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Abstract
Wepresent amethod tomeasure the vonNeumann entanglement entropy of ground states of
quantummany-body systemswhich does not require access to the systemwave function. The
technique is based on a direct thermodynamic study of lattice entanglementHamiltonians—recently
proposed in the paper [Dalmonte et al 2018Nat. Phys. 14 827] viafield theoretical insights—and can
be performed by quantumMonte Carlomethods.We benchmark our technique on critical quantum
spin chains, and apply it to several two-dimensional quantummagnets, wherewe are able to
unambiguously determine the onset of area law in the entanglement entropy, the number of
Goldstone bosons, and to check a recent conjecture on geometric entanglement contribution at
critical points described by strongly coupled field theories. The protocol can also be adapted to
measure entanglement in experiments via quantumquenches.

1. Introduction

Over the last twenty years, entanglement has emerged as a paramount tool to characterize quantumwave
functions [1–4]. A striking example is ground states ∣Yñofmany-body systemswhere, given a spatial bipartition
dividing the system into regionsA andB, the entanglement betweenA andB ismeasured by the vonNeumann
entropy (VNE):

∣ ∣ ( )r r r= - = YñáYS tr ln , tr . 1A A A A A B

TheVNE remarkably provides a systematic way to connect wave function properties to operational definitions
of entanglement, and is of pivotal importance to both quantum information purposes and as a diagnostic tool in
quantummany-body theory. Examples of its relevance include the existence of area laws bounding
entanglement in ground state of localHamiltonians [3], the sharp characterization of conformal field theories
(CFTs) in one-dimension (1D) [5–7], topological order [8, 9] and spontaneous symmetry breaking [10], and its
importance in understanding the complexity of classical simulations [11]. Despite its pivotal importance, the
current understanding of entanglementmeasures inmany-body systems is essentially limited to non-interacting
theories or to lower bounds provided by Renyi entropies, due to the lack ofmethods to calculate theVNE in any
dimensionD>1. This represents a key obstacle in determining both the capabilities ofmany-body systems in
terms of quantum information processing (e.g. howmuch entanglement can be distilled from a given partition),
and the generic relation between universalfield theoretical descriptions and entanglement.

In this work, we describe an approach to compute the vonNeumann entanglement entropy of ground states
without relying on probingwave functions, that (i) is applicable in any dimension, and to a broad class of physical
phenomena, including quantum critical and topologicalmatter; and (ii) it is amenable to simulations based on
QuantumMonteCarlo, and thus scalable to systems sizes order ofmagnitudes larger than attainable with other
methods. The backbone of the technique is the formulation of the entanglementmeasurement problem in terms
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of the thermodynamic properties of the entanglement (modular)Hamiltonian (EH) ˜ r= -H lnA A [12–14],
whose structure is given by the lattice version of the Bisognano–Wichmann (BW) theorem, see the schematic
explanation infigure 1. Concerning low-lying entanglement spectra and correlation functions, the applicability
of the BW theoremon the lattice has been verified in recent works [15, 16]. Here, we take a considerable step
forward, and show that it can also be applied to do accurate entanglement-basedmeasurements of universal
quantities, such as the number ofNambu–Goldstonemodes [10] and central charges [5, 6], at the percent level,
even formodest system sizes.Most remarkably, it allows the calculation of the entanglement ofmany-body
systems in a scalablemanner (well beyondwhat can be donewith alternative numericalmethods), thanks to its
thermodynamic analogy: this allows us to verify the onset of area law in two-dimensional quantummagnets, up
to system sizes including ( ) 103 spins. Such scalability is a key point when interested in universal quantities, as
those are captured by subleading corrections to the entropy in dimensionsD>1.We remark here that, in
general, entanglementmeasures are unrelated to the low-lying entanglement spectrum, and do instead critically
depend on the distribution of all eigenvalues, amuchmore delicate quantity to deal with that was never
addressed in the context of lattice adaption of the BW theorem. In terms of techniques, our work complements
the already successful QMC toolbox to lower-boundmany-body entanglement via Renyi entropies [4, 17–21].

