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Abstract7

Background Dystonia is a neurological movement disorder characterised by abnormal in-8

voluntary movements and postures, particularly affecting the head and neck. However, current9

clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to10

capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical manage-11

ment and limiting understanding of the underlying neurobiology. To address this, we developed12

a visual perceptive deep learning framework that utilizes standard clinical videos to comprehen-13

sively evaluate and quantify disease states and the impact of therapeutic interventions, specifically14

deep brain stimulation. This framework overcomes the limitations of traditional rating scales and15

offers an efficient and accurate method that is rater-independent for evaluating and monitoring16

dystonia patients.17

18
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Methods To evaluate the framework, we leveraged semi-standardized clinical video data19

collected in three retrospective, longitudinal cohort studies across seven academic centres in Ger-20

many. We extracted static head angle excursions for clinical validation and derived kinematic21

variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuro-22

modulation effects. The framework was validated in a fully independent cohort of generalised23

dystonia patients.24

25

Findings Computer vision-derived measurements of head angle excursions showed a strong26

correlation with clinically assigned scores, outperforming previous approaches employing spe-27

cialised camera equipment. Across comparisons, we discovered a consistent set of kinematic fea-28

tures derived from full video assessments, which encoded information relevant to disease severity,29

subtype, and effects of neural circuit intervention more strongly and independently of static head30

angle deviations predominantly used for scoring.31

32

Interpretation The proposed visual perceptive machine learning framework reveals kine-33

matic pathosignatures of dystonia which may be utilized to augment clinical management, facil-34

itate scientific translation and inform personalised and precision approaches in Neurology.35

36

Research in context37

Evidence before this study Clinical assessment of dystonia, a neurological movement disorder,38

has traditionally relied on rating scales that aim to simplify complex phenomenology into lower-39

dimensional rating items. However, these score-based assessments have significant clinimetric limita-40

tions and do not fully capture the rich spatiotemporal dynamics of dystonic phenomena, which are41

crucial for clinical judgment and pathophysiological understanding. In contrast, recent investigations42

in animal models of dystonia have already demonstrated the utility and relevance of quantitative43

methods for phenotyping, which gradually supersedes previous observer-dependent behavioural anal-44

yses. Taken together, this has led to a need for more objective and detailed clinical evaluation methods45

of dystonia.46

We performed a PubMed search up to July 2023 combining the terms ”dystonia” AND (”deep47

learning” OR ”machine learning” or ”computer vision” OR ”vision-based” OR ”video-based”) AND48

(”angle” OR ”kinematic” OR ”rating” OR ”scoring” OR ”movement analysis”) including abstracts49

in English or German. The search yielded three studies that validated vision-based frameworks for50

automating the assessment of cervical dystonia severity compared to clinician-annotated ratings. Two51

of these studies focused on deriving head angle deviations from specialised camera setups, while the52

third study utilised computer vision in a retrospective video dataset recorded using conventional53

equipment. These studies reported fair to moderately strong correlations between vision-based head54

angle measurements and clinical scores. Additionally, two studies investigated computer vision for55

assessing head tremor in the context of cervical dystonia: one single case report demonstrated the56

clinical validity of computer vision-derived head angle and head tremor metrics, while a retrospective57

cross-sectional study reported moderately strong clinical agreement of computer vision-derived head58

oscillation metrics across different dystonia subgroups. Two additional studies used computer vision-59

based kinematics to quantify dystonia-like phenomena in rodent models of monogenetic dystonia,60

demonstrating utility in both phenotype and genotype predictions.61

However, most of the clinical studies were limited to static task conditions, where patients at-62

tempted to hold a neutral position of the head, thus not providing a naturalistic account of dysto-63

nia. Moreover, beyond head angular deviations and oscillation metrics, no study explored a broader64

kinematic feature space that reflects the true spatiotemporal complexity of dystonic movements. Ad-65

ditionally, the studies assessed patients at single time points without considering different therapy66

conditions, particularly the effects of deep brain stimulation, which is a highly effective intervention67

targeting brain circuits. Nor did they compare dystonia sub-types, such as cervical and generalised68

systonia.69

Added value of this study In this study, we present a comprehensive visual perceptive deep learn-70

ing framework that addresses the gaps in current dystonia assessments. We use this framework to71

retrospectively analyse a unique dataset from three multi-centric, studies encompassing video exami-72

nations of patients along the dystonic severity continuum, including different deep brain stimulation73
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states. Our framework goes beyond the automation of suboptimal symptom severity assessments by74

reverse engineering a set of clinically inspired kinematic features. The resulting high dimensional, yet75

intuitively interpretable kinematic feature space enabled us to explore disease states and effects of76

brain circuit therapies in a level of detail comparable to experimental neuroscientific investigations.77

Through a data-driven approach, we have identified a consistent set of only four dynamic parame-78

ters that encode dystonia severity, subtype, and the efficacy of brain circuit interventions. Notably,79

these features are independent of static head angle deviations, which play a central role in dystonia80

severity scores, pointing to the involvement of partially distinct neurobiological processes not cap-81

tured by these scores. Our findings align with emerging concepts of symptom-specific brain circuits82

and findings in rodent models of dystonia, thereby exemplifying the visual perceptive framework’s83

potential to augment clinical management and bridge translational gaps in movement disorders re-84

search. By providing a more comprehensive and precise assessment of the disorder, our study offers85

valuable insights for improved treatment strategies and further understanding of dystonia’s complex86

neurobiology.87

Implications of all the available evidence The available evidence collectively underscores the88

limitations of traditional rating scales in capturing the informative spatiotemporal dynamics of dys-89

tonic movements, emphasizing the need for more objective and granular evaluation methods. In line90

with recent animal studies using computer vision for dystonia quantification, recent clinical stud-91

ies have shown the potential of computer vision-based frameworks in automating cervical dystonia92

severity assessment and capturing head tremor metrics. However, their underlying study designs may93

inadvertently reinforce limitations associated with the clinical scoring process.94

