values, we

onclude that ~6–18% of the variance in clinical outcomes could be

xplained in out-of-sample data. Furthermore, to investigate effects of

istortion artifacts in diffusion imaging, the analysis (following the first

athway) was repeated but applying a non-linear registration strategy

etween diffusion and anatomical space. This reduced correlations from

 = 0.43 to R = 0.37 at p = 0.011. Finally, to rule out effects introduced

y downsampling of spatial similarity steps, the main analysis was re-

eated after exporting tract-density maps in 1 mm resolution (as op-

osed to 2 mm as above). Results remained highly similar ( R = 0.42 at

 = 0.002 for patient-specific connectivity; R = 0.27, p = 0.041 for the

ge- and disease-matched group connectome; R = 0.31 at p = 0.032 for

he healthy-/young connectome). 

Frame-to-frame displacements within individual dMRI volumes were

.31 ± 1.64 mm on average, rotation 0.003° ± 0.001°, respectively. Spe-

ific head motion information (rotation/translation) of individual pa-

ients is reported in Table S2. Head motion, including the displacement

nd rotation across each dataset did not explain prediction errors in our

ain analysis ( R 

2 = 0.03 at p = 0.63). To further assess whether head

otion played a significant role, we repeated the aforementioned anal-

sis using patient-specific connectivity data after excluding dMRI vol-

mes that were affected by the top 2% of head motion/rotation. Con-
ectomes were then calculated again, and the analysis was repeated.

esults remained identical ( R = 0.41 at p = 0.009; Fig. S7). 

Finally, this main analysis was repeated when thresholding R-maps

o account for positive values, only. Again, this led to similar correla-

ions while amounts predicted by the patient-specific analysis decreased

ost ( R = 0.35 at p = 0.012 for patient-specific connectivity, R = 0.27,

 = 0.046 for the age- and disease-matched group connectome and

 = 0.43 at p = 0.002 for healthy-/young connectome). 

Correlations derived from either metric were not significantly dif-

erent from each other in head-to-head comparisons based on a Fisher

-to-z transformation ( p > 0.4 for all comparisons). Furthermore, cross-

stimates between metrics were poorer and not significant, i.e. when

he R-map was based on a group connectome, but structural connectiv-



Q. Wang, H. Akram and M. Muthuraman et al. NeuroImage 224 (2021) 117307 

Fig. 6. Structural connectivity (patient- 

specific, age-/disease-matched, healthy- 

/young connectome) cross-prediction change 

in UPDRS-III scores under STN-DBS. Patient- 

specific connectivity couldn’t explain patient’s 

change following DBS based on healthy-/young 

connectome (A) and age-/disease-matched 

connectome (B). Similarly, R-Map generated 

with young-/healthy connectome (C) and 

age-/disease-matched connectome (D) could 

not estimate patient’s improvement based on 

patient-specific connectome. 
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ty maps were based on patient-specific structural connectivity or vice

ersa ( Fig. 6 ). This is not-surprising since normative and patient-specific

onnectivity estimates are not completely interchangeable. Still, it may

nderline the importance of consistency in the choice of metric when

erforming such dMRI based connectivity analyses. 

. Discussion 

Three main conclusions may be drawn from the present study. First,

ndings confirm a previously published model of optimal STN-DBS elec-

rode connectivity based on a novel independent sample of patients op-

rated in three different centers ( Horn et al., 2017b ). Crucially, while

he original model had been derived from normative connectivity es-

imates, patient-specific dMRI data was successfully used to account

or DBS outcome in the present cohort. Second, we show that optimal

onnectivity maps defined using individualized data are highly simi-

ar to the ones defined using group connectomes. Irrespective of using

atient-specific, age-/disease-matched or healthy-/young connectome

ata, structural connectivity to pre-SMA, anterior cingulate and me-

ial frontal cortices was associated with beneficial DBS outcome. How-

ver, third, the amount of variance in clinical improvement explained

y either method was not exactly the same. While none of the met-

ics resulted in significantly higher predictions than the other two, the

se of patient-specific connectome data resulted in the highest R -value

etween estimated and empirical improvements ( R = 0.43 vs. 0.31 or

.25). This was true although the quality of the patient specific diffu-

ion datasets differed between the three centers resulting in an ‘overall’

oorer data quality than found in normative connectomes. 