After benchmarking ourmethod on 1D examples (an extension of those results is shown in [22])we carry
outQMC simulations on a series of 2D latticemodels. For the 2DHeisenberg andXYmodels, we provide direct
evidence that (i) theVNE is constrained by the area law (in agreement with lower bounds based onRenyi
entropies), and (ii) the number ofGoldstonemodes can be determinedwith percent accuracy solely from
entanglement properties. For the bilayerHeisenbergmodel, we study the geometric contribution to the
entanglement entropy at its strongly coupled critical point, and verify a recent conjecture onO(N)models [23].

2. Thermodynamics of entanglementHamiltonians

The relation between entanglement and thermodynamic quantities has beenwidely exploited in the quantum
mechanics andfield theory literature: an epitome in this context is theUnruh effect [24], that describes how the
vacuumappears as an equilibrium finite temperature state from the point of view of an accelerating observer. In
the context of axiomaticfield theory, this relation is conveniently expressed by the BW theorem [12–14]. For a
Lorentz invariant theorywithHamiltonian density ( )H x , ( )

=x x x,..., D1 , inD spatial dimensions, the
entanglementHamiltonian of a half-plane bipartitionA defined by x1>0 reads:

˜ [ ( )] ( ) 
òp= + ¢
Î

H x x H x c2 d , 2A
x A

1

where c′ is a constant that ensures r =Tr 1A A . The BW theoremhas been extended to different geometrical
partitions in the presence of conformal invariance [25–27].

These results can be cast on a discrete space-time lattice [15, 16] as follows. For the sake of simplicity, let us
focus on 1D systemswith nearest-neighbor interaction, hn,n+1, and on-site terms, ln; the 2D case is discussed

Figure 1.EntanglementHamiltonians from field theory to latticemodels. Panel (a): schematics of the Bisognano–Wichmann theorem in
two dimensions [12, 13]. A plane is divided into twohalf-planes at x=0. The reduced densitymatrix obtained from the vacuumof
the field theory upon tracing the x<0 region can be interpreted as a thermal equilibrium state with inverse temperatureβ increasing
as a function of the distance from the boundary. Hot region (red) are typicallymore entangled then the cold (blue) ones. Panel (b):
adaption to cylinder geometries. In analogywith the infinite plane case, the inverse entanglement temperature is constant atfixed x
(path γy), while it increases atfixed y (path γx). This picture can immediately be adapted to lattices [panel b1)] [15, 16]: as depicted in
b2), the couplings of the corresponding lattice entanglementHamiltonian are constant along y (Γy), while they increase along x (Γx).
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latter. Up to ¢c , the lattice BW–EHansatz of a subsystemof length L is

⎡
⎣⎢

⎤
⎦⎥

˜ ( ) ( ) ( )å åb= G + G -
=

-

+
=

H n h n l1 2 , 3
n

L

n n
n

L

nEH EH
1

1

, 1
1

where n is the indices of sites within the subsystemA. The coefficientsΓ depend on the geometry of the partition
[12, 16, 25, 26]: (i) for a half-infinite partition under open boundary conditions (OBC)

( ) ( )G =n n, 4

see figure 1(b2); (ii) for subsystem embedded in an infinite system [25]

( ) ( ) ( )G =
-

n
n L n

L
, 5

which corresponds to periodic boundary condition (infinite PBC); and forfinite systems (iii)with both PBC,

( )( )G =
p

pn sinL x

L
, and (iv)OBC, ( )( )G =

p
px sinL x

L

2

2
. It is straightforward to generalize the BW–EHansatz for a

N-dimensional latticemodel [16]: infigure 1(b), we schematically illustrate it for the cylinder geometries
discussed below.