In this study, we introduce a comprehensive visual perceptive deep learning framework that serves95

as a powerful platform to augment clinical judgement and generate valuable pathophysiological in-96

sights by extracting a set of clinically inspired, interpretable kinematic features. Our findings have97

implications beyond dystonia, showcasing the utility of visual perceptive frameworks in enhancing98

clinical management and fostering integration with advanced neuroimaging and neurotechnological99

methods. This study opens doors for future translational research to explore the broader application100

of computer vision and deep learning techniques to derive kinematic signatures of movement disorders101

across species and experimental conditions, promising more precise and personalised assessments that102

can significantly improve therapeutic strategies and patient outcomes.103

Introduction104

Dystonia is a neurological disorder characterised by abnormal movements and postures caused by105

involuntary muscle contractions[1]. It is recognised as the third most prevalent movement disorder,106

with recent estimates as high as 732 per 100,000 individuals [2]. Despite advancements in under-107

standing the epidemiological, neurogenetic, and neurobiological factors associated with dystonia, the108

identification of objective biomarkers remains challenging. Consequently, the diagnosis, monitoring109

of treatment outcomes, and classification of dystonia heavily rely on clinical phenomenology. This110

entails considering various factors, such as the distribution of affected body regions, which allows for111

categorising dystonia along a severity spectrum of focal, segmental and generalised manifestations[2].112

However, dystonic movements exhibit highly complex spatiotemporal characteristics, involving a com-113

bination of tonic and phasic elements, such as twisting, tremulous oscillations, and overflow to other114

body regions, occurring on variable time scales and exacerbated or alleviated by certain movements115

[1, 3–5]. Achieving precise clinical phenotyping of dystonia poses a significant challenge, demanding116

expert visual perception skills[6].117

To accurately assess disease progression and therapeutic outcomes in dystonia, it is essential to118

employ reliable and well-defined operational measures that can be consistently measured and inter-119

preted across diverse clinical settings and practitioners. This is of particular relevance for assessing120

outcomes of available therapies, ranging from oral medication to Botulinum neurotoxin injections121

for selective muscle weakening and deep brain stimulation (DBS)[7]. To date, clinical rating scales122

such as the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) for cervical dystonia123

and the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) for generalized dystonia have been124

extensively utilised for this purpose [8–10]. These scales aim to condense complex clinical observa-125

tions into simplified representations, relying on a limited set of categorical items, such as head-angle126
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deviations in attempted neutral head position, encoded by a few ordinal values. Although this simpli-127

fication offers advantages in time-sensitive clinical settings, it is accompanied by significant clinimetric128

limitations, including substantial inter-rater variability[11–13]. Furthermore, the original versions of129

these scales fail to quantify important information regarding abnormal movement trajectories, action-130

induced changes of dystonia, dystonic overflow (i.e., the spread of dystonic posturing/movement to131

adjacent body parts), and tremor, which has recently been recognised as affecting a majority of dys-132

tonia patients [14]. Yet, emerging evidence from animal models highlights the critical role played by133

the rich spatiotemporal structure of motor behavior in understanding the pathocircuitry of dystonia,134

thereby shaping our approach to investigation and treatment [15–17]. The lack of standardised op-135

erational and shared measures hampers translational efforts, thus necessitating the development of136

objective outcome measures[3, 18].137

To address the challenges of dystonia assessment, researchers have explored various instrumented138

solutions, such as electromyography[7] or body-worn sensors[19]. However, the successful integration139

of these approaches into clinical practice has proven elusive[20]. Contactless, vision-based methods140

utilising multiple and/or special depth cameras have shown promise in extracting head angles in141

cervical dystonia. Nevertheless, their clinical validity has been limited, especially when operating142

under monocular conditions [21, 22]. In this context, computer vision, a branch of contemporary143

artificial intelligence, has emerged as a disruptive and promising technology in clinical neuroscience144

and broader medical applications [23–26]. By leveraging convolutional neural networks (CNNs),145

visual perceptive frameworks offer several advantages, including real-time 3D human pose tracking146

derived from monocular 2D videos captured by consumer-grade camera hardware [27, 28]. These147

advancements have significantly improved head pose estimation [29–31], some of which have been148

employed to semi-automate TWSTRS ratings [20]. However, these studies have primarily focused149

on reproducing the rating score by quantifying static head angular deviations in a single fixed head150

position, thereby reinforcing the aforementioned limitations and biases associated with the rating151

scale. Our hypothesis is that a naturalistic approach, which incorporates both gestalt aspects and152

the dynamics of head movement, will lead to a more accurate and ecologically valid assessment of153

dystonia. This approach will enable us to capture subtle variations and intricate patterns that may154

have been overlooked by previous constrained methods. Furthermore, we propose that including155

healthy controls and different dystonia subgroups, with repeated recordings at various therapeutic156

states (e.g., different DBS settings), will allow us to explore multiple facets of specificity in these157

digital physiomarkers.158

In this study, we have developed a visual perceptive deep learning framework that utilises com-159

puter vision to analyze the dynamics of natural head movement. The goal was to identify distinct160

patterns, or pathosignatures, that have diagnostic and therapeutic implications. By doing so, we161

aimed to enhance our understanding of the underlying pathophysiology of dystonia and effects of162

therapeutic neuromodulation. Specifically, we trained a novel convolutional neural network to pre-163

dict movement states, and we combined the outputs with head angles obtained from a benchmark164

algorithm, MediaPipe, to extract both static and kinematic features from patients undergoing clinical165

dystonia examinations. To demonstrate the feasibility of our approach, we conducted a retrospective166

cohort study to assess the agreement between predicted severity and clinical ratings, establishing how167

both static and dynamic variables change in response to DBS. Subsequently, we validated the predic-168

tive accuracy of dynamic variables using an additional cohort of patients with generalised dystonia.169

Lastly, we provide insights into the added value of the dynamic variables in differentiating between170

patients with cervical dystonia and those with generalised dystonia.171

Methods172

Study design and participants173

We sourced clinical video data documenting the severity of cervical and generalised/segmental dys-174

tonia from two prospective, longitudinal, multi-centre cohort studies investigating the therapeutical175

effect of pallidal DBS on dystonia [32–34] and a third, multi-centre retrospective investigation ana-176

lyzing clinical outcomes using advanced neuroimaging techniques [35]. The sourced data was split177

into two data sets, based on dystonia subtype: (i) cervical and (ii) generalised dystonia. The cervical178

dystonia cohort comprised 86 cervical dystonia patients from Rostock, Heidelberg, Dusseldorf, Berlin,179

Innsbruck, Oslo, Hannover, Kiel, Würzburg. The generalised dystonia cohort, used for independent180
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validation, comprised 30 patients from the same centres. Individual datasets were included if (i) they181

contained at least one pre-operative clinical rating video showing the full dystonic phenotype and182

a video from the chronic postoperative phase (3-15 months post surgery) documenting the effects183

of clinically programmed DBS and (ii) both videos fulfilled minimal criteria ensuring video quality,184

which were chosen to reflect the current best practice in clinical computer vision approaches [20, 23,185

