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Abstract— The functionality of the MPTCP scheduler is a 

hurdle in the way of the protocol in achieving high performance. 

This drawback is even more severe in heterogeneous networks, 

where the differences in the characteristics of the paths impair the 

functionality of the scheduler drastically. In this paper, we 

introduce a dataset generated by an emulation environment, 

including diverse scenarios and traffic types, as an initial step 

toward having a supervised learning scheduler. 
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I. INTRODUCTION  

MPTCP (Multipath TCP), which is an extension of 
conventional TCP (Transmission Control Protocol), was 
developed to allow having more than one network path in the 
very same connection. This protocol can indeed provide some 
benefits relying on its scheduling mechanisms and simultaneous 
distribution of traffic into different paths. However, it cannot 
achieve full bandwidth aggregation, due to flaws such as out-of-
order packets, frequent re-ordering processes, or HoL (Head of 
Line) blocking that waste time and energy. Most schedulers 
exploit single-criterion or multi-criteria approaches for traffic 
management. In the former, a parameter such as RTT (Round 
Trip Time) is used, while in the latter, more than one parameter 
is considered to select the path for the transmission. These 
reactive approaches lack the ability to properly distribute traffic 
to prevent the above-mentioned issues and are easily confused 
by random packet losses or other shortcomings that may occur 
in the network [1]. Therefore, to overcome these issues and 
make the best use of the available bandwidth aggregation, it is 
necessary to design schedulers based on machine learning 
techniques that can not only detect the current state of the 
subflows, i.e., paths, but also predict upcoming situations to 
enhance the functionality of MPTCP.  

By considering these facts, the main questions in this 
ongoing work are: (i) How to create an emulation environment 
that can reflect various real-time networking circumstances? (ii) 
How to have a centralized node in the topology that has insight 
into the whole traffic to generalize the data set? (iii) Based on 
the generated data set, how can appropriate features be selected 
to be used in supervised learning techniques such as deep neural 
networks? 

II. RELATED WORK 

Several approaches have been proposed to deal with the 
inefficient functionality of the MPTCP scheduler. The initial 
steps approached existing problems, such as out-of-order 

delivery, reactively, leading to schedulers like BLEST (BLock 
ESTimation) [2] and ECF (Earliest Completion First) [3]. 
BLEST estimates the blocking time for different subflow 
selections and traffic distributions in a way that alleviates out-
of-order and HoL blocking issues. With some similarities to 
BLEST, ECF attempts to find the path with the minimum 
transmission delay by exploiting parameters such as RTT and 
cwnd (congestion window).  

There have been some other proposals, but most of them 
suffer from having static and non-intelligent methods. Thus, 
they are not able to fully utilize the available resources. A 
reinforcement learning scheduler called MPTCP-RL has been 
proposed recently in [4] to find the best optimal path and 
mitigate packet loss and network heterogeneity adverse impacts. 
This scheduler tries to create a table containing scheduling rules 
for subflow selection, and by relying on the rules, it could 
enhance the network’s throughput. However, this approach can 
waste some time in the decision-making phase, since it should 
update itself frequently. Moreover, it cannot be generalized 
easily for different scenarios. As a result, there is a need for 
supervised learning techniques so that the training and decision-
making parts can be separated. In this case, a machine learning 
engine that is frequently updated offline resides in the 
scheduling component. This mechanism can dramatically 
reduce the time spent on the decision-making process. However, 
to the best of our knowledge, there is no public dataset for this, 
so the first steps should be taken toward its creation. 

III. MPTCP PROXY DEPLOYMENT FOR DATA SET CREATION 

The main problem in a supervised learning scheduler 
establishment is the lack of a stereotyped data set. A data set 
should be a reflection of diverse real-world scenarios, so it can 
generalize to most of the existing situations. As a result, we have 
divided the existing scenarios into three different categories, 
including short- medium- and long connections. For the first 
scenario, web page loading, for the second one, video streaming, 
and for the third one, test file download were the representatives. 
After identifying the problems and counterpart representatives 
for the scenarios, an approach for data gathering should be 
selected. As a result, we decided to use an intermediate node as 
a MPTCP proxy so that all traffic between clients and public 
servers goes through it and it can monitor all the traffic.  