The overall energy scale of equation (3) is related to the ‘speed of light’, v, in the corresponding low-energy
field theory, b = p

vEH
2 and plays the role of an effective inverse temperature. The lattice densitymatrix

corresponding to the subsystemA and its thermal entropy read:

( )r r r= = -
b-

Z
S

e
, Tr ln , 6

H

BW
EH

BW BW BW

EH EH

where the normalization factor is interpreted as a partition function = b-Z Tr e H
EH

EH EH 6. In the present
framework of thermodynamic studies of EH, one needs to understand the predictive power of the BW theorem
in relation to entropies, and to identify a proper theoretical framework to compute theVNE from
thermodynamics.

The predictive power of the BW theoremon the lattice has been broadly verified regarding the low-lying
entanglement spectrum and correlation functions [15, 16, 28–37].While these results represent a promising first
step, they are not informative on the capability of the BW–EH to capture entanglementmeasures, since: (1) they
are limited to some observables and do not shed light on the exact structure of the EH (which has been discussed
only for free theories and for some gapped phases under specific conditions), and (2) they cannot be extended (in
a scalable way) to calculate the full entanglement spectrum for interacting theories, and they are in fact limited to
only few dozens eigenvalues for symmetry sector. Our approach, however, is based on the relation between the
VNE and the thermodynamic entropy of the EH (equation (6)), which can be computed in a scalable way by
quantumMonteCarlomethods inD>1, as we describe in the section 3. Below,we report several systematic
checks on the validity of our approach, via exact benchmarking to one-dimensional spin systems—for
additional checks, see [22], and demonstrate that it allows tomake numerical predictions on entanglement
properties in two-dimensions that are not accessible by any othermethod.

3.Measuring entanglement entropy in numerical simulations

Before discussing the concrete validation examples, we illustrate how tomeasure VNE in numerical simulations
which do not have access to the systemwave function. The strategy relies on any numericalmethod that is able to
compute the thermodynamic entropy of the BW–EHat the entanglement temperature,βEH. This can be
achieved usingQMCalgorithms based onWang–Landau (WL) sampling [38]. Below, we illustrate this by
applying the quantum version of theWLmethod performed in the stochastic series expansion (SSE)QMC
framework [39, 40]. Comparedwith the conventional quantumMonteCarlo (QMC) simulations, that is
performed at afixed temperature, theWLmethod features twomain advantages for the study of the
thermodynamic properties of the EH: (i) it allows to directly compute the thermal entropy at the ‘entanglement
temperature’βEH, and (ii) the thermodynamic properties of the EH are obtained for a broad range of
temperaturewith a single run of the simulation.

TheWLmethodwas originally proposed for classical systems in [38]. The key idea of themethod is to
calculate the density of states, ρ(E) by considering a non-Markovian sampling. For a quantumHamiltonian,
such as the BW–EH, however, onemustmap the system to a classical one. This is done, for instance, using the
SSE framework, which considers the following form for the partition function

6
Wenote that, while in principle the entropy is nothing but the expectation value of the EH, the normalization factorZEH, which is not

universal,makes this approach hardly applicable.
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where the nth order series coefficient g(n) plays the role of the density of states in the classical algorithm.Weuse
both local and loop updates (directed loop updates) in theWL-SSE sampling. The use of loop updates is
particularly important to avoid problemswith the slowing downof the configuration selection process in a
inhomogeneousHamiltonian such as the BW–EH [15] and at critical points [47].We refer to [39, 40] for the
general details of the computation of g(n), and in the appendixwe discuss the technical aspects of the simulation
that are relevant to reproduce our results.