24]. These were: (i) front view perspective of a single individual sitting on a chair, (ii) no significantly186

obscuring items on patients (e. g. excessive head dressings with externalised DBS device), (ii) no187

excessive camera movements, variable zoom depths or lighting insufficient to identify typical body188

landmarks (e.g., eyes), (iii) continuous presence of head and neck in the camera frame. A final set189

of 232 videos, comprising a total of 116 individual patients, was analysed in this study. All videos190

were recorded with standard consumer grade camera hardware, in most instances mounted on a tri-191

pod. The minimal spatiotemporal resolution was 540 × 540 pixels and 24 frames per second. An192

additional cohort of 22 healthy controls underwent a structured TWSTRS examination and a head193

position matching task. This task was precisely timed to map ground truths of head movement range194

along each of the three principal rotational axes (pitch, yaw, tilt; see supplementary Figure S1 for195

the detailed protocol).196

Ethics approval. This study was approved by the Julius-Maximilians University ethics committee197

(AZ 301/20). The original studies had been approved by the responsible ethics committees.198

Clinical scoring. Respective dystonia severity rating scales, i.e., Burke-Fahn-Marsden dystonia199

rating scale (BFMDRS) for generalised dystonia and the Toronto Western Spasmodic Torticollis200

severity part (TWSTRS) for cervical dystonia, had originally been administered in an open-label201

approach or by one expert rater. In order to eliminate potential scoring biases and to extend the202

clinical rating to include head tremor[9], all videos were re-scored. To this end, video segments in203

which patients were asked to let their head drift to its natural null position were annotated. These204

segments partly reflect the individual dystonic phenotype and its severity (corresponding to TWSTRS205

severity element I). Three raters, two blinded senior movement disorders experts (DZ, CWI) and206

one junior investigator (LF) specifically trained using the TWSTRS teaching tape[8], applied the207

TWSTRS severity part. Three raters, two blinded senior movement disorders experts (DZ, SRS) and208

one junior investigator (LF), also applied an additional head tremor subscore from TWSTRS-2[9].209

For subsequent analyses, we mainly focused on TWSTRS severity item assessing the time-weighted210

deviation of head posture from neutral straight ahead along three main rotational axes, namely pitch211

for antero-/retrocollis, yaw for torticollis and tilt for laterocollis. The original TWSTRS contains212

further items, which however failed to meet criteria for utility in subsequent investigations[9]. Each213

item is scored on an ordinal scale from 0−3 (laterocollis, anterocollis, retrocollis) or 0−4 (torticollis,214

head tremor), corresponding to increasing angle deviations of the head from the midline or in case of215

tremor, its amplitude, duration and dominant direction. Assessors’ ratings were collapsed into one216

‘mean score’ for subsequent model evaluations.217

Visual perceptive deep learning framework218

We built a comprehensive framework for assessing dystonia phenotype and severity, enabling auto-219

mated kinematic evaluation directly from video. Our approach involved combining the outputs of two220

convolutional neural networks: one tracking facial landmarks and the other one for extracting gestalt221

information, represented as movement states. From each video, utilizing the deep learning outputs,222

we derived static variables during periods when patients were instructed to allow their heads to drift223

to a neutral position (referred to as the null position). In addition, dynamic variables capturing the224

patients’ natural movement patterns were extracted using the entire duration of the TWSTRS video225

examination. We should note that these clinical examinations often didn’t follow the full TWSTRS226

protocol, nor did they necessarily follow the prescribed ordering of movements.227

To achieve face and head tracking, we utilized a pre-trained model from MediaPipe [30]. We228

opted for MediaPipe due to its real-time applicability and compatibility with mobile devices, which229

holds potential for point-of-care applications. The default tracking values of MediaPipe’s video mode230

(detection confidence: 0.5; tracking confidence: 0.5) were employed. Head angles were calculated231

relative to a neutral face-forward position along three axes of movement (torticollis, laterocollis,232

and antero-/retrocollis) using the face mask. We employed the orthogonal Procrustes technique to233
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compute the rotation necessary to minimize the discrepancy between the rotated 3D face mask and234

a face-forward face mask, thus obtaining accurate head angles [36].235

To track gestalt patterns throughout the videotaped examinations, which lacked a fixed protocol236

and order, we aimed to classify the head movement states on a frame-by-frame basis along the three237

principal axes. For this purpose, we developed a custom model trained on videos of healthy controls.238

We fine-tuned a pre-trained resnet50 convolutional neural network model in PyTorch for 30 epochs to239

achieve loss convergence. The training and validation data sets consisted of images from 22 healthy240

controls and 23 cervical dystonia patients, with participants exclusively assigned to one data split. 15241

healthy controls and 15 patients were used for training, and the remainder for validation. Movement242

states (e.g., ‘face forward’ or ‘tilt left’) were labeled by a junior movement disorders expert (MF). The243

custom model demonstrated training and validation accuracies of 83.8% and 84.6%, respectively. We244

employed multilabel classification with a binary cross-entropy loss function during model training,245

and additional details are provided in the appendix.246

Using the outputs of the two convolutional neural network models, we engineered several kinematic247

features that capture the temporal evolution of patients’ head trajectories beyond simple angular de-248

viations. These kinematic features aimed to quantify clinically relevant observations in dystonia that249

are commonly noted but seldom quantified in clinical settings, such as movement overflow to other250

bodyparts as well as action-induced changes of dystonia, both resulting in asymmetrical or abnor-251

mal movement trajectories, dystonic tremor[14] and the complexity of dystonia characterised by the252

involvement of multiple axes in phasic or tonic movements and movement predictability over time.253

The features were partially harmonised with kinematic features recently reported to be relevant to254

dystonia phenotype and genetics in rodent models of dystonia [15, 16] as well as the characterisation255

of brain dynamics more broadly [37, 38]. The derived features primarily included correlations, sym-256

metries, oscillatory and entropy-related characteristics, which are further described below.257

258

Correlation features: The movement state predictions, represented by softmax outputs from the259

convolutional neural network, and the head-angle measurements (in degrees) are continuous values260

assigned to each frame of the video. To investigate the relationship between movement states, we261

calculated the Pearson correlation between them. By calculating the Pearson correlation between262

movement states, we are exploring the interdependence of different movement patterns. For instance,263

a high correlation between the prediction probabilities of rotation left and tilt left would indicate264

that the movement vectors blend or exhibit a certain degree of overlap when the patient rotates left.265