.1. Normative group connectomes vs. patient-specific connectivity 

Recently, normative structural connectomes were introduced to ac-

ount for motor improvements ( Horn et al., 2017b ; Treu et al., 2020 )

nd changes in depressive symptoms ( Irmen et al., 2020 ) in Parkin-
on’s disease patients following STN-DBS. The concept was also ap-

lied to DBS in Essential Tremor syndrome ( Al-Fatly et al., 2019 ),

bsessive-Compulsive disorder ( Baldermann et al., 2019 ; Li et al., 2020 )

nd Epilepsy ( Middlebrooks et al., 2018 ). Furthermore, normative con-

ectomes were used to explain behavioral effects following STN-DBS

uch as movement speed ( Neumann et al., 2018 ) and motor learning

 de Almeida Marcelino et al., 2019 ) or stopping of ongoing movements

 Lofredi et al. 2020 ). Finally, the concept was applied to investigate

ide-effects such as DBS induced seizures ( Boutet et al., 2019 ), weight-

hanges ( Baldermann et al., 2019 ) or panic attacks ( Elias et al., 2019 ).

hile the approach was sucessful to explain variance in clinical im-

rovement in out-of-sample data (i.e. models were learned on one co-

ort to predict improvements in the other), it was so far not directly

ompared to the use of patient-specific connectivity. 

So far, the only study that combined both normative and patient-

pecific connectivity data in the context of DBS was carried out by Bal-

ermann and colleagues ( Baldermann et al., 2019 ) in 22 patients suffer-

ng from Obsessive Compulsive Disorder. Here, patient-specific data in

0 patients were available but lacked in the remaining 12. When optimal

onnectivity profiles associated with high clinical improvement were es-

imated based on these 12 patients using a normative connectome, the

utcome in the remaining 10 could be predicted by use of their patient-

pecific connectivity data ( R = 0.7, p = 0.01). The same was true for the

pposite case ( R = 0.6, p = 0.02). Indirectly, this finding suggested that

ormative connectomes could be used to define models of optimal con-

ectivity that would remain predictive when applying patient-specific

onnectivity datasets. 

Here, we directly compared patient-specific connectivity estimates

o the ones derived from group connectomes (which were either age-

disease-matched or even acquired in a young-/healthy cohort). We

how that optimal connectivity profiles that were associated with good

linical improvement in our sample followed the same overall distribu-

ion irrespective of the applied connectivity metric. Namely, functional

onnectivity with M1 was negatively associated with optimal improve-
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ent while more frontal regions (such as SMA, pre-SMA and dorsome-

ial PFC) were positively associated. Using either method, connectivity

rofiles were able to account for part of the variance in clinical im-

rovement in out-of-sample patients (leave-one-out design). Moreover,

 previously published model of optimal connectivity was associated

ith clinical outcome using either method. This finding is crucial since

t shows that optimal profiles could potentially be estimaged based on

arge cohorts (and even using normative connectomes) and still applied

o patient-specific data. Especially when aggregating large cohorts of

BS patients, it may be complicated if not impossible to obtain diffusion-

eighted imaging data from all patients, as well. For instance, large clin-

cal endeavors such as the Early-Stim study cohort ( Schuepbach et al.,

013 ) or the nonmotor study cohort of the International Parkinson and

ovement Disorder Society ( Dafsari et al., 2018 ) were acquired with-

ut diffusion-weighted imaging data but could still be used to inform

ptimal symptom-specific connectivity profiles. Similarly, some DBS co-

orts are rare or unique world-wide and individualized connectivity

ata was not acquired for them. Examples include patients suffering

rom Alzheimer’s Disease stimulated with fornical DBS within the AD-

ance trials ( Laxton et al., 2010 ), DBS cohorts suffering from rare dis-

ases such as Tourette’s Syndrome () Johnson, et al., 2020 or STN-DBS

atasets for treatment of cervical dystonia ( Ostrem et al., 2011 ). 

.2. The case for using brain connectivity to investigate STN-DBS 

Several studies have found significant relationships between elec-

rode placements and clinical outcome, without the need to add con-

ectivity information. Specifically, the same optimal target coordinate

ithin the dorsolateral STN was defined by four independent studies,

nd three of them showed significant correlations between proximity

o this coordinate and resulting clinical improvements ( Akram et al.,

017 ; Bot et al., 2018 ; Horn et al., 2019 ; Nguyen et al., 2019 ). If such

 clear relationship between the local stimulation sites and clinical im-

rovements exist, why should we investigate connectomic mapping at

ll? The variance in clinical outcomes explained by such coordinate-

ased approaches is in the same ballpark of the one explained by brain

onnectivity in the present study. So, what is the added value? 