In theWL-SSE algorithm, the sampling of the SSE configurationswith different n is performedwith a
probability function that is proportional to the inverse of the ‘density of states’, 1/g(n). TheWL sampling
generates a histogram for the distribution of n that isflat, i.e.H(n)∼const; the histogramH(n) is obtained
counting the number of times a configurationwith n is observed. The key point of the algorithm is that g(n) can
be computed by iteratively flatteningH(n).More specifically, one start with the guess g(n)=1. Further, each
time the configuration n is accepted g(n) ismultiplied by a factor f, i.e. g(n)→gold(n)f. This process is repeated
untilH(n) isflat. In practice, we consider as a condition for the flatness ofH(n) amaximumdeviation of 20%
from themean value. OnceH(n) isflat, it is reset to zero, and f is decreased by ln( f )→ln( fold)/2 [41]. This
process is repeated until convergence is achieved.Herewe use the convergence condition proposed in [41, 42].

In addition to the aforementioned algorithm, we consider the optimized-broad-histogram algorithm
proposed in [40] for the 2DHeisenbergmodel, see figure 3(a). These results were obtainedwith the ALPS code
[43]7. In this case, we confirm that the twomethods give the same results (within error bars). One point that is
worth to emphasize is that themethod is straightforward to implement on aworkingWL code (only requires to
implement an inhomogeneous version of the systemHamiltonian, as equation (3)) (see footnote 6).

4. Results

4.1.One-dimensional critical systems
Wenowbenchmark our strategy for one-dimensional critical systems, where the calculation of theVNE is
amenable to both exact and tensor network simulations. In this case, theVNEof a subsystemof size L diverges
logarithmically, S(L)∝cln L, where c is the central charge of the underlying CFT.

We consider the BW–EH for the one-dimensionalHeisenbergmodel (HM)

( ) ( )
 

å= G
=

-

+H n S S , 8
n

L

n nHeis
1

1

1

and the quantum Isingmodel (QIM)

( ) ( ) ( )å å= - G - G -
=

-

+
=

H n S S g n S1 2 , 9
n

L

n
z

n
z

n

L

n
x

QIM
1

1

1
1

at its quantum critical point g=1. Infigure 2, we plot the BWVNEunder both PBCs andOBCs. Throughout
this work, we employ dimensionless energy units for the sake of convenience. For the twomodels, the exact
value of the entropy (empty circles) is evaluated using density-matrix-renormalization-group [44] (HM) and
exact diagonalizationmethods (QIM) for a biparition of size L embedded in systems of size 2L. The calculations
of the BW–EH thermal entropy are carried outwithQMCwith both local and SSE directed-loop updates
[45, 46] for theHM, and exact diagonalization for theQIM. In addition to the finite-size EH (red triangles), for
the sake of comparison, we also compute the entropy obtained utilizing the EHof afinite partition in an infinite
system (black circles) [16]: the two are separated only by a constant shift that depends solely on the central
charge.

For the PBC case theVNE increases logarithmically as expected: the corresponding central charge
considering systems up to L=80 (100) is in within 1% (0.05%) level with the exact results for theHM (QIM)—
see figures 2(b1) and (c1). For theOBC case, we observe an alternating termof the BW–EH entropy for theHM,
but not for theQIM, see figures 2(b2) and (c2). These results is in agreement with the exact VNE. As discussed in
[47, 48], those oscillations are universal and due to the antiferromagnetic nature of the interactions, not
appearing in theQIM [49] (in the latter, the effective Fermimomentum is either 0 orπ). From theCFT
perspective, the oscillations can be viewed as lattice corrections of scaling dimensionΔp: their decay as a
function of the bipartition size is a power lawwhose exponent is related toΔp [48, 50].