This approach can bring some advantages, including: (i) 
Public servers do not need to support MPTCP as the connections 
between the clients and proxy will be MPTCP ones. (ii) As the 
whole traffic is passed through a centralized node, the creation 
of a data set by using it can be a reflection of the network. On 
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the proxy server, we have used microsock5, which is a 
lightweight proxy that handles traffic redirection without heavy 
use of resources.  

IV. EMULATION SETUP AND METHODOLOGY 

The laboratory experiment conducted in this study utilized 
the OpenStack platform as the virtualization infrastructure, 
including thirty Linux clients, as shown in Figure 1. Moreover, 
a Python automation script was employed for streamlined 
deployment. By using a Linux traffic shaper tool on individual 
subflows, characteristics such as packet loss probability, 
latency, or bandwidth, for 5G (Fifth Generation) and Wi-Fi 6 
networks were emulated. The experiment encompassed various 
scenarios, including data download, video streaming, and 
webpage loading, to imitate real-world requirements and have 
different traffic types.  

 

Figure 1 The emulation environment in OpenStack 

Table I  Selected parameters to create the data set 

Parameter Description 

srtt_us Round trip time for subflows 

basertt The minimum seen RTT of 
individual subflows 

snd_cwnd Sending congestion window 

max_window The maximal window ever seen 
from a subflow 

bytes_acked How many bytes were acked 

bytes_sent Total number of data bytes sent 

prior_cwnd The cwnd right before loss recovery 

lost Total data packets lost, including 
retransmissions 

Once we have the emulation environment, we should choose 
the parameters carefully. This process should follow two main 
goals: 1. The parameters should be able to help the trained 
scheduler distinguish different states in the network 2. They 
should provide the feasibility of differentiating various 
circumstances in the network, such as shadowing or fading. 
With these goals in mind, the parameters in Table I were 
extracted from the tcp.h file. However, parameters can be added 
or deleted as needed. In the feature selection phase, some 
important criteria should be considered, including 1. When the 
network state is changed, it should be reflected. 2. Important 
states and conditions such as peak data rates, low latencies, 
recovery times, traffic load portion, and reasons for the packet 

loss should be distinguishable. In the next steps, a selection of 
variables can form the inputs of a supervised learning technique, 
such as a deep neural network, to train the engine. These 
variables should be affected by changes in the network to reflect 
the state of the network, and preferably reside between zero and 
one to avoid normalization. Some selective examples are given 
in Table II. For the final step and labeling of the outputs, random 
hashing is used to weigh the subflows and find out which 
weights appropriately reflect the states based on fair use of the 
bandwidths and user experience measurements such as packet 
loss and data rate.  

Table II  Selective inputs to feed the deep neural network 

Variable Goal 

basertt/srtt_us Traffic load detection 

snd_cwnd /max_window Determine the aggressiveness 
of the sending rate adjustment 

bytes_acked /bytes_sent Estimation of the BDP 
(Bandwidth-Delay Product) 

prior_cwnd /max_window Having a faster recovery 

lost/bytes_sent Distinguishing random losses 

V. CONCLUSION AND FUTURE WORK 

The MPTCP scheduler has some drawbacks in selecting the 
best possible subflow because of its static and non-intelligent 
mechanism. As a result, in this work, we took the first steps 
toward having a supervised machine learning-based scheduler. 
We have established an emulation environment reflecting 
different network conditions, and then, by using a MPTCP proxy 
node, a stereotyped data set was created that can be used in 
supervised learning approaches. In future work, we will feed this 
data set to a deep neural network to conceive of an intelligent 
scheduler that can function properly in various circumstances. 
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