This suggests that the movement states become ‘entangled’ or ‘intermixed’ during specific actions,266

as recently suggested in experimental studies [15]. Healthy controls are expected to show minimal267

correlations between movement states and head angles, indicating precise and distinct control of head268

movements. These features aim to capture phenomena such as overflow and complexity, as well as269

abnormal movement trajectories.270

Head oscillations: The primary frequency and amplitude of head-angle oscillations along each271

axis of motion were assessed using a Fourier spectrogram. To isolate the relevant oscillatory signals272

and remove intended head movements dictated by examination protocol, a bandpass filter with an273

order 6 Butterworth filter was applied, limiting the frequencies to the range of 2 − 10 Hz. These274

features aim to capture phasic characteristics, such as dystonic jerks and tremors. It is expected that275

healthy controls will exhibit minimal or no head oscillations in these frequency ranges.276

Symmetry features: Each axis of head motion can exhibit movement in opposite directions from277

a neutral face-forward position. To quantify the symmetry of each motion axis, we calculated the278

proportion of time the head was oriented in one direction compared to the opposite direction. For279

instance, if a patient spent 7 seconds in rotation left and only 3 seconds in rotation right, the symmetry280

value would be calculated as (7 − 3)/10 = 4/10 = 0.4. Values closer to zero indicate a stronger281

symmetry, while large positive or negative values indicate a significant asymmetry. These features282

aim to capture fixed, tonically abnormal head deviations and asymmetrical movement trajectories.283

Healthy controls are expected to demonstrate a high degree of symmetry in their head movements.284
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Multi-scale entropy (MSE): Entropy measures provide a quantitative way to assess the irreg-285

ularity or complexity of time series data, making them well-suited for capturing the intricate and286

nonlinear dynamics often observed in dystonic movements [37, 38]. Abnormal movements in dystonia287

often exhibit both short-term irregularities (e.g., tremor) and long-term temporal patterns (e.g., sus-288

tained postures) that are not easily captured by traditional measures. MSE quantifies the complexity289

and regularity of dystonic movements at different temporal scales. By applying MSE to kinematic290

time series data, a scale-dependent measure of complexity can be obtained, potentially revealing291

specific temporal patterns or fluctuations associated with disease states or treatment effects. We292

hypothesis that DBS will increase the regularity and predictability of their movements, indicative of293

improved motor control.294

Evaluation of the visual perceptive framework295

Performance in evaluating predominant direction and severity of dystonic head deviation was mea-296

sured by Pearson correlation between the clinically annotated TWSTRS and the head angle excursion297

along each axis of motion respectively. Performance in evaluating the tremor component of patients298

was measured by Pearson correlation between the clinically annotated tremor score and the head299

angle oscillation amplitude along each axis of motion respectively. To measure the robustness of our300

approach, a validation dataset comprising generalised dystonia patients without clinical annotations301

was used. The same kinematic variables were extracted from the full videos and a statistical analysis302

comparing DBS conditions (preoperative off, postoperative on).303

Statistical analysis304

Univariate analysis Univariate variable analysis was performed to discover kinematic features305

that differed (i) between stimulation conditions in cervical dystonia, and between cervical and gen-306

eralised dystonia. To establish significance, we used either Wilcoxon (when paired between pre- and307

postoperatively) or Mann-Whitney U-tests, and report p-values adjusted for multiple comparisons308

(Benjamini Hochberg false discovery rate correction, FDR). Effect sizes were computed using rank-309

biserial correlation. To aid interpretation, we ranked variables by their effect sizes. Statistical analyses310

were done in Python with the statmodels package (0.15.0). Correlation analysis was performed to311

identify relationships between head angle excursions and annotated scores. Pearson correlations were312

calculated in Python with the scipy package (1.4.1).313

Harmonic analysis The strength of the fundamental tremor frequency and its first harmonic314

(double the fundamental frequency) were calculated using the distance correlation between their315

instantaneous phases. The harmonic strengths were determined using the head angles for each axis316

of motion respectively. Distance correlations were calculated in Python with the dcor package (0.6)317

Results318

A total of 88 patients were retrospectively rated in both treatment conditions by three independent319

raters using the TWSTRS severity rating scale, as well as the TWSTRS-2 tremor item. We ensured320

that the raters were blinded to the disease and treatment status of the patients. For severity ratings,321

we focused on the attempted neutral, ’null’ head position captured in each video, aiming to capture322

dystonic head deviations in three principal axes: yaw for torticollis, tilt for laterocollis, and pitch323

for antero-/retrocollis. We observed considerable variation in the annotated scores among the raters,324

which differed between axes: while clinical raters strongly agreed (mean Cohen-kappa score: 0.86) on325

torticollis severity, they only moderately agreed on laterocollis and antero-/retrocollis scores (mean326

Cohen-kappa scores: 0.65, 0.67 respectively) (Figure S2). Across all axes, DBS treatment led to327

a significant reduction in clinical ratings, i.e., severity (Figure S3A). However, effect sizes differed328

considerably within each axis: 0.71 for torticollis, 0.49 for laterocollis and 0.85 for anteroretrocollis.329

Moreover, individual clinical scores exhibited a strong correlation between the pre- and post-operative330

DBS conditions (Figure S4A). Longitudinally, post-operative clinical ratings in the torticollis and331

laterocollis directions demonstrated a negative correlation with the duration between pre- and post-332

operative evaluations, in line with the clinical observation of delayed effects (Figure S4B). However,333
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Figure 1: Measurement of static and kinematic features using computer vision workflow.
Videos comprising individual frames are fed into convolutional neural network models that predict
the movement state, i.e., the probability of the head direction of a patient, and track face-mesh
coordinates to derive head angles for each frame. Head angle deviations can be extracted directly
during periods of the video where a patient attempts a neutral face forward position. Using the full
video, kinematic features can be constructed from the movement states predictions and angles, e.g.,
the correlation between axis of rotation or dystonic tremors. Features can be stored and compared
across groups, such as operation status or disease.