The fact that the BW–EH faithfully reproduces not only the leading, but also the dominant subleading
correction testifies its predictive power on generic universal quantities captured by theVNE (aCFT-specific

7
Aworking code that generates the necessary input files to runwith ALPSWang–Landau (qwl) [43] can be found in https://github.com/

tiagomendessantos/BW-entanglement-Hamiltonian
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analysis is reported elsewhere [22]).While, for instance, non-universal contributions such as additive constants
in 1D shall not be immediately reproduced due to thefield theoretical origin of the relationwe employ, in all
examples where a comparison to exact results is possible (essentially, 1D systems), we observe that even non-
universal contributions are accurately captured: for instance,Δ S(L) goes to zero in the limit  ¥L both in the
OBC and PBC cases.We attribute this to the fact that the BW–EH is actually able to reproduce a ‘partition
function’whose correspondingHamiltonian has the correct density of states, andwhose generic correlation
functions are correct [16]. In case only thefirst element was true, and, for instance, the overall scaling correction
waswrong, onewould have generically expected incorrect correlation functions. From amethodological
viewpoint, this implies that ourmethodmay be used to check convergence of tensor network states in conformal
phases, especially for large values of the central charge.

4.2. Two-dimensional quantummagnets
TheVNE also describes universal properties of two-dimensional systems. For instance, theVNEof 2D ground
states that break a continuous symmetry scales as S(L)=AL+B ln(L)+D, where L is the linear size of the
boundary. TheA is the non-universal area law term [3], while, for a smooth boundary, the prefactor of the
logarithmic term is a universal quantity related to the number ofNambu–Goldstonemodes nb,B=nb/2, of the
associated spontaneously-symmetry-broken (SSB) phase [10, 17]. As examples of SSB, we consider the 2DXY
model and theHeisenbergmodel. In both cases, we performQMC simulations of the EHand extract the
correspondingVNE as a function of the subsystem linear size, L. The entropy is evaluated atβEH=2π/v, with
vHeis=1.658J [51] and vXY=1.134J [52], using theWL-SSE algorithm.

In order to illustrate how to cast the BW–EHon two-dimensional lattices [16], we consider the 2D
Heisenbergmodel in a square lattice Lx×Ly. In this case, the BW–EH is

( )

( ) ( )

( ) ( )

( ) ( )

 

 




å

å

= G

+ G -
d

d

d
d

=
+

=
+

H i S S

i S S1 2 , 10

i
x i i i i

i
x i i i i

BW
, 1

, ,

, 1
, ,

x y x y

x y x y

where the lattice spacing has been set to 1without loss of generality. The simulation of the subsystemBW–EH is
performed considering periodic boundary condition in the y direction, and open boundary condition in the x
direction, see figure 3(a). The functionΓ(x) is given by the BW theorem (equation (4))which represents the EH
of a half-bipartition; we call this subsystem-geometry of cylinder.We also consider theCFT expression
(equation (5)), which corresponds to the generalization of the BW to a subsystem that is embedded in a infinite
system;we call this subsystem-geometry of toroid.

We remind the reader that, as discussed in [16], forfinite values of Ly, formula equation (5) is in principle
only applicable to conformal field theories. Let us illustrate here a simple, non-rigorous argument that partly

Figure 2.BW–EH entropy of one-dimensional critical systems.Panel (a): partitions of the one-dimensional systems that we consider:
(a1) partition of length L embedded in an infinite system (infinite PBC); (a2) half-partition of a ring (finite PBC), (a3) half-partition of
an open system (finiteOBC). The BWcouplings of these systems are given by the CFT generalization of the BW theorem (see text). In
panels (b) and (c) are shown results for theHMandQIM, respectively, with PBC andOBC. The central charge obtained from the PBC
VNE is in agreement with exact results (c=1 and c=0.5). Error bars are smaller than the size of the symbols. For comparison, it is
also shown as an inset in panel (c1) theVNEobtainedwith the 10 lowest eigenvalues of the BW–EH (green curve).
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justifies the applicability of this approach to generic (i.e. non conformal) 2Dmodels. Typically, the low energy
theorywill bemade of gapless and gapped sectors. The description of the formerwill be scale invariant and
relativistic invariant: while this does not guarantee emergent conformal invariance, exceptions are rare. The
gapped part of the theory will (atmost) contribute to the entanglement properties only in the very vicinity of the
edge of the partition, where it would actually behave like a gapless theory. Far from the boundary, the reduced
densitymatrix with respect to these degrees of freedomwill be an identity operator (up to degeneracies). This
indicates that theCFT formulas used above shall be applicable also tomore general cases where some low-energy
degrees of freedom are actually gapped. In the context of the 2DHM, the role of gapless degrees of freedom is
played by the ( )P 1 model describing the emergentNambu–Goldstonemodes, and the gapped part of the
theory is described by themassiveGoldstonemode.