First, brain connectivity may bear insights into the mechanism of

ction of DBS. The concept that strong connectivity to M1 is contra-

roductive for optimal outcomes but more frontal connections seem fa-

orable qualitatively goes beyond knowledge of an optimal sweet-spot

n the STN. From such knowledge, we may derive pathophysiological

odels and translate findings between systems neuroscience and ani-

al models. 

Second, brain connectivity could at some point be applied to ex-

lore variance in clinical outcome of novel patients, potentially even be-

ore surgery. For instance, work by Muthuraman and colleagues showed

hat atrophy in the SMA before surgery was associated with poor clin-

cal outcome following DBS, matching present connectivity findings

 Muthuraman et al., 2017 ). 

Third, individual patient specific connectivity may differ from the

orm and could one day help identify patient-specific DBS targets. In Es-

ential Tremor, where clear associations between clinical outcome and

 specific structural bundle (the dentatothalamic tract) have been estab-

ished, this concept has already become clinical practice ( Coenen et al.,

014 ). Similar concepts have been methodically explored using func-

ional MRI ( Andersen and Buneo, 2002 ). So far, to the best of our knowl-

dge, whole-brain connectivity profiles as the ones explored here have

ot been used in clinical practice, although the general concept has been

ntroduced in 2015 ( Fernandes et al., 2015 ). 

Fourth, networks that lead to side-effects when stimulated could be

dentified. For instance, Irmen and colleagues recently reported a con-

ectivity profile that was associated with depressive symptoms follow-

ng STN-DBS in PD ( Irmen et al., 2019 ). Crucially, this network, cen-

ered on the left dorsolateral prefrontal cortex, could be reproduced in

hree international cohorts and was successfully used to cross-predict
epressive symptom changes across all cohorts. Such a robust map of

 circuit that leads to depressive symptoms could be useful to inform

timulation sites that should be avoided. In Essential Tremor, Al-Fatly

nd colleagues similarly defined networks that were associated with the

ccurrence of side-effects such as ataxia and dysarthria ( Al-Fatly et al.,

019 ). 

Finally, connectivity profiles could be used to bridge fields of

nvasive and noninvasive brain stimulation. In 2014, Fox and col-

eagues demonstrated that across 14 diseases, the same networks seem

o be modulated by both invasive and noninvasive neuromodulation

 Fox et al., 2014 ). In PD, excitatory TMS to M1 and inhibitory TMS

o SMA had beneficial effects (the opposite cases did not). If DBS is seen

ongruent to a functional lesion (i.e. to disrupt information flow within

 specific network), this finding is in agreement with optimal connec-

ivity profiles defined here. 

Thus, it seems sensible to investigate brain connectivity measures in

he DBS field for reasons that go beyond finding an optimal target coor-

inate. The question is which connectivity metric should best be used.

e discuss the advantages of normative vs. patient-specific connectivity

ata in the following. 

.3. Pros and Cons of normative vs. patient-specific connectivity data 

In a number of studies, network targets were identified by using

onnectivity data that was not derived from each individual patient

 Al-Fatly et al., 2019 ; Baldermann et al., 2019 ; Calabrese et al., 2015 ;

ash et al., 2019 ; Horn et al., 2017b ; Petersen et al., 2019 ; Weigand

t al., 2018 ). One reason for this is data quality. For instance, Calabrese

t al. applied a 200 𝜇m isotropic postmortem scan of the brainstem ac-

uired at 7T to be able to resolve the Wernekinck decussation of the

entatothalamic tract. Weigand et al. applied functional imaging data

hich was averaged across 1000 subjects, leading to a high signal-to-

oise ratio ( Yeo et al., 2011 ). The structural connectome used in Horn

t al. was acquired on a customized Siemens 3T Connectom scanner

ith multi-shell diffusion-encoding gradients and b-values reaching up

o 10,000 s/mm 

2 ( Setsompop et al., 2013 ). Given the strong limitations

f diffusion-MRI in general, Petersen and colleagues abandoned MRI-

ased connectivity altogether and instead created a realistic tract-atlas

ased on prior anatomical knowledge ( Petersen et al., 2019 ). Hence,

ormative connectome datasets are of highest quality which may not

e straightforward to match during routine preoperative clinical scans

n every DBS center. Quality obtained from postmortem connectomes

where scanning times over > 24 h are typical) may never be achieved

n the living brain of individual patients. Introduction of clinically ap-

roved 7T systems may offer novel opportunities for preoperative imag-

ng in the near future. 