there was no correlation between the difference in clinical rating from pre- to post-operation and the334

duration of time (Figure S4C).335

We proceeded to assess the clinical relevance of the visual perceptive framework in accurately336

capturing angular deviations of the head. We extracted the excursion of head angles from attempted337

neutral head positions for each patient. The head angles strongly agreed with clinical scores for all338

prinicipal axes of motion (r ≥ 0.66, Figure 2A). We further observed a significant reduction of head339

angle deviations in each axis by DBS (Figure 2B) with largest effect sizes in torticollis (0.59), followed340

by laterocollis (0.46) and anteroretrocollis (0.38). To further investigate the relationship between head341

angle deviations and clinical characteristics, we divided the patients into three phenotypic groups342

based on their dominant axis of deviation. We discovered that each group of patients exhibited343

a significant change from pre- to post-operative evaluations only in their respective dominant axis344

of deviation (effect sizes: torticollis 0.76; laterocollis 0.93; anteroretrocollis 0.60; Figure 2C). For345

instance, patients with a dominant torticollis excursion only demonstrated a significant change in346

yaw but not in other axes. Furthermore, we found no systematic excursion in a particular direction347

for any axis of movement (Figure S5). The pre- and post-operative head angles exhibited a strong348

correlation (Figure 2D), indicating a reduction in angle excursion following treatment but not a349

complete elimination. However, we did not observe a systematic correlation between head angles in350

different axes of motion among both patients and controls (Figure 2E).351

Next, we hypothesized that relying solely on the measurement of static head angular deviations352

is inadequate for providing a comprehensive description of the diverse range of dystonic movement353

abnormalities observed in real-world clinical assessments. An example of the head-angle kinematics354

from a full clinical examination both pre- and post-operation is shown in Figure 3A. Therefore, we355

conducted an explorative analysis of videos encompassing the entire TWSTRS severity assessment,356

utilising a comprehensive set of clinically inspired kinematic variables (Figure 3C left). First, we find357

that several kinematic variables are significantly larger pre-operatively. The top five differentiating358

features included oscillatory characteristics in each axis (ranging from 2-10 Hz) and correlations of359

movement states. Notably, the effect sizes of these kinematic features were generally larger than those360

of angle deviations during attempted neutral face-forward positioning, suggesting that they are more361

responsive to DBS intervention. To identify kinematic features that are predominantly associated with362

a favourable treatment response, we further divided the sample into responder and non-responder363

groups based on the degree of improvement in overall clinical rater scores (i.e., patients with ≥ or364

< 30% improvement, Figure 3B). After repeating statistical tests between DBS conditions for the365
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Figure 2: Computer vision analysis of head angle during periods of face-forward. A 2-D
histograms for comparing video derived head-angle (absolute angle) and clinically assigned TWSTRS
scores for each axis of motion. B Box plots showing (absolute) pre- (grey) and post- (purple) operative
angles, for each axes of movement. Median and interquartile ranges are displayed in each plot. C Like
(B) but patients are separated into their dominant phenotypes, i.e., their dominant axis of deviation
from face-forward. D Scatter plot showing correlation of predicted pre- and post-operative head
angles for each movement axis. E Scatter plots correlating each pair of axes of motion for (i) patients
and (ii) healthy controls, for pre- and post-op combined. Correlations were Pearson r tests. Group
tests were Mann-Whitney U-tests: * p< 0.05; ** p< 0.01; *** p< 0.001.

responder and non-responder groups respectively, we found that the top five kinematic features were366

also more strongly modulated in the responder group (calculated as effect size of responders minus367

the effect size of non-responders, Figure 3C right). To understand the time-scales at which dystonic368

movements were modulated by DBS, we applied multiscale entropy analysis to the head-angle time-369

series. At DBS ON, patients displayed less complex head movements at shorter timescales (i.e., < 1s)370

(Figure S6), but no significant differences were observed at longer scales (i.e., > 1s), indicating that371

neural circuit interventions restore movement regularity on subsecond time scales.372

Despite the original purpose of the scores to capture head-angle deviations from the natural face-373

forward position, we hypothesized a significant influence of a broader clinical impression beyond374

pure angular deviations. Hence, we investigated whether the kinematic variables also correlated with375

the clinically annotated scores. We found that various kinematic features positively and negatively376
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Figure 3: Statistical analysis of kinematic variables from full-videos. Kinematic variables
(e.g., head tremor amplitude and frequency, correlations of movement states) were derived from the
full-video as patients performed a series of clinically assigned movements. A Example of the head-
angle kinematics for a randomly chosen patient pre- and post-operation reveals a more structured
movement with DBS. B Responders are patients who observed a 30% relative improvement in their
clinically rated score from pre-operative DBS off to post-operative DBS on. C Summary of statisti-
cal analysis, showing (i) effect size of Wilcoxon tests between pre- and post-operation (rank-biserial
correlation, positive effect indicating variable is larger during pre-operation period) and (ii) the dif-
ference in effect sizes of the responder group and non-responder group (all tests Benjamini Hochberg
FDR corrected). D A scatter plot showing the relationship between predicted values of total severity
scores using additive sequential feature selection on a linear model with a combination of kinematic
and static features (mean absolute error 4.79). The dotted red line corresponds to line of perfect
agreement between predicted and true holistic scores. E 2-D histograms for comparing video derived
oscillations for each axis of motion and a clinically assigned tremor severity score (not defined by axis
of motion). Fitted linear model in black. Significance levels: * p< 0.05; ** p< 0.01; *** p< 0.001.

correlated with the scores of each axis of head motion (FDR corrected p-values, Figure S7). These377

kinematic features included symmetries of movement, correlations of movement states, and oscillation378

amplitudes and frequencies. By collapsing the TWSTRS sub-item scores into an average, we further379

defined a holistic, clinical dystonia severity measure. Notably, the correlation strength of kinematic380

features to the holistic score increased when compared to the scores of each independent axis of381

motion, in some cases surpassing the correlation strength of the head-angle deviations (Figure S7).382

To independently verify the holistic score, we collected the original total TWSTRS severity score for383

a sub-cohort of patients (scores ranging from 0-27). Using a linear model with additive sequential384

feature selection, we found the optimal model to predict the total TWSTR severity score included a385

combination of static head-angle deviations and kinematic features (mean absolute error 4.79, Fig-386

ure 3D). Repeating sequential feature selection with only head-angle deviations produced inferior387

predictions (mean absolute error 5.63), suggesting that head-angle deviations must be accompanied388

by kinematic features for the automated assessment of overall dystonic severity. We further exam-389

ined the oscillatory kinematic features along each axis and found that they correlated with clinically390

assigned tremor scores (Figure 3E). However, we found no significant correlation between the oscilla-391

tion amplitudes and face-forward angle deviations (Figure S8), suggesting that they capture distinct392

dimensions of dystonic movements independent of the angle deviations in static head position.393