Infigure 3(b1), we show the scaling of the BWVNE for both cylinder and torus geometries. The scaling is
clearly linear. In the case of theHMon a torus, we extracted the coefficientA by fitting these results to S
(L)=AL+B ln(L)+D, and obtainA=0.372(6) , which is in agreement with a prediction based on spin-
wave approximation [53] (discrepancy<3%). Infigure 3(b2), we extract the subleading logarithmic correction

by considering the entropy difference ( ) ( ) ( )-S L S L2 2
n Llog

2
b in toroidal geometries of circumference 2L. The

number ofNambu–Goldstonemodes obtained from the prefactor of this term is in perfect agreement withfield
theoretical expectations [10, 19, 53, 54], with accuracy at the percent level or lower. The fact that theVNE returns
a valuewhich is considerably closer to thefield theoretical predictionwhen compared to the one extracted from
Renyi entropies [17, 19]may signal the fact that the latter aremore affected by irrelevant operators, as observed
in 1D [47, 48, 50], ormay be due to the smoother continuity properties of theVNE.

Figure 3.BW–EH entropy of two-dimensional systems. In panel (a)we present the sketch of the two-dimensional system considered in
this work. TheBW–EH is defined in the half-bipartitionA. Panel (b) shows results for theHMandXYmodel. The x-axis of (b1)
represents the linear size of the boundary, Ly=L, and the subsystem aspect ratio for theHM (torus) is a.r.=Ly/Lx=1, while for the
XY (torus) and theHM (cylinder), a.r.=2. In panel (b2), we remove the area law terms of S, and plot the subleading termof S as
function of ln L. The number of Goldstonemodes, nb=2b, extractedwith a linearfit, is in agreement with expected results.
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4.3. Strongly coupled quantum criticality
As a second example of 2D system,we consider the BW–EH for the bilayerHeisenbergmodel [55, 56]
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where ( )

=i i i,x y labels the sites within the planes (square lattice), and l are the label of the planes. Thismodel

describes a quantumphase transition induced by the inter-coupling g that belongs to theO(3)universality class.
We compute the BW–EHentropy at theQCP, gc=2.522, consideringβEH=2π/v, with v=1.9001(2) [51].
The functionΓ(ix) is given by the BW theorem (equation (4)), which represents the EHof a half-bipartitionwith
a cylinder geometry; seefigure 3(a). For this universal class and geometry, it has been argued that there is a
universal constant correction to the entanglement entropy that depends solely on the aspect ratio [23, 57]: for a
cylinder geometrywith PBC in the y direction, this constant has been conjectured to vanish, in sharp contrast to
anti-PBC. Verifying this conjecture requires accurate values of the entropy at large system sizes of several
hundred sites.

Our results up to partition of size L=18 are depicted infigure 4.Within error bars, our results show that S
(L) is independent of the aspect ratio of the subsystem, seefigure 4, have no detectable logarithmic subleading
term (the S(L)=AL+B ln(L)+D fitting, givesB=−0.05(8)), and the y-intercept of S(L) isD=0.010(7).
These results confirm that the scaling of theVNE is given by a pure area law behavior as predicted by the largeN
calculations forO(N) criticalmodels [23, 57]

5. Stability of BW–EH entropy

Wenowdiscuss the stability of the approach tomeasure the BW–EHutilizingQMC simulations. Themost
critical step are uncertainty due to errors in determining βEH. Since the density of states of the EHhas
qualitatively distinct properties from conventional density of states, it is of key importance to understand the
sensitivity of the approach proposed here to such errors.