Along the same lines, investigating each patient’s individualized con-

ectivity data is challenging due to poor signal-to-noise and test-retest

eliability. This was demonstrated in a study by Petersen and colleagues

n which the same subject was scanned ten times. In each, the peak of

onnectivity to motor-/premotor cortices was identified within the STN

 Petersen et al., 2017 ). Distances across peaks were 0.5–1 mm on av-

rage. While this subject was scanned using state-of-the-art methods,

est-retest reliability will likely be poorer in clinical datasets acquired

n movement disorder patients. A variability of ~1 mm may seem low at

rst glance but represents half the distance between two DBS contacts

nd is in the order of distances between responding and non-responding

BS patients ( Horn et al., 2019 ). Moreover, the displacement between

ome runs was found to be of several millimeters, transposing the peak

f M1-connectivity from the sensorimotor to the associative functional

one of the STN. In a similar study with even more pessimistic outcome,

akab and colleagues repeated scans of the same subjects on different

RI scanners ( Jakab et al., 2016 ). Authors used connectivity data to

reate thalamic subparcellations relevant for DBS surgery (such as the

entral intermediate nucleus). Variability of these targets introduced by

he choice of MRI hardware was similar or higher to inter-subject vari-
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bility (!). Moreover, the variability introduced by the MRI hardware

ade it obvious that single-subject tractography may not be an optimal

hoice to define surgical targets (see Fig. 6 in the publication by Jakab

nd colleagues). 

Despite the practical and theoretical advantages of normative con-

ectomes and the shortcomings of individual diffusion MRI data, the

atter still is needed to reach an ultimate goal of realizing personalized

eep brain stimulation. How could the gains of individualized connec-

ivity be combined with the robustness of normative connectomes? One

nswer would be to scan patients repeatedly and to quantify test-retest

eliability. For instance, the midnight scan club endeavor acquired MRI

ased (but functional) connectivity data of the same subjects in 12 imag-

ng sessions ( Gordon et al., 2017 ). Doing so in each patient that un-

ergoes DBS surgery is impractical and would be very demanding for

atients. However, the dataset was recently used to investigate individ-

alized vs. group-level connectivity-based DBS targets ( Greene et al.,

019 ). Similarly, 45 of the 1200 human connectome project participants

ere scanned twice to allow for quantification of retest error ( Van Essen

t al., 2013 ). Such openly available datasets may be used to investigate

he test-retest reliability of individualized subjects, while similar data

ould be needed in patients that will actually undergo DBS afterwards.

An additional strategy could be to integrate patient-specific and

ormative connectomes and yield hybrid estimates. Patient-specific

onnectivity-profiles could be matched to variants that are robustly

ound within large normative cohorts and thus used to reshape norma-

ive connectomes. This concept could be used to reduce the amount of

oise in individualized patient acquisitions, but such an approach would

equire further methodological work and validation studies. 

This being said, we should not ignore the fact that all group studies

ill require co-registrations from the group connectome to the patient

r vice-versa. This process will introduce registration bias. New meth-

ds for direct dMRI registrations are being developed and will hopefully

ecome broadly available. Meanwhile, image acquisitions in single pa-

ients and MRI technology are also improving. Thus, while group con-

ectomes are currently useful to investigate general relationships be-

ween clinical improvement and electrode connectivity, in the future,

s the quality and speed of patient specific dMRI sequences improve,

he indication or need for group average templates may be challenged. 