To assess the robustness and validity of the extended kinematic feature set, we used an indepen-394

dent, out-of-sample data set comprising pre- and post-operative videos of 30 patients with generalised395
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Figure 4: Comparison of generalised and cervical dystonia patients using kinematics
variables. Annotations of face-forward periods were unavailable and thus only kinematic variables
from the full-videos were extracted. A Schematic describing the typical visibility of patient pose
captured by videos. Markers indicate common symptoms in cervical and generalised dystonia. B
Effect sizes (rank-biserial correlation) of Mann-Whitney U-tests (Benjamini-Hochberg FDR corrected)
between generalised and cervical dystonia patients (positive effective indicating variable is larger in
generalised dystonia patients). C Violin plots of variables that are significantly larger in generalised
dystonia patients relative to cervical dystonia patients (none were found as statistically significant
vice-versa). Healthy controls shown for reference. D Comparison of oscillation harmonic strengths
between cervical and generalised dystonia patients along each axis of motion. Harmonic strength is
measured per patient as the distance correlation between the phases of the dominant tremor frequency
and its harmonic (twice the dominant frequency). Mann-Whitney U-tests: * p< 0.05; ** p< 0.01;
*** p< 0.001.

dystonia collected between 2002 and 2008. It should be noted that patients with generalised dysto-396

nia tend to also have craniocervical disease manifestations [13]. Due to the video framing, only the397

upper-half poses of patients were captured, thereby excluding additional signs of generalised dystonia398

such as twisting in limbs from the analysis (Figure 4A). As clinical ratings and periods of static399

face-forward were unavailable for the generalised dystonia dataset, only kinematic variables (and not400

head angle excursions) were extracted. We repeated the statistical analysis of kinematic variables as401

modulated by DBS in generalised dystonia patients (Figure S9). Remarkably, we observed that the402

same five dynamic variables that exhibited the strongest response to DBS in cervical dystonia were403

also significantly modulated in the generalised dystonia patients (Figure S9A).404

Finally, we asked whether kinematic features could differentiate between cervical and generalised405

dystonia. Analysis within the kinematic feature space revealed seven features that displayed a clear406

differentiation between cervical and generalised patients (Figure 4B). These features were consistently407

larger in generalised dystonia patients. Among the significant features, four corresponded to the previ-408

ously identified five kinematic features that were preferentially modulated by DBS: oscillatory features409

in all three axes and a mean movement correlation with the face-forward position. Additionally, two410

frequency-related variables capturing the frequency of head oscillations in the laterocollis and an-411

teroretrocollis axes were also significantly larger in generalised dystonia patients. Notably, all the412

identified features exhibited pronounced differences compared to healthy controls (Figure 4C), indi-413

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.09.11.23295260doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.11.23295260
http://creativecommons.org/licenses/by-nc-nd/4.0/


cating their sensitivity to dystonic movements. Considering the prominent involvement of oscillatory414

kinematic features, which are associated with tremor, we further examined the strength of harmonics415

in cervical and generalised dystonia patients. Our analysis revealed that generalised dystonia patients416

exhibited stronger harmonics in head tremor oscillations across all axes of motion, in comparison to417

cervical dystonia patients (Figure 4D). Moreover, multiscale entropy analysis showed that generalised418

dystonia patients displayed maximal entropy at much earlier timescales relative to cervical dystonia419

patients (Figure S10). This suggests that longer-scale movement patterns hold valuable information420

to distinguish between different stages of dystonia.421

Discussion422

In this study, we developed a visual perceptive framework using convolutional neural networks to423

comprehensively evaluate dystonia based on clinical video recordings. Our unique dataset comprised424

longitudinal video documentation of cervical and generalised dystonia patients’ full clinical assess-425

ments at multiple medical centers, including those with and without DBS. This enabled us to compre-426

hensively evaluate head movements in both task-constrained, static conditions and quasi-naturalistic,427

dynamic conditions, providing a holistic assessment of dystonia. Beyond technical validation, we428

demonstrate the framework’s utility to augment clinical judgement and facilitate insights pertinent429

to disease states and the readout of neural circuit intervention effects.430

Clinical scales, commonly used to assess dystonia and other neurological disorders, have inherent431

limitations due to clinimetric issues, likely stemming from the oversimplification of complex disease432

phenomenology into low-dimensional ordinal parameters [9, 11–13]. While necessary in time-sensitive433

clinical settings, this oversimplification comes at the expense of precision, granularity, and ultimately,434

ecological validity. An illustration of this is evident when comparing the relatively simple contempo-435

rary scoring approaches with Oppenheim’s detailed phenotypical account of dystonia from 1911 [39]436

. For example, TWSTRS omits some key clinical features of dystonia which only become evident437

with dynamic, voluntary movements and undoubtedly influence overall clinical judgement. Whilst438

adaptions to TWSTRS have incorporated tremor related features [40, 41], there is still a growing439

demand for more objective and granular disease metrics [3, 18]. Already widely used for quantitative440

phenotyping in experimental neuroscience, computer vision approaches have recently emerged as a441

promising new tool for clinical assessments [20, 23, 24, 42].442

We first demonstrate the robustness and clinical applicability of our deep learning framework in443

accurately inferring head-angle deviations during attempted ’null’ head positions from diverse clinical444

videos captured using consumer-grade hardware. Our visual perceptive approach surpasses various445

vision-based frameworks that relied on multiple or specialized depth cameras to automate ratings446

[21, 22], and achieves comparable performance to a recent study by Zhang et al. [20]. However,447

a distinguishing feature of our approach is the ability to estimate head angles in real-time using a448

portable device such as smartphones or tablets. This capability enables its practical implementation449

in clinical point-of-care settings and at-home monitoring, enhancing accessibility and convenience.450

Moreover, we have applied our framework to diverse clinical videos from multiple centres with slightly451

differing protocols, showing the effects of neuromodulation in both focal and generalised dystonia,452

highlighting the generalisability of our tool and specificity of our findings.453

The key advantage of our framework lies in its capability to analyse full video examinations of454

patients. To showcase this, we reverse-engineered complex clinical observations such as dystonic455

overflow, tremor and the action-dependent dynamics of dystonic movements into objectively mea-456

surable kinematic features. Albeit highly informative and clinically indispensable, these dimensions457

are not explicitly part of the TWSTRS. To this end, we first tuned a convolutional neural network458

to parse naturalistically occurring 3D head positions into discrete, geometrically defined states. By459

projecting each sample into a high-dimensional space comprising clinically inspired and interpretable460

kinematic features, we successfully identified a set of five kinematic variables that exhibited maximal461

differentiation across therapy states. These were in addition to expected improvements in head-angle462

deviations, which have been shown in prior studies [7]. In other words, these features demonstrated463

the most pronounced response to neuromodulation, rendering them highly specific to the behavioral464

downstream effects of the neural circuit intervention. Furthermore, our analysis revealed that these465

same features were closely associated with a favorable treatment response to DBS, as defined clini-466

cally by a relative score reduction of more than 30% [32, 33, 35]. This finding not only underscores467
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the relevance of these features but also highlights their potential as reliable indicators of effect and468

efficacy of neural circuit interventions.469

Our analysis revealed that three of the kinematic features associated with DBS effect were related470

to head oscillations. Additionally, multi-scale entropy analysis highlighted that neuromodulation ex-471

erts the most profound effects on movement regularity on a subsecond time scale, pointing rather to472

high frequency phasic than low frequency, tonic aspects of dystonic movements. This finding aligns473

with recent evidence indicating that head tremor is a prevalent manifestation in the majority of pa-474

tients with cervical dystonia [14, 43, 44]. The recognition of tremor as a core clinical characteristic475

only recently led to the inclusion of a quantifiable tremor item in the revised version of the TWSTRS476