Infigures 5(a1, b1), we show the value of the extracted entropy obtained viaWang–Landau sampling as a
function ofβ, for both 1D and 2DHM.The insetsmagnify the region in the vicinity of the exact value ofβEH,
signaled by a dashed vertical line: in this regime, the entropy is linearly sensitive toβ. This implies that the
accuracy in estimating S is ultimately limited by the accuracy on the sound velocity: this strengthen the
applicability of ourmethod toQMC simulations, where v can bemeasured very accurately via a variety of
techniques [51, 58].

5.1. Stabilitywith respect to inhomogeneous couplings
The second class of imperfections we discuss is the presence of inhomogeneities in the BW–EH couplings. This is
motivated by potential experimental realizations of the EH: indeed, the generic approach described above can be
extended to formulate protocols tomeasure the vonNeumann entropy in experiments (complementing
previous approaches based onRenyi entropies [59–65] and entanglement spectra [15, 66]) as follows.

The key ingredient here is to obtain the density of states of the EH,whosemicroscopic implementation has
been discussed in [15]. Such density of states can be obtained via quantumquenches, adapting to experiments

Figure 4.BW–EH entropy of two-dimensional bilayermodel. The graph shows the results for the bilayerHMentropy at theQCP,
gc=2.522, and different a.r.=Ly/Lx, where Ly=L. The results are well described by a linearfit, and the y-intercept is γ≈0, see the
inset.
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the approach presented in [67, 68]: themain idea is that, starting initially from the ground state, one can recover
the eigenvalue density of a given operator (in our case, the BW–EH) by suddenly switching on a coherent
dynamics given by the operator itself. This technique is a quantumquench analog of spectral decomposition,
and is thus fully general and applicable to the EH.

Themain challenges to be overcome in this direction are three: errors in the initial state preparation, finite
quench time due to decoherence, and proper realization of themicroscopic dynamics. Regarding thefirst two
elements, the analysis of the EH case goes along the same lines of conventionalHamiltonians [67, 68].We thus
focus here on the last element, which is unique to the present case due to the spatiallymodulated couplings.We
thus address the effects of randomperturbations in the EHcouplingsΓ(n), which accounts for possible
imperfect experimental realizations of the EH. Such randomperturbations are one of the possible cases
discussed in  [15].

We consider disordered couplings,Γ(n)→Γ(n)(1+δn)
8, where δn=[−δ, δ], in the BW–EHof theHM

(in 1D and 2D). Specifically, we are interested in understanding how the BWVNE is affected by a small amount
of disorder.

Infigure 5(a2, b2)we show that themean value of the BWVNE is not appreciably affected by disorder up to
strength of the order of 10%. For larger values of δ, we observe a considerable dependence on the disorder
realization, as signaled by the visually large spreading of the values of S. Surprisingly, themean value of the
entropy is not dramatically affected. This remarkable stability is in contrast towhat is typically foundwhen
studying the effects of disorder in theHamiltonian couplings, which have a quantitatively larger effect on
entropies. A possible element in support of this unexpected resilience is the fact that theVNE is endowedwith

Figure 5. Stability to pertubations.Panels (a1) and (b1) show theβ-dependence of the BW–EHentropy for the 1D (infinitePBC) and
2D (torus)HM, respectively; the insetsmagnify the regions close to the numerical exact value ofβEH (dashed vertical line). Panels (a2)
and (b2) show the BW–EHentropy as a function of the disordermagnitude δ for the (a2) 1DHMwith L=16 (infinite PBC) and (b2)
2DHM (torus)with L=8 (see text). The circles (black points) are the value of S for a single realization of disorder, while the triangles
(red points) are the averaged S (Nr=[100–200] realizations of disorder are used). The horizontal dashed line represents the value of S
in the clean case.