.4. Limitations 

There are several limitations that apply to the current study. First,

eterogeneity, such as the differences in the MRI acquisition protocol

nd assessments of UPDRS-III between the three cohorts should be con-

idered. Slight differences between raters of symptom scores cannot be

uled out, although the UPDRS-III has a comparably high inter-rater

eliability (e.g. intra-class correlation of 0.95 reported in de Deus Fonti-

oba et al., 2019 ). Aggregation of datasets was necessary to obtain a

arge enough sample size and should bias our out-of-sample prediction

esults toward non-significance. Also, it may match the heterogeneity of

linical DBS cohorts that are usually aggregated across centers in clin-

cal (e.g. Schuepbach et al., 2013 ). Second, inaccuracies in lead local-

zation result from the approach of mapping electrodes into MNI space.

o minimize the amount of error introduced by this step, we applied

 modern neuroimaging pipeline that was specifically designed for the

ask at hand. Processing approaches that were designed to reduce error

ncluded brain shift correction, multispectral normalization with sub-

ortical refinement steps ( Horn et al., 2019 ) and a phantom-validated

lectrode localization approach ( Husch et al., 2018 ). The normalization

trategy applied here was recently evaluated by two international teams

nd led to automatic segmentations of the STN that were nearly as pre-

ise as manual expert segmentations ( Ewert et al., 2019b ; Vogel et al.,

020 ). Each step of the pipeline was carefully assessed and corrected

f needed. Still, the processing steps include errors that could be fur-

her reduced by acquiring data of higher resolution as well as test-retest

atasets (see above). 
Movement artifacts are another limitation that are especially rele-

ant in a cohort suffering from movement disorders. This favors shorter

cquisition protocols and the one used in our sample – albeit representa-

ive for clinical datasets – may not have been optimal in this regard. Sim-

lar dataset quality could potentially have been acquired in less time by

pplying multiband sequences or similar methods ( Harms et al., 2018 ).

e report frame-to-frame movement parameters for the present sample

nd the average values did not correlate with prediction errors of our

odel. Still, movement errors do constitute a problem and are likely

ven more substantial when studying patients suffering from hyperki-

etic symptoms such as in tremor dominant PD, Tourette’s syndrome or

ystonia. 

A large limitation that applies to both individualized and normative

onnectivity mapping can be seen in diffusion MRI in general. Tractogra-

hy using typical methods on diffusion MRI datasets was recently found

o include four times the amount of false-positive tracts as true-positive

racts ( Maier-Hein et al., 2017 ). This fundamental problem has led other

roups that investigate similar topics to abandon dMRI based tractogra-

hy altogether and to instead use detailed literature- and expert-based

natomical knowledge ( Gunalan et al., 2017 ; Petersen et al., 2019 ). To-

ether with poor test–retest reliability outlined above, these issues chal-

enge the overall concept of connectomic DBS. It remains to be seen

hether dMRI based tractography may indeed hold up to some of the

romises outlined here, in the future (or not). While our results indicate

hat significant relationships between connectivity profiles and clinical

mprovements may be observed, this does not mean that these correla-

ions are significant to clinical practice. Currently, these models are not

uitable to predict outcomes in individual patients. Further improve-

ents in diffusion imaging, with higher spatial and angular resolution

nd improved MRI gradients could add to the value of this modality

 Jbabdi and Johansen-Berg, 2011 ; Sotiropoulos et al., 2013 ). The choice

f whole-brain tractography as well as deterministic tractography on av-

rage likely lead to less streamlines to be connected to each VTA ( Maier-

ein et al., 2017 ). 

Furthermore, the use of high-resolution postmortem connectome

ata that is available in submillimeter resolution could be advantageous

o employ, as well ( Calabrese et al., 2015 ; again with the same inherent

roblem of lacking patient-specificity). 

Finally, the optimal connectivity model in the current study was

ased on full UPDRS-III scores which included multiple symptoms in

D patients, such as tremor, bradykinesia, and rigidity. While the cur-

ent study was not powered to investigate symptom-specific network

ngerprints and addressed a different question, future studies could in-

estigate symptom-specific network effects. 

. Conclusions 

Our study analyzed optimal connectivity profiles seeding from STN-

BS electrodes based on patient-specific vs. group-level structural con-

ectivity profiles. We demonstrate that on a group level, results from

ndividualized, age- and disease-matched connectomes and healthy-

young connectomes are comparable but not completely interchange-

ble. Although differences were not significant, results suggest that in-

ividualized structural connectivity has the potential to estimate clinical

utcomes following STN-DBS slightly better. Still, the use of normative

onnectomes seems sensible in cases where individualized connectivity

ata is lacking. 
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