[9]. Tremor-related features emerged most consistently across contrasts, strongly highlighting the477

previously less well documented role of oscillatory aspects in dystonia pathophysiology and therapy.478

Notably, tremor has been associated with impaired physical functioning and pain, which are crucial479

dimensions of quality of life in dystonia [45, 46]. Therefore, the linkage between kinematic features480

and patient-centered outcomes provides an avenue for further investigations into ‘disease architec-481

tures’ comprised by multiple phenotyping axes. The remaining correlational features we identified in482

our analysis provide further insights into potential manifestations of dystonic overflow and multiaxial483

involvement, as expressed in an abnormal covariance of head movement trajectories. These features484

were evaluated throughout dynamic movement trajectories, capturing a key characteristic of dystonia,485

namely the provocation of involuntary, dystonic movements through voluntary action. In an inde-486

pendent validation dataset comprising 30 generalised dystonia patients, we found the same kinematic487

features reflected pallidal DBS effects, confirming aforementioned results in cervical dystonia patients.488

This demonstrates the generalisability of our findings to different states of disease progression and489

further reinforces their disease-specific nature. Furthermore, experimental investigations in rodent490

models of dystonia suggest that similar correlational features are independent predictors of genetic491

susceptibility factors in rodent models of dystonia, establishing a first hint for their neurobiological492

and translational relevance [15].493

To gain further insights into the discriminatory potential of these kinematic features, we at-494

tempted to distinguish different disease states, namely focal-cervical and generalised dystonia, within495

the kinematic feature space. A total of seven features exhibited significant differences, with four of496

the previously identified kinematic features among them. Notably, control patients exhibited the low-497

est values, followed by cervical and then generalised dystonia patients. Multi-scale entropy analysis498

further highlighted that focal and generalised dystonias show a pronounced difference of regularity499

in both subsecond and longer time scales > 1 second, pointing to a more profound dysfunction of500

motor control in generalised dystonia. Overall, these observations align well with the concept of501

a dystonic phenotypical continuum wherein severity progressively increases [13], and suggests that502

these kinematic features sensitively capture disease state and progression, which is of critical rele-503

vance for interventional studies. Moreover, the emergence of a unified feature set specific to both504

cervical and generalised dystonia aligns with recent findings demonstrating the convergence of a mul-505

tisynaptic neural network underlying both dystonia subgroups [47]. The observed motor behavioural506

disorganisation is mirrored on the neurobiological level by pathologically irregular neuronal firing507

patterns associated with the dystonic state [15, 48], overall suggesting that kinematic features can be508

a powerful readout of brain circuit function.509

To better understand what information the kinematic features captured, we next correlated them510

with clinically annotated scores and measured angular head deviations. Despite the clinically an-511

notated scores purposed to capture natural head-angle deviations from attempted null position, we512

found various dynamic features that were correlated with clinical, but not head-angle deviations.513

This included clinical scores along each axis but also a holistic severity score. These results imply514

that the kinematic features are, at least partially, encoded by different neurobiological substrates.515

In terms of oscillatory features, this finding aligns with recent work on diverging symptom-specific516

circuit components for tremor versus dystonia [49]. Moreover, it suggests that clinicians may unin-517

tentionally incorporate more complex kinematic aspects from a patient’s dystonic symptomatology518

into their clinical scores to more accurately reflect the global clinical impression. This could explain519

some of the discussed limitations of current scoring approaches, which may be confounding factors520

for score-based therapeutic or brain-behaviour association studies. Within the context of rapidly521

emerging adaptive neurotechnologies [50] and connectomic neuroimaging techniques [47], intriguing522

use cases for our deep learning approach come to mind, such as pathophysiologically motivated circuit523

interrogation or guidance of adaptive and personalized neuromodulatory treatment regimes[50, 51].524
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Our study has several limitations that should be considered. Firstly, our assessments were limited525

to videos focusing on the upper body, thereby neglecting dystonic phenomena occurring in other526

regions. However, it is important to note that cervical dystonia is one of the most common forms527

of dystonia, and studying head kinematics provides a valuable entry point for investigating digital528

pathosignatures of dystonia, given the relative simplicity of head movements compared to whole-body529

movements. Secondly, although our measurements of oscillation amplitudes demonstrated substantial530

clinical validity, it is important to note that the degree of validity was slightly lower compared to531

previous investigations that exclusively focused on oscillations occurring in the head’s null position532

[52]. We deliberately opted to derive tremor amplitudes from the full videos, considering that tremor533

in cervical dystonia exhibits variation in relation to head position [43, 53]. This approach allowed534

for a more ecologically valid estimation of tremor but also introduced natural variability into the535

measurements. Thirdly, we did not incorporate information on DBS parametrization. The location536

of the implanted lead and the electrical stimulation fields are known to be important predictors of537

therapy response in dystonia [35, 47, 54]. This omission may have influenced the performance of our538

kinematic features in capturing therapy state contrasts, as suboptimal responses could reduce the539

overall distance between therapy states in the feature space. To partially address this limitation, we540

conducted a subgroup analysis specifically focusing on clinically determined good responders.541

Overall, these findings highlight the potential of our visual perceptive framework to enhance and542

augment dystonia diagnosis, monitoring and therapy by uncovering consistent latent pathosigna-543

tures. The proposed modern vision-based approach expands upon traditional principles of ‘medical544

cinematography’ in movement science. Video-derived kinematic pathosignatures may not only inform545

neural circuit therapeutics but also address the critical need for objective and standardized evalua-546

tion methods in the form of digital biomarkers. Their high sensitivity has recently been shown to547

facilitate clinical trials, genotype predictions and continuous monitoring in neurological disorders [24,548

42, 55]. Moreover, our framework may bridge methodological gaps between clinical and experimental549

neuroscience, which has already widely adapted computer vision for phenotyping animal models of550

dystonia [15–17]. We envisage the proposed tool to strengthen translational and precision medicine551

approaches in modern neurology.552
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725