8
Weremind that this imperfect EH corresponds to theGS of a clean system, and is not related to the entanglement properties of disordered

systems.
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particularly robust continuity properties with respect to changes in the entanglement spectrum (which is instead
expected to be directly affected by the random couplings).

6. Conclusions

Wehave presented amethod tomeasure the ground state vonNeumann entropy of a broad class of lattice
models via direct thermodynamic probe of the correspondent entanglementHamiltonian. Themethod is
straightforward to implement in quantumMonteCarlo simulations, and is of immediate applicability to
experiments capable ofmeasuring the density of states. It enables accurate predictions of universal quantities
solely based on entanglement, thanks in particular to its immediate scalability in numerical simulations. Future
perspectives include the application of themethod to other entanglement related quantities, such as the
negativity, its extension to lattice gauge theories, and its integrationwithmethods to determine the EH atfinite
temperature [36, 69].
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Appendix. QuantumWang–Landau sampling of the entanglementHamiltonian

In this sectionwe discuss some relevant technical aspects of the quantumWang–Landau (WL) simulations used
to obtain the thermodynamic entropy of the BW–EH. The orders of the series expansion shown in equation (7)
that are relevant for a givenβ are sharply peaked around ∣ ( )∣b bE ;where ∣ ( )∣b = + á ñE C HBW is related to the
expectation value ofHBW at inverse temperatureβ

( ) ( )á ñ =
b-

H
H

Z

tr e
, A.1

H

BW
BW

BW

BW

and the constantC is defined to guarantee that theQMCweights are always positive ( > á ñC HBW ) [45]. Hence,
one can truncate the expansion at an orderΛ (i.e. n=0,1, ...,Λ )without introducing systematic errors in the
simulation. The choice ofΛ is performed using the same algorithmof the conventional SSE simulations, see
[45, 46], which gives as a result ( ) ∣ ( )∣b b bL » E . The effect of introducing the cutoffΛ(β) is that the range of
temperature that can be accessed is restricted to ( ) ∣ ( )∣b b b< L E . In order to obtain the results offigures 4(a,
b1) of themain text, for instance, we simulate the BW–EHusingΛ(3βEH) as the cutoff. Instead, the computation
of the BWVNE atβEH are obtained utilizing a cutoffΛ(αβEH). The results shown infigures 2 and 3 of themain
text are obtainedwithα=1.3.We check that these results do not change upon increasingα.

The required numerical resources to compute the thermodynamic entropy of the BW–EHdepend on the
cutoff,Λ, introduced in the SSE series expansion.We can estimate the system-size dependence of the required
numerical resources, by noting that the leading termof the size scaling of the SSE cutoff areΛ(βEH)∼L3 in 2D
andΛ(βEH)∼L2 in 1D; where L is the linear size of the systems considered here. In order to establish these
results wefirst note that the correlation functions that appear in the expression of á ñHBW (see equation (10)) are

( )
   á ñ <d+S S O 1i i . Asumming that these correlations are equal to a constant ( )

   á ñ »d+S S O 1i i , we can estimate
the size scaling of á ñHBW in 2Dby considering the identity
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⎠
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In additionwe note thatβEH∼O(1), and using the aforementioned argument one have thatC∼L3. As the
prefactor associated toC is larger then the one of á ñHBW , we conclude thatΛ(βEH)∼L3. Remarkably, the cutoff
that one needs to introduce to compute the ground state properties of the originalHamiltonianH (the one from
which the BW–EHansatz is built) also scales asΛ∼L3. In this case, however, the ground state energy scale as

( )b  ¥ ~E L2, while one needs to considerβ∼L in order to access ground state properties.
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Finally, it is important tomention that the results of the BWentropy are obtained by doing an average ofNr

independentWL simulations, i.e.

( ) ( ) ( )åb b=
=

S
N

S
1

. A.3
r i

N

i
1

r

The error bars are the standard deviation of the distribution {Si}, and for all the results presented, we consider at
leastNr>200.
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