726

S1 Model variable interpretation727

Below we provide more details on the interpretation of the derived variables from the deep learning728

framework:729

Head angles:730

• Angle torticollis: Head-angle deviation from face-forward in yaw axis when a patient is sitting731

in a neutral position. Positive angle = right, Negative angle = left.732

• Angle laterocollis: Head-angle deviation from face-forward in tilt axis when a patient is sitting733

in a neutral position. Positive angle = right tilt, Negative angle = left tilt.734

• Angle antero/retrocollis: Head-angle deviation from face-forward in antero/retrocollis axis when735

a patient is sitting in a neutral position. Positive angle = anterocollis, Negative angle = retro-736

collis.737
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Correlation features:738

• Correlation movement mean: Mean correlation coefficient between all predicted movement739

states.740

• Correlation mean face forward: Mean correlation coefficient of each movement state to face-741

forward movement state.742

Head oscillations:743

• Oscillation amplitude: The amplitude of the largest peak in a Fourier transform of the angles.744

For each axis respectively.745

• Oscillation frequency: The frequency of the largest peak in a Fourier transform of the angles.746

For each axis respectively.747

Symmetry features:748

• Symmetry rotation: Proportion of time head was oriented in one direction compared to the749

opposite direction for the rotation states (left or right).750

• Symmetry tilt: Proportion of time head was oriented in one direction compared to the opposite751

direction for the tilt states (left or right).752

• Symmetry anteroretrocollis: Proportion of time head was oriented in one direction compared753

to the opposite direction for the antero/retrocollis states (forward or backward).754

S2 Supplementary figures755
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Filming protocol healthy control group TWSTRS 

Cluster Time Move 
 5 sec Head straight, transition phase 

Rotation to the right 
30 sec 

10 sec Turn head ¼ range to the right 

10 sec Turn head ½ range to the right 
10 sec Turn head full range to the right 

 5 sec Head straight, transition phase 
Rotation to the left 
30 sec 

10 sec Turn head ¼ range to the left 

10 sec Turn head ½ range to the left 

10 sec Turn head full range to the left 
 5 sec Head straight, transition phase 

Tilt to the right 
30 sec 

10 sec Tilt head ¼ range to the right shoulder 
10 sec Tilt head ½ range to the right shoulder 

10 sec Tilt head full range to the right shoulder 
 5 sec Head straight, transition phase 

Tilt to the left 
30 sec 

10 sec Tilt head ¼ range to the left shoulder 

10 sec Tilt head ½ range to the left shoulder 
10 sec Tilt head full range to the left shoulder 

 5 sec Head straight, transition phase 
Head to chest 
30 sec 

10 sec Head to chest ¼ range 

10 sec Head to chest ½ range 

10 sec Head to chest full range 
 5 sec Head straight, transition phase 

Head backwards 
30 sec 

10 sec Head backwards ¼ range 
10 sec Head backwards ½ range 

10 sec Head backwards full range 
 5 sec Head straight, transition phase 

Looking straight 
forward 

30 sec Head straight 

 5 sec Head straight, transition phase 

Eye movement 
40 sec 

10 sec keep eyes closed 
10 sec Open eyes 

10 sec  Keep eyes closed 
10 sec Open eyes 

 5 sec Head straight, transition phase 

Shoulder lift right 10 sec Lift right shoulder 
 5 sec Head straight, transition phase 

Shoulder lift left 10 sec Lift left shoulder  
 1-5 sec Transition phase, end 

 

Figure S1: Healthy controls filming protocol.
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Figure S2: Agreement of clinical raters. Distribution of Cohen-Kappa-scores by axis (3-paired
comparisons per axis).

Torticollis

Torticollis

A B

Figure S3: Distribution of pre- and post-operative clinically annotated scores. A Box plots
showing clinically rated patient scores (mean across clinical raters) for pre- (grey) and post- (purple)
operation, for each axes of movement. Median and interquartile ranges are displayed in each plot. B
Pre- (top) and post- (bottom) operative distributions of scores. Maximum score is 4 for torticollis
and 3 for laterocollis and anteroretrocollis.
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Figure S4: Comparison of pre- and post-operation scores. A Scatter plot showing correlations
of pre- and post-operation scores. Fitted linear model. B Correlation between date of post-operative
assessment and score. C A scatter plot of the relative change in clinicallly assigned scores between
pre- and post-op (pre-op score subtracted from post-op score). D Histograms of relative changes
in scores (pre-op score subtracted from post-op score). By colours: torticollis (blue), laterocollis
(orange) and anteroretrocollis (green)

-

-

-

-

-
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Torticollis
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Figure S5: Deviations from face-forward are centred at zero at the group-level. Polar
histograms showing that the average angle does not significantly deviate in any direction. One-
sample t-tests were non-significant in each axis of motion.

Torticollis Laterocollis Antero-retrocollisA B C

Figure S6: Multiscale entropy reveals only short timescale differences pre- to post-
operation. Multiscale entropy analysis (approximate entropy) is applied to the each head-angle
time-series for increasing scales (Python EntropyHub 0.2). Scale (x-axis) is defined in units of video
frames (videos were standardised to a sampling rate of 25 frames per second). Maximal entropy is
observed earlier for pre-operative recordings relative to post-operation. Red lines indicate scales with
significant differences between pre and post-operation (paired t-test, p< 0.05).
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Figure S7: Correlation of kinematic features with annotated scores. Clinically annotated
scores (mean across raters) for head-angle deviations from neutral face-forward along each axis are
correlated with engineered kinematic features from full videos. A holistic score taken as the mean
clinical rating across the three axes is also correlated with kinematic features. Only significant (FDR
corrected, p < 0.05) correlations are shown.
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Figure S8: Correlation of kinematic features with face-forward angles. Head-angle deviations
during attempted neutral face-forward are correlated with engineered kinematic features from full
videos. Only significant (FDR multiple comparisons corrected, p < 0.05) correlations are shown.
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Figure S9: Validation of full video kinematics in cohort of generalised dystonia patients.
A Effect size (rank-biserial correlation) of dynamical variables between pre- and post-operation with
Wilcoxon tests. B Violin plots of variables that are significantly larger pre- (grey) relative to post-
(purple) operation. Significance levels: * p< 0.05; ** p< 0.01; *** p< 0.001.

Torticollis Laterocollis Antero-retrocollisA B C

Figure S10: Multiscale entropy reveals differences between generalised and cervical pa-
tients at all scales. Multiscale entropy analysis (approximate entropy) is applied to the each
head-angle time-series for increasing scales (Python EntropyHub 0.2). Maximal entropy is observed
at earlier scales for generalised dystonia patients